
J. Math. Anal. Appl. 476 (2019) 319–336
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A reflection on Tingley’s problem and some applications

Javier Cabello Sánchez
Departamento de Matemáticas, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 October 2018
Available online 22 March 2019
Submitted by T. Domínguez 
Benavides

Dedicated to the memory of 
Professor Carlos Benítez

Keywords:
Mazur-Ulam property
Metric invariants
Strictly convex spaces
Curvature

In this paper we show how some metric properties of the unit sphere of a normed 
space can help to approach a solution to Tingley’s problem. In our main result 
we show that if an onto isometry between the spheres of strictly convex spaces is 
the identity when restricted to some relative open subset, then it is the identity. 
This implies that an onto isometry between the unit spheres of strictly convex 
finite dimensional spaces is linear if and only if it is linear on a relative open set. 
We prove the same for arbitrary two-dimensional spaces and obtain that every 
two-dimensional, non strictly convex, normed space has the Mazur-Ulam Property. 
We also include some other less general, yet interesting, results, along with a 
generalisation of curvature to normed spaces.
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1. Introduction

Since Tingley’s seminal paper [32], a lot of work has been done trying to answer this:

Question 1.1. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be normed spaces and τ : SX → SY a surjective isometry between
their unit spheres. Is τ the restriction of a linear isometry τ̃ : X → Y ?

This Question is widely known as Tingley’s problem. The main result in Tingley’s paper [32] is what we 
will call Tingley’s Theorem throughout the paper:

Theorem 1.2 (Tingley, [32]). Suppose that S and S′ are the unit spheres of finite dimensional Banach spaces. 
If f : S → S′ is an onto isometry, then f(−x) = −f(x) for all x in S.

Of course, this is not the first question about the linearity of isometries. Namely, since Mazur-Ulam 
Theorem, see [21], we are aware of the fact that every surjective isometry τ̃ : (X, ‖ · ‖X) → (Y, ‖ · ‖Y ) is
affine. The relation between the Theorem and the Question has led to state (see, e.g., [4]) that (X, ‖ · ‖X)
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has the Mazur-Ulam Property when the answer to Question 1.1 is affirmative for every (Y, ‖ · ‖Y ). As a 
consequence of Mazur-Ulam Theorem, Question 1.1 may be replaced by the following:

• Is τ the restriction of an isometry τ̃ : X → Y such that τ̃(0) = 0?
The next natural step could have been the question about surjective isometries between unit balls, but 

Mankiewicz, in [19], showed that in the Mazur-Ulam Theorem the surjective isometry does not need to be 
defined on the whole space X or even on the unit ball: if we consider two closed convex bodies FX ⊂ X

and FY ⊂ Y , every onto isometry τ : FX → FY is affine – it is a little more general, actually. So, Tingley’s 
problem can be then restated as:

• Is τ the restriction of an isometry τ̃ : BX → BY such that τ̃(0) = 0?
It seems that, if every space has the Mazur-Ulam Property, the last question of this kind will be, in the 

spirit of Mankiewicz’s result:
• If FX and FY are convex bodies and τ : ∂FX → ∂FY is an onto isometry between their boundaries, 

does τ extend linearly?
This problem has been dealt in several ways and lots of positive answers have been found, see, e.g., [2,

5,7–14,16–18,22–28,30,31,33] – it is really impressive the development of machinery and technics that this 
problem has led to.

Anyway, all usual approaches share a common procedure: take some more of less concrete normed space 
(X, ‖ · ‖X) and its unit sphere SX , suppose that for some (Y, ‖ · ‖Y ) –with or without further assumptions 
on (Y, ‖ · ‖Y )– there is some onto isometry τ : SX → SY , analyse some properties of the involved norms and 
show somehow that the homogeneous extension of τ is either isometric or linear. This is enough because, 
in this setting, linear implies isometric and vice versa. When we say the homogeneous extension we refer to 
τ̃ : X → Y defined as τ̃(λx) = λτ(x) for every λ ≥ 0, x ∈ SX .

Our approach will follow a different way: if τ is the restriction of a linear isometry, in particular τ must 
be linear. We mean that, whenever x, x′ ∈ SX and λ, λ′ ∈ R are such that λx + λ′x′ ∈ SX , the point 
λτ(x) + λ′τ(x′) must belong to SY and the equality

τ(λx + λ′x′) = λτ(x) + λ′τ(x′)

must hold. So, taking coordinates with respect to well chosen bases, we will have that if τ is the restriction 
of some linear isometry then its representation in coordinates must be the identity. Of course, the identity 
of a sphere is the restriction of a linear isometry, so this is a necessary and sufficient condition for τ to be 
the restriction of a linear isometry.

As our immediate goal is not to detail thoroughly our method, we will try to explain it in its simplest form. 
Consider some two-dimensional normed space (X, ‖ · ‖X) and suppose that there is a surjective isometry 
τ : SX → SY for some (Y, ‖ ·‖Y ) – it must be two-dimensional, too. We may take a basis BX = {x1, x2} ⊂ SX

and identify linearly isometrically (X, ‖ · ‖X) with (R2, ‖ · ‖′X) and BX with the usual basis B2 = {e1, e2}
in R2:

φX(λ1x1 + λ2x2) = (λ1, λ2), ‖(α1, α2)‖′X = ‖α1x1 + α2x2‖X .

If we take, further, y1 = τ(x1), y2 = τ(x2) and BY = {y1, y2} ⊂ SY , then BY is a basis of Y by Tingley’s 
Theorem. Identifying the same way Y with R2 and BY with B2 via φY : Y → R2 we may consider the map 
τ ′ : S‖·‖′

X
⊂ R2 → S‖·‖′

Y
⊂ R2 defined as τ ′(λ1, λ2) = (μ1, μ2) when τ(λ1x1 + λ2x2) = μ1y1 + μ2y2, i.e., 

τ ′ = φY ◦ τ ◦φ−1
X . As τ ′(1, 0) = (1, 0) and τ ′(0, 1) = (0, 1), the only way τ ′ can be linearly extended is being 

the identity so, since φX and φY are linear, we have two options:

• If τ ′ is the identity then τ : SX → SY is the restriction of a linear isometry.
• If τ ′ is not the identity then there is no linear application whose restriction agrees with τ .
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So, for τ̃ : X → Y to be linear it is necessary S‖·‖′
X

= S‖·‖′
Y
. We will see that this is also sufficient in 

two-dimensional spaces, so the planar Tingley’s problem could be stated as follows:

Question 1.3. Suppose ‖ · ‖X and ‖ · ‖Y are two norms defined on R2 such that ‖(1, 0)‖ = ‖(0, 1)‖ = 1 for 
both norms and there is an isometry τ : SX → SY such that τ(1, 0) = (1, 0), τ(0, 1) = (0, 1). Does this imply 
SX = SY ?

1.1. Notations

Throughout this paper, X and Y will be normed spaces. When we deal with more than one space, we 
will write ‖ · ‖X , ‖ · ‖Y and so on for the norms unless we are referring, on purpose, to equalities or relations 
that hold for all the involved norms, as in Question 1.3.

We will denote by Bn = {e1, . . . , en} the usual basis of Rn, in particular every appearance of ei will refer 
to the i-th vector of Bn.

We have avoided the use of open intervals or segments, so that the notation (a, b) will always refer to a 
two-dimensional vector. For closed intervals or segments, we will write [x, x′], i.e., [x, x′] = {λx + (1 −λx′) :
0 ≤ λ ≤ 1} no matter whether x and x′ are scalars or vectors.

Given x, x′ ∈ X we will denote as Bis(x, x′) the bisector of the segment [x, x′], i.e., Bis(x, x′) = {z ∈
X : ‖x − z‖X = ‖x′ − z‖X}. As we will deal frequently with bisectors of symmetric segments of the form 
Bis(x, −x), we will refer to them as symmetric bisectors and will omit the −x in the notation, so Bis(x)
will be the symmetric bisector of x and must be understood as Bis(−x, x). Please observe that z ∈ Bis(x)
if and only if x and z are isosceles orthogonal.

Definition 1.4. Given a segment [x, x′] in the sphere of some two-dimensional normed space (X, ‖ · ‖X), we 
say that [x, x′] is maximal when it is not strictly contained in another segment.

Definition 1.5. For x ∈ SX , the star of x is {x′ ∈ SX : [x, x′] ⊂ SX}.

As we will focus primarily on metric concepts, the following subset will play the usual role of the star. 
The definition of the star is here just for, say, compatibility purposes.

Definition 1.6. Given x ∈ SX , we will denote by D(x) the set {x′ ∈ SX : ‖x − x′‖X = 2}.

Remark 1.7. By Corollary 5 in [32], D(x) agrees with the star of −x, so D(x) = {x′ ∈ SX : [−x, −x′] ⊂ SX}.

1.2. Plan of the paper

Apart from this Introduction, the paper is divided into three sections.
The first one is devoted to some quite elementary, general facts about spheres in normed spaces. These 

facts will be useful in the remaining two sections.
Section 3 is the central one, we have split the proof of the main results into several parts. Some of these 

intermediate results are interesting on their own, and also some proofs reveal the main ideas in this paper 
far better than the main results’ proofs.

Finally, in Section 4 we expose some results than can be seen as consequences of the ideas more than 
consequences of the results in Section 3. It includes a subsection where we define a kind of generalisation of 
the usual curvature of planar curves.
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2. The general results

Given a finite dimensional (X, ‖ · ‖X) and a basis BX = {x1, . . . , xn} ⊂ X, we say that ((X, ‖ · ‖X), BX)
is identified with (Rn, ‖ · ‖′X) if

‖(λ1, . . . , λn)‖′X = ‖λ1x1 + · · ·λnxn‖X

for every (λ1, . . . , λn) ∈ Rn, i.e., if the linear application φX : (X, ‖ · ‖X) → (Rn, ‖ · ‖′X) given by φX(xi) =
ei, i = 1, . . . , n is an isometry.

Lemma 2.1. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be finite dimensional normed spaces, τ : SX → SY an application 
(respectively, isometry), and suppose that BX = {x1, . . . , xn} ⊂ SX and BY = {τ(x1), . . . , τ(xn)} ⊂ SY are 
bases of X and Y respectively. Suppose, moreover, that ((X, ‖ · ‖X), BX) and ((Y, ‖ · ‖Y ), BY ) are identified 
with (Rn, ‖ · ‖′X) and (Rn, ‖ · ‖′Y ) via φX and φY . Then, τ is the restriction of a linear application (resp, 
isometry) τ̃ : X → Y if and only if τ ′ = φY ◦ τ ◦ φ−1

X : S‖·‖′
X
→ S‖·‖′

Y
is the identity.

Proof. Since φX and φY are onto linear isometries and τ ′(ei) = ei for every i, the results follow. �
Definition 2.2. We say that a norm ‖ · ‖X defined on Rn is normalized if ‖ei‖X = 1 for every ei ∈ Bn.

Theorem 2.3. Let ‖ · ‖X , ‖ · ‖Y be normalized norms defined on R2, τ : SX → SY an isometry such that 
τ(1, 0) = (1, 0) and τ(0, 1) = (0, 1). Then τ is the restriction of a linear isometry if and only if SX = SY .

Proof. Let τ be as in the statement. By Lemma 2.1, if SX and SY are different, then τ is not linear, so 
the “only if” part is done. What we need to show in order to prove the other implication is that SY = SX

implies that the only isometry τ : SX → SY is the identity.
Take some z, τ(z) ∈ SX . As τ preserves distances and τ(e1) = e1, τ(e2) = e2, we have ‖z ± e1‖ =

‖τ(z) ± e1‖, and ‖z ± e2‖ = ‖τ(z) ± e2‖. The Monotonicity lemma (see, e.g., [20], Proposition 31) implies 
that for any normed plane E and any basis {u1, u2} ⊂ E, the four distances ‖v±u1‖E , ‖v±u2‖E determine 
v when v, u1, u2 ∈ SE , so we have z = τ(z). �
Remark 2.4. This result is very similar to [29], Corollary 2.12.

Conjecture 2.5. Theorem 2.3 is true for any couple of normalized norms defined on Rn.

Of course this conjecture is a particular case of Tingley’s problem, we presented it here just because it 
seems much easier to answer and it could be helpful. See Remark 3.10 for a little further explanation.

Remark 2.6. The proof of Theorem 2.3 will not adapt to this Conjecture, here we present a simple example 
of a three-dimensional space with a basis that does not determine the points in the sense used above. Take 
(R3, ‖ · ‖∞) and the basis {v1, v2, v3} = {(1, 1, 1), (1, 1, 0.9), (1, 0.9, 1)}. We need to point out that all the 
coordinates in this Remark refer to the usual basis. It is clear that, for y1 = (1, −1, 0.1), y2 = (1, −1, −0.1), 
we have

• ‖vi + yj‖ = 2 for every i, j.
• ‖vi − yj‖ = 2 if i, j ∈ {1, 2}.
• ‖v3 − yj‖ = 1.9 for j ∈ {1, 2}.

On the other hand, it is not hard to see that the only isometry of S3
∞ that preserves {v1, v2, v3} is the 

identity. Indeed, suppose τ : S3
∞ → S3

∞ is an onto isometry and τ(vi) = vi, i = 1, 2, 3.
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Then, τ preserves D(v1) ∩D(v2) ∩D(v3) = {−1} × [−1, 1] × [−1, 1], so it preserves {1} × [−1, 1] × [−1, 1], 
too. Now it is clear that τ also preserves

(D(v1) ∩ D(v2)) \ (D(v1) ∩ D(v2) ∩ D(v3)) = int([−1, 1] × {−1} × [−1, 1])

and also [−1, 1] × [−1, 1] × {−1}, so τ(C) = C when C is any of the six faces of the unit sphere. It is clear 
that every (a1, a2, a3) belonging to the ball B3

∞ is determined by its distances to the six faces of S3
∞, so 

τ(a1, a2, a3) = (a1, a2, a3), for every (a1, a2, a3) ∈ S3
∞.

We can present another example, this one involves a strictly convex space. Consider (R3, ‖ · ‖3) and take 
x = 1

3√3(1, 1, 1) ∈ S3
3 . Then,

v1 = 1
3
√

6
(1, 1,− 3

√
4), v2 = 1

3
√

6
(1,− 3

√
4, 1), v3 = 1

3
√

6
(− 3

√
4, 1, 1)

form a basis such that ‖vi − x‖3 = ‖vj + x‖3 for i, j ∈ {1, 2, 3}, so this basis does not distinguish x and −x. 
Indeed it is easy to check that all these quantities equal 

(4
3 + 2 3

√
2
)1/3. What we have done is to choose the 

simplest x ∈ S3
3 whose symmetric bisector is not planar and the simplest basis contained in its symmetric 

bisector: v1, v2, v3 ∈ Bis(x). Now, the following seems pretty natural:

Question 2.7. Let (X, ‖ · ‖X) be a three-dimensional normed space. Can we choose x, v1, v2, v3 ∈ SX such 
that {v1, v2, v3} is a basis and v1, v2, v3 ∈ Bis(x) whenever X is not Euclidean?

Remark 2.8. It is clear from [3], Theorem 3.2, that in every not Euclidean three-dimensional space (X, ‖ ·‖X), 
for each λ ∈ (0, 1) ∪ (1, ∞) there exist x, v1, v2, v3 ∈ SX such that v1, v2, λv3 ∈ Bis(x) and {v1, v2, v3} is a 
basis.

3. The main results

We have tried to present every useful property, so we have split the proof of the main results into several 
intermediate steps.

Remark 3.1. Consider an onto isometry τ : SX → SY between the spheres of a pair of finite dimensional 
normed spaces. By Tingley’s Theorem, for every x ∈ SX we have τ(−x) = −τ(x), so

‖τ(x1) + τ(x2)‖Y = ‖τ(x1)−(−τ(x2))‖Y = ‖τ(x1)−τ(−x2)‖Y = ‖x1−(−x2)‖X = ‖x1 + x2‖X ,

and this readily implies that τ(x1) and τ(x2) belong to the same segment if and only if x1 and x2 do.

Definition 3.2. For x ∈ SX , we say that x is flat if there is an affine hyperplane H ⊂ X such that H ∩ SX

is a relative neighbourhood of x.

Observation 3.3. Let x ∈ SX . Then, x is flat if and only if D(x) = D(x′) for every x′ ∈ SX in a relative 
neighbourhood of x. As a consequence, being flat is an intrinsic metric property for points in SX.

Proof. By Remark 1.7, if H ∩SX contains a (nonempty) relative open subset, say U ∩SX = intSX
(H ∩SX), 

then D(x) = −H ∩ SX , for every x ∈ U . In particular, D(x) = D(x′) for x′ ∈ U .
On the other hand, let x ∈ SX and suppose D(x) = D(x′) for every x′ ∈ U , where U = SX ∩ (x + εBX). 

By Remark 1.7, D(x) = D(x′) if and only if
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{x ∈ SX : [x, x] ⊂ SX} = {x ∈ SX : [x′, x] ⊂ SX}.

Then, [x′, x] ⊂ SX for every x′, x ∈ U . This implies that U is convex, so it is contained in SX ∩H for some 
hyperplane H. This means that SX ∩H is also a relative neighbourhood of x. �

The following result has been recently published as Theorem 2.6 in [33]. We include it here because we 
think that our proof is interesting enough.

Proposition 3.4 (Wang, Huang, [33, Theorem 2.6]). Let (X, ‖ ·‖X) be a two-dimensional normed space whose 
unit sphere contains a segment with length at least 1. Then, (X, ‖ · ‖X) has the Mazur-Ulam Property.

Proof. Suppose that (X, ‖ ·‖X) is such a space and suppose there are some (Y, ‖ ·‖Y ) and τ : SX → SY such 
that τ is an onto isometry. Let [x1, x2] be a maximal segment in SX such that ‖x1 − x2‖X ≥ 1. Since x1, x2
are not flat points, Observation 3.3 implies that neither y1 = τ(x1), y2 = τ(x2) are, but Remark 3.1 implies 
that [y1, y2] ⊂ SY and we deduce that [y1, y2] is a maximal segment in SY . As ‖y1−y2‖Y = ‖x1−x2‖X ≥ 1, 
the sphere SY contains another segment with length at least 1.

Take BX = {u1, u2} as a basis of X, where u1 and u2 are u1 = 1
‖x1−x2‖X

(x1 − x2) and u2 = 1
2 (x1 + x2). 

Consider Y endowed with the analogous basis, BY = {v1, v2} given by v1 = 1
‖y1−y2‖Y

(y1 − y2) and v2 =
1
2 (y1 + y2). We will make heavy use of coordinates, so please recall that they will refer to these bases for 
the remainder of the proof.

Denoting λ = 1
2‖x1 − x2‖X = 1

2‖y1 − y2‖Y ≥ 1
2 , we have x1 = (λ, 1), x2 = (−λ, 1) ∈ SX and y1 =

(λ, 1), y2 = (−λ, 1) ∈ SY . Both spheres include the segment [−λ, λ] ×{1} and so, its opposite [−λ, λ] ×{−1}. 
In both spaces we have ‖(1, 0)‖ = 1, so we actually have ([−λ, λ] ×{−1, 1}) ∪{(±1, 0)} ⊂ S. As τ(λ, 1) = (λ, 1)
and τ(−λ, 1) = (−λ, 1), Mankiewicz Theorem implies that τ(α, 1) = (α, 1) when α ∈ [−λ, λ] and, by 
Tingley’s Theorem, we also have τ(−α, −1) = (−α, −1) for every α ∈ [−λ, λ].

Summing up all these data, the convexity of the unit ball of any norm implies that every remaining point 
of each sphere lies inside some of the following four triangles. If (α, β) belongs to any of the spheres –and 
not to their above described subsets– then:

• α, β ≥ 0 implies (α, β) ∈ conv{(λ, 1), (2 − λ, 1), (1, 0)}.
• α ≥ 0, β ≤ 0 implies (α, β) ∈ conv{(λ, −1), (2 − λ, −1), (1, 0)}.
• α ≤ 0, β ≥ 0 implies (α, β) ∈ conv{(−λ, 1), (λ − 2, 1), (−1, 0)}.
• α, β ≤ 0 implies (α, β) ∈ conv{(−λ, −1), (λ − 2, −1), (−1, 0)}.

We may suppose α, β ≥ 0, being the other cases symmetric. As λ ∈ [1/2, 1], we have (α, β) ∈
conv{(1/2, 1), (3/2, 1), (1, 0)}. We shall see that there are two more metric-depending parameters that 
determine both α and β – and determined by α and β. Indeed, as the upmost part of both spheres 
consist of the segment [(−λ, 1), (λ, 1)], for each point (a, b) ∈ R2 there is a cone where the dis-
tances to (a, b) are just the differences between their second coordinates. Namely, if (a′, b′) is such that 
|a − a′| ≤ λ|b − b′|, then ‖(a, b) − (a′, b′)‖X = ‖(a, b) − (a′, b′)‖Y = |b − b′|. So, the distance from a given 
(α, β) ∈ conv{(1/2, 1), (3/2, 1), (1, 0)} to (1/2, −1) is precisely 1 + β.

This implies that the point (α, β) ∈ S at distance 1 ≤ d < 2 from (1/2, −1) and distance smaller than 1 
from (1/2, 1) is (α, d − 1) for some α ≥ λ, so the second coordinate of τ(α, β) is β.

We may determine α by means of the metric, too. Indeed, fix β ∈ [0, 1] and take 1 −β/2 ≤ α ≤ 1 +β/2, so 
that (α, β) ∈ conv{(1/2, 1), (3/2, 1), (1, 0)}. Let (δ, −1) be the leftmost point in the intersection of R ×{−1}
and (α, β) + (1 + β)S, it is straightforward that it is also the leftmost point in the intersection of R ×{−1}
and the cone {(a, b) ∈ R2 : |a − α| ≤ λ|b − β|}. It is clear that the inequality that defines the cone is an 
equality for (δ, −1), so δ fulfils |(δ − α)/(−1 − β)| = λ and it is obvious that δ < α, so
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(δ − α)/(−1 − β) = λ.

As (δ, −1) is fixed, this means that ‖ · ‖X determines α. Namely, α = δ + (1 + β)λ where β, δ and λ just 
depend on distances that agree for ‖ · ‖X and ‖ · ‖Y . This means that the only possibility is that τ(α, β) is 
again (α, β). �
Corollary 3.5. R2, endowed with any polygonal norm, has the Mazur-Ulam Property.

Proof. This is just the simplest case of the main result in [17], but here we present a proof based on the 
proof of Proposition 3.4.

Let (X, ‖ · ‖X) be such that SX is a polygon and take some segment H0 = [x0, x1] ⊂ SX and λ =
1
2‖x1 − x0‖X . Take another segment H1 = [x1, x2] ⊂ SX , adjacent to H0, and suppose that there exist 
(Y, ‖ · ‖Y ) and τ : SX → SY such that τ is an onto isometry. Consider on X the basis

BX = {(x1 − x0)/‖x1 − x0‖X , (x1 + x0)/2}.

As before, we have ‖(1, 0)‖X = 1, x1 = (λ, 1) and x0 = (−λ, 1). If we take the basis

BY = {(τ(x1) − τ(x0))/‖τ(x1) − τ(x0)‖Y , (τ(x1) + τ(x0))/2},

then ‖(1, 0)‖Y = 1 and we may apply verbatim the argument in the previous proof to obtain

τ(α, 1) = (α, 1), ∀ α ∈ [−λ, λ]

and also τ(α, β) = (α, β) whenever α ∈ [λ, 2λ] and β > 0. This means that there is some (α, β) ∈ H1, 
(α, β) �= (λ, 1) such that τ(α, β) = (α, β). By Mankiewicz Theorem, this implies that every point in H1 is 
fixed.

Of course, if we now rotate both SX and SY by taking as bases

B′
X = {(x2 − x1)/‖x2 − x1‖X , (x2 + x1)/2} and

B′
Y = {(τ(x2) − τ(x1))/‖τ(x2) − τ(x1)‖Y , (τ(x2) + τ(x1))/2}

then both rotations have the same expression in coordinates, so τ is still the identity on H0 ∪H1. Applying 
the same reasoning to H2 = [x2, x3] ⊂ SX and so on, we obtain that τ is the identity on SX . �
Definition 3.6. When in two-dimensional spaces, and given a couple of linearly independent x, x′ ∈ SX , the 
arc that connects x and x′ is defined as

A(x, x′) = {λx + λ′x′ : λ, λ′ ≥ 0} ∩ SX

and it is the smallest connected subset of SX that contains both x and x′.

Theorem 3.7. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be two-dimensional normed spaces for which there exists an onto 
isometry τ : SX → SY . If there is some relative open U ⊂ SX where τ is linear, then τ is linear on SX .

Proof. Suppose there is an arc H = A(x1, x2) ⊂ SX such that

τ(λ1x1 + λ2x2) = λ1τ(x1) + λ2τ(x2)
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for every positive λ1, λ2 for which λ1x1 + λ2x2 ∈ SX . We will show that H is contained in another arc that 
fulfils the same condition. As SX is compact, this is enough.

If H contains some segment [x′, x1], then the argument in the previous proofs shows that τ is linear 
in a relative neighbourhood of x1, so we may suppose that D(x1) ∩ (−H) = {−x1}. Taking, as usual, 
λ = 1

2‖x2 − x1‖X ,

BX = {(x2 − x1)/‖x2 − x1‖X , (x2 + x1)/2} and

BY = {(τ(x2) − τ(x1))/‖τ(x2) − τ(x1)‖Y , (τ(x2) + τ(x1))/2},

we may pass to coordinates to obtain that τ is the identity on the arc lying between (−λ, 1) and (λ, 1). Of 
course, τ is also the identity on the opposite arc and this implies, in particular, that τ(λ, −1) = (λ, −1).

Let μ = 1
‖(0,1)‖ , so that (0, μ) ∈ SX ∩ SY and μ > 1, and observe that the points in H, along with 

the distances between them, determine the shape of SX (and SY ) in a relative neighbourhood of (1, 0). In 
particular, for z ∈ [0, 2λ] × [3 − 2μ, 2μ − 1], we have

‖z − (−λ, 1)‖X = ‖z − (−λ, 1)‖Y

because z − (−λ, 1) is close to the horizontal axis. In the same way, as SX and SY coincide near (0, μ), we 
have

‖z − (λ,−1)‖X = ‖z − (λ,−1)‖Y

because z − (λ, −1) is close to the vertical axis.
So, if z = (z1, z2) ∈

(
[0, 2λ] × [3 − 2μ, 2μ − 1]

)⋂ (
SX \H

)
, then

a = ‖τ(z) − (λ,−1)‖Y = ‖z − (λ,−1)‖X = ‖z − (λ,−1)‖Y and

b = ‖τ(z) − (−λ, 1)‖Y = ‖z − (−λ, 1)‖X = ‖z − (−λ, 1)‖Y .

As (λ, −1) does not lie in the interior of a segment included is SY , there are only two points in ((λ, −1) +
aSY ) ∩ ((−λ, 1) + bSY ). Namely, one of these points is z and the other one, say z′, lies at the other side 
of the line {t · (λ, −1) : t ∈ R}. So, the only possibilities are τ(z) = z or τ(z) = z′. But the Monotonicity 
Lemma implies that

‖z′ − (λ, 1)‖ ≥ min{‖(λ,−1) − (λ, 1)‖, ‖(λ,−1) − (λ, 1)‖}.

So, assuming that

‖z − (λ, 1)‖X ≤ min{‖(λ,−1) − (λ, 1)‖, ‖(λ,−1) − (λ, 1)‖},

which we clearly can do, the previous reasonings lead to τ(z) = z and we have finished the proof. �
Corollary 3.8. Every two-dimensional, non strictly convex, normed space has the Mazur-Ulam Property.

Proof. Suppose (X, ‖ · ‖X) is a two-dimensional normed space and [x, x′] ⊂ SX , with x′ �= ±x. From 
Mankiewicz Theorem we know that any onto isometry τ : SX → SY is affine on [x, x′] and by Tingley’s 
Theorem, {τ(x), τ(x′)} is a basis of Y . Taking coordinates with respect to these bases, we have (λ, 1 −λ) ∈
SX , also (λ, 1 − λ) ∈ SY and, moreover, τ(λ, 1 − λ) = (λ, 1 − λ) for every λ ∈ [0, 1]. So, τ is linear on [x, x′]
and now the result is clear from Theorem 3.7. �
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Before we proceed with the proof of Theorem 3.11, we need this auxiliary result:

Proposition 3.9. Let (X, ‖ ·‖X) be a strictly convex normed space, x ∈ X and U ⊂ SX a relative open subset. 
There exists V ⊂ X, an open neighbourhood of x, such that every point in V is determined by its distances 
to the points in U , i.e., if y, y′ ∈ V are such that ‖u − y‖X = ‖u − y′‖X for every u ∈ U , then y = y′.

Proof. Suppose on the contrary that there are two sequences (yn), (y′n) that converge to x and such that 
U ⊂ Bis(yn, y′n) for every n.

We may suppose x /∈ U , the other case is obvious. Thus, the map

u ∈ U �→ σ(u) = (u− x)/‖u− x‖X ∈ SX

is well-defined and continuous – even Lipschitz, actually. As X is strictly convex, no line has more than two 
points in common with SX , so σ is nearly an injective map. Namely, for each y ∈ SX , there are at most two 
points whose image is y and, moreover, if σ(u) = σ(u′), then σ is injective in a relative neighbourhood of u.

So, σ(U) contains a relative open subset of SX , and this implies that x is interior to the convex hull of 
U ∪ (2x − U). This implies that also yn, y′n are interior to it for big n.

But every bisector is symmetric with respect to the middle point of the segment, i.e., z ∈ Bis(yn, y′n) if 
and only if yn + y′n − z ∈ Bis(yn, y′n). Indeed, ‖z − yn‖X = ‖z − y′n‖X implies ‖yn + y′n − z − yn‖X = ‖yn +
y′n− z− y′n‖X , so the symmetry follows. Taking into account that (yn) → x, (y′n) → x and (yn + y′n)/2 → x, 
it is clear that, for big n, we will have both yn and y′n in the convex hull of

Bis(yn, y′n) ∪ ((yn + y′n) − Bis(yn, y′n)) = Bis(yn, y′n).

This means that there are λ ∈ [0, 1] and u, u′ ∈ Bis(yn, y′n) such that yn = λu + (1 − λ)u′. We may rewrite 
this as:

‖yn − u‖X = ‖y′n − u‖X , ‖yn − u′‖X = ‖y′n − u′‖X and yn ∈ [u, u′].

As ‖ · ‖X is strictly convex, the points inside a segment are determined by its distances to the endpoints. 
Indeed, ‖yn − u‖X + ‖yn − u′‖X = ‖u − u′‖X if and only if yn ∈ [u, u′]. So, we have y′n ∈ [u, u′], too. 
Moreover, λ = ‖yn − u‖X/‖u − u′‖X , so y′n = yn and we are done. �
Remark 3.10. Our a priori impression was that there would be some result in the literature stating something 
like “The distances to a relative open subset of SX determine every point in X whenever ‖ · ‖X is strictly 
convex”. However, we have found nothing like this and, moreover, it seems much harder than expected to 
prove anything more general than Proposition 3.9. Actually, a result as the supposed-to-exist one would be 
enough for proving Conjecture 2.5.

Theorem 3.11. Let (X, ‖ · ‖X) be a strictly convex normed space, ‖ · ‖′X an equivalent norm defined on X and 
τ : SX → S′

X an onto isometry. If the set of fixed points of τ has nonempty interior, then τ is the identity 
and ‖ · ‖′X = ‖ · ‖X .

Proof. Let F = {x ∈ SX : τ(x) = x} be the set of fixed points of τ , we will denote its interior by U . As τ
is continuous, F is closed. We shall see that it is also relative open, so F must be the whole sphere SX .

Suppose e ∈ F and take v ∈ U . As ‖ · ‖X is strictly convex, the distances {‖e − u‖X : u ∈ U} determine 
SX in a neighbourhood of (v− e)/‖v− e‖X , say V , so we have ‖w‖X = ‖w‖′X whenever w/‖w‖X ∈ V . This 
means, obviously, that V ⊂ S′

X , so we have ‖w − u‖′X = ‖w − u‖X for every w and u in (not necessarily 
relative) neighbourhoods of e and v respectively, i.e., w ∈ e + εBX , u ∈ v + εBX . As ‖ · ‖X and ‖ · ‖′X
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are equivalent, the equality holds for every w ∈ e + δB′
X , u ∈ v + δB′

X for some δ > 0. In particular, 
if ‖w‖X = 1 and w ∈ (e + δB′

X) ∩ (e + εBX), then ‖w − u‖′X = ‖w − u‖X = ‖τ(w) − u‖′X for every 
u ∈ SX ∩ (v + εBX) = S′

X ∩ (v + εB′
X). By Proposition 3.9, we are done. �

Theorem 3.12. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be finite dimensional strictly convex normed spaces and τ :
SX → SY an onto isometry between their unit spheres. If there is a relative open U ⊂ SX where τ is linear, 
then τ is linear on SX .

Proof. We just need to identify (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) with the corresponding Rn and apply Theo-
rem 3.11. �
4. Final examples and remarks

This final section includes some less general results that, however, illustrate to which extent our approach 
can work. The end of the section includes a subsection where we introduce the notion of normed curvature.

4.1. Absolute norms in the plane

Throughout this subsection we will restrict ourselves to the case in which ‖ · ‖X , ‖ · ‖Y are absolute, 
normalized, norms on R2. Please observe that this implies that the symmetries with respect to the axes are 
linear isometries in both (R2, ‖ · ‖X) and (R2, ‖ · ‖Y ).

Proposition 4.1. Let τ : SX → SY be an isometry and suppose that the only isometries of SX are ± IdX , ±φ, 
where IdX is the identity and φ is the symmetry with respect to the horizontal axis. Then τ is linear and, 
furthermore, if τ is not the identity, then it is one of the following maps:

• The rotation of angle π/2, π or 3π/2 around the origin.
• The symmetry with respect to one of the following lines:

〈(1, 0)〉, 〈(0, 1)〉, 〈(1, 1)〉, 〈(1,−1)〉.

Proof. Let τ be such an isometry. The group of isometries of SY is isomorphic to that of SX , namely its 
isometries are ± IdY and ±ψ, where ψ = τ ◦ φ ◦ τ−1. As the symmetries with respect to the axes are also 
isometries of Y , ψ must be one of these symmetries.

In particular, the fixed points of ψ are ±(1, 0) or ±(0, 1) and the fixed points of φ are ±(1, 0) and this 
means that τ(1, 0) is either (1, 0), (0, 1), (−1, 0) or (0, −1).

Now, we may suppose that (X, ‖ · ‖X) is strictly convex, the other case is an immediate consequence of 
Corollary 3.8. Suppose τ(1, 0) = (1, 0) and τ(0, 1) = (0, 1). If we show that τ = Id, then we are done because 
we can compose any of the other isometries with a linear isometry that makes the composition send (1, 0)
to (1, 0) and (0, 1) to (0, 1).

Given any (a, b) ∈ SX , with a, b > 0, it is easy to determine the only x ∈ SX , x �= (a, b) such that 
‖(a, b) − (1, 0)‖X = ‖x − (1, 0)‖X . Namely, x is (a, −b), and the only x′ ∈ SX , x′ �= (a, b) such that 
‖(a, b) − (0, 1)‖X = ‖x′ − (0, 1)‖X is obviously x′ = (−a, b). Please observe that these points are uniquely 
determined because of the strict convexity of (X, ‖ ·‖X) and that ‖(a, b) −x‖X = 2b, ‖(a, b) −x′‖X = 2a. Now, 
if τ(a, b) = (c, d), then the Monotonicity Lemma implies that c, d > 0 and the equality ‖(a, b) − (1, 0)‖X =
‖x − (1, 0)‖X implies ‖(c, d) − (1, 0)‖Y = ‖τ(x) − (1, 0)‖Y . With the same argument as before, we obtain 
τ(x) = (c, −d), but 2a = ‖(a, b) − x‖X = ‖(c, d) − τ(x)‖Y = 2c, so c = a. By symmetry, we have also d = b, 
so τ = Id. �
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Fig. 1. The unit sphere in Remark 4.2, whose associated ball is the intersection of two ellipses.

Remark 4.2. This statement could be seen as a cheat because it restricts the conclusion to norms for which 
we already know the group of isometries of its sphere. Of course, when we are trying to prove that the group 
of isometries of every sphere coincides with the group of linear isometries of the space, this may seem unfair.

However, it is easy to find some norms that fit in Proposition 4.1. Namely, if the points ±(1, 0), or ±(0, 1), 
are unique in SX in any intrinsic, metric, sense, then the sphere will have just the above referred isometries. 
Think, for example, in the norm whose unit sphere is a lens, see Fig. 1. If we consider the point (0, 1), it 
is clear that it is unique in some sense, namely (0, 1) and (0, −1) are the only points where SX is not a 
differentiable curve. Being a point of differentiability is not, to the best of our knowledge, something that 
can be said in terms of distances between points of SX , but there is something similar than we can say.

Namely, if we take for each point x ∈ SX and every 2 > δ > 0 the only points ax(δ), a′x(δ) such that

‖x− ax(δ)‖X = ‖x− a′x(δ)‖X ,

it is intuitively evident that the distances ‖ax(δ) − a′x(δ)‖X are smaller when x = (0, ±1) than when x is 
any other point in SX . We shall not prove this, but the impression is that, when δ → 0, ‖ax(δ) −a′x(δ)‖X/δ

tends to 2 if x �= (0, ±1) and that this limit is smaller than 2 for x = (0, ±1). And this is measured just by 
means of the distances between points in the sphere, this is closely related to Subsection 4.3.

Now, we deal with some quite more usual norms. Let us say, as in [29], that a norm ‖ · ‖X on R2 is 
symmetric when ‖(x1, x2)‖X = ‖(x2, x1)‖X for every x = (x1, x2) ∈ R2. In the next result, we consider two 
norms ‖ · ‖X , ‖ · ‖Y in R2 with the following characteristics:

1. They are normalized.
2. They are absolute.
3. They are symmetric.
4. The only isometries φ : SX → SX are the necessary for (2) and (3), i.e., the rotations of angle 0, π/2, π

and 3π/2 and the symmetries with respect to the axis and the diagonals.

Corollary 4.3. With the above hypothesis, every isometry τ : SX → SY is linear and, moreover, it is either 
one of the isometries listed in (4) or one of them composed with the rotation of angle π/4.

Proof. This is very similar to Proposition 4.1. �
Remark 4.4. This Corollary may seem superfluous, but it has some interesting consequences. Namely, this 
result applies for norms having (1, 0) and (0, 1) as interchangeable special points, like any p-norm in R2. If 
p > 2 and ‖ · ‖X = ‖ · ‖p, then (1, 0) and (0, 1) are the isosceles orthogonal points in SX with least distance 
between them. So, every isometry φ : SX → SX must send (1, 0) to ±(1, 0) or ±(0, 1). The opposite happens 
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when p < 2: (1, 0) and (0, 1) have the greatest distance between isosceles orthogonal points in the sphere. 
This means that every ‖ · ‖p fulfils the hypotheses of the Corollary.

4.2. A three-dimensional example

Here we present an example of how our approach can be meaningful also in three-dimensional spaces.

Lemma 4.5. Let ‖ · ‖hex be the norm on R2 whose unit sphere is the hexagon with vertices ±(1, 0), 
(
±1

2 ,±1
)
, 

i.e., ‖(a, b)‖hex = max{|b|, |a| + |b|/2}. Then, (R2, ‖ · ‖hex) has the Mazur-Ulam Property.

Proof. This norm has six length-1 segments in it sphere, so this lemma follows immediately from Proposi-
tion 3.4. �

Let us recall the definition of modulus of convexity, see [6], p. 328:

Definition 4.6. A normed linear space B is called uniformly convex if for each ε, 0 < ε ≤ 2, there is a δ(ε) > 0
such that ‖b1 + b2‖ ≤ 2(1 − δ(ε)) if ‖b1 − b2‖ ≥ ε and ‖b1‖ = ‖b2‖ = 1; the function δ is called the modulus 
of convexity of B.

and the following result, Theorem 4.1 in the same outstanding work, where δ2 is the modulus of convexity 
of the Euclidean space, please observe that δ2 does not depend on the dimension of the space:

Theorem 4.7 (Day, [6, Theorem 4.1]). B is uniformly convex with a modulus of convexity satisfying the 
inequality δ(ε) ≥ δ2(ε) for 0 < ε ≤ 2 if and only if B is an inner-product space and δ is identically equal 
to δ2.

Since the modulus of convexity is defined just by means of some distances between points in the unit 
sphere, the characterisation of the Euclidean norm given by Day gives us:

Corollary 4.8. Every Rn endowed with the Euclidean norm has the Mazur-Ulam Property.

Corollary 4.8 is not new, it can be found both in [23] and [2].
This Lemma will come in handy for the proof of Example 4.10.

Lemma 4.9. Let y1, y2, y3 ∈ SY be such that yi = Bis(yj) ∩Bis(yk) whenever {i, j, k} = {1, 2, 3}. Then, they 
are linearly independent.

Proof. Suppose they are linearly dependent and consider the plane H = 〈y1, y2, y3〉. The restriction of ‖ · ‖Y
to H is again a norm, so we have a two-dimensional normed space with three mutually isosceles orthogonal 
points in its unit sphere. This cannot happen because of [15], Corollary 2.4, so we are done. �
Example 4.10. Let ‖ · ‖X be the norm on R3 whose unit sphere is the revolution around the x-axis of the 
hexagon with vertices ±(1, 0), 

(
±1

2 ,±1
)
. Then, (R3, ‖ · ‖X) has the Mazur-Ulam Property.

Proof of Example 4.10. We will not use the explicit form of ‖ · ‖X , but it is

‖(a, b, c)‖X = max{‖(b, c)‖2, |a| + ‖(b, c)‖2/2}.

Suppose that there exist (Y, ‖ · ‖Y ) and an onto isometry τ : SX → SY . Consider the vectors in the usual 
basis of R3, e1, e2, e3 ∈ SX and their images y1 = τ(e1), y2 = τ(e2), y3 = τ(e3).
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It is clear that e3 ∈ Bis(e1) ∩ Bis(e2) and e2 ∈ Bis(e1), so Lemma 4.9 implies that y1, y2, y3 are linearly 
independent. We may consider Y endowed with the basis BY = {y1, y2, y3} and we have, in coordinates,

τ(1, 0, 0) = (1, 0, 0), τ(0, 1, 0) = (0, 1, 0), τ(0, 0, 1) = (0, 0, 1).

Consider the symmetric bisector Bis(e1) = {(a1, a2, a3) ∈ SX : a1 = 0}, it is isometric to the Euclidean 
unit sphere of R2. This also happens with

CX = {x ∈ SX : ‖x− (1, 0, 0)‖X = 1} = SX ∩ ((1, 0, 0) + SX)

and CY = τ(CX), and the latest agrees with SY ∩ ((1, 0, 0) + SY ).
Take x ∈ CX and τ(x) = (a, b, c) ∈ CY . As its distance to (1, 0, 0) is 1, we have (a − 1, b, c) ∈ SY . We 

also have ‖(a − 1, b, c) − (−1, 0, 0)‖Y = 1, and this means that (a − 1, b, c) ∈ τ(−CX) = −CY . Now, as the 
only point in −CX at distance 1 from x is x − (1, 0, 0), it must be τ(x − (1, 0, 0)) = (a − 1, b, c) ∈ −CY . On 
the one hand, this means that the sphere SY includes the segment [(a, b, c), (a − 1, b, c)]. On the other hand, 
SY must include also every other segment of the (planar) hexagon with vertices

{(1, 0, 0), (a, b, c), (a− 1, b, c), (−1, 0, 0), (−a,−b,−c), (1 − a,−b,−c), (1, 0, 0)}

and this hexagon is the image of the hexagon whose vertices are

{(1, 0, 0), x, x− (1, 0, 0), (−1, 0, 0),−x, (1, 0, 0) − x, (1, 0, 0)}.

In particular this implies that the restriction of τ to this last hexagon is linear, so for this restriction to be the 
identity it just needs to have some fixed point x′ �= (±1, 0, 0). This happens with both (0, 1, 0) and (0, 0, 1), so 
every point in, say, the horizontal and vertical hexagons is fixed. This implies that ‖(a, b, 0)‖Y = ‖(a, b, 0)‖X
and ‖(a, 0, c)‖Y = ‖(a, 0, c)‖X for a, b, c ∈ R, and so

‖(a, b, c) − (a′, b′, c)‖Y = ‖(a, b, c) − (a′, b′, c)‖X and

‖(a, b, c) − (a′, b, c′)‖Y = ‖(a, b, c) − (a′, b, c′)‖X

for every a, b, c, a′, b′, c′ ∈ R. Actually, the restrictions of ‖ · ‖X and ‖ · ‖Y to the vertical and horizontal 
planes agree with ‖ · ‖hex.

Claim 4.11. Let z = (0, z2, z3), z′ = (0, z′2, z′3) ∈ Bis((1, 0, 0)) ∩ SY . Then z−z′

‖z−z′‖Y
also belongs to 

Bis((1, 0, 0)) ∩ SY .

Proof of Claim 4.11. Let z′′ = (0, z′′2 , z′′3 ) = z−z′

‖z−z′‖Y
. It belongs to the bisector Bis((1, 0, 0)) if and only if it 

does not belong to any segment that contains ±(1, 0, 0) and it is the midpoint of its segment, and this is 
what we will see.

Let t, t′ ∈ [−1/2, 1/2]. We have

‖(t, z2, z3) − (t′, z′2, z′3)‖Y = ‖(t′, z2, z3) − (t, z′2, z′3)‖Y ,

and this implies that ‖ · ‖Y is symmetric in the segment

[(−1, z2 − z′2, z3 − z′3), (1, z2 − z′2, z3 − z′3)], i.e.,

‖(t, z2 − z′2, z3 − z′3)‖Y = ‖(−t, z2 − z′2, z3 − z′3)‖Y for t ∈ [0, 1].
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In particular, as λ = ‖(0, z2 − z′2, z3 − z′3)‖Y ≤ 2, we have

‖(1/2, (z2 − z′2)/λ, (z3 − z′3)/λ)‖Y = ‖(−1/2, (z2 − z′2)/λ, (z3 − z′3)/λ)‖Y .

This readily implies that the claim holds. �
Let V be the set of points in SX ∩Bis(e1) whose images’ first coordinates vanish. The Claim implies that 

for every couple of points x1, x2 ∈ V there exists another point between them that belongs to V too – namely, 
as V is symmetric, −x2 ∈ V and the inverse image of (τ(x1) − τ(−x2))/‖τ(x1) + τ(x2)‖Y also belongs to V . 
As it is obvious that V is closed, we have V = SX ∩Bis(e1), and so SY ∩Bis(y1) = SY ∩{(0, b, c) : b, c ∈ R}. 
So, SY ∩Bis(y1) is the intersection of a plane and the unit sphere and it is isometric to the two-dimensional 
Euclidean sphere. This, along with Corollary 4.8 implies that it is the two-dimensional Euclidean sphere. As 
τ(0, 1, 0) = (0, 1, 0) and τ(0, 0, 1) = (0, 0, 1), we conclude that τ is the identity on Bis(e1) and this implies 
that it is the identity on SX , so it is the restriction of a linear isometry. �
Remark 4.12. Please observe that, whenever (X, ‖ · ‖X) is not strictly convex, there is some nonlinear 
isometric embedding R → X (see [1]). If we still consider R3 endowed with the norm defined in Example 4.10, 
we have a nonlinear isometric embedding i : (R2, ‖ · ‖2) → (R3, ‖ · ‖X), where

i(x1, x2) = (f(x1, x2), x1, x2) and f(x1, x2) = 1/2‖(x1, x2) − (x′
1, x

′
2)‖2.

Actually, any f : (R2, ‖ · ‖2) → R such that f(0, 0) = 0 and

f(x1, x2) − f(x′
1, x

′
2) ≤ 1/2‖(x1, x2) − (x′

1, x
′
2)‖2

for every (x1, x2), (x′
1, x

′
2) ∈ R2 would have done the trick, this example is just a slight modification of the 

last one in the same paper [1].
On the other hand, in the same work it is proved that every isometric embedding (Y, ‖ · ‖Y ) → (X, ‖ · ‖X)

is affine when X is strictly convex. It seems that strict convexity can be key for the existence of nonlinear 
embeddings also in the spheres setting, so Baker’s results led us to consider the following:

Conjecture 4.13. X is strictly convex if and only if every isometric embedding SY → SX extends linearly.

4.3. A normed curvature

Before we end this paper, we need to point out a minor result that may lead to some interesting questions. 
Throughout this work, we have tried to show that a very important thing to have in mind when dealing 
with Tingley’s problem is the concept of intrinsic metric property. We have been able to convert Day’s 
Theorem 4.7 into a Mazur-Ulam Property statement just by taking into account that the Theorem was 
stated by means of distances between points in the unit sphere. Here we present a kind of generalisation of 
the curvature of a planar curve to curves in normed spaces, somehow in the spirit of Clarkson’s modulus of 
Convexity:

Definition 4.14. Let (X, ‖ · ‖X) be a normed space, γ : [0, 1] → X a curve and x = γ(t) ∈ X for some 
0 < t < 1. Suppose that there is some c > 0 such that γ ∩ (x + δSX) contains exactly two points for every 
0 < δ < c. We define the curvature of γ at x measured with ‖ · ‖X as the following limit, whenever it exists:

Kγ
‖·‖X

(x) =

√
lim
δ→0

δ − ‖a− a′‖X/2
(δ/2)3 = 2

√
lim

a,a′→x

2‖x− a‖X − ‖a− a′‖X
(‖x− a‖ )3 , (1)
X
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where a �= a′ are the only points in γ such that ‖x − a‖X = ‖x − a′‖X = δ.

Remark 4.15. If the space X is two-dimensional and the curve is its unit sphere, then the c in Definition 4.14
can always be chosen to be any 0 < c < 2.

Besides, this curvature features some desirable characteristics:

• It is defined just by means of the norm and the curve, so it is generalizable to curves in arbitrary normed 
spaces.

• It is defined locally, or even infinitesimally.
• It is isometrically invariant.
• It is positively antihomogeneous with respect to the norm, i.e.,

Kγ
λ‖·‖X

(x) = 1
λ
Kγ

‖·‖X
(x)

for every λ > 0.

K has also this important feature:

Theorem 4.16. This definition includes the notion of the curvature of a sphere in (R2, ‖ · ‖2), i.e., 
Kx+λS2

‖·‖2
(x′) = 1/λ for every x ∈ R2, λ > 0 and x′ ∈ x + λS2.

Proof. The first we are going to show is that the curvature of the two-dimensional Euclidean sphere at 
every point measured with the Euclidean norm is 1. Let x ∈ S2.

It is clear from (1) that our definition of curvature only depends on the distances, so every isometry must 
preserve the curvature. In particular, as S2 is isometrically homogeneous, this means that its curvature is 
constant so we may suppose x = (1, 0).

The points near (1, 0) are (cos(t), sin(t)) for t ∈ [−ε, ε], and the points a, a′ in (1) are a =
(cos(t), sin(t)), a′ = (cos(t), − sin(t)) for some positive t. We need to evaluate the right hand expression 
in (1). We have

KS2
‖·‖2

((1, 0)) = 2

√
lim

a,a′→x

2‖x− a‖X − ‖a− a′‖X
(‖x− a‖X)3 =

= 2

√
lim
t→0

2‖(1, 0) − (cos(t), sin(t))‖2 − ‖(cos(t), sin(t)) − (cos(t),− sin(t))‖2

(‖(1, 0) − (cos(t), sin(t))‖2)3
=

= 2

√
lim
t→0

2
√

2 − 2 cos(t) − 2 sin(t)√
(2 − 2 cos(t))3

=
√

8

√
lim
t→0

√
2 − 2 cos(t) − sin(t)√

(2 − 2 cos(t))3
.

For the sake of clarity, we are going to leave the limit as simple as we can. What we will actually compute 
is

lim
t→0

√
2 − 2 cos(t) − sin(t)√

(2 − 2 cos(t))3
, (2)

we need to show that it equals 1/8. In the remaining of the proof we will avoid the t → 0 and will not recall 
that t > 0. As we will make heavy use of L’Hôpital’s Rule, we will write as ∗= the equalities given by this 
Rule.
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We will need this later:

lim
t→0

sin(t)√
2 − 2 cos(t)

= 1. (3)

This limit is 1 if and only if

1 = lim sin2(t)
2 − 2 cos(t)

∗= lim 2 sin(t) cos(t)
2 sin(t) = lim cos(t),

so (3) holds.
It is clear that in (2) both the numerator and the denominator tend to 0. In the following there is one 

case where some explanation is needed, but we will leave the explanation for the end of the proof.

lim
√

2 − 2 cos(t) − sin(t)√
(2 − 2 cos(t))3

∗= lim
sin(t)/

√
2 − 2 cos(t) − cos(t)

3 sin(t)
√

2 − 2 cos(t)
=

= lim
sin(t) − cos(t)

√
2 − 2 cos(t)

3 sin(t)(2 − 2 cos(t))
∗=

= 1
3 lim

cos(t) − sin(t) cos(t)/
√

2 − 2 cos(t) + sin(t)
√

2 − 2 cos(t)
2 sin2(t) cos(t)(2 − 2 cos(t))

∗=

= 1
3 lim

− sin(t) +
√

2 − 2 cos(t) cos(t) + 2 sin2(t)−cos(t)√
2−2 cos(t) + cos(t) sin2(t)√

2−2 cos(t)3

2 sin 2(t)(4 cos(t) − 1)
∗=

= 1
3 lim

− cos(t) + sin(t) cos(t)√
2−2 cos(t)

[
2 + cos(t)

2−2 cos(t) −
3 sin2(t)

(2−2 cos(t))2 + 1 + 2 cos(t)
2−2 cos(t) + 4

]
−8 sin2(t) + 8 cos2(t) − 2 cos(t)

+

+ 1
3 lim

−3
(

sin(t)√
2−2 cos(t)

)3
− sin(t)

√
2 − 2 cos(t)

−8 sin2(t) + 8 cos2(t) − 2 cos(t)
=

= 1
3 lim

−1 + sin(t) cos(t)√
2−2 cos(t) ·

[
7 + 3 cos(t)

2−2 cos(t) −
3 sin2(t)

(2−2 cos(t))2

]
− 3

(
sin(t)√

2−2 cos(t)

)3

6 =

= lim
sin(t) cos(t)√

2−2 cos(t)

(
cos(t)

2−2 cos(t) −
sin2(t)

(2−2 cos(t))2

)
+ 1

6 .

So, what we need right now is to show that

−1
4 = lim sin(t) cos(t)√

2 − 2 cos(t)

(
cos(t)

2 − 2 cos(t) − sin2(t)
(2 − 2 cos(t))2

)
=

= lim cos(t)(2 − 2 cos(t)) − sin2(t)
(2 − 2 cos(t))2 = lim 2 cos(t) − 2 cos2(t) − sin2(t)

4 + 4 cos2(t) − 8 cos(t) =

= lim 2 cos(t) − cos2(t) − 1
4 + 4 cos2(t) − 8 cos(t) = lim −(1 − 2 cos(t) + cos2(t))

4(1 − 2 cos(t) + cos2(t)) ,

so we have proved that (2) holds. The last application of L’Hôpital’s Rule is the only tricky one, here we 
show that the numerator tends to 0. The only problem could be here:

lim
(

2 sin2(t) − cos(t)√
2 − 2 cos(t)

+ cos(t) sin2(t)√ 3

)

2 − 2 cos(t)
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As we have (3), this reduces to

lim
(

− cos(t)√
2 − 2 cos(t)

+ cos(t) sin2(t)√
2 − 2 cos(t)3

)
= lim

(
cos(t)−(2 − 2 cos(t)) + sin2(t)√

2 − 2 cos(t)3

)
∗=

= lim 2 sin(t) cos(t) − 2 sin(t)
3 sin(t)

√
2 − 2 cos(t)

= lim 2 cos(t) − 2
3
√

2 − 2 cos(t)
∗= lim −2 sin(t)

3 sin(t)/
√

2 − 2 cos(t)

and the last limit is just

−2
3
√

2 − 2 cos(t) → 0,

so the first part of the proof is finished.
The usual curvature of λS2 is 1/λ at every point for each λ > 0 and, as the formula given for Kγ

‖·‖X
is 

clearly positively antihomogeneous, it is clear that

KλS2
‖·‖2

(λx) = 1
λ

for every x ∈ S2, so both curvatures agree at every point of any centred sphere. Both are translation 
invariant, so they agree at every sphere and we have finished the proof. �
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