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Aircraft accidents are extremely rare in the aviation sector. However, their consequences can be very 

dramatic. One of the most important problems are runway excursions, when the aircraft exceeds the end 

(overrun) or the side (veer-off) of the runway. After performing exploratory analysis and hypothesis 

tests, a Bayesian-network-based approach was considered to provide information from risk scenarios 

involving landing procedures. The method was applied to a real database containing key variables 

related to landing operations on three runways. The objective was to analyse the effects over runway 

overrun excursions of failing to fulfil expert recommendations upon landing. For this purpose, the most 

influential variables were analysed statistically, and several scenarios were built, leading to a runway 

ranking based on the risk assessed. 
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1. INTRODUCTION. Aviation has grown from the first commercial flight in 1914 to the 

present with more than 120,000 landings and 12 million passengers per day globally in 2018, 

according to the Air Transport Action Group (ATAG, 2018). Forecasts on the increase of 

commercial flights are optimistic, with the number of passengers expected to double by 2030. 

Despite the large number of flight operations, the amount of accidents and incidents remains 

low. However, their consequences can be very dramatic in both losses of lives and economic 

costs. According to Boeing (2017), there were a total of 1948 accidents in the period 1959-

2016 worldwide (388 from 2007 to 2016). 31.98% of those accidents had fatal consequences 

(15.98% in 2007-2016).  

     In the last 50 years, there has been a major reduction in the number of accidents. This is due 

to improvements in technology and risk management. The research and development 

departments of aviation companies and the international aviation agencies have made an effort 

to evaluate various risks. Since these cannot be fully eliminated, the main objective is to 

provide procedures for their efficient and optimal management. It was not until 2006 that the 

International Civil Aviation Organization (ICAO) published the first risk management 

guidelines (ICAO, 2006). The proposals were widely accepted by air transport authorities and 

aviation manufacturers. Two updates were released in 2009 and 2013. However, the number 

of accidents (especially runway overruns) worsened in the period 1992-2011 with the increase 

in flight operations (Rosenkrans, 2012). 

     There are many types of accidents and incidents in aviation see, for example, Evans (2014). 

Some of the most serious happen during landing. This phase is critical as pilots must consider 

many factors and make the right decisions in a short time (Gerard, 2006; You et al., 2013; 



Wang et al., 2014; Boyd and Stolzer, 2016). According to Boeing (2016), in the last ten years 

49% of accidents in commercial flights occurred during the final approach or landing. There 

are many factors affecting landing manoeuvres. Jenkins and Aaron (2012) point to the 

following causes as the most relevant in landing accidents: unstabilised approach, tail or 

crosswind, high speed, long landing or poor use of reverse thrust. Other authors such as Chang 

et al. (2016), Hunter et al. (2011) and Ahmed et al. (2014) focus on environment, containment 

runways and weather as risk factors. Rosenkrans (2012) defined some recommendations that 

should be followed to reduce risks, such as crossing the threshold at the right height at moderate 

speed, beginning the landing at the specified zone and properly using reverse thrust and other 

braking systems. The Flight Safety Foundation (FSF) also provides recommendations to reduce 

the risk of runway excursions (FSF, 2009). 

     Runway excursions happen during landings when an aircraft lands short (undershoot) 

exceeds the end (overrun) or the side (veer-off) of the runway (see Wong et al., 2006). In the 

period 2010-2014, 87 out of 415 accidents with damage were runway excursions, resulting in 

a total of 174 deaths according to the International Air Transport Association (IATA) (see 

IATA, 2015). Overruns are especially relevant since they account for 22% of all accidents and 

incidents in air transportation, and 44% of runway excursions are overruns. 

     There are many risk factors potentially affecting runway overrun. To discover them, it is 

necessary to analyse the conditions before landing and the information obtained after an 

accident occurs. Van Es (2005) analysed data from 400 runway overruns covering 35 years. 

Later, Van Es et al. (2009) dealt with identifying the main factors in runway overruns and 

proposed a risk index. Ayres et al. (2013) described a frequency model to determine the 

location of runway overruns and analysed the influence of several risk factors.  

     To prevent these risks, it was recommended by ICAO (2013) to build Runway Safety Areas 

(RSAs), which help to reduce damage in overruns and also in overshoots. In this context, 

Arnaldo Valdés et al. (2011) proposed a probability-based approach to estimate risks in both 

overrun and undershoot, offering solutions for the construction of RSAs. Drees et al. (2014) 

analysed the influence of some aerodynamic variables and proposed a sensitivity analysis 

method based on simulated data. Benedetto et al. (2014) analysed runway deflection and 

rutting, trying to reduce the overrun risks with cleared and graded areas. Also, Wilke et al. 

(2014) provided a risk analysis based on the runway surface. An overrun prevention system 

based on the alert box defined by Ryan and Brodegard (2003) has been patented. 

     Frequency models have been widely used for risk assessment in aviation accident analysis. 

However, they provide a descriptive perspective and do not allow one to relate multiple 

variables from a probabilistic point of view. Bayesian Belief Networks or simply Bayesian 

Networks (BNs) (Cowell et al., 2006) constitute an especially interesting probabilistic method 

for constructing risk scenarios related to aviation accidents.  

     Bayesian modelling is not very common in aviation literature, but it is very promising. For 

instance, Feng et al. (2009) applied it for aviation baggage screening, Ronald and Fabian (2014) 

for aviation delay modelling and Andres et al. (2005) for aviation human-system risk and 

safety. In particular, BN’s have been applied in several settings for the purpose of supporting 

probabilistic predictions in aviation risk analysis. For example, Luxhøj and Kauffeld (2003) 

presented a new risk model for aviation systems that evaluates the impact of including new 

technologies to reduce the negative consequences of accidents. This BN model was 

implemented in the Probabilistic Decision Support System (PDSS) software package to 

evaluate risks of new technology interventions. Brooker (2011) considered expert opinions to 

estimate rare events in a BN framework and Gu (2009) used BNs to analyse the relationships 

among the main risk factors (helicopter technical dependability measures and environmental 

features) for helicopter accidents. 

  



     The focus of this paper is on risk analysis for prevention of overrun excursions based on a 

real dataset. Obtaining real data from aviation companies is very difficult (see, for example, 

Kirkland et al. (2004)) although its availability would clearly be very useful in that it would 

provide accurate information. We perform a BN model selection to fit the available data. The 

optimal BN is then used to define several risk scenarios that allow us to assess the influence of 

some states of the variables involved. This also lets us rank the corresponding runways based 

on the risk of overrun excursion. This is based on the probability of the event that the remaining 

distance to the end of the runway is less than 2,500 feet when the velocity is greater or equal 

to 80 knots. The higher this probability, the higher the risk of runway overrun. 

 

 

2. METHODS 

     2.1. Data available. A data collection process was performed based on landing operations 

on three runways. They have similar operational conditions with landing lengths of less than 

7,200 feet. Their locations cannot be divulged for confidentiality reasons. The runways will be 

denoted RwA, RwB, and RwC. 

     A total of 266 landing operations over a period of 10 months were recorded for the same 

airline and aircraft type. The main variable of interest was the remaining length (in feet) of the 

runway when the aircraft has a speed of 80 knots, see, for example, Burin (2011). This variable, 

denoted Rw80, allows us to identify the risk of not finishing within the runway boundaries. 

According to the FSF guidelines (Burin, 2011), the risk of an accident increases considerably 

when the aircraft has a speed greater than 80 knots when it has a remaining landing distance of 

2,000 feet. The other variables recorded are: 

• Height: This variable represents the height at threshold in feet over the runway. 

• DiffIV: This represents the difference between the indicated airspeed and the final approach 

speed at threshold, measured in knots. The indicated airspeed is read directly from the 

instruments, whereas the final approach speed represents the airspeed to be maintained 

down to 50 feet over the runway threshold (plus corrections for wind). 

• Tailwind: This is the tailwind at threshold, measured in knots. 

• Xwind: This represents the crosswind at threshold, measured in knots. Xwind and tailwind 

are of interest specifically for landing overruns. Other problems such as veer off or 

undershoot would also be affected by head wind but they are not included in this research. 

• Trevf: This variable describes the time in seconds that the maximum reverse thrust is 

operated to provide deceleration. 

• Rw. This identifies the landing runway: A, B, or C. 

• Approach: This indicates whether the approach is stabilised or not. 

• Abrake: This represents the autobrake activation, with three possible values: not activated, 

low, or medium. 

 

     It is also important to define how stabilized approach was defined. According to the FSF, 

IATA and Eurocontrol, an approach is stabilized when all the following criteria are met (see 

https://www.skybrary.aero/index.php/Stabilised_Approach): 

• The aircraft is on the correct flight path. 

• Only small changes in heading/pitch are necessary to maintain the correct flight path. 

• The airspeed is not more than Velocity of Reference (VREF) + 20kts indicated speed and 

not less than VREF. 

• The aircraft is in the correct landing configuration. 

• Sink rate is no greater than 1,000 feet/minute; if an approach requires a sink rate greater 

than 1000 feet/minute a special briefing should be conducted. 

• Power setting is appropriate for the aircraft configuration and is not below the minimum 

https://www.skybrary.aero/index.php/Stabilised_Approach


power for the approach as defined by the operating manual. 

• All briefings and checklists have been conducted. 

 

In Section 4, this dataset will be analysed. We next describe the methods used for data 

analysis. 

     2.2. Statistical methods. We performed a statistical data analysis of the database. Firstly, 

exploratory techniques were used. In order to analyse the relationships between pairs of 

variables, different hypothesis tests were considered. A chi-squared test was applied to 

determine the possible association between the use of autobraking and the runway. A Fisher 

exact test was applied for the same purpose between approach stabilisation and the runway (as, 

in this case, the applicability conditions for a chi-squared test were not met). For two 

quantitative variables, Spearman correlation coefficients and testing were considered to analyse 

the strength of the association between variables (as the conditions for a Pearson test were not 

met). Finally, since Analysis of Variance (ANOVA) applicability conditions could not be 

assumed, a nonparametric alternative was applied. Specifically, the Kruskal-Wallis test 

(Kruskal and Wallis, 1952) was used to analyse the differences between each quantitative 

variable for the different runways. Pairwise comparisons were performed using a Mann-

Whitney U test (Mann and Whitney, 1947) with a Bonferroni correction (Dunn, 1961). 

     A BN is a directed acyclic graph that defines a joint probability distribution for a set of 

features. Each node represents a variable and the arcs represent causal dependence between 

nodes. For each node, the distribution of its variable conditioned on its predecessors in the net 

is defined, it is called Conditional Probability Distribution (CPD). The complete network 

defines a joint probability distribution, based on the CPD and the graph relationships. This joint 

distribution is given by the product of the probabilities of each node conditioned on the value 

of its predecessors. BNs are specifically defined for modelling uncertain and complex risk 

domains. As they are defined strictly in terms of probabilities and conditional independence 

statements, their main use would be to analyse different conditional probabilities scenarios 

Akhtar and Utne (2014). They can also be applied to prediction problems (see Banghart et al., 

2017). One of the main advantages of its use is that it provides both a causal and probabilistic 

model, thus it is perfect for providing information supported by experts’ knowledge combined 

with conditional probabilities, resulting in a human-interpretable decision tool (Heckerman, 

2008). 

     The BNs take all the variables in the database into consideration conjointly to construct risk 

scenarios. For this task, quantitative variables were discretised by separating them into non-

overlapping intervals. For comparative purposes, six algorithms for BN were considered in a 

model selection framework: Bayesian Search, Essential Graph Search, Tree Augmented Naive 

Bayes, Augmented Naive Bayes, Simple Naive Bayes, and Greedy Thick Thinning, all of 

which are implemented in Genie (ByoungHee, 2014), which was also used for BN calculations. 

The performance of the algorithms when applied to the current database were compared 

through five-fold cross-validation using 1,000 repetitions (Kim, 2009). The accuracy and the 

Area Under the Receiver Operating Characteristic (ROC) Curve (denoted AUC) were 

considered as goodness-of-fit measures. The ROC curve presents sensitivity in the y coordinate 

versus one-specificity or false positive rate in the x coordinate. The AUC is a measure of model 

performance used for classification models that varies in the range [0,1]. When it is close to 1, 

it means that the algorithm is able to adequately identify the risky cases in which the remaining 

length of the runway is reduced and becoming a risk for the landing. As we are studying the 

remaining runway over and above 2,500 feet, this measure is especially interesting. It is one of 

the most used performance metric combined with accuracy rate. 

     The algorithm best fitting these data was Greedy Thick Thinning (Dash and Cooper, 2004). 

This is a graph-structure learning algorithm that searches for a Directed Acyclic Graph (DAG) 



which maximises the scoring function in the search space of all DAGs containing the finite set 

of variables. In BN structure learning, a scoring function measures how good a given network 

matches the data set. In this case, the score was calculated with the Bayesian Dirichlet 

equivalent uniform (BDeu) criterion. This is based on a Dirichlet distribution with a weakly 

informative uniform prior, see Cooper and Herskovits (1992) and Silander et al. (2008). The 

Greedy Thick Thinning algorithm starts with an empty graph at a specific point in the structure 

space. In order to maximise the Bayesian score, it continues adding neighbouring arcs until no 

additional arc improves the score. It then starts to remove arcs until a local optimum is achieved. 

The first process is known as thickening; the second one as thinning. The result is the model 

that best fits the given data. 

     The BN produced by this algorithm will be used in the following section to construct risk 

scenarios through evidence propagation, one of the most powerful features of Bayesian 

networks. With this technique, probabilities at each node can be updated via two-way 

propagation of new information throughout the structure. The resulting probabilities will be 

expressed as percentages. In each scenario, a set of evidences (represented by 100% probability 

in some categories) is defined according to very risky or very safe situations. We study how 

these evidences influence the probabilities of runway excursions. Probability estimates for 

different scenarios are reported in two tables. 

 

 

3. RESULTS AND DISCUSSION. We shall present first the main exploratory results, and then 

we shall apply the Bayesian-network-based approach to perform a risk analysis. 

     3.1. Exploratory analysis. Table 1 lists the frequency distributions of the variables 

describing runway, type of approach, and autobrake activation. Runway A is the most 

frequently used, receiving almost 40% of landing operations. Autobraking was not activated in 

more than one third of the operations, while unstabilised approaches were rare (2.3%). 
 

Table 1. Frequency distributions for qualitative variables. 

 

Runway Frequency % 

A 104 39.1 

B 80 30.1 

C 82 30.8 

Type of approach Frequency % 

Stabilised 260 97.7 

Unstabilised 6 2.3 

Autobrake activation Frequency % 

No 95 35.7 

Low 56 21.1 

Medium 115 43.2 

 

     Descriptive statistics of the relevant quantitative variables are presented in Table 2. The 

global recommendations FSF (2009) for reducing the risk of runway excursions are largely 

satisfied. For instance, both crosswind and tailwind tend to be under 10 knots; the speed 

difference tends to be less than 10 knots; the height, less than 50 feet, and there remains a length 

of runway greater than 2,000 feet when a speed of 80 knots has been reached. However, some 

landings did not satisfy the recommendations. Specifically, 6% and 0.8% of the landing 

operations were performed with crosswind and tailwind speeds greater than 10 knots, 

respectively; 2.3% were unstabilised; 1.9% had speed differences greater than 10 knots; and, 

finally, 19.9% had heights at threshold above 50 feet. 



 

     Figure 1 shows box plots of the quantitative variables. The frequency distributions for 

maximum reverse thrust, tailwind, crosswind, and height have a right-tailed asymmetry. All 

variables except maximum reverse thrust present outliers. For Rwy80, the most worrisome 

outliers are located close to 2,000 feet. The height shows quite a few risky operations above 50 

feet, some of them close to 99 feet. Finally, there are more crosswind than tailwind outliers 

above the maximum recommendation of 10 knots. 
 

Table 2. Descriptive statistics of quantitative variables involved. 

 

 Height DiffIV Tailwind Xwind Trevf Rwy80 

Mean 31.23 2.53 2.32 5.35 5.36 3602.10 

Median 28.00 2.00 1.00 4.00 4.50 3613.46 

Std. Dev. 24.53 3.89 2.87 2.98 5.57 540.19 

Minimum 1.00 -7.00 0.00 1.00 0.00 1890.77 

Maximum 99.00 13.00 12.00 17.00 20.00 5518.40 

FSF Recom <50 <10 <10 <10 >0 >2000 

 

     Table 3 presents Spearman correlation coefficients for pairwise variables and their p-values 

(p). Six, out of fifteen, pairwise variable associations, were not significant; the greatest 

significant correlation coefficient was 0.383 (p < 0.001), obtained for speed difference and 

height. The variable Rwy80 has significant negative correlations with all the other variables, 

showing that the remaining length of the runway at 80 knots decreases as height, crosswind, 

tailwind, speed difference or maximum reverse thrust increases. An increase in any of these 

variables would suggest an increase in the risk of runway excursions. Nevertheless, none of 

these associations seems strong. 

 
Table 3. Pairwise Spearman correlation coefficients and two-sided p-values. 

 

  Height DiffIV Tailwind Xwind Trevf Rwy80 

Height 

Spearman p 1.000 

. 

0.383 

0.000 

-0.171 

0.005 

0.139 

0.024 

0.024 

0.692 

-0.200 

0.001 

DiffIV 

Spearman p 0.383 

0.000 

1.000 

. 

0.034 

0.580 

0.085 

0.168 

0.056 

0.365 

-0.207 

0.001 

Tailwind 

Spearman p -0.171 

0.005 

0.034 

0.580 

1.000 

. 

0.052 

0.400 

0.138 

0.025 

-0.283 

0.000 

Xwind 

Spearman p 0.139 

0.024 

0.085 

0.168 

0.052 

0.400 

1.000 

. 

0.059 

0.341 

-0.198 

0.001 

Trevf 

Spearman p 0.024 

0.692 

0.056 

0.365 

0.138 

0.025 

0.059 

0.341 

1.000 

. 

-0.162 

0.008 

Rwy80 
Spearman p -0.200 

0.001 

-0.207 

0.001 

-0.283 

0.000 

-0.198 

0.001 

-0.162 

0.008 

 1.000 

          . 

 

 

 



 
 

Figure 1. Box plots for: height, DiffIV, Tailwind, Xwind, Trevf, and Rwy80.  

 

     Aviation safety experts stress that landing operations are influenced by the characteristics 

and state of the runway (Daidzic and Shrestha, 2008). Table 4 provides a comparison between 

stabilised and unstabilised landings depending on the runway used. The highest number of 

unstabilised landings among the three runways observed occurred in Runway C. However, 

Fisher’s exact test showed that there is no significant association between the type of approach 

and runway (p = 0.674). 

 

 



Table 4. Type of approach by runway. 

 

  Type of approach 

  Stabilised Unstabilised 

Runway Freq. % Row % Col. Freq. % Row % Col. 

A 102 98.1% 39.2% 2 1.9% 33.3% 

B 79 98.8% 30.4% 1 1.3% 16.7% 

C 79 96.3% 30.4% 3 3.7% 50.0% 

 

     On the other hand, Table 5 presents the contingency table for autobrake activation and 

runway. Autobraking was used with less intensity on Runway C and with greater intensity on 

Runway A. In this case, the chi-squared test showed a significant statistical association between 

use of autobraking and runway (p < 0.001). 

 
Table 5. Autobrake activation by runway. 

 

    Automatic brake   

  No   Low   Medium 

Runway Freq. % Row % Col. Freq. % Row % Col. Freq. % Row % Col. 

A 22 21.2% 23.2% 12 11.5% 21.4% 70 67.3% 60.9% 
B 31 38.8% 32.6% 22 27.5% 39.3% 27 33.8% 23.5% 
C 42 51.2% 44.2% 22 26.8% 39.3% 18 22.0% 15.7% 

 

     Table 6 provides descriptive statistics of the quantitative variables by runway. Some 

differences can be observed. Landing operations performed on Runway A have the greatest 

height, crosswind, and maximum reverse thrust averages. This runway also has the shortest 

remaining length average when the speed has fallen to 80 knots (although the minimum 

observation happens in Runway C), further evidence that this runway has the greatest excursion 

risk. Runway B seems to be following all the recommendations with more allowance, while 

Runway C only provides more allowance for crosswind and tailwind (both mean values are 

below those obtained for Runways A and B). Figure 2 provides box plots of all the variables by 

runway. 
 

Table 6. Descriptive statistics of the quantitative variables by runway. 

 

   Runway   

  A  B  C 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Height 38.0 26.2 21.4 14.8 32.2 27.0 

DiffIV 2.4 3.5 1.7 4.1 3.6 4.0 

Tailwind 2.4 3.0 2.8 2.9 1.8 2.7 

Xwind 6.5 3.5 5.2 2.8 4.0 1.7 

Trevf 5.9 5.4 4.9 5.8 5.1 5.6 

Rwy80   3365.3  486.8      3831.3  522.7   3678.9  506.9 

 

Significance tests were applied. Kruskal-Wallis tests were applied to analyse whether there 

were statistically significant differences in the variables of interest for the three runways. Such 



differences were observed for all quantitative variables (p < 0.05) except for maximum reverse 

thrust (p = 0.376). Pairwise comparisons were carried out for each pair of runways using 

penalised Mann-Whitney U tests. The height difference was statistically significant between 

Runways A and B (p < 0.001). There were also differences in speeds at Runways B and C (p = 

0.024) (with Runway C being the one presenting the greatest speed variations) and in tailwind 

(p < 0.05) for B and C again (but in this case with Runway B being that with the greatest value). 

With respect to crosswind, there were differences for all pairs of runways (p < 0.05). The same 

was the case for the remaining runway lengths at 80 knots (p < 0.001). Runway A had the 

lowest average remaining length and the greatest average crosswind. 

 

 
Figure 2. Box plots for the quantitative variables by runway.  



     3.2. Bayesian networks for risk assessment. With this background in mind, we have 

performed a BN analysis. For comparison of the different BN models, the specifications given 

in Section 2.2 have been followed (six models; five-fold cross-validation with 1,000 

repetitions; accuracy and AUC comparison). We define a binary outcome with only two events 

to be observed: Rwy80 < 2500 and Rwy80 ≥ 2500. As in this database there are very few cases 

under the recommendation of the Flight Safety Foundation, we will try to identify landings not 

only under 2,000 feet, but also close to them (< 2,500). This intends to make the requirement 

stricter. Table 7 lists the accuracies of the six algorithms after cross-validation. The Greedy 

Thick Thinning algorithm has the greatest accuracy (0.78), followed by the Tree Augmented 

Naive Bayes (0.73). 
 

Table 7. Accuracies for the six algorithms evaluated. 

 

Algorithms Accuracy 

Bayesian Search 0.49 

Essential Graph Search 0.41 

Tree Augmented Naive Bayes 0.73 

Augmented Naive Bayes 0.61 

Naive Bayes 0.56 

Greedy Thick Thinning 0.78 

 

     ROC curves present a false positive rate (one-specificity) versus sensitivity. The area under 

the ROC curve (AUC) is a measure of performance used for classification models. It is the most 

used performance metric together with accuracy rate. 

     Figure 3 presents the ROC curves and AUCs for the six algorithms following the cross-

validation procedure. Again, the best performance was for the Greedy Thick Thinning 

algorithm (AUC = 0.998), followed by the Tree Augmented Naive Bayes (AUC = 0.968). 

Given its best results, the Greedy Thick Thinning algorithm was run to construct the final BN 

used. The space of states for Rwy80 was then divided into six intervals: < 2,500, [2,500, 3,000), 

[3,000, 3,500), [3,500, 4,000), [4,000, 4,500), ≥ 4,500. 

     The estimated marginal probabilities in the BN (in the form of percentages) associated with 

each state are presented for each node in Figure 4. Relationships are represented by arcs, for 

which aviation experts checked that the connections represented were meaningful. 

     We performed a sensitivity analysis to observe if small changes in the predictors have an 

important effect on the prediction of the feature measuring the runway remaining at 80 knots.  

In Figure 4, the nodes are shown in a graduated red colour so that the more intense the colour, 

the greater influence this variable has on the conditional probability of the target node (Rwy80): 

runway, height at threshold, speed difference, autobrake activation and maximum reverse thrust 

seem the most influential variables. Figure 5 provides a tornado chart with which to analyse 

the influence of each state on the target variable, showing the ten most relevant states or state 

combinations. In particular, the figure shows the changes in P[Rwy80 < 2,500] when varying 

the probability of the states shown at each bar by ±20%. Green denotes an increase of 20%, 

whereas red denotes a decrease of 20%. For instance, considering the top bar, if the probability 

of landing on Runway A increases by 20%, then P[Rwy80 < 2,500] rises to 0.125. On the other 

hand, if the probability of landing on Runway A decreases by 20%, then P[Rwy80 < 2,500] 

declines to 0.121. Although, at first sight, this might seem a rather small probability difference, 

it implies four more accidents per 1,000 operations. Since aviation accident rates tend to be 

very low, this could be a major point of analysis to bear in mind so as to try to reduce even 

small risks. 



 
 

 

Figure 3. ROC curves and AUCs using different algorithms for Rwy<2,500: (a) Greedy Thick Thinning; 

(b) Bayesian Search; (c) Essential Graph Search; (d) Tree Augmented Naive Bayes; (e) Augmented 

Naive Bayes; (f) Naive Bayes.  

 

 



 

 

 

 
 

Figure 4. Graphical representation of the BN considered.  



 
Figure 5. Tornado chart for the less than 2,500 feet of runway remaining at 80 knots event.  

 

 

     We then constructed ten risk scenarios using evidence propagation. This allowed us to 

evaluate the risk of overrun based on hypothetical scenarios with the states considered of the 

variables of interest. For each scenario, a probability of 1 (100% in percentage terms) is set for 

one state in one or more nodes. 

Firstly, three scenarios were defined to analyse the characteristics of each runway as 

represented by the data, and two further scenarios were formulated to describe situations with 

maximum and minimum runway overrun risks. Table 8 presents the results of the inference 

process based on the BN considered. 

     Comparing the first three scenarios related to runways, we observe that Runway A has the 

greatest percentages of landings with more than 10 knots of tailwind (2.88%) and crosswind 

(17.31%) and Runway C the lowest. Runway A also stands out in unstabilised landings 

(3.95%), followed by 2.19% for Runway B and 1.14% for Runway C. The activation time for 

maximum reverse thrust is similar for the three runways. The use of autobrake systems is very 

different, however, with Runway A requiring the greatest activation of autobraking at medium 

level (67.31%) and Runway B the least (21.95%). The recommendation is that these two 

braking systems should be used moderately during landing roll. Runway B has the greatest 

percentage of moderate use of both devices. According to all this information, Runway A could 

be catalogued as riskier, and landings should be taken more carefully, for example, when 

situations with high wind are observed. 

     Speed difference is similar for the three runways. Nevertheless, for differences greater than 

9 knots, Runway A presents a slightly greater percentage than B and C. Height at threshold 

differs considerably among the three runways. Again, Runway A has the greatest percentage 

(32.96%) of landing manoeuvres at threshold above the recommended height of 50 feet. 

Runway C has a percentage of 20.78%, while Runway B is the safest in this regard with 1.24%. 

In this case runway A should have stricter recommendations for landing for the speed and the 

height at the threshold. 

     With respect to the remaining length of runway at 80 knots, Runway A has the greatest 

percentage (14%) of lengths being less than 2,500 feet, followed by Runway C with 11.51%, 

and finally by Runway B with 10.97%. Considering the accumulated percentages for landings 



with more than 3,500 feet remaining, we observe that Runway B would be the safest with 

63.96%, followed by Runway C with 55.97%, and, finally, Runway A with 43.55%. 

     This analysis by runway is an example of the valuable insights that could be offered to any 

airport, giving the main risks to be observed during landing. Each different runway has its own 

characteristics and risks. A customised probability of suffering accidents could be given for 

any different runway. 

     We next analyse the scenarios for maximum and minimum risks, according to the FSF’s 

recommendations. Scenario 4 considers conditions not recommended for landing by the FSF. 

This kind of landing has most probability of occurring at Runway A (92.36%), whereas at 

Runway C it would be 7.64%. According to the BN model, these conditions would be rarely 

met at Runway B. The opposite is the case for Scenario 5, where the best landing conditions 

are considered. In this case, there is a probability of 79.52% that the landing was performed on 

Runway B, followed by Runway C (12.98%) and with the lowest probability being for Runway 

A (7.5%). 

     All the information provided in the scenarios in Table 8 is coherent with the statement that 

Runway B is the safest, followed by Runway C, and, finally, with Runway A being the least 

safe. This also agrees with the results obtained in Section 3.1. 

  



Table 8. Scenarios for excursion risk evaluation by runway. 

 

 1 2 3 4 5 

Runway A 100.00   92.36 7.50 

B  100.00  0.00 79.52 

C   100.00 7.64 12.98 

Tailwind <1 47.12 36.25 57.32  100.00 

1-3 16.35 13.75 10.98   

3-7 23.08 38.75 24.39   

7-10 10.58 8.75 6.10   

>10 2.88 2.50 1.22 100.00  

Crosswind 

<4 19.23 30.00 40.24 0.00 31.17 

4-6 25.96 33.75 41.46 0.00 33.90 

6-8 23.08 18.75 13.41 0.00 18.79 

8-10 14.42 7.50 4.88 49.62 7.36 

>10 17.31 10.00 0.01 50.38 8.79 

Approach 

Stabilised 96.05 97.81 98.86 

 

100.00 

Unstabilised 3.95 2.19 1.14 100.00  

Trevf. 

<1 43.88 44.38 44.68 100.00 

 

1-4 3.69 3.76 3.80   

4-7 7.97 7.50 7.22  100.00 

7-10 14.70 14.66 14.64   

10-13 17.28 17.29 17.30   

>13 12.48 12.40 12.36   

Abrake 

No 21.15 38.75 51.22 

  

Low 11.54 27.50 26.83  100.00 

Medium 67.31 33.75 21.95 100.00  

DiffIV 

<-3 6.28 6.40 6.46 

  

-3-1 27.63 27.83 27.95  100.00 

1-5 32.35 32.33 32.32   

5-9 27.55 27.44 27.38   

>9 6.20 6.01 5.89 100.00  

Height <10 19.87 33.14 20.02 92.36  

10-30 21.75 33.43 39.17 7.64  

30-50 25.43 32.18 20.02 0.00 100.00 

50-70 21.66 1.24 10.01 0.00  

>70 11.30 0.01 10.77 0.00  

Rwy80 

<2500 14.00 10.97 11.51 100.00 

 

2500-3000 15.01 11.56 10.91   

3000-3500 27.46 13.51 21.60   

3500-4000 21.28 32.38 26.61  100.00 

4000-4500 13.40 18.18 17.71   

>4500 8.87 13.40 11.65   

 

      

  



     Five additional relevant scenarios not compliant with some of the most common FSF 

recommendations are presented in Table 9. Scenario 6 analyses the probability of an 

unstabilised approach. Runway A has the greatest percentage of unstabilised approaches 

(60.48%), whereas Runway B has almost double the percentage of Runway C (25.79% vs 

13.79%). When the approach is unstabilised, 56.31% of the landings are performed with a 

crosswind greater than 10 knots (much greater than in the rest of the scenarios). Also, the speed 

difference is greater than 9 knots for 16.67% of the landings, a larger value than for the other 

scenarios. Autobrake systems are mainly used at a medium level (52.43%). Finally, 14.98% of 

the landings with an unstabilised approach had a remaining runway length at 80 knots of less 

than 2,500 feet, showing the risk of unstabilised approaches for a runway overrun. 

In Scenario 7, tailwind speed was considered to be greater than 10 knots. This situation occurs 

above all on Runway A (50%), followed by Runway B (33.33%). Although crosswind risk 

probabilities are not greatly affected by tailwinds greater than 10 knots, they do seem to be 

related to the stabilisation of the approach (11.26% of the approaches are unstabilised in this 

case). This scenario also shows the need to use autobraking at a medium level (for which the 

percentage is relatively high, 48.56%). A remaining length at 80 knots of less than 2,500 feet 

seems to be not especially affected by high tailwind speeds in comparison with the other 

scenarios. 

     Scenario 8 considers a case in which the maximum reverse thrust is used briefly (between 

1 and 4 seconds). This almost always occurs for stabilised approaches (99.9%). The probability 

of initiating landing with a height above 50 feet is 19.94%, the greatest value in these scenarios. 

Finally, the probability of having less than 2,500 feet of remaining length on the runways at 80 

knots is 14.79%, one of the greatest probabilities of the scenarios analysed. 

     A large difference between recommended and actual speeds can lead to considerable risk 

during landing. Scenario 9 considers the consequences associated with a speed difference larger 

than 9 knots. Again, this risky situation most probably occurs at Runway A (40.08%), followed 

by Runways B and C with 29.88% and 30.04%, respectively. Speed differences greater than 9 

knots occur with a probability of 7.03% in unstabilised approaches. The worst consequence is 

that the probability of landing with a remaining runway length of less than 2,500 feet at 80 

knots is 15.05%. 

     Scenario 10 is related to heights greater than 70 feet at threshold. This kind of situation 

appears to be almost totally improbable for the landings on Runway B, whereas the probabilities 

for Runways A and C are 57.1% and 42.9%, respectively. In this case, a landing that is initiated 

at a greater than normal height seems to be not associated with other negative factors. 

Moreover, the probability of a remaining runway length at 80 knots that is less than 2,500 feet 

is the lowest (12.52%) of the risk scenarios in Table 9. 
 

  



 

Table 9. Scenarios to evaluate runway excursion risk that are non-compliant with FSF recommendations. 

 
 6 7 8 9 10 

Runway A 

60.48 50.00 38.54 40.08 57.10 

B 25.79 33.33 30.19 29.88 0.00 

C 13.73 16.67 31.27 30.04 42.90 

Tailwind <1 
40.28 

 
47.17 46.68 52.25 

1-3 19.85  13.75 14.18 13.58 

3-7 0.00  28.93 26.90 23.56 

7-10 29.92  8.09 9.62 8.61 

>10 9.95 100.00 2.05 2.61 2.00 

Crosswind 

<4 0.00 26.32 29.71 27.62 27.67 

4-6 28.42 31.14 33.20 32.87 33.89 

6-8 0.00 20.02 19.29 17.93 19.13 

8-10 15.27 10.52 9.24 9.67 10.63 

>10 56.31 11.99 8.56 11.91 8.69 

Approach 

Stabilised 

 

88.74 99.99 92.97 96.98 

Unstabilised 100.00 11.26 0.01 7.03 3.02 

Trevf 

<1 16.67 41.81 

 

43.01 44.14 

1-4 0.00 3.41 100.00 3.58 3.73 

4-7 33.33 9.90  8.78 7.72 

7-10 16.67 14.85  14.76 14.68 

10-13 16.67 17.24  17.26 17.29 

>13 16.67 12.80  12.61 12.44 

Abrake 

No 29.82 32.03 35.87 35.44 34.05 

Low 17.75 19.41 21.14 20.90 18.10 

Medium 52.43 48.56 42.99 43.66 47.85 

DiffIV 

<-3 0.00 5.80 6.54 

 

6.34 

-3-1 16.67 26.79 28.08  27.73 

1-5 33.33 32.42 32.31  32.34 

5-9 33.33 27.99 27.31  27.49 

>9 16.67 7.00 5.77 100.00 6.10 

Height <10 
56.03 27.64 23.07 25.38 

 

10-30 34.82 29.54 30.52 30.83  

30-50 0.00 24.44 26.47 24.61  

50-70 0.00 11.52 12.24 11.38  

>70 9.15 6.87 7.70 7.80 100.00 

Rwy80 

<2500 14.98 12.73 14.79 15.05 12.52 

2500-3000 15.67 13.35 16.15 15.89 17.60 

3000-3500 19.82 21.52 22.34 19.81 19.29 

3500-4000 20.36 25.51 16.68 18.73 19.38 

4000-4500 16.52 15.84 15.24 15.48 19.60 

>4500 12.65 11.05 14.79 15.05 11.62 

 

     



     In summary, on one hand, an unstabilised approach and a large speed difference constitute 

two major factors for unsafe landings. When an approach is unstabilised, it is typically 

accompanied by some non-recommended conditions, for example, high crosswind and tailwind 

speeds, or a large speed difference. Both unstabilised approaches and high-speed differences 

occur with greater frequency at Runway A. On the other hand, for the probability of having a 

remaining runway length of less than 2,500 feet at 80 knots, the least dangerous factors are 

tailwind speed and height. Having under control all these aspects can lead to a safer context, 

reducing the runway excursion incident rates. 

     Finally, evidence propagation in the BN has allowed us to define risk scenarios that provide 

information about hypothetical situations that could arise in real landings. The method is 

extensible to other aviation datasets. Indeed, in general, the more data, the better the 

information that would be obtained. 

 

 

4. CONCLUSIONS. This paper explores the risk for runway overrun excursions under several 

scenarios. Data from three real runways were collected and analysed with a BN model, as an 

illustration of a risk evaluation that could be performed for all runways. The BN method using 

evidence propagation facilitated the analysis of the most common runway excursion risk 

scenarios. 

     This research revealed the relations among features measured when landing. Three runways 

were classified in accordance to their potential risks, and early risk disclosure was provided. 

The generic recommendations established by safety organisations can be revisited for each 

runway using the results of this kind of analysis. For example, Runway A is less safe than the 

others, and recommendations for landing should be stricter. This kind of analysis can be 

performed for more runways in different airports, providing a classification according to their 

runway overrun risk. This tool could be used in aviation operations for runway classification 

that allows pilots to have a runway excursion probability when landing. 

     The proposed approach can provide insights into why runway excursions occur and 

potentially lead to reductions in accident rates. The runway risk ranking could be useful for 

authorities to mitigate the amount of excursions, improving the weaknesses observed at each 

runway. With the BN graph, the scenarios given and the sensitivity analysis, the relations and 

influence among the main features is exposed. These results could be extended if more airports 

open their databases. This study remains open in case further data can be obtained in the future. 

New features such as touchdown point, landing procedure, weather situation or runway 

contamination would be especially important. The results obtained cover different kinds of risk, 

offering a comprehensive safety framework that would be applicable to all runways. 
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