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Highlights 

 Risk factors in ovine respiratory processes were studied by using Bayesian 

networks.  

 Lung consolidation was mainly associated to temperature and relative humidity. 

 Mycoplasma sp. was recorded as a risk for lung consolidation. 

 Risk factors in ovine respiratory processes were identified by bayesian networks.  

 Bayesian networks may serve as a helpful tool for lamb production systems. 

 

 

Abstract 

A proposal is put forward to use Bayesian networks to identify risk factors for 

pulmonary consolidation. An experiment was conducted with 410 fattening lambs from 

five feedlots in Extremadura (southwestern Spain). Environmental conditions 

(temperature, relative humidity, and ammonia concentration) were recorded during the 

study period. In a microbiological study, Mycoplasma spp. and Pasteurellaceae were 

obtained by conventional culture and identified by nested polymerase chain reaction. 

After slaughter, lungs were collected and examined macro- and microscopically 

(histological type and pulmonary consolidation). To the best of the authors' knowledge, 

Bayesian networks have not before been used to relate the presence/absence of 

pulmonary consolidation to environmental conditions, Mycoplasma spp., Pasteurella 

spp., and histological changes. The results showed that the main factors causing ovine 

inflammatory respiratory processes and pulmonary consolidation were temperature, 

relative humidity, and Mycoplasma spp. Control of these factors may help reduce the 

incidence of pulmonary consolidation. 
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Introduction 

Analysing animal health data is a complex task since the relationships between 

variables are usually not known. In fact, determining information about the way the 

variables are related is usually an objective of analysis. Lewis et al. (2011) discussed the 

potential of using Bayesian networks as analytical tools for processing complex animal 

health data. Specifically, they proposed the use of structure discovery to identify 

variables that may be associated with health status. 

Bayesian networks belong to a family of probabilistic graphical models (see, e.g., 

Jensen, 1995). These graphical structures are mathematically rigorous and intuitively 

understandable, and can be used to represent knowledge about an uncertain domain. A 

Bayesian network is a directed acyclic graph (a graph with directed edges between 

vertices) with an associated set of probability distributions that enables an effective 

representation and computation of the joint probability distribution over a set of random 

variables. The visual representation of the random variables' dependency structure is 

especially useful. Bayesian networks combine principles from graph theory, probability 

theory, computer science, and statistics (Jensen and Nielsen, 2007). 

These networks can be implemented to search for the structure between variables by 

finding an optimal directed acyclic graph for the dataset in hand, providing information 

about the possible relationships linking the variables involved. The network can then be 

used to infer conditional probabilities. Bayesian networks can also be built using 

reliable subjective information provided by an expert instead of searching for the 

structure. Moreover, a mixed approach can be taken by first searching for the structure 

based on data, and then adjusting the structure using subjective information. 



Bayesian networks have been extensively used in many fields of study, especially in 

artificial intelligence. They are gradually being introduced for the analysis of data in the 

veterinary field. McKendrick et al. (2000) applied Bayesian networks to aid in the 

differential diagnosis of tropical bovine diseases. Otto and Kristensen (2004) proposed a 

biological model based on a Bayesian network to determine risk factors for infection 

with Mycoplasma hyopneumoniae in swine for slaughter. Ettema et al. (2009) used a 

Bayesian network to estimate the probability of claw and digital skin diseases by 

combining cow- and herd-level information. Jensen et al. (2009) used a Bayesian 

network to model the causes of leg disorders in finisher herds. McCormick et al. (2013) 

applied these networks to the identification of environmental conditions that influence 

disease in pigs, and Firestone et al. (2013) analysed the associations between risk 

factors and the infection status of horses in an equine influenza outbreak in Australia. 

In the present study, we focus on pathological respiratory processes that lead to direct 

and indirect losses such as mortality, weight loss, low conversion rates, and greater 

numbers of pulmonary lesions at slaughter (Goodwin et al., 2004; Lacasta et al., 2008). 

The agents and risk factors that may influence these processes are numerous. 

Temperature and relative humidity have been identified as associated risk factors 

(Brogden et al., 1998; Yener et al., 2009). Indeed, climatic factors that increase relative 

humidity have a significant influence on the presence of pneumonia (Lacasta et al., 

2008). High mortality and morbidity from these causes during the summer months have 

been reported (Plummer et al., 2007). In the present work, we take a Bayesian network 

based approach to analyse conjointly the influence of some possible risk factors on 

pulmonary consolidation, rather than treating them separately. 

To the best of our knowledge, Bayesian networks have not previously been used to 

relate the presence/absence of pulmonary consolidation to environmental conditions, 



Mycoplasma spp., Pasteurella spp., and histological changes. A Bayesian network-

based approach is considered to analyse some relevant scenarios for pulmonary 

consolidation. 

 

 

Materials and Methods 

Experimental design 

Four hundred and ten Merina breed lambs and their commercial crossings of both sexes 

from five feedlots in Extremadura (southwestern Spain) formed the sample for study. 

The animals' ages ranged from 80 to 100 days, and they were monitored during the 

feedlot period (15-21 days) from February to November. They were held in pens in the 

different feedlots at a density of 0.5 m2 per animal. Feed (pellet concentrate and straw) 

and water were administered ad libitum. The animals had been transported by road from 

the farms to the feedlots. Twenty-one days later, they were transported to the 

slaughterhouse at weights of 24-26 kg. 

Environmental conditions were registered during each feedlot period. Temperature and 

relative humidity were recorded using a data logger (175H1, Testo®, Titisee, Germany). 

Two measurements per hour for each parameter were recorded, and the data were 

processed in a spreadsheet (Microsoft Excel®). The mean temperature and mean relative 

humidity during the fattening period were calculated. The ammonia concentration was 

recorded using an ammonia detector (Gastec GV-100S®, Kanagawa, Japan). Two 

weekly measurements were made during each feedlot period, and the mean was 



calculated. The data were binned into intervals using, in part, the classification proposed 

by ITOVIC (1991). 

Bacteria identification 

Nucleic acid purification and amplification of the 16S-23S intergenic spacer region was 

carried out using primers F2A and R2 to identify Mycoplasma spp., as described by 

Tang et al. (2000). This technique detected the presence of Mycoplasma ovipneumoniae 

(M. ovipneumoniae) and Mycoplasma arginini (M. arginine). Molecular identification 

of Pasteurella multocida (P. multocida) was carried out using a polymerase chain 

reaction. This technique was used to amplify a specific fragment of the gene kmt1 of P. 

multocida with primers KMT1SP6 and KMT1T7, as described by Townsend et al. 

(1998). Mannheimia haemolytica (M. haemolytica) was identified by direct 

haemagglutination, and Pasteurella pneumotropica was also isolated. 

Macroscopic and microscopic study 

Lungs were collected at abattoir. They were photographed on both sides, and classified 

into two groups depending on the presence or absence of consolidation, i.e., 

consolidation greater than 0% or equal to 0%, respectively. 

For the histological study, samples were fixed in neutral buffered formalin (3.5%, 0.1 

M, and pH 7.2), routinely processed, and embedded in paraffin. Sections of 5 µm were 

stained with haematoxylin and eosin. 

Four histological groups were established following the classification of Caswell and 

Williams (2007). (1) Diffuse alveolar damage: This group included ciliary necrosis and 

compaction and alveolar denudation, characterized by loss of type I pneumocytes and 

epithelial basement membrane. A mild inflammatory reaction was observed in the 



peribronchial adjacent zone, with no bronchial associated lymphoid tissue (BALT) 

reaction. No fibrotic processes or pleural phenomena were found. (2) Interstitial 

pneumonia: This group was characterized by septal damage, loss of type I pneumocytes 

and proliferation of type II pneumocytes. Septa were thickened, with mononuclear cell 

inflammatory infiltrates, marked congestion, and oedema. Hyaline membranes were 

observed in interstitium and alveoli. They consisted of fibrin, eosinophilic proteinaceous 

material, and cell debris. The airways and pleural surface showed no significant 

changes. (3) Purulent bronchopneumonia: The predominant lesional pattern in this 

group was of an exudative type. Neutrophils, macrophages, and cell debris were 

observed in bronchial, bronchiolar, and alveolar lumina. BALT was enlarged as a 

multinodular structure. Perivascular inflammatory processes mainly involved 

mononuclear cells. Alveolar septa did not show any change. A severe fibrinous 

inflammatory reaction was present on the pleural surface. Pneumonia together with 

purulent bronchopneumonia was also described. (4) Mixed changes (bronchointerstitial 

pneumonia): Inflammatory reaction within the interalveolar septa and exudative 

processes were concomitant in all the samples included in this group ‘1:1 of the studied 

sample’. BALT was frequently enlarged, although displaying a diffuse pattern. Alveoli 

were filled with neutrophils and macrophages, and some bronchi and bronchioles 

showed this inflammatory cell infiltration. However, thickening of the interalveolar 

septum and a marked increase in the number of mononuclear cells were also found in 

areas where no exudate was observed. The pleural surface was affected in these lungs, 

showing lesions similar to the purulent bronchopneumonia group. Microphotographs 

were taken using a microscope (Eclipse 80i, NIKON®, Tokyo, Japan) with a digital 

video camera (DXMI200F, NIKON®, Tokyo, Japan). 

 



Data analysis 

Six algorithms were tested to build Bayesian networks using the GeNie/SMILE 

software (Druzdzel, 1999). Specifically, these were Greedy Thick Thinning, Bayesian 

Search, Essential Graph Search, Tree Augmented Naive Bayes, Augmented Naive 

Bayes, and Simple Naive Bayes. A cross-validation scheme was used to analyse model 

performance. The networks were compared using the area under the Receiver Operating 

Characteristic (ROC) Curve (AUC) and the accuracy rates. The AUC is a measure of 

how well the model can distinguish between the two groups of pulmonary consolidation 

(absence/presence). Its value ranges between 0 and 1. 

The Greedy Thick Thinning search algorithm (Dash and Cooper, 2004) provided the 

best results. With this method, initially each node has no parents. The nodes providing 

the strongest increases in the score in the resulting structure (using the Bayesian 

Dirichlet with score equivalence and uniform priors, known as BDeu criterion) are 

added incrementally as parents (Cooper and Herskovits, 1992; Silander et al., 2008). 

When the addition of parents does not increase the score, they are no longer added to 

the node. A weakly informative prior distribution is considered. The prior distribution of 

the parameters is associated with their corresponding nodes and all the possible 

combinations of the parents , where  is the 

parameter vector and  is the combination of states of the parents for node for 

node . The total number of parameters, i.e., the length of the parameter vector, is the 

product of the number of states of the node under consideration multiplied by the 

number of states of every parent node. The maximum number of parent nodes was set to 

six (one less than the number of variables), allowing all possible relationships among 

variables. 



With this algorithm, an optimized network structure is obtained using the BDeu 

criterion. The arcs represent the statistical dependence existing between the linked 

variables, but the relationships illustrated by the Bayesian network may be due to a 

causal connection or may be spurious from a practical point of view. Although the final 

graph is usually represented with directed arcs, the causality or direction of association 

cannot always be completely confirmed without detailed experimental analysis 

(Heckerman et al., 1995). A sensitivity analysis was also performed. 

After building the network, we analysed the most interesting risk scenarios in terms of 

probabilities by considering evidence propagation. Evidence propagation is one of the 

most powerful characteristics of Bayesian networks. It allows the probabilities of each 

node to be updated via bidirectional propagation of new information through the whole 

structure. In each scenario, a percentage of 100% is set for one category in one or more 

nodes in order to show how the environmental and/or bacterial evidence influences 

pulmonary consolidation. The probability estimates for the different scenarios will be 

reported in terms of percentages in two tables. 

 

 

Results 

With the specifications presented in the previous section, six Bayesian networks were 

built using the following variables: mean relative humidity, mean temperature, mean 

ammonia level, Mycoplasma spp., Pasteurella spp., histological type, and pulmonary 

consolidation. The environmental variables are continuous, and were binned into 

intervals according to pre-defined environmental criteria. 



In order to compare the networks, a 4-fold cross-validation scheme was performed with 

500 iterations. The AUC and accuracy rates were calculated. Figure 1 shows the ROC 

curves. The estimated AUC for the Greedy Thick Thinning algorithm was the best, 

giving a high value (0.9086). This means that the model fits the data quite well. The 

other algorithms achieved lower AUC values. 

[Figure 1 about here] 

In coherence with the AUC criterion, the greatest accuracy rate was also achieved with 

the Greedy Thick Thinning algorithm (see Table 1). Note that this result is not only 

obtained for the overall accuracy rate, but also for the presence and absence accuracy 

rates. Hence, this algorithm provides the best results using both the AUC and the 

accuracy rates with the cross-validation scheme that was considered. 

[Table 1 about here] 

The network structure and conditional probabilities were calculated based on the 

collected dataset, using the Greedy Thick Thinning algorithm (see Figure 2). The 

percentages given on the nodes are estimated conditional probabilities that illustrate 

how the state of a variable influences the probability distribution for the states of other 

variables. Pulmonary consolidation was directly influenced by the mean temperature, 

mean relative humidity, and histological type, and indirectly by Mycoplasma spp. The 

joint probability distribution obtained was: 

 

with T being mean temperature, H mean relative humidity, A mean ammonia level, M 

Mycoplasma, P Pasteurella, HI histological changes, and C pulmonary consolidation. 



[Figure 2 about here] 

A sensitivity analysis was performed to provide information on how small changes in 

the preliminary factors impact the terminal events (absence/presence of pulmonary 

consolidation). In Figure 2, the intensity of the red colouring of the nodes different from 

that of pulmonary consolidation indicates which variables have more impact in leading 

to changes in the probability of the target node states when small changes are made in 

the probability of their states (the more intense the red, the more impact). Mean 

temperature and mean relative humidity produce the most important changes in 

pulmonary consolidation.    

In order to make a deeper sensitivity analysis, all the possible cases (single states and 

combinations) were studied. The impact of the top ten cases on pulmonary 

consolidation was displayed in a sensitivity tornado chart (Figure 3). The variation 

displayed in this chart is obtained by adjusting the probability of occurrence for the 

different states ±20% of their respective values, either several factors at once or one at a 

time. The interpretation of the tornado chart is simple. Green indicates an increase of 

20% in the factor studied, and red a decrease of 20%. The effect of these variations is 

reflected with a bar, indicating whether the effect is directly proportional (green on the 

right) or inversely proportional (red on the right). For example, the original probability 

of consolidation presence was 48.6%, and an increase (see Bar 6 in Figure 3) of 20% in 

the probability of the mean temperature (state 10-13 degrees), would increase the 

probability of consolidation presence to 49%. On the other hand, a decrease of 20% in 

the probability of the mean temperature (state 10-13 degrees) would decrease the 

probability of pulmonary consolidation presence to 48.2%. Although the model is robust 

and the appreciated changes are very small, temperature and relative humidity can be 



pointed to as the two variables causing the greatest variations in pulmonary 

consolidation when small changes are instituted. 

[Figure 3 about here] 

Now we shall focus on analysing various scenarios. Evidence propagation about the 

state of a given node sheds light on the states of the nodes pointed to by that given node. 

The probabilities for each state of the nodes can be estimated with the conditional 

distribution and the joint distribution. For example, if the histology is set to the value 

diffuse alveolar damage, then the probability of the absence of pulmonary consolidation 

given that diffuse alveolar damage occurs is: 

In this case, the probability of the absence of pulmonary consolidation given that diffuse 

alveolar damage was produced was estimated as 63.3%. The evidence propagation 

concept is used to show how one or more variables influence the absence or presence of 

pulmonary consolidation. Table 2 presents the evidence propagation for some possible 

environmental scenarios. 

[Table 2 about here] 

Mean temperature and mean relative humidity were negatively correlated (r =-0.704, 

p<0.001), i.e., when the temperature increased, the relative humidity decreased (see 

Figure 4). 



[Figure 4 about here] 

The Bayesian network shows a relationship between temperature and humidity, and 

both these variables showed a direct relationship with ammonia levels. According to 

ITOVIC (1991), ideal conditions of a feedlot correspond to a mean temperature in the 

range 13-16°C and a mean relative humidity of 70-80%. We define a scenario (Scenario 

1) with these two conditions and, as one observes in Table 2, the estimated probabilities 

of absence in the Pasteurellaceae and Mycoplasma families are 85.4% and 91.8%, 

respectively. In addition, the mildest histological type (diffuse alveolar damage) 

provides the greatest probability (70.7%). In this scenario, the estimated probability of 

presence of consolidation was low (14.1%). Subsequent scenarios will be compared 

with this one as reference. 

If the optimal temperature (13-16°C) is considered, but with a lower relative humidity, 

i.e., 50-60% (Scenario 2), the estimated probability of the presence of consolidation 

increases to 88.6%. In this case, the histology showed an increase in the estimate of 

interstitial pneumonia with respect to the previous scenario (50.3%). When the 

temperature is ideal and the ammonia level is in the range 15-20 ppm (Scenario 3), there 

is mainly associated a high relative humidity (>80). The estimated probability of the 

presence of pulmonary consolidation is 43.9%, a low percentage with respect to the 

previous scenario. The estimated probabilities in interstitial pneumonia and suppurative 

bronchopneumonia are greater than the ones obtained in Scenario 1. When the 

temperature is above 28°C (Scenario 4), the two most probable states of relative 

humidity are lower than 50 (<40 and 40-50). The probabilities of M. arginini and 

presence of consolidation increase to 40.8% and 43.1%, respectively. Considering the 

histology, there is a decrease in the estimated probability of diffuse alveolar damage 

(41.9%), and increases in the estimated probabilities of interstitial pneumonia (28.3%), 



bronchopneumonia (19.4%), and mixed changes (10.4%). When the temperatures 

considered are below 10°C (Scenario 5), the probabilities of the presence of the 

Mycoplasma spp. and Pasteurellaceae families increase with respect to the ideal 

conditions of Scenario 1. Moreover, there were high estimated probabilities of severe 

lung inflammation. 

Finally, the optimum relative humidity and ammonia levels of 15-20 ppm are 

considered (Scenario 6). The most likely temperature is 16-19°C, and the estimated 

probability for the presence of consolidation is 36.6%, which is higher than in the ideal 

scenario. 

Findings related to non-environmental conditions are presented in Table 3. If the 

absence of the Mycoplasma spp. and Pasteurellaceae families (Scenario 7) is 

considered, the estimated probabilities for diffuse alveolar damage and interstitial 

pneumonia are 52.6% and 32.9%, respectively. The estimated probability of presence of 

pulmonary consolidation is 46.9%. When only M. ovipneumoniae is considered 

(Scenario 8), suppurative bronchopneumonia and mixed changes reach high 

probabilities with respect to the previous scenario. However, when M. arginini is 

considered (Scenario 9), there was a mild increase in diffuse alveolar damage (29.2%) 

with respect to Scenario 8. Both this and the previous scenario indicate the important 

influence of M. ovipneumoniae and M. arginini in pathological respiratory processes. 

[Table 3 about here] 

In regards to histology, the greatest estimated risk of pulmonary consolidation (68.3%) 

is obtained when bronchopneumonia is considered (Scenario 12). The estimated 

probabilities of presence of pulmonary consolidation are 62.0% for mixed changes 

(Scenario 13) and 54.2% for interstitial pneumonia (Scenario 11). However, when only 



diffuse alveolar damage is considered, the presence of pulmonary consolidation is 

reduced to 36.7% (Scenario 10). In these four scenarios, the absence of Pasteurella is 

prevalent, with estimated probabilities greater than 90%, whereas the probabilities of 

absence of Mycoplasma range between 45.1% and 83.8%. 

 

 

Discussion 

It is necessary to consider the relationships among variables and their influence on 

health status in epidemiological studies of animal diseases (Geenen et al., 2011; Lewis 

et al., 2011). Some authors have used Bayesian networks to determine risk factors by 

using different parameters as markers of animal health (McKendrick et al., 2000; 

Ettema et al., 2009; Jensen et al., 2009; Lewis et al., 2011, among others). Bayesian 

networks allow the use of information from relationships among all the variables (Pearl, 

1988; Neapolitan, 2004). Moreover, evidence propagation is a useful tool to build 

scenarios providing information for decision-making processes to help to improve 

animal health. Bayesian networks allow the incorporation of expert knowledge, if 

required, in subsequent stages of the model at multiple levels. The prior distribution for 

the first experiment may be weakly informative, but with prior information from 

experts, the results of the model can change when combining it with the available data. 

However, especial care must be taken when incorporating expert information since it 

may not always be reliable. 

Several scenarios were especially defined to analyse the effect of the main 

environmental risks for ovine respiratory syndrome. The evidence was set to represent 

the best and worst conditions defined in the veterinary literature (ITOVIC, 1991). The 



relationships between environmental conditions and the occurrence of respiratory 

problems have been widely studied (Nash et al., 1997; Lacasta et al., 2008). The aim of 

the present study was to analyse the relationship between potential risk factors such as 

certain environmental variables and microorganisms implicated in respiratory processes. 

In our study, the results show that the most important variables influencing the presence 

of pulmonary consolidation are mainly environmental, specifically, temperature and 

relative humidity. If these variables are fixed at their optimal values according to 

ITOVIC (1991) (temperature 13-16 °C and relative humidity 70-80%), the estimated 

probability of the presence of pulmonary consolidation is very low, and the estimated 

probability of inflammatory processes (interstitial pneumonia, suppurative 

bronchopneumonia, and mixed changes) is small. In this case, the bacterial involvement 

is lower, in agreement with other authors (Hervás et al., 1996; Niang et al., 1998). 

However, if these conditions change, then the estimated probabilities of the presence of 

pulmonary consolidation and of different inflammatory types rise. 

The presence of microorganisms appears to be linked to temperature. The Bayesian 

network shows a direct relationship between temperature and Mycoplasma spp., with an 

increase in the probability of presence of this agent when temperatures higher than the 

optimal are recorded. These findings agree with those of other authors (Hervás et al., 

1996; Niang et al., 1998) who observed an increase in respiratory pathologies 

associated with the presence of M. ovipneumoniae in the warm months (with high 

temperatures and low relative humidity). Relative humidity also seems to affect 

pulmonary consolidation. Thus, when the mean relative humidity ranges within 50-60% 

and the mean temperature is maintained at optimum levels (13-15ºC), an increase in the 

estimated probabilities of interstitial pneumonia and pulmonary consolidation is 



obtained. This is possibly associated with irritative phenomena in the respiratory 

mucosa caused by environmental dryness. 

Caswell and Williams (2007) described lung inflammatory processes associated with 

toxic irritants. In our study, ammonia concentration seems to have an effect on the 

presence of consolidation as well. Ammonia values are mainly mediated by temperature 

and humidity. This is in agreement with the results provided by other authors who noted 

the association between respiratory processes and high concentrations of ammonia in 

old buildings with poor ventilation (Lacasta et al., 2008). When the ammonia level is 

fixed at a range between 15 and 20 ppm, an increase in the probability of the presence 

of pulmonary consolidation, interstitial pneumonia, bronchopneumonia, and mixed 

changes is obtained. This corroborates this parameter's involvement in inflammatory 

processes. 

According to other authors (Alley et al., 1975; Jones et al., 1982; Sheehan et al., 2007), 

M. arginini and M. ovipneumoniae seem to be involved in pneumonic processes in 

sheep. Furthermore, Lin et al. (2008) and Nicholas et al. (2008) found a relationship 

between M. arginini and Pasteurella genus bacteria (M. haemolytica). In our study, 

Mycoplasma spp. and histological types are associated with each other, and the same is 

true for Mycoplasma spp. and Pasteurellaceae genus bacteria. However, 

Pasteurellaceae play a less important role for pulmonary consolidation than 

Mycoplasma spp. Oruç (2006) and Lacasta et al. (2008) identified M. haemolytica as 

one of the main microorganisms in sheep respiratory processes, with this being the main 

agent isolated in the pulmonary consolidation processes that they studied. 

Suppurative bronchopneumonia is the most frequent microscopical lesion associated 

with pulmonary consolidation (Gázquez et al., 2001, Gonçalves et al., 2010). This is 



supported by the results obtained in our study. However, Mawhinney et al., (2010), 

point to interstitial pneumonia as the main lesion of red hepatization. According to our 

scenarios, the estimated probability of the presence of pulmonary consolidation is 

54.2% when interstitial pneumonia is present. This probability is lower than that 

obtained for suppurative processes. Therefore, pulmonary consolidation can be 

associated with interstitial and suppurative processes, with interstitial pneumonia being 

the predominant lesion. 

To the best of our knowledge, Bayesian networks have not previously been used to 

relate the presence/absence of pulmonary consolidation with environmental conditions, 

Mycoplasma spp., Pasteurella spp., and histological changes together. Given a model 

that includes interaction among all the variables, and the fact that evidence propagation 

allows hypothetical scenarios to be defined, this tool is interesting in the identification 

and understanding of all the features involved in the study of pulmonary consolidation. 
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Conclusion 

Bayesian networks are generic tools with great potential for use in a wide range of 

epidemiological disease situations. In the present study, a Bayesian network model has 

been able to identify risk factors in ovine respiratory processes. 

The main factors causing inflammatory processes and pulmonary consolidation in ovine 

respiratory processes are temperature, relative humidity, and Mycoplasma spp. The 

control of these variables may help to prevent this ovine pathology. The proposed model 

can be applied to improve conditions on farms, and thus enhance productivity. 
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Figure 1. ROC curves and AUC for Bayesian networks built using six algorithms: (a) 

Greedy Thick Thinning; (b) Bayesian Search; (c) Essential Graph Search; (d) Tree 

Augmented Naive Bayes; (e) Augmented Naive Bayes; (f) Naive Bayes. 

 



Figure 2. Bayesian network structure and estimated conditional probabilities. 

 



Figure 3. Sensitivity tornado chart for the presence of pulmonary consolidation. 

 



Figure 4. Monthly mean temperature and mean relative humidity. 

 



Table 1. Accuracy rates (in percentages) for Bayesian networks built using different 
algorithms. 

Algorithms Accuracy Absence Presence 
Greedy Thick Thinning 85.6 90.0 79.5 
Bayesian Search 71.9 71.0 72.9 
Essential Graph Search 66.8 70.0 63.8 
Tree Augmented Naive Bayes 75.6 80.5 71.0 
Augmented Naive Bayes 75.1 80.0 70.0 
Naive Bayes 71.7 78.5 65.2 

 
 
Table 2. Evidence propagation for some possible environmental scenarios. Each 
environmental scenario gives a percentage of 100% for one category in one or more 
variables. The resulting probabilities are expressed in percentages. 

 Scenarios 
Variables 1 2 3 4 5 6 
Temperature             
<10ºC         100.0 2.7 
10-13ºC           2.5 
13-16ºC 100.0 100.0 100.0     11.3 
16-19ºC           50.1 
19-22ºC           11.9 
22-25ºC           10.6 
25-28ºC           8.4 
>28       100.0   2.5 
Relative humidity             
<40     4.8 54.1 16.7   
40-50     4.8 23.5 16.7   
50-60   100.0 4.8 5.6 16.7   
60-70     4.8 5.6 16.7   
70-80 100.0   4.8 5.6 16.7 100.0 
>80     76.2 5.6 16.7   
Ammonia             
<10 45.4 61.4   24.4 20.0   
10-15 3.2 2.3   24.4 20.0   
15-20 3.6 2.5 100.0 2.2 20.0 100.0 
20-25 44.5 31.5   46.7 20.0   
>25 3.2 2.3   2.2 20.0   
Mycoplasma             
Absence 85.4 85.4 85.4 50.6 44.6 81.4 
Ovipneumoniae 1.1 1.1 1.1 3.8 11.2 1.8 
Arginini 10.8 10.8 10.8 40.8 29.9 13.9 
Ovipneumoniae and  arginini 2.7 2.7 2.7 4.7 14.3 2.9 
Pasteurella             
Absence 91.8 91.8 91.8 95.1 60.1 90.1 
Multocida 2.8 2.8 2.8 1.8 14.9 2.4 
M. haemolytica 5.1 5.1 5.1 2.3 18.6 6.5 
 Pneumotropica 0.3 0.3 0.3 0.8 6.4 1.00 
Histology             
Diffuse alveolar damage 70.7 30.2 52.3 41.9 39.4 68.7 
Interstitial pneumonia 15.0 50.3 26.2 28.3 29.8 15.1 
Purulent bronchopneumonia 9.7 13.9 13.4 19.4 17.9 11.1 
Mixed changes 4.6 5.6 8.1 10.4 12.9 5.1 
Pulmonary consolidation             
Absence 85.9 11.4 56.1 56.9 50.0 63.4 
Presence 14.1 88.6 43.9 43.1 50.0 36.6 



Table 3. Evidence propagation for some possible non-environmental scenarios 

(presence of microorganisms and histological groups). Each non-environmental 

scenario gives a percentage of 100% for one category in one or more variables. The 

resulting probabilities are expressed in percentages. 

 Scenarios 
Variables 7 8 9 10 11 12 13 
Temperature              
<10ºC 0.3 8.0 1.7 1.0 1.1 1.6 2.0 
10-13ºC 11.6 15.4 12.1 10.6 14.0 10.3 12.8 
13-16ºC 25.8 15.1 11.5 24.0 23.5 19.2 19.1 
16-19ºC 8.8 8.0 2.7 10.2 5.7 6.1 5.5 
19-22ºC 15.7 8.0 4.8 12.9 14.34 8.6 10.4 
22-25ºC 15.7 8.0 23.1 15.6 17.8 18.8 18.3 
25-28ºC 15.3 15.2 25.1 16.8 14.9 21.6 18.3 
>28 6.8 22.4 19.0 8.9 8.7 13.9 13.5 
Relative humidity        
<40 14.0 22.0 23.8 15.3 14.6 21.1 19.9 
40-50 22.8 22.2 28.1 25.6 18.5 30.6 22.0 
50-60 19.9 16.7 16.9 12.5 28.8 19.6 18.5 
60-70 20.6 17.0 15.0 18.5 25.0 8.4 18.3 
70-80 12.5 11.6 7.9 17.3 5.5 9.5 7.9 
>80 10.3 10.5 8.5 10.9 7.6 10.8 13.5 
Ammonia        
<10 36.03 32.1 37.5 36.7 36.0 36.6 34.2 
10-15 25.6 27.1 23.9 25.4 25.0 23.8 26.3 
15-20 14.0 10.8 10.0 13.4 12.4 13.3 12.4 
20-25 16.2 22.4 19.2 16.6 17.4 18.1 17.6 
>25 8.2 7.7 9.4 7.9 9.2 8.3 9.4 
Mycoplasma        
Absence 100.0   83.8 75.6 52.5 45.1 
Ovipneumoniae  100.0  0.8 1.4 2.9 6.0 
Arginini   100.0 13.4 20.5 39.4 39.6 
Ovipneumoniae and arginini    2.0 2.4 5.2 9.3 
Pasteurella        
Absence 100.0 93.7 93.7 93.6 93.78 93.9 93.8 
Multocida  2.2 2.2 2.2 2.2 2.1 2.2 
M. haemolytica  3.4 3.4 3.5 3.3 3.3 3.3 
 Pneumotropica  0.7 0.7 0.7 0.7 0.7 0.7 
Histology        
Diffuse alveolar damage 52.6 22.0 29.2 100.0    
Interstitial pneumonia 32.9 27.3 31.0  100.0   
Purulent bronchopneumonia 9.8 23.6 25.6   100.0  
Mixed changes 4.7 27.0 14.2    100.0 
Pulmonary consolidation        
Absence 53.1 45.8 47.1 63.3 45.8 31.7 38.0 
Presence 46.9 54.2 52.9 36.7 54.2 68.8 62.0 

 


