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Abstract. In this paper we describe Bayesian inferential methods for data mod-
eled by controlled branching processes that account for model robustness via the
use of disparities. Under regularity conditions, we establish that estimators ob-
tained using disparity-based posterior, such as expected and maximum a posteriori
estimates, are consistent and efficient under the posited model. Additionally, we
establish that the estimates are robust to model misspecification and presence of
outliers. To this end, we develop several fundamental ideas relating minimum dis-
parity estimators to Bayesian estimators obtained using the disparity-based pos-
terior, for dependent tree-structured data. We illustrate the methodology through
a simulated example and apply our methods to a real data set from cell kinetics.
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1 Introduction

Branching processes are routinely used to model population evolution in a variety of
scientific disciplines such as cell biology, population demography, biochemical processes,
genetics, epidemiology, and actuarial sciences (see, for instance Devroye (1998), Haccou
et al. (2005), González et al. (2010), Kimmel and Axelrod (2015) and del Puerto et al.
(2016)). While several variants of branching processes are available, a particularly useful
variant is the controlled branching process (CBP) with random control functions, on
which this work is focused.
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These processes are discrete time and discrete state stochastic processes – like clas-
sical Galton-Watson processes (GWPs) – describing the growth of a population over
the generations using probability distributions for the reproduction. However, unlike
the GWPs, the number of progenitors is determined by a random mechanism which
is referred to as control functions. This fact allows for modelling real-life phenomenon
such as random migratory movements (for instance, immigration and emigration), with
great flexibility. Moreover, although the GWP and the CBP have a Markovian structure
and individuals reproduce independently of the others in both models, in a CBP the
evolution of the tree generated by a progenitor is not independent of the trees generated
by the others. This lack of independence leads to substantial technical challenges in the
theoretical developments and is described in detail in the manuscript. A good reference
for the probabilistic theory and inferential issues developed until now for the CBPs is the
recent monograph González et al. (2018). The great flexibility offered by CBPs comes
with a cost; they require specification of multiple distributions such as the offspring
distribution and the control distributions. Divergence-based methods have been used
to provide methodologies for inference in these settings that are robust to presence of
outliers and efficient when the posited model is correct, see Sriram and Vidyashankar
(2000) for the GWP and the more general approach given in González et al. (2017) for
the CBP. Analysing robust procedures in depth in the field of branching processes is of
great interest since it is not unusual to find the existence of a small proportion of indi-
viduals in a population whose reproductive capacity is influenced by temporary events,
leading to outliers in the data. While the aforementioned papers deal with the problem
from the frequentist standpoint, divergence-based methods in the Bayesian framework
in the context of branching processes with strong theoretical guarantees do not exist.
This paper is focused on addressing this problem.

Bayesian inference in the presence of model misspecification has received much atten-
tion in recent years. In the context of classification problems, Jiang and Tanner (2008)
studied the behaviour of the so-called Gibbs posterior under a variety of conditions on
the risk functions and hence allowing for potential model misspecification. See also the
classical reference Catoni (2004) and Bissiri et al. (2017). On the other hand, Hooker
and Vidyshankar (2014) provided an alternative approach for Bayesian inference under
model misspecification using divergences for conditionally independent and identically
distributed (c.i.i.d.) random variables. Indeed, in their work they evaluate the effect
of model misspecifications by studying the asymptotic behaviour of the posterior esti-
mates under the posited model and misspecified model settings. Alternatively, again in
the c.i.i.d. setting, Ghosh and Basu (2016) and Ghosh and Basu (2017) used power di-
vergences to derive robust Bayesian methods. More recently, Miller and Dunson (2018)
developed an alternative coarsening approach, for c.i.i.d. random variables, which es-
sentially amounts to assuming that the observed data are within an ε-neighbourhood
of posited model for a suitably defined neighbourhood and ε.

Returning to the setting of CBPs, in order to make inference of the offspring dis-
tribution, we assume that it belongs to some known general parametric family. This
is a reasonable assumption in the context of branching processes, since we often have
some knowledge on the reproduction process of the population. For instance, the geo-
metric distribution is proposed as a reproduction law for a GWP applied to model data
from a yeast cell colony in Guttorp (1991), or is used to establish analogies between
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branching processes and the thermodynamic properties of small systems in Corral et al.
(2016). Additionally, a GWP with a generalized power series offspring distribution is
considered as a model for the spread of an infectious disease in a population in Angelov
and Slavtchova-Bojkova (2012). The classical reference of Holgate and Lakhani (1967)
provides a broad description of parametric families of offspring distributions suitable
in an ecological context. For example, a Poisson distribution is the natural offspring
distribution to consider in a population where each progenitor produces a large num-
ber of eggs whose probability of becoming an individual is small and it is constant for
all the eggs; a Bernoulli distribution with support {0, 2} is appropriate to model the
reproduction of organisms by binary fission, such as bacteria, amoeba, etc. Additional
examples involving a compound Poisson distribution, a negative binomial distribution
or a zero-modified geometric distribution can be found in Holgate and Lakhani (1967).

The current paper describes the use of disparities for CBP data to provide robust
estimation of the parameters of the offspring distribution. We assume that the number
of parents giving birth to exactly k offspring is known for all k ≥ 0. For sake of brevity,
henceforth this sample will be referred as the entire family tree. Roughly speaking, our
proposed method, analogous to the c.i.i.d. case, consists in replacing the log-likelihood
in the expression for the posterior distribution with an appropriately scaled disparity
measure, and studying the expectation and the mode of the resulting disparity based
posteriors to obtain the Bayes estimators, known as EDAP and MDAP estimators,
respectively (see Section 3 for definition). However, unlike the c.i.i.d. case, two new issues
arise: the scaling for the disparity is random and its asymptotic behavior depends on the
parameters of interest. To address these two issues, it is common to use conditioning
arguments; however, as explained previously, the lack of independence between the
trees generated by the progenitor and other members of the population (due to the
introduction of control functions) causes sufficient challenges and requires development
of new mathematical techniques. Indeed, to establish the asymptotic properties, we
need results that invoke the branching structure – see Lemma 5 in Supplementary
Material (González et al., 2020) for details – and results that establish L1 convergence
of estimated posterior densities to the Gaussian density (see Theorem 4.2). It is worth
mentioning that such results are not known even for likelihood based posteriors and
to the best of our knowledge, the results in this paper are the first ones for dependent
tree-structured data. As a special case, when the control function yields the population
size of a generation, one obtains results for classical GWPs.

Moreover, turning to the assumptions, it is also important to mention that our class
of probability distributions, Γ∗, defined below in Section 3, refines and improves the
condition (A5) in Hooker and Vidyshankar (2014). This is related to the identifiability
of the model.

Beyond the challenges outlined above, we re-emphasize that even though the asymp-
totic properties of Bayes estimators are similar to those of the frequentist estimators,
the proofs concerning Bayes estimators are highly non-trivial. Indeed, one of the biggest
challenges is to verify that the posterior mean is close to the minimum disparity estima-
tor at a specified rate (see Theorem 4.3 below). Furthermore working with the posterior
mode introduces additional difficulties and requires uniform convergence of posterior
densities, which we establish in this paper. Indeed, under further conditions we show
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that this yields the closeness of the posterior mode and the disparity estimator at the
required rate (see Theorems 4.4 and 4.5 below).

Our algorithm to obtain the EDAP and MDAP estimators is quite different from
those developed in Hooker and Vidyshankar (2014). Unlike their work, which relies
on Metropolis-Hastings algorithm, we use numerical techniques such as Newton-Cotes
methods and non-linear optimization methods to obtain the estimators. This approach
decreases the computational burden significantly especially when replacing the likeli-
hood by alternative disparities. Furthermore, we establish that the proposed methods
yield estimators that are similar in numerical value to the traditional Bayesian esti-
mators in the absence of data contaminations, and are more robust in the presence of
outliers. More details are provided in Section 6.

Besides this Introduction, the rest of the paper is structured as follows: Section 2 de-
scribes the CBP model and states the hypotheses considered throughout the manuscript.
Section 3 is concerned with the description of Bayes estimators under disparity measures
and provides sharp probabilistic bounds for differences between the EDAP and MDAP
estimators and the frequentist minimum disparity estimators. Section 4 is devoted to
the asymptotic properties of the estimators while Section 5 deals with robustness prop-
erties. Section 6 contains two examples where we use the R programming environment.
Our first example is concerned with a real data set of a oligodendrocyte cell popula-
tion, firstly used in Yakovlev et al. (2008). This example illustrates the versatility of the
proposed methodology since such data are typically modeled by a multi-type branching
process. The second example is a simulation study to illustrate the robustness of the
proposed methodology. Finally, the contributions of the manuscript are summarized
in Section 7. The Appendix gathering some results on the existence and continuity of
functionals related to EDAP and MDAP estimators, additional figures, simulated data,
the proofs of the main results and the computational codes developed for the examples
are presented in the Supplementary Material.

2 The probability model

A controlled branching process (CBP) with random control functions is a Markov chain
{Zn}n∈N0 defined recursively as follows:

Z0 = N, Zn+1 =

φn(Zn)∑
j=1

Xnj , n ∈ N0, (1)

where N0 = N ∪ {0}, N ∈ N, {Xnj : n ∈ N0; j ∈ N} and {φn(k) : n, k ∈ N0} are
two independent families of non-negative integer valued random variables defined on
a probability space (Ω,A, P ). The empty sum in (1) is taken to be 0. The random
variables Xnj , n ∈ N0, j ∈ N, are assumed to be i.i.d. and {φn(k)}k∈N0 , n ∈ N0, are
independent stochastic processes with the same one-dimensional probability distribu-
tions. Intuitively, this process models an evolving population in which each individual
reproduces, independently of each other and of the previous generation population, ac-
cording to the same probability distribution. However, unlike the classical GWP, the
number of reproducing individuals in the n-th generation, φn(Zn), is a random function
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φn(·) of the generation size Zn rather than Zn itself. In the case when φn(x) ≡ x, one
obtains the classical GWP. As in the GWP, the quantity Xnj can be interpreted as
the number of offspring produced by the j-th progenitor in the n-th generation. The
terminology, number of progenitors of the n-th generation will sometimes be used to de-
scribe φn(Zn). We denote the offspring distribution by p = {pk}k∈N0 , pk = P [X01 = k],
k ∈ N0. Moreover, in relation to the moments of the process, we denote by m = E[X01]
and σ2 = V ar[X01], the offspring mean and variance (assumed to be finite), while by
ε(k) = E[φ0(k)] and σ2(k) = V ar[φ0(k)], k ∈ N0, the mean and variance function of
the random control functions.

As explained in the introduction, we focus on offspring distributions that are para-
metric; that is, we assume that pk(θ) = pk = P [X01 = k], for k ∈ N0, θ ∈ Θ and Θ ⊆ R

with a non-empty interior. We notice here that extension to multidimensional case is
possible at the cost of more cumbersome notations. We denote the parametric family
by FΘ = {pθ : θ ∈ Θ}, where pθ = {pk(θ) : k ∈ N0} is the offspring distribution for
each θ ∈ Θ, and these satisfy regularity conditions such as differentiability in θ. We also
assume that the parametric model satisfies the following identifiability condition:

pk(θ1) = pk(θ2), ∀k ∈ N0 ⇒ θ1 = θ2. (2)

The main results that we describe in the paper will require the generation sizes to
diverge to infinity with positive probability. While the assumption of supercriticality of
the offspring distribution is sufficient in the GWP case, one needs a slight modification
of such a condition (see Chapter 3 in González et al. (2018)). Assumption 1 in Section 4
fixes the framework we need in relation to this issue.

The following additional notation regarding the sample is needed for the theoretical
developments:

Z∗
n = {Zl(k) : 0 ≤ l ≤ n− 1; k ∈ N0}, with Zl(k) =

φl(Zl)∑
i=1

I{Xli=k},

where IA represents the indicator function of the set A. Notice that Zl(k) represents
the number of individuals in generation l who have exactly k offspring. Also, let

Yl(k) =

l∑
j=0

Zj(k), Yl =

l∑
j=0

Zj , and Δl =

l∑
j=0

φj(Zj), l, k ∈ N0.

We notice that Yl(k) represents the total number of progenitors who have exactly k
offspring up to generation l. Furthermore, Yl and Δl represent the total number of
individuals and the total number of progenitors until the l-th generation.

3 Bayesian estimators using disparity measures

In this section, we describe Bayesian estimators using disparities. To this end, let L1

denote the space of measurable functions which are Lebesgue integrable and equipped
with the L1-norm. Also, let π(·) denote a prior density on Θ which belongs to L1, i.e.,∫
Θ
|θ|π(θ)dθ < ∞. Then, using the Bayes Theorem and Markov property it can be seen
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that the posterior density of θ, given the sample Z∗
n is,

π(θ|Z∗
n) ∝ e−Δn−1KL(p̂n,θ)π(θ), (3)

where KL(q, θ) is the Kullback-Leibler divergence between a probability distribution q
defined on N0 and pθ; that is,

KL(q, θ) =

∞∑
k=0

log

(
qk

pk(θ)

)
qk,

and p̂n = {p̂k,n}k∈N0 is the non-parametric maximum likelihood estimator (MLE) of
the offspring distribution, p, based on the sample Z∗

n (see González et al. (2016)); that
is,

p̂k,n =
Yn−1(k)

Δn−1
, k ∈ N0, n ∈ N. (4)

Two traditional summary Bayes estimators for the parameter θ are (i) the posterior
mean or expectation a posteriori (EAP) and (ii) the posterior mode or maximum a
posteriori (MAP). These are defined as follows:

θ∗n =

∫
Θ

θπ(θ|Z∗
n)dθ, and θ+n = argmax

θ∈Θ
π(θ|Z∗

n), n ∈ N,

respectively. However, it is widely known, that these estimators fail to yield robust
estimates in the i.i.d. case. We illustrate this fact for the offspring distribution of the
CBP in the following example.

Example 1. Consider a CBP starting with Z0 = 1 individual and for each k ∈ N0 the
control variable φn(k) follows Poisson distribution with parameter λk, with λ = 0.3. In
practice, these control functions are suitable to describe an environment with an expected
emigration. For the offspring distribution, we consider a mixture model for gross errors
(see (12) in Section 5 for definition); specifically, each individual at each generation
produces offspring according to a geometric distribution with parameter θ0 = 0.3 with
probability 0.85, and with probability 0.15 it gives birth to L = 11 offspring. The offspring
mean and variance, ignoring the presence of the contamination at the point L = 11, are
m = m(θ0) = (1− θ0)/θ0 = 2.333 and σ2 = σ2(θ0) = (1− θ0)/θ

2
0 = 7.778, respectively.

Using the statistical software R, we have simulated the first 45 generations of such
a model, z∗45. The evolution of the number of individuals and progenitors is shown in
Figure 1 (left), where growth in both groups is observed. Next, in order to estimate the
posterior density function of θ using the sample z∗45, we used a beta prior distribution
with parameters 1/2 and 1/2. This choice was motivated by the fact that, according to
Berger and Bernardo (1992), this is a non-informative prior distribution for a parame-
ter between 0 and 1. We do not discuss further about the choice of the prior distribution,
but a sensitivity analysis is provided in the Supplementary Material to show the negligi-
ble impact of the prior distribution. The estimate of the posterior density function of θ
is plotted in Figure 1 (centre), where one notices the poor estimate for the true offspring
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parameter, θ0. For a better illustration, in Figure 1 (right) we have also plotted the evo-
lution of the EAP and MAP estimates for θ0 through the generations. We remark that,
similar to the case for the MLE in a frequentist setting, EAP and MAP estimators also
possess unsatisfactory behavior in the presence of contamination. However, these esti-
mators possess desirable asymptotic properties – consistency and asymptotic normality
– in a contamination-free context.

Figure 1: Left: evolution of the number of individuals (black line) and progenitors (red
line). Centre: estimate of the posterior density (black line) and D-posterior density
(dashed-dotted line) – see details in Subsection 6.2 – of θ given the sample z∗45, together
with EAP and MAP estimates (red and blue lines, resp.) and D-posterior estimates –
EDAP and MDAP (magenta and green lines, resp.) – with high posterior density (HPD)
intervals (dashed lines) and true value of θ0 (dark gray line). Right: evolution of EAP,
MAP, EDAP and MDAP estimates (red, blue, magenta and green lines, resp.) of θ0
through the generations, where the horizontal dark gray line represents the true value
of the parameter.

Figure 1 illustrates the undesirable properties of EAP and MAP (see red and blue
lines, respectively) as well as the good ones of the D-posterior estimators (called EDAP
and MDAP, see magenta and green lines, respectively) introduced and studied in Sections
below. In Subsection 6.2 we also describe the probability distributions and the resulting
behavior of D-posterior, not only for the contaminated models but also when there is no
contamination and the contamination levels increase. These are illustrated in Figure 7
and 8 of the Section 5.4 in the Supplementary Material. We notice that the D-posterior
smoothly down weighs the effect of outlying observation and as the contamination reduces
the credible interval gets closer to the one determined by the classical posterior. For
another aspect of this example see Subsection 6.2 below.

Situations similar to the above example clearly showcase the need of robust esti-
mators against outlier contamination. Since outlier contamination can frequently be
described using a mixture model, the robustness of the Bayes estimators to outliers can
be cast in the general framework of model misspecification. The general disparity-based
approach, as described in Hooker and Vidyshankar (2014) and adapted to the family
tree data Z∗

n generated by the CBP, facilitates such an analysis. As in Hooker and
Vidyshankar (2014), the equation (3) suggests defining a density function by replacing
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the Kullback-Leibler divergence with a suitable disparity measure D defined on Γ×Θ,
where Γ is the set of all probability distributions defined on the non-negative integers.
A disparity measure is defined (see Lindsay (1994)) using a strictly convex and thrice
differentiable function G : [−1,∞) → R satisfying G(0) = 0 as follows:

D : Γ×Θ → [0,∞],

(q, θ) �→ D(q, θ) =

∞∑
k=0

G(δ(q, θ, k))pk(θ),

where q = {qk}k∈N0 , and δ(q, θ, k) denotes the “Pearson residual at k”, that is,

δ(q, θ, k) =

{ qk
pk(θ)

− 1, if pk(θ) > 0;

0, otherwise.

The resulting function after replacing the Kullback-Leibler divergence with a dispa-
rity-based quantity is referred to as D-posterior density function at p̂n and is defined
as:

πn
D(θ|p̂n) =

e−Δn−1D(p̂n,θ)π(θ)∫
Θ
e−Δn−1D(p̂n,θ)π(θ)dθ

. (5)

More generally, the previous definition can be extended for an arbitrary probability
distribution q ∈ Γ, yielding the D-posterior density function at q that is given by

πn
D(θ|q) = e−Δn−1D(q,θ)π(θ)∫

Θ
e−Δn−1D(q,θ)π(θ)dθ

. (6)

Observe that (6) is well defined for each q ∈ Γ if and only if supp(π)∩{θ ∈ Θ : D(q, θ) <
∞} has non-null Lebesgue measure, where supp(π) denotes the support of the prior
density function. In particular, if the disparity measure D is bounded on Γ × Θ, then
supp(π) ∩ {θ ∈ Θ : D(q, θ) < ∞} = supp(π), for each q ∈ Γ, and the density function
in (6) is well defined. Taking into consideration this fact, we focus our attention on the
following set:

Γ̃ = {q ∈ Γ : supp(π) ∩ {θ ∈ Θ : D(q, θ) < ∞} has non-null Lebesgue measure}.

Analogous to the classical Bayes estimators, one can summarize the information from
the D-posterior using the estimators expectation a D-posteriori (EDAP) and maximum
a D-posteriori (MDAP); these are defined as follows:

• Expectation a D-posteriori (EDAP):

θ∗Dn =

∫
Θ

θπn
D(θ|p̂n)dθ, n ∈ N. (7)

• Maximum a D-posteriori (MDAP):

θ+D
n = argmax

θ∈Θ
πn
D(θ|p̂n), n ∈ N. (8)
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Specifically, the EDAP estimator mimics the Bayes point estimators for the posterior
density under the squared error loss function, whereas the MDAP estimator does it
under 0 − 1 loss function. We next focus on a few useful examples of non-negative
disparity measures and the corresponding D-posterior density functions and refer to
Cressie and Read (1984) and Lindsay (1994) for additional examples.

Example 2. (a) The Kullback-Leibler divergence with the parametric family FΘ, de-
fined above, is provided by the function G(δ) = (δ+1) log(δ+1)−δ. Consequently,
the D-posterior distribution and the EDAP and MDAP estimators using this dis-
parity coincide with the posterior distribution and the EAP and MAP estimators,
respectively.

(b) The disparity determined by the function G(δ) = 2[(δ + 1)1/2 − 1]2 is the twice
squared Hellinger distance (or simply Hellinger distance), denoted by HD(q, θ),

namely HD(q, θ) = 2
∑∞

k=0(q
1/2
k − p

1/2
k (θ))2, for each q ∈ Γ, and θ ∈ Θ. The

D-posterior distribution using this disparity is referred to as HD-posterior dis-
tribution and the EDAP and MDAP estimators are denoted by θ∗HD

n and θ+HD
n ,

respectively, for each n ∈ N.

(c) The disparity defined by using the function G(δ) = e−δ−1+δ is known as negative
exponential disparity and denoted by NED(q, θ) for each q ∈ Γ, and θ ∈ Θ.
The D-posterior distribution using this disparity is referred to as NED-posterior
distribution and the EDAP and MDAP estimators are denoted by θ∗NED

n and
θ+NED
n , respectively, for each n ∈ N.

For the study of asymptotic and robustness properties of the EDAP and MDAP
estimators, which we address in Sections 4 and 5, we introduce the EDAP functions,
defined for each n ∈ N as follows:

Tn : Γ× Ω → Θ,

(q, ω) �→ Tn(q)(ω) =

∫
Θ
θe−Δn−1(ω)D(q,θ)π(θ)dθ∫

Θ
e−Δn−1(ω)D(q,θ)π(θ)dθ

,

and the MDAP functions, defined as:

T̃n : Γ× Ω → Θ,

(q, ω) �→ T̃n(q)(ω) = argmin
θ∈Θ

(Δn−1(ω)D(q, θ)− log(π(θ))),

whenever this minimum exists. With these definitions, θ∗Dn (ω) = Tn(p̂n)(ω), and

θ+D
n (ω) = T̃n(p̂n)(ω). Note that these functions depend on the total number of pro-
genitors, and one has different EDAP and MDAP functions for each disparity measure
and for each prior distribution; however, in order to ease the notation we will not make
explicit this relation.

Despite the similarities between EDAP and MDAP functions defined in the con-
text of branching processes and those in the case of i.i.d. random variables, there is a
key difference. While in the i.i.d. case these are deterministic functions, in the current
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context they are random variables. This randomness arises due to the random sample
size Δn−1 and leads to questions concerning the existence and measurability of these
functionals that must be treated carefully (see, for instance Brown and Purves (1973)).
However, in order to ease the reading of the paper we omit those details here and we
relegate the study of those questions to the Appendix in the Supplementary Material.
Taking into account these considerations, we assume the conditions that guarantee the
existence and uniqueness of T̃n(q), q ∈ Γ, throughout the paper.

4 Consistency and asymptotic normality

In this section, we focus our attention on the asymptotic behaviour of the EDAP and
MDAP estimators. The proofs of the results of this section are presented in Section 2 of
the Supplementary Material. One of our main results in this section is that EDAP and
MDAP estimators are asymptotically efficient when the posited offspring distribution
belongs to the parametric family. This will be obtained as a consequence of a more
general result; viz., the L1 almost sure convergence of posterior density to a Gaussian
density with mean 0 and variance equal to the inverse of the Fisher information.

As stated in Section 2, we impose the following assumption on the asymptotic be-
haviour of the process:

Assumption 1 (On the supercriticality of CBPs). The CBP satisfies:

( a) There exists τ = limk→∞ ε(k)k−1 <∞ and the sequence {σ2(k)k−1}k∈N is bounded.

(b) τm = τm > 1 and Z0 is large enough so that P [Zn → ∞] > 0.

( c) {Znτ
−n
m }n∈N converges a.s. to a finite random variable W such that P [W > 0] > 0.

(d) {W > 0} = {Zn → ∞} a.s.

In González et al. (2016), it is established that under the Assumption 1, Δn → ∞
a.s., and p̂k,n is a strongly consistent estimator of pk, for each k ∈ N0, on the set
{Zn → ∞}. Recall that if the offspring distribution generating the CBP is parametric,
then there exists an interior point θ0 ∈ Θ such that p = pθ0 .

To establish the results, we need additional regularity conditions and hence, in the
remainder of this paper we assume that for each q ∈ Γ, the first and the second derivative
of D(q, θ) with respect to θ exist and we denote them by Ḋ(q, θ) and D̈(q, θ); the reader
is referred to Section 4 in González et al. (2017) for conditions that guarantee their
existence. We also denote by ID(θ) = D̈(p, θ), and IDn (θ) = D̈(p̂n, θ), where p is the
posited offspring distribution and p̂n was defined in (4). Henceforth, we also assume –
without loss of generality (see Lindsay (1994), p. 1089) – that G′(0) = 0 and G′′(0) = 1.
Thus, taking into account the previous hypotheses and the identifiability condition (2),
if p = pθ0 , one has that I

D(θ0) reduces to the Fisher information at θ0 denoted by I(θ0)
(see González et al. (2017)).
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In the proofs of the results in this section the asymptotic properties of the frequentist
minimum disparity estimator will play a critical role. As it was introduced in González
et al. (2017), the minimum disparity estimator (MDE) of θ0 based on p̂n is defined as:

θ̂Dn = argmin
θ∈Θ

D(p̂n, θ),

and the associated disparity function defined as:

T : Γ → Θ

q �→ T (q) = argmin
θ∈Θ

D(q, θ),

whenever this minimum exists. For details about conditions for the existence, unique-
ness, and continuity of the function T , we refer the reader to Theorems 3.1–3.3 in
González et al. (2017). Note that analogous to EDAP and MDAP functions, the dis-
parity function depends on the disparity measure which we suppress in our notations.
With this notation, T (p̂n) = θ̂Dn .

Furthermore, we strengthen our regularity conditions on the disparity measure and
the prior distribution as below:

Assumption 2 (On the disparity function and the prior distribution).

( a) For q ∈ Γ, T (q) exists, is unique and T (q) ∈ int(Θ) (interior of Θ).

(b) π(·) is bounded.

( c) π(·) is thrice differentiable, the third derivative of π(·) is bounded, and π(T (q)) >
0.

Assumption 3 (On the continuity of the disparity measure and the MDE). The fol-
lowing properties concerning the disparity measure and the MDE hold:

(a) There exists some C > 0 such that for each q1, q2 ∈Γ, supθ∈Θ |D(q1, θ)−D(q2, θ)| ≤
C||q1 − q2||1.

(b) Let θp = T (p) satisfy ID(θp) > 0 and IDn (θ) → ID(θp) a.s. on {Zn → ∞}, as
θ → θp and n → ∞.

(c) The MDE satisfies that

θ̂Dn → θp a.s. on {Zn → ∞}, (9)

Δ
1/2
n−1(θ̂

D
n − θp)

d−→ N(0, ID(θp)
−1), (10)

where
d−→ represents the convergence in distribution with respect to the probability

P [·|Zn → ∞].

Remark 4.1. (a) We note that (a) in Assumption 3 holds for Hellinger distance or
any disparity, defined by G(·) satisfying G(·) and G′(·) are bounded in [−1,∞)
(see González et al. (2017), p. 313).
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(b) Sufficient conditions for (b) in Assumption 3 can be found in Section 4 in González
et al. (2017).

(c) Conditions that guarantee the convergence of (9) and (10) were established in
Theorems 3.4 and 4.1, respectively, in González et al. (2017).

We now introduce the following subset of probability distributions which we need in
the statement of our next theorem. Let

Γ∗ =

{
q ∈ Γ̃ : ∀η > 0, ∃ ρ > 0 such that inf

|θ−T (q)|>η
(D(q, θ)−D(q, T (q))) > ρ

}
. (11)

In the following ϕ(t; θ) denotes the density function of a normal distribution with
mean 0 and variance ID(θ)−1. Additionally, let ϕn(t) denote the density function of

a normal distribution with mean 0 and variance IDn (θ̂Dn )−1. The following results hold
true for the offspring distribution p without assuming that it belongs to the parametric
family. In the case when p = pθ0 and under the identifiability condition (2), then the
same results hold with θp = θ0 and ID(θp) = I(θ0). We state our first main result of
this section.

Theorem 4.2. Let πn
D(·|p̂n) denote the D-posterior density function of t = Δ

1/2
n−1(θ −

θ̂Dn ). Let p ∈ Γ∗ satisfy ( a) in Assumption 2. If Assumptions 1 and 3 hold, then:

(i)
∫
|πn

D(t|p̂n)− ϕ(t; θp)|dt → 0 a.s. on {Zn → ∞}.

(ii)
∫
|t||πn

D(t|p̂n)− ϕ(t; θp)|dt → 0 a.s. on {Zn → ∞}.

(iii)
∫
|πn

D(t|p̂n)− ϕn(t)|dt → 0 a.s. on {Zn → ∞}.

The following theorem shows that the EDAP estimator mimics the MDE at the rate

Δ
1/2
n−1. This feature leads to the asymptotic normality of the centered and scaled EDAP

estimator.

Theorem 4.3. Under the hypotheses of Theorem 4.2, the following convergences hold:

(i) Δ
1/2
n−1(θ

∗D
n − θ̂Dn ) → 0 a.s. on {Zn → ∞}.

(ii) Δ
1/2
n−1(θ

∗D
n − θp)

d−→ N(0, ID(θp)
−1) with respect to P [·|Zn → ∞].

To establish the asymptotic properties of the MDAP estimator, we need the uniform
convergence of posterior density to the Gaussian density. This is the content of our next
theorem.

Theorem 4.4. Under conditions of Theorem 4.2, if (b) and ( c) in Assumption 2 hold,
then:

lim
n→∞

sup
t∈R

|πn
D(t|p̂n)− ϕ(t; θp)| = 0 a.s. on {Zn → ∞}.
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Now, we turn to the asymptotic behaviour of MDAP estimators.

Theorem 4.5. Under the hypotheses of Theorem 4.4 and if Θ is complete and separable,
then the following convergences hold:

(i) Δ
1/2
n−1(θ

+D
n − θ̂Dn ) → 0 a.s. on {Zn → ∞}.

(ii) Δ
1/2
n−1(θ

+D
n − θp)

d−→ N(0, ID(θp)
−1) with respect to P [·|Zn → ∞].

5 Robustness properties

In this section we describe the robustness properties of Bayesian disparity estimators
EDAP and MDAP. The proofs of the results of this section are gathered in Section 3
of Supplementary Material. In the context of i.i.d. data some of these issues were inves-
tigated in Hooker and Vidyshankar (2014). The study of disparities in the frequentist
context for branching processes has been investigated for the Hellinger distance in Sri-
ram and Vidyashankar (2000) and for a general standpoint in González et al. (2017). It
is pertinent to note here that the standard robustness concepts such as influence func-
tion, breakdown point (both finite and asymptotic) and α-influence curves, α ∈ (0, 1),
take a familiar form as the i.i.d. case and hence we will keep the discussion rather
brief.

We begin with a brief description of the framework. As is common and widely
accepted in the study of robustness problems, we focus on the gross error contamination
model. This model is a particular case of the semiparametric gross error introduced in
Hampel (1974), and is given by

p(θ, α, L) = (1− α)pθ + αηL, (12)

where θ ∈ Θ, α ∈ (0, 1), L ∈ N0, and ηL is a point mass distribution at L. A key
ingredient used in the investigation of robustness is the α-influence function, where
0 < α < 1. The α-influence function of a random variable T : Γ×Ω → Θ, is a mapping
such that

IFα(·, T , p) : N0 × Ω → R,

(L, ω) �→ IFα(L, T , p)(ω) =
T (p(θ0, α, L))(ω)− T (pθ0)(ω)

α
.

In our first result in this section we consider the disparity function T as a degenerate
random variable, i.e., T (q)(ω) = T (q), for each ω ∈ Ω and each q ∈ Γ, and establish
that the α-influence function of the EDAP (respectively, MDAP) function and of the
disparity function are close and characterize the difference in terms of the random
sample size Δn−1. To this end, we need the following additional assumption.

Assumption 4 (On the differentiability of the disparity measure). The disparity mea-
sure satisfies:
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( a) For each q ∈ Γ, D̈(q, ·) is continuous in Θ, and D̈(q, T (q)) > 0.

(b) D is a disparity measure associated with a function G(·) which satisfies that G(·)
and G′(·) are bounded on [−1,∞).

( c) The function δ ∈ [−1,∞) �→ (δ + 1)G′(δ)−G(δ) is bounded.

The following result is an immediate consequence of Theorem 3 in the Appendix in
the Supplementary Material.

Proposition 5.1. Suppose that Assumption 1 and ( c) in Assumption 2 hold. Let us
fix α ∈ (0, 1) and L ∈ N0 and assume that p(θ0, α, L) ∈ Γ∗, and that it satisfies ( a) in
Assumption 2 and ( a) in Assumption 4. The following hold as n → ∞ on {Zn → ∞}.

(i) |IFα(L, Tn, p)− IFα(L, T, p)| = o(Δ
−1/2
n−1 ) a.s.

(ii) If Θ is complete and separable and (b) in Assumption 2 holds, then,

|IFα(L, T̃n, p)− IFα(L, T, p)| = o(Δ
−1/2
n−1 ) a.s.

An immediate consequence of this proposition is that for each α ∈ (0, 1), and n ∈ N

large enough, the α-influence curve of the disparity functional at p provides a good
approximation of the α-influence curves of Tn and of T̃n at this probability distribution.
In addition, under conditions given in Theorem 5.1 in González et al. (2017), one has

that limL→∞ limn→∞ IFα(L, Tn, p) = 0 a.s. and limL→∞ limn→∞ IFα(L, T̃n, p) = 0 a.s.

The study of the α-influence curves as a measure for the robustness of an estima-
tor was driven by the fact that the influence functions do not always provide a good
description of the robustness properties of an estimator. Nonetheless, we establish a
sufficient condition for the influence functions of the EDAP estimators to be bounded,
and consequently, from the classical viewpoint, the EDAP estimators are robust. Recall
the definition of the influence function for EDAP estimators at p is given by

IF (·, Tn, p) : N0 × Ω → R,

(L, ω) �→ IF (L, Tn, p)(ω) = lim
α→0

IFα(L, Tn, p)(ω).

Theorem 5.2. If (b) in Assumption 4 holds, then |IF (L, Tn, p)| < ∞ a.s., for each
L ∈ N0 and n ∈ N.

Next, we turn our attention to the study of breakdown point. While the notion of
influence curves represents the effect of a single outlier in the asymptotic behaviour of
the estimator, the breakdown point intuitively represents the percentage of contamina-
tion that the estimator can asymptotically bear without taking arbitrarily large values.
Classically, the breakdown point of a general function T at q ∈ Γ is defined as:

B(T , q) = sup{α ∈ (0, 1) : b(α, T , q) < ∞},

where b(α, T , q) = sup {|T ((1− α)q + αq)− T (q)| : q ∈ Γ}. Note that b(α, T , q) = ∞ is
equivalent to the existence of a sequence of probability distributions {qL}L∈N0 satisfying
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|T ((1 − α)q + αqL) − T (q)| → ∞, as L → ∞. That sequence is called sequence of
contaminating probability distributions. The notion of breakdown point can be extended
in a natural way to a function T : Γ × Ω → Θ, such that for each q ∈ Γ, T (q) is a
random variable. We will study the breakdown point of the EDAP and MDAP functions
when the contaminating probability distributions and the parametric family satisfy the
following assumptions:

Assumption 5 (On the parametric family and the sequence of contaminating proba-
bility distributions).

(a) limL→∞
∑∞

k=0 min
(
qL,k, pk

)
= 0.

(b) limL→∞ sup|θ|≤c

∑∞
k=0 min

(
qL,k, pk(θ)

)
= 0, ∀c > 0.

(c) lim|θ|→∞
∑∞

k=0 min (pk, pk(θ)) = 0.

We notice here that the above conditions represent the worst possible contamination
context (see, for instance, Park and Basu (2004), p. 28). The next result, which in content
is analogous to the i.i.d. case, describes the role of the prior in the robustness of the
EDAP and MDAP estimators. It is to be noted that the asymptotic breakdown point
of the minimum disparity estimators is at least 50%.

Theorem 5.3. Suppose that ( c) in Assumption 4 holds true.

(i) If D(q, θ) is bounded for any q ∈ Γ and θ ∈ Θ, then the breakdown point of the
EDAP at p is 1.

(ii) Assume that (b) in Assumption 4, and (c) in Assumption 5 hold. Then, for any
family of contaminating distributions {q̄L}L∈N0 satisfying (a) and (b) in Assump-
tion 5, the breakdown point of the MDAP at p is 1. The result also holds for the
Hellinger distance.

We next turn our attention to a new notion for the study of robustness for a sequence
of estimators which are dependent on the sample size. The asymptotic breakdown point
for a sequence of estimators {Tn}n∈N at q ∈ Γ is defined as:

B({Tn}n∈N, q) = sup{α ∈ (0, 1) : lim sup
n→∞

b(α, Tn, q) < ∞}.

Before we describe the behaviour of EDAP and MDAP with respect to the above
measure, we introduce the following assumption:

Assumption 6 (On the sequence of contaminating probability distributions). The
sequence of contaminating probability distributions {q̄L}L∈N0 satisfies that for any α ∈
(0, 1) there exists δ > 0 such that

inf
L∈N0

inf
θ∈Θ

D(αqL, θ) > inf
θ∈Θ

D((1− α)p, θ) + δ.
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Our next theorem describes the asymptotic breakdown point of EDAP and MDAP
estimators. To that end, we need some additional regularity conditions on the parametric
family; indeed, assume condition (A4) – alternatively, (A6) for the Hellinger distance –
in González et al. (2017).

Theorem 5.4. Suppose that Assumption 1, ( c) in Assumption 2, (b) and ( c) in As-
sumption 4, and (c) in Assumption 5 hold. Let q ∈ Γ∗ satisfy ( a) in Assumption 4.
Assume further that any family of contaminating distributions {q̄L}L∈N0 satisfies (a)
and (b) in Assumption 5, and Assumption 6. Then the following hold:

(i) The asymptotic breakdown point of {Tn}n∈N at p is equal to the breakdown point
of T at p.

(ii) If Θ is complete and separable and (b) in Assumption 2 holds, then the asymptotic

breakdown point of {T̃n}n∈N at p is equal to the breakdown point of T at p.

The result also holds for the Hellinger distance.

While the above results are concerned with EDAP and MDAP estimators, in the
context of the methods proposed in the manuscript it is important to know the asymp-
totic behaviour of the corresponding D-posterior density functions at a contaminating
model. Our next result addresses this issue. Specifically, given α ∈ (0, 1), and a family
of contaminating distributions {q̄L}L∈N0 , the following result establishes the asymptotic
behaviour, as L → ∞, of the D-posterior density function at (1− α)p+ αqL.

Theorem 5.5. Let α ∈ (0, 1). Suppose that Assumption 1, (b) and ( c) in Assumption
4, and (c) in Assumption 5 hold. Let q ∈ Γ∗ satisfy ( a) in Assumption 2 and ( a)
in Assumption 4. Additionally, assume that the family of contaminating distributions
{q̄L}L∈N0 satisfies (a) and (b) in Assumption 5, and Assumption 6. Then the following
hold:

(i) limL→∞ πn
D(θ|(1− α)p+ αqL) = πn

D(θ|(1− α)p).

(ii) limL→∞
∫
Θ
|πn

D(θ|(1− α)p+ αqL)− πn
D(θ|(1− α)p)|dθ = 0.

The result also holds for the Hellinger distance.

Example 1 revisited: To illustrate the results of Theorem 5.5, in the data analysis
example described in Section 6 below, we will revisit Example 1. We consider a slight
modification of the model described previously, namely the offspring distribution is a
mixture of (1 − α) · 100% of a geometric distribution of parameter 0.3 and α · 100%
contamination at L, and the control distributions are Poisson of parameter λk = 0.45k,
where α is fixed at 0.01 and L increases. Concretely, in Figure 8 in Subsection 5.4 in
Supplementary Material, note that values of L near m = 2.333 are not extreme and
are the plausible values of a geometric distribution of parameter 0.3. However as L
increases, the EAP and MAP based on D-posterior are unaffected while that based on
the ordinary posterior breakdown.
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6 Examples

In this section, we illustrate the methodology proposed via two examples. The first
example is based on a real data set in the context of cell kinetics populations. In this
example, we show that the EDAP and MDAP estimators based on different disparity
measures are as good as the ones based on the Kullback-Leibler divergence in absence of
contamination. The second example of this section, which is a continuation of Example
1 introduced in Section 3, demonstrates the accuracy of the method in a contamination
context. Thus, unlike the EAP and MAP estimators based on the likelihood disparity,
the twofold goodness (in contamination and free-contamination contexts) of EDAP and
MDAP estimators is exemplified. In both cases, the results are illustrated by considering
the Hellinger distance and the negative exponential disparity. The proposed methodol-
ogy was implemented in R programming environment. The corresponding codes can be
found in the Supplementary Material.

6.1 Example – Oligodendrocytes

In this example, we consider data from a study on cell proliferation published by Hyrien
et al. (2006) and re-analyzed in Yakovlev et al. (2008). Both the papers were concerned
with modeling the proliferation of oligodendrocyte percursor cells and their transforma-
tion into terminally differentiated oligodendrocytes through multitype age-dependent
branching processes. The cell populations considered consist of two types of cells: the
oligodendrocyte precursor cells, referred as type T1 cells, and the terminally differen-
tiated oligodendrocytes, referred as type T2 cells. The development of both types of
cells is as follows: type T1 cells can die without any offspring or divide under normal
conditions; when stimulating to division, precursor cells are capable of producing either
direct progeny (two daughter cells of the same type) or a single terminally differenti-
ated nondividing oligodendrocyte. The data are supplied by time-lapse video recording
of oligodendrocyte populations. These experimental techniques enable us to record all
observable events (division, differentiation, or death), as well as their timing, in the
development of each individual cell. Due to the design of these experimental techniques
it is reasonable to assume absence of contamination in the observed sample (the multi-
daughter cell division can be observed, although rarely, in cancer studies – see Tse et al.
(2012) – this is not the case in our observed sample). A special feature is the presence
of censoring effects due to migration of precursor cells out of the microscopic field of
observation, modelled as a process of emigration of the type T1 cells.

Yakovlev et al. (2008) proposed frequentist estimators for the offspring distribution
of the continuous time evolution by embedding it in a discrete-time multitype branching
process. They incorporated cell-emigration in an artificial way by modifying the repro-
duction law. As a more natural alternative, we propose a two-type controlled branching
process to describe the embedded discrete branching structure of the continuous time
branching process previously described. In the framework given by this process, we ad-
dress the problem of estimating the offspring distribution of the cell population from a
Bayesian standpoint by making use of disparity measures.
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Specifically, we consider a two-type controlled branching process with binomial con-
trol, which is a particular case of the model introduced in González et al. (2005). The
process is defined recursively as follows:

Z0 = (N, 0), Zn+1 =

φn(Zn)∑
j=1

(X
(1)
n,j , X

(2)
n,j), n ∈ N0,

where Zn = (Z
(1)
n , Z

(2)
n ), N ∈ N, and {(X(1)

n,j , X
(2)
n,j) : j ∈ N, n ∈ N0} and {φn(z) :

n ∈ N0, z ∈ N
2
0} are two independent families of non-negative integer valued random

variables satisfying the following conditions:

(i) For each z = (z(1), z(2)) ∈ N
2
0, the random variables {φn(z) : n ∈ N0} are i.i.d.

following a binomial distribution with parameters z(1) and γ ∈ (0, 1).

(ii) The random vectors {(X(1)
n,j , X

(2)
n,j) : j ∈ N}, n ∈ N0 are i.i.d. whose probability

distribution is as follows:

p0 = P
[
X

(1)
n,j = 0, X

(2)
n,j = 0

]
,

p1 = P
[
X

(1)
n,j = 2, X

(2)
n,j = 0

]
,

p2 = P
[
X

(1)
n,j = 0, X

(2)
n,j = 1

]
.

(iii) If n1, n2 ∈ N0 are such that n1 �= n2, then, the sequences {(X(1)
n1,j

,

X
(2)
n1,j

) : j ∈ N} and {(X(1)
n2,j

, X
(2)
n2,j

) : j ∈ N} are independent.

Intuitively, Z
(j)
n denotes the number of cells of type Tj , j = 1, 2, in the nth generation,

andX
(1)
n,j andX

(2)
n,j represent the number of cells of type T1 and T2, respectively, produced

by the jth progenitor of type T1 in the generation n. The random variables φn(z) are
introduced to model the cell emigration, and therefore to determine the number of
progenitors of type T1 cells in the nth generation provided the population size at that
generation is the vector z. Consequently, γ is the probability that a cell of type T1

completes successfully its mitotic-cycle regardless of its outcome (and then 1− γ is the
probability of emigration of that T1 cell).

We focus our attention on the offspring distribution, {p0, p1, p2}, where p0 is the
probability that a cell of type T1 dies, p1 is the probability that a cell of type T1 divides
into two cells of type T1 and p2 is the probability that a cell of type T1 differentiates into
a new cell of type T2. Using the time-lapse video recording, one can observe the entire

family tree for that process, that is, the following sample Z∗
n = {Z(1)

l (0), Z
(1)
l (2),Λl :

l = 0, . . . , n− 1}, where

Z
(1)
l (j) =

φl(Zl)∑
i=1

I{
X

(1)
l,i =j,X

(2)
l,i =0

} , j = 0, 2; Λl =

φl(Zl)∑
i=1

I{
X

(1)
l,i =0,X

(2)
l,i =1

} .
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Note that φl(Zl) = Z
(1)
l (0)+Z

(1)
l (2)+Λl, Z

(1)
l (j) is the number of cells of type T1 in

the l-th generation having exactly j offspring of type T1, j = 0, 2, and Λl is the number
of cells of type T1 in the lth generation having exactly one offspring of type T2. Our aim
is to estimate the offspring distribution by using disparity measures, to provide HPD
regions for the corresponding D-posterior densities and to estimate the probability that
the production of precursor cells follows a supercritical probability distribution.

Using the Markov property and the independence between the emigration and re-
production phases, one can see that the likelihood function f(Z∗

n|p0, p1, γ) satisfies

f(Z∗
n|p0, p1, γ) ∝ p

Y
(1)
n−1(0)

0 p
Y

(1)
n−1(2)

1 (1− p0 − p1)
Ψn−1γΔn−1(1− γ)Y

(1)
n−1−Δn−1 ,

where Y
(1)
n−1(j) =

∑n−1
l=0 Z

(1)
l (j) is the total number of cells of type T1 in the first n

generations having exactly j offspring of type T1, j = 0, 2, Ψn−1 =
∑n−1

l=0 Λl is the total
number of cells of type T1 in the first n generations having exactly one offspring of type
T2, Δn−1 =

∑n−1
l=0 φl(Zl) is the total number of observed progenitor cells of type T1 in

the first n generations and Y
(1)
n−1 =

∑n−1
l=0 Z

(1)
l is the total number of individuals of type

T1 in the first n generations. Moreover, observe that Δn−1 = Y
(1)
n−1(0)+Y

(1)
n−1(2)+Ψn−1.

Thus, the MLEs of p0, p1, p2 and γ based on the sample Z∗
n are given, respectively, by

p̂0,n =
Y

(1)
n−1(0)

Δn−1
, p̂1,n =

Y
(1)
n−1(2)

Δn−1
, p̂2,n =

Ψn−1

Δn−1
, γ̂ =

Δn−1

Y
(1)
n−1

.

Let us write p = {p0, p1, p2} and p̂n = {p̂0,n, p̂1,n, p̂2,n}. Consider q = {q0, q1, q2} a
probability distribution on the state space {(0, 0), (2, 0), (0, 1)}, π(·) a prior distribution
on the space of the probability distributions defined on such a state space and θ =
(q0, q1). With analogous arguments as those in Section 3, we define the D-posterior
density function of θ = (q0, q1) as

πn
D(θ|p̂n) =

e−Δn−1D(p̂n,θ)π(θ)∫
Θ
e−Δn−1D(p̂n,θ)π(θ)dθ

, (13)

where
∫
Θ
e−Δn−1D(p̂n,θ)π(θ)dθ =

∫
Θ
e−Δn−1D(p̂n,q)π(q)dq0dq1 and Θ =

{(x0, x1) ∈ (0, 1) × (0, 1) : x0 + x1 ≤ 1}. Note that in this case, the parametric family
which we consider is FΘ = {{q0, q1, 1 − q0 − q1} : (q0, q1) ∈ Θ}. As a consequence, we
propose as EDAP estimators of θ0 = (p0, p1) the following ones:

(p∗D0,n, p
∗D
1,n) =

(∫ 1

0

q0π
n
D(q0|p̂n)dq0,

∫ 1

0

q1π
n
D(q1|p̂n)dq1

)
, (14)

and as MDAP estimators:

(p+D
0,n , p

+D
1,n ) = argmax

θ∈Θ
πn
D(θ|p̂n),

where πn
D(θ|p̂n) was introduced in (13), and πn

D(q0|p̂n) and πn
D(q1|p̂n) are the marginal

density functions of q0 and q1, respectively.
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The data that we consider are provided from two experiments developed under two
different experimental conditions: in the first one, the cells were cultured in a vehicle
solution without agent stimulating differentiation, whereas in the second experiment,
they were cultured with a specific hormone promoting oligodendrocyte generation. The
first experiment started with 34 precursor cells cultured in a vehicle solution (with no
agent promoting oligodendrocyte generation) and whose evolution was observed until
the generation n = 7. On the other hand, the initial number of cells of type T1 in
experiment 2 was 30, which were cultured in solution with a specific hormone promoting
oligodendrocyte generation and whose branching tree was observed until the generation
n = 5. Based on the observed branching trees, we computed the non-parametric MLE
for the parameters related to the reproduction and the emigration processes, which are
given in Table 2.

n N Y
(1)
n−1 Δn−1 Y

(1)
n−1(0) Y

(1)
n−1(2) Ψn−1

Experiment 1 7 34 425 410 158 201 51
Experiment 2 5 30 276 269 37 133 99

Table 1: Observed branching tree for each experiment.

n p̂0,n p̂1,n p̂2,n γ̂n
Experiment 1 7 0.3854 0.4902 0.1244 0.9647
Experiment 2 5 0.1375 0.4944 0.3680 0.9746

Table 2: MLE for the main parameters of the model.

Using the MLE of p, p̂n = {p̂0,n, p̂1,n, p̂2,n}, for each experiment, we estimated the
D-posterior density functions of (q0, q1) at p̂n for the Hellinger distance, the negative
exponential disparity and the Kullback-Leibler divergence. Since theD-posterior density
function is known, we generated 103 – uniformly distributed – points from the set
Θ and determined the value of the D-posterior density functions at them. In all the
cases, we consider the Dirichlet distribution with parameter (1/2, 1/2, 1/2) as the prior
distribution due to the fact that no prior knowledge about the offspring distribution
– apart from its support – is available (see Berger and Bernardo (1992)). Moreover,
in order to estimate the integral in (13) we used the Monte Carlo integration method,
by drawing a sample of 2 · 106 points from the previous prior distribution. To that
end, we used the function rdirichlet() from the package gtools (see Warnes et al.
(2018)).

The contour plots of these D-posterior density functions for experiments 1 and 2
are represented in Figures 1 and 2 respectively, of Subsection 4.1 in the Supplementary
Material, along with the 95% HPD regions for (q0, q1). We also calculated the EDAP
and MDAP estimators of the parameters p0 and p1 for the aforementioned disparity
measures, which are presented in Tables 3 and 4 for the first and the second experi-
ment, respectively. To compute the EDAP estimates, we used again the Monte Carlo
integration method based on a sample of 2 ·106 points, whereas to determine the MDAP
estimates we applied numerical methods, and more specifically, we used the function
nloptr() from the package nloptr (see Ypma et al. (2018) for details). Note that, the
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EDAP and MDAP estimates are close to the non-parametric estimators in Table 2.
As was explained at the beginning of example, it is reasonable to assume that the ob-
served data has no contamination. Under this assumption, one would expect, as proved
in Theorems 4.2–4.5, the estimators based on KL posterior, HD posterior, and NED
posterior to be similar. A numerical illustration of this issue via a simulated example is
presented in the next subsection. Therefore, in a contamination-free context, it seems
that the choice of the disparity measure has no impact in the estimates obtained, as
expected.

Finally, we performed a sensitivity analysis to examine the influence of the param-
eters of Dirichlet distribution on EDAP and MDAP estimates. We mention here that
there were no significant changes to the estimates due to changes in the parameters.
These results and additional details are provided in Subsection 4.2 of the Supplementary
Material.

HD NED KL
Parameter EDAP MDAP EDAP MDAP EDAP MDAP

p0 0.3851 0.3854 0.3848 0.3854 0.3850 0.3854
p1 0.4893 0.4902 0.4893 0.4902 0.4891 0.4902
p2 0.1256 0.1244 0.1258 0.1244 0.1259 0.1244

Table 3: Estimates of p0, p1 and p2 based on the EDAP and MDAP estimators for HD,
NED and KL in the first experiment.

HD NED KL
Parameter EDAP MDAP EDAP MDAP EDAP MDAP

p0 0.1391 0.1375 0.1397 0.1375 0.1399 0.1375
p1 0.4929 0.4944 0.4924 0.4944 0.4925 0.4944
p2 0.3680 0.3680 0.3679 0.3680 0.3676 0.3680

Table 4: Estimates of p0, p1 and p2 based on the EDAP and MDAP estimators for HD,
NED and KL in the second experiment.

An interesting issue to tackle in this Bayesian framework is to determine the proba-
bility of having a supercritical offspring distribution governing the production of precur-

sor cells. This is an important problem since if the mean of the variable X
(1)
0,1 , m = 2p1,

is less than 1, then the population of cells of type T1 will become extinct with probability
1, so does the population of type T2 cells. Using the approximation of the D-posterior
distribution at p̂n in both experiments, we present an estimation of the probability that
m > 1, with respect to the D-posterior distribution at p̂n, in Table 1 of Subsection 4.1
of the Supplementary Material. Note that the aforementioned probability is greater in
the second experiment and this could mean that the solution with the hormone is ef-
fective at promoting cell reproduction. Indeed, by comparing Tables 3 and 4, one also
sees that the probability that a cell of type T1 dies with no offspring is smaller in
the second experiment whereas the probability of differentiating into a type T2 cell is
greater.
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6.2 Simulated example

This example is a continuation of Example 1 introduced in Section 2 and its purpose is
to show the behaviour of EDAP and MDAP estimators in presence of contamination,
specifically gross error contamination model. Recall that the process starts with Z0 = 1
individual, the offspring distribution is a geometric distribution with parameter θ0 = 0.3
and which is affected by outliers, as described in Example 1, and the control variables
φn(k) follow Poisson distributions with mean λk, for each k ∈ N0 and each n ∈ N0,
with λ = 0.3. It is important to mention that the geometric distribution is a natural
offspring distribution to use in the context of branching processes, as explained in the
Introduction. Observe that we consider an extreme contamination framework; indeed,
in this process, each progenitor has exactly 11 offspring with probability 0.15 and, with
probability 0.85, it has offspring according to the aforementioned geometric distribution.
From a practical viewpoint, this might seem to be too much extreme example, however,
its choice is motivated by the fact that it allows to illustrate appropriately the accuracy
of the method in a contamination context.

In order to approximate the D-posterior density functions based on the Hellinger
distance (HD) and the negative exponential disparity (NED), one can consider different
approaches. One of them is to obtain a sample of such a density function by applying
the Metropolis-Hastings algorithm, and use this sample to estimate the corresponding
density function (this approach was used in Hooker and Vidyshankar (2014)). How-
ever, since an expression of the D-posterior density function is available (see (5)), we
have opted for estimating both the D-posterior density function and the EDAP and
MDAP estimators by using numerical methods. The reason for the choice of the latter
approach is that it is computationally much faster than the former; this fact is especially
remarkable when considering a disparity measure different from the KL disparity since
in that case it is not possible to use a conjugate families of distributions (see Hooker
and Vidyshankar (2014)). Specifically, to approximate the integrals involved in (5) and
(7) we used the Newton-Cotes formulas implemented in the function cotes() of the
library pracma (see Borchers (2019)). On the other hand, to compute the MDAP es-
timates we have made use of the function nloptr() of the package nloptr again. We
also remark that the computational cost is not significantly increased when replacing
the KL disparity with the HD or the NED. Indeed, it only takes 0.08, 0.22, and 0.11
seconds to estimate the D-posterior density and to compute the EDAP and MDAP
estimates for the HD, the NED, and the KL, respectively, for a single generation. This
clearly shows the advantage of using numerical methods over other algorithms such as
Metropolis-Hastings or Gibbs sampler in this context. Moreover, the differences in the
computational time are essentially caused by the number of operations involved in the
definition of the HD, NED, and KL. Computations were performed on an Intel Core
i7-8650U CPU running at 1.90 GHz with 32 GB of RAM.

First, in Figure 3 in Subsection 5.2 of the Supplementary Material we show the
estimates of the HD-posterior density and NED-posterior density upon the sample z∗45
and a beta distribution with parameters 1/2 and 1/2 as a prior distribution. Recall that
the choice of this prior distribution is motivated by the fact we are not assuming any
prior knowledge about the offspring parameter. One can observe that both functions
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are approximately centred around the true value of the offspring parameter and the
EDAP and MDAP estimators based on both of them provide accurate estimates of this
parameter: θ∗HD

45 = 0.2960 and θ+HD
45 = 0.2951, in the case of HD, and θ∗NED

45 = 0.2949
and θ+NED

45 = 0.2936, for the NED.

Figure 2: Evolution of EDAP and MDAP estimates (black line), and the HPD intervals
(green lines) based on the HD (left) and the NED (right). Horizontal red lines represent
the true value of θ0.

The strong consistency of EDAP and MDAP estimates based on HD and NED are
illustrated in Figure 2. The evolution of HPD intervals is also plotted. These estimates
are shown to be accurate in contrast to those plotted in Figure 1 (right). Moreover, by
comparing the results obtained with the HD and the NED we conclude that there is no
significant difference between them. This is not surprising due to the fact that each of
them behaves as reasonably well as the other one against outlier contamination as our
results in Section 5 state. The NED is, however, preferable under inlier contamination
as explained in Lindsay (1994). The influence function plots and the robustness of HD
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and NED are illustrated in Figure 3, for generations 25, 35 and 45. One can check
a similar behaviour of the influence function plots for other values of n in Figure 6 in
Subsection 5.3 of the Supplementary Material. We have also investigated the dependence
of the influence function on the prior distribution as a part of the sensitivity study
developed in Subsection 5.5 in the Supplementary Material. However, these graphs are
omitted since no appreciable differences were observed.

Figure 3: Plot of influence functions for EDAP estimator at p based on Kullback-Leibler
(black line), Hellinger disparity (red line) and negative exponential disparity (blue line),
IF (L, T̄25, p) (left), IF (L, T̄35, p) (middle), IF (L, T̄45, p) (right), with p = p0.3 for the
sample z∗n, n = 25, 35, 45, with Δ24 = 95, Δ34 = 156, Δ44 = 308, respectively.

Taking into account that the offspring mean and variance can be written as continu-
ous functions of the offspring parameter, we have used the EDAP and MDAP estimates
of the offspring parameter to obtain estimates of them. The evolution of m(θ∗Dn ), and
σ2(θ∗Dn ), for n = 5, . . . , 45, for D ∈ {HD,NED,KL}, are shown in Figure 4, whereas
m(θ+D

n ), and σ2(θ+D
n ), for n = 5, . . . , 45, for D ∈ {HD,NED,KL}, are shown in Fig-

ure 5, both of them in Subsection 5.2 of the Supplementary Material. Moreover, note
that due to the continuity, these estimators prove to be strongly consistent estimators
for the corresponding parameter. All the above empirical results, together with the the-
oretical results in previous sections, allow us to conclude that the HD and the NED are
better choices for disparity measures than the likelihood disparity, because in absence of
contamination, the three of them possess the same asymptotic properties, however under
contamination, the HD and the NED are the only ones that gives robust estimates.

A sensitivity analysis was performed to determine the influence of the choice of the
prior distribution in the D-posterior density and the corresponding point estimators.
Since the parameter to be estimated lies in the interval [0, 1], we use as prior distri-
bution beta distributions with parameters (ρ, β). Now, to apply the method, we take
the parameters (ρ, β) belonging to the grid given by the Cartesian product of the set
{n + 0.1 ∗ k : n = 0, 1, . . . , 4; k = 1, 2, . . . 10} with itself. In Table 5 some results
are summarized, especially those corresponding to prior distributions which are highly
concentrated at extreme values far away from the parameter of interest. Despite this
fact, one can observe a limited influence of the choice of the prior distribution on the
EDAP and MDAP estimates. In addition, although the results are not shown here, it is
interesting to mention that the effect of the prior distribution on the estimates decrease
as the generation numbers increase (see Subsection 5.5 of the Supplementary Material
for further details).



M. González, C. Minuesa, I. del Puerto, and A. N. Vidyashankar 1033

We also investigated other contamination models, namely, the mixture model for
gross error by considering a geometric distribution with parameter θ0 = 0.3 and Poisson
control distributions with mean λk = 0.3k, with values of α and L different from 0.15
and 11, respectively. We emphasize here that the parameter λ = 0.3 is fixed and the role
of k, as explained in the introduction, is to adapt to the number of parents in a given
generation. Since the information in the sample until generation n depends on the mean
growth rate, τm, it is a function of α and L. Thus, to make meaningful comparisons,
we choose α and L that yield similar values of τm. As was already discussed, while
Figure 1 illustrates the undesirable properties of EAP and MAP, the D-posteriors are
unaffected by the contamination at different L and α. A summary of the behavior of
EDAP estimates using KL, HD, and NED can be found in Figure 7 in Subsection 5.4
in the Supplementary Material. These results confirm that HD and NED are always
preferable over KL. A similar observation also holds for MDAP.

We complete the illustration of the behaviour of the proposed methodology by con-
sidering the same mixture model for gross error of the previous offspring distribution
and Poisson control distributions with mean λk = 0.45k. In such a situation any value of
α ∈ [0, 1] leads to a supercritical CBP (see Assumption 1). In Figure 8 in Subsection 5.4
in the Supplementary Material, similar behaviour of the estimates from the uncontam-
inated model (α = 0) is illustrated; however, for the contaminated model (α = 0.01)
and as L increases, the EDAP and MDAP based on HD and NED are unaffected while
that based on KL is considerably affected.

ρ β Prior mean Prior variance θ∗HD
45 θ∗NED

45 θ+HD
45 θ+NED

45

0.1 5 0.020 0.003 0.294 0.292 0.294 0.291
0.1 1 0.091 0.039 0.296 0.294 0.295 0.293
2 5 0.286 0.026 0.296 0.294 0.295 0.293
1 2 0.333 0.056 0.296 0.295 0.295 0.294
0.1 0.1 0.500 0.208 0.296 0.295 0.295 0.293
2.5 2.5 0.500 0.042 0.297 0.296 0.296 0.295
2 1 0.667 0.056 0.297 0.297 0.296 0.295
5 2 0.714 0.026 0.299 0.300 0.298 0.299
1 0.1 0.909 0.039 0.296 0.296 0.296 0.295
5 0.1 0.980 0.003 0.299 0.301 0.298 0.300

Table 5: EDAP and MDAP estimates for the HD and NED considering different beta
distributions as prior distributions.

7 Concluding remarks

For controlled branching processes, this paper addresses the robust estimation of the
parameters of the offspring distribution in a Bayesian context making use of disparity-
based methods. We have assumed that the offspring distribution belongs to a general
parametric family and the inference on the parameter of the reproduction law is based
on the sample given by the entire family tree.
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First, we have defined the D-posterior density, a density function which is obtained
by replacing the log-likelihood in Bayes rule with a conveniently scaled disparity mea-
sure. The expectation and mode of the D-posterior density, referred to as EDAP and
MDAP estimators, respectively, are proposed as Bayes estimators for the offspring pa-
rameter by emulating the point estimators under the squared error loss function or
under 0− 1 loss function, respectively, for the posterior density. As a initial step for the
analysis of the asymptotic and robustness properties of these estimators, their existence
and measurability are studied. Moreover, sufficient conditions for the strong consistency
and asymptotic normality of the EDAP and MDAP estimators, once they have been
suitably centered and normalized, are provided.

In this paper we paid special attention to robust Bayesian inference for dependent
tree-structured data. The EDAP and MDAP estimators, in the current context, are
harder to analyze than the corresponding ones in the i.i.d. setting, due to the random
sample size and the correlations induced by the random control function.

The analyses involve continuity and differentiability properties of Bayesian disparity
functionals. These properties play an important role in the further development of
robustness ideas in the context of the current data. We illustrate that the proposed
estimators exhibit the robustness features when the number of generations increase.

Although the results are provided for a general class of disparity measures, we have
focused our attention on the Hellinger distance and the negative exponential disparity
in the examples presented. Contrary to the likelihood disparity, these disparity mea-
sures are known to provide robust estimators in an i.i.d. setting, while keeping desirable
properties of estimators such as consistency and efficiency. Our results in the previous
sections show that these features also hold in the branching framework, and thus, these
disparities are preferable to the likelihood disparity. In the first example, we applied
the methodology to real data from oligodendrocyte cell populations and estimated the
main parameters of the process suggested to model such populations. The results in this
example illustrate that in the absence of contamination, the properties of the EDAP
and MDAP estimators are similar to traditional estimators based on likelihood disparity.
The second example considers simulated data with the purpose of showing and analysing
the robustness properties of the EDAP and MDAP estimators established in this pa-
per. Thus, taken together both examples illustrate that EDAP and MDAP estimators,
are efficient in a contamination-free context and robust to model misspecification and
presence of outliers.

We finally remark that since our ultimate goal is to provide estimators of the offspring
parameter, in both examples we have made use of numerical methods to approximate
the posteriors instead of using a Markov Chain Monte Carlo methodology (as used in
Hooker and Vidyshankar (2014)), leading to a reduction in the computational time.

Supplementary Material

Supplementary Material of “Robust estimation in controlled branching processes: Bayes-
ian estimators via disparities” (DOI: 10.1214/20-BA1239SUPP; .pdf). Appendix, proofs,

https://doi.org/10.1214/20-BA1239SUPP
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additional figures, simulated data, summaries of the sensitivity analysis performed, and
the computational codes developed for the examples are provided in the Supplementary
Material.
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