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Abstract

In this paper, we show that the C1-differentiability of the norm of a two-dimensional
normed space depends only on distances between points of the unit sphere in two different
ways.

As a consequence, we see that any isometry between the spheres of normed planes
τ : SX → SY is linear, provided that there exist linearly independent x, x ∈ SX where
SX is not differentiable and that SX is piecewise differentiable.

We end this work by showing that the isometry τ : CX → CY is linear even if it
is not an isometry between spheres: every isometry between (planar) Jordan piecewise
C1-differentiable convex curves extends to X whenever X and Y are strictly convex and
the amount of non-differentiability points of SX and SY is finite and greater than 2.

1. Introduction

The study of isometries between Banach spaces led, back in the 30’s, to one of
the best known results in Functional Analysis, the Mazur–Ulam Theorem. This result,
see [16], states that every onto isometry between two Banach spaces is affine. So, if
an onto isometry preserves the origin, then the isometry is linear. Forty years later,
P. Mankiewicz ([15]) proved that every onto isometry between convex bodies in two
Banach spaces is also affine. The foreseeable generalisation of these results is Every onto
isometry between the spheres of two Banach spaces is linear, and this could be ultimately
generalised as Every onto isometry between the boundaries of convex bodies of two Banach
spaces is affine, but, up to now, no-one has been able to prove or disprove this statement.
This innocent-looking problem was stated in 1987 by D. Tingley ([27]), but it turns
out to be way more challenging than it could seem at first glance. Tingley’s Problem
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has evolved to that of extending isometries between spheres to isometries between the
whole spaces, and the greatest advances have been achieved when both spaces have some
common structure, such as von Neumann algebras, trace class operators spaces, sums
of strictly convex spaces. . . This extension of isometries problem has experienced a rapid
development in the last few years, and there are lots of kinds of spaces where Tingley’s
Problem has a positive answer, see [2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 23,
24, 25, 26, 28].

Nevertheless, there is another way to look at this Problem. Instead of extending an
isometry, one can rule out the existence of an isometry between two spheres –a trivial
example: there is no isometry between the spheres of (R2, ‖ · ‖2) and (R2, ‖ · ‖∞), say S2

and S∞, because there exist x, y, z ∈ S∞ such that ‖x−y‖∞ = ‖x−z‖∞ = ‖y−z‖∞ = 2
but this cannot happen in S2. To the best of our knowledge, the first great achievement
in this setting can be found in [13], where the authors prove that, in finite-dimensional
spaces, no sphere can be isometric to a polyhedral sphere unless it is polyhedral, too.
Actually, they also extend the isometry between the spheres, so the main result in [13]
is

If X is finite-dimensional and polyhedral and there is an onto isometry τ : SX → SY ,
then Y is also polyhedral and X and Y are linearly isometric.

In the same spirit, a few years later appeared this result:
If X is an inner product space and there is an onto isometry τ : SX → SY , then Y

is also an inner product space and X and Y are linearly isometric, see [3, 4, 18].
So, motivated by the huge advance that can be seen at a recent paper by Tarás

Banakh, [2], whose main result is
Every isometry τ : SX → SY between the spheres of absolutely smooth two-dimensional

spaces is linear,
we began to study whether the C2-differentiability (that implies absolute differentia-
bility) of some two-dimensional normed space (X, ‖ · ‖X) can be expressed in terms of
(SX , ‖ · ‖X) –unsuccessfully.

However, we have been able to determine C1-differentiability in two independent
ways. The first way is easily seen to hold in finite-dimensional spaces, whereas we have
not been able to prove whether the second one works in dimensions higher than 2 or not.

These two ways are the following:

1. Given a finite-dimensional normed space (X, ‖ · ‖X), the norm ‖ · ‖X fails to be
differentiable at x if and only if there exist α, ε0 > 0 such that for every ε < ε0
there exist u, v ∈ SX \{±x} such that

max{‖u− x‖X , ‖v + x‖X} ≤ ε, ‖u− v‖X ≤ 2− αε.

2. Given x, y, z ∈ SX such that ‖ · ‖X is differentiable at z and z − y = λx for some
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λ > 0, the norm ‖ · ‖X is differentiable at x ∈ SX if and only if

G(t) = ‖γz(t)− y‖

is differentiable at 0, where γz : R → SX is an arc-length parameterization such
that γz(0) = z.

With these two facts in mind, it is not too difficult to show the Tingley-type result
in this paper:

Theorem 1.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two-dimensional normed spaces and
let τ : SX → SY be an isometry. If the amount of points in SX where ‖ · ‖X is not
differentiable is finite and greater than 3, then τ is linear.

With the same ideas as in the proof of Theorem 1.1, we have also been able to show
this result about, so to say, boundaries of convex open subsets of R2:

Theorem 1.2. Let (X, ‖ · ‖X) be a strictly convex normed plane such that the amount of
points in SX where ‖ · ‖X is not differentiable is finite and greater than 3. Let CX ⊂ X
be a piecewise C1 Jordan curve that encloses a convex set. If there is some isometry
CX → CY for some piecewise C1 curve CY ⊂ Y , being (Y, ‖ · ‖Y ) another normed plane
that fulfils the same that (X, ‖ · ‖X), then τ is affine and, so, X and Y are isometric.

1.1. Notations and background

Remark 1.3. Given some Jordan curve C ⊂ R
2, we will say that C is a convex curve

when it encloses a convex region.
For any convex piecewise smooth curve C ⊂ R

2, it is known that there are parame-
terizations γ : R → C that are smooth at t if and only if C is smooth at γ(t) and have
one-sided derivatives γ′

−
(t) and γ′

+(t) at every other t ∈ R. We will only consider these
parameterizations.

As we will heavily use the arc-length anticlockwise parameterization of SX beginning
at some point, we will denote this curve in a special way:

If z belongs to some piecewise C1-differentiable, convex, Jordan curve C ⊂ R
2, then

γz : R → C will denote the only anticlockwise parameterization of C that fulfils γz(0) =
γz(L) = z, is injective when restricted to [0, L), is L-periodic and has ‖γ′

z,−(t)‖X =
‖γ′

z,+(t)‖X = 1 for every t ∈ R. This parameterization is also known as the natural
parameterization of C, see [2].

Definition 1.4. Let (X, ‖ · ‖X) be a normed space. We say that x is Birkhoff orthogonal
to y, denoted as x ⊥B y, if ‖x + λy‖X ≥ ‖x‖X for every λ ∈ R. We will denote
x⊥ = {y ∈ X : x ⊥B y}.
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The reader interested in this and related concepts may want to take a look at [1]. It
is noteworthy that the main subjects of [1] are two kinds of orthogonality, one of them
is obviously preserved by isometries of the sphere but we will deal with the other one.

For our particular concern, Birkhoff orthogonality is important due to the following
two results.

Proposition 1.5. [12, Theorem 2.2], [1, Theorem 4.12] For any vector x in a normed
linear space X there exists a hyperplane H ⊂ X such that x ⊥B H.

Proposition 1.6. [12, Theorem 4.2], [1, Theorem 4.15] The norm of a normed linear
space X is Gâteaux differentiable at x ∈ X \ {0} if and only if x⊥ is a hyperplane.

As for the differentiability of finite-dimensional norms, joining [22, Theorem 25.2 and
Corollary 25.5.1] we obtain:

Proposition 1.7. Let f be a convex function on an open convex set A ⊂ R
d. If f has

all partial derivatives at each point of A, then f ∈ C1(A).

Proposition 1.7 implies that the usual differences between the various kinds of differ-
entiability do not exist when we deal with a convex function like ‖ · ‖X : Rn → R. In
particular,

Lemma 1.8. Let (X, ‖ · ‖X) be a finite-dimensional normed space. Then, the following
conditions are equivalent to one another:

• ‖ · ‖X is C1-differentiable.

• ‖ · ‖X is Fréchet differentiable.

• ‖ · ‖X is Gâteaux differentiable.

• SX is a differentiable manifold.

• For each x ∈ X, x 6= 0, x⊥ is a hyperplane.

• If, in addition, X is two-dimensional, then the above conditions are equivalent to
the fact that for every x ∈ SX , t ∈ R, the equality γ′

x,−(t) = γ′

x,+(t) holds.

We will also use this Lemma that Professor Javier Alonso gifted me some years ago:

Lemma 1.9 (J. Alonso). Let (R2, ‖·‖X) be a two-dimensional normed space and x ∈ SX .
If y ∈ SX is a side derivative of the natural parameterization of SX at x, then x ⊥B y.

4



Proof. We need to show that ‖x+ λy‖X ≥ 1 for every λ ∈ R, with

y = lim
t→0+

γx(t)− x

t
.

We have the following:

‖x+ λy‖X =

∥

∥

∥

∥

x+ λ lim
t→0+

γx(t)− x

t

∥

∥

∥

∥

X

= lim
t→0+

∥

∥

∥

∥

x+ λ
γx(t)− x

t

∥

∥

∥

∥

X

=

lim
t→0+

∥

∥

∥

∥

λ

t
γx(t) +

(

1−
λ

t

)

x

∥

∥

∥

∥

X

≥ lim
t→0+

∣

∣

∣

∣

∥

∥

∥

∥

λ

t
γx(t)

∥

∥

∥

∥

X

−

∥

∥

∥

∥

(

1−
λ

t

)
∥

∥

∥

∥

X

∣

∣

∣

∣

=

lim
t→0+

∣

∣

∣

∣

∣

∣

∣

∣

λ

t

∣

∣

∣

∣

−

∣

∣

∣

∣

1−
λ

t

∣

∣

∣

∣

∣

∣

∣

∣

= 1, for every λ ∈ R.

(1)

2. Main results

We will prove that the differentiability of ‖·‖X at some x depends on the infinitesimal
metric structure of SX around x. Later, we will show that it can be determined by means
of computations carried away far from x. Joining both facts we will arrive at our main
results after some extra work.

Proposition 2.1. Let (X, ‖ · ‖X) be a finite-dimensional space. The differentiability of
‖ · ‖X at any x ∈ SX depends only on the metric structure of the unit sphere (SX , ‖ · ‖X)
near x and −x. Namely, ‖ · ‖X fails to be differentiable at x if and only if there exist
δ, ε0 > 0 such that for every ε < ε0 there exist u, v ∈ SX \{±x} such that

max{‖u− x‖X , ‖v + x‖X} ≤ ε, ‖u− v‖X ≤ 2− δε. (2)

Proof. Let x ∈ SX .
It is clear that if ‖·‖X is differentiable at x then for every δ, ε0 > 0 there is 0 < ε < ε0

such that (2) cannot hold for every u, v ∈ SX \{±x}.
If ‖ · ‖X is not differentiable at x, then Proposition 1.5 and Lemma 1.8 imply that x⊥

contains strictly a hyperplane, so there is some pair of independent vectors y, z ∈ SX∩x⊥

such that x ∈ span{y, z}. We are going to show that there are u, v ∈ SX ∩ span{y, z}
that fulfil (2), so we may suppose thatX is two-dimensional and X = span{y, z}. Taking
any orientation on X , we may define γx. As the side derivatives of γx at 0 are different
and fulfil x ⊥B γ′

x,−(0) and x ⊥B γ′

x,+(0) (Lemma 1.9), we may suppose y = γ′

x,+(0),
z = γ′

x,−(0).
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Taking into account that x ⊥B y if and only if x ⊥B −y, we may suppose that
there exist λ, µ > 0 such that x = −λy + µz. Consider the basis B = {x, y}. Taking
coordinates with respect to B, we have z = (z1, z2) and z1 = 1/µ, z2 = λ/µ > 0. By the
very definition of Birkhoff orthogonality, x ⊥B y implies ‖(1, t)‖X = ‖x+ ty‖X ≥ 1 and
−x ⊥B z implies ‖(−1 + tz1/z2, t)‖X = ‖ − x + tz/z2‖X ≥ 1 for every t ∈ R. It is clear
that, moreover, ‖(α, t)‖X ≥ α and ‖(−α + tz1/z2, t)‖X ≥ α for every α > 0, so we have

BX ⊂ {(α, β) ∈ R
2 : α ≤ 1, βz1/z2 ≤ α + 1}.

Furthermore, BX contains the convex hull of {(−1, 0), (0, 1), (1, 0)}. On the one hand,
this means that ‖ · ‖X ≤ ‖ · ‖1. On the other hand, this implies that for each t ∈ ]0, 1[ the
line {(α, t) : α ∈ R} intersects with SX at exactly two points u = (a+(t), t), v = (a−(t), t),
with

−1 + tz1/z2 ≤ a−(t) ≤ −1 + t, 1− t ≤ a+(t) ≤ 1.

Thus, we obtain ‖u− v‖X = ‖(a+(t)− a−(t), 0)‖X ≤ 2− tz1/z2 and

‖u− x‖X = ‖(a+(t)− 1, t)‖X ≤ |a+(t)− 1|+ |t| = 1− a+(t) + t ≤ 2t,

‖v + x‖X = ‖(a−(t) + 1, t)‖X ≤ |a−(t) + 1|+ |t| = 1 + a−(t) + t ≤ 2t.

The last three inequalities end the proof, taking ε = 2t and δ = z1/(2z2).

Corollary 2.2. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be finite-dimensional normed spaces whose
spheres are isometric. Then, ‖ · ‖Y is differentiable if and only if ‖ · ‖X is also differen-
tiable.

Proof. It is straightforward from Proposition 2.1 and the fact that every onto isometry
between finite-dimensional spheres preserves antipodes ([27, Theorem, p. 377]).

Corollary 2.3. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be two-dimensional normed spaces and τ :
SX → SY a surjective isometry between their spheres. Then, either both spaces are
piecewise C1-differentiable or none of them is. Moreover, if ‖ · ‖X is piecewise C1 then
it is C1-differentiable at x if and only if ‖ · ‖Y is C1-differentiable at τ(x).

Remark 2.4. To avoid confusion, we will use the notation ]α, β[ to denote the open
interval whose endpoints are α and β. Thus, (α, β) will always be a vector in R

2.

Proposition 2.5. Let ‖ · ‖X be a strictly convex norm defined on X = R
2. Consider

x, y, z ∈ SX , and λ ∈ ]0, 2[ such that z = y+λx and ‖ · ‖X is differentiable at z. In these
conditions, ‖ · ‖X is differentiable at x if and only if

G(t) = ‖γz(t)− y‖X

is differentiable at t = 0. In particular, the differentiability at x depends on the metric
at y and around z.
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Proof. It is clear that if ‖ · ‖X is differentiable at x and z, then G is differentiable at 0
because it is the composition of differentiable functions.

Suppose, on the other hand, that ‖·‖X is not differentiable at x, i.e., γ′

x,+(0) 6= γ′

x,−(0).
For the sake of clarity, we will consider the basis B = {−γ′

x,−(0), x} so the position of
x, y, z is like in Figure 1, i.e., x = (0, 1) and z − y = (0, λ).

x

y

z
x

y

z

Figure 1: With the basis B, y and z have the same first coordinate and SX arrives at x horizontally.

Let us show that G is not differentiable at 0. To this end, let z′1 and z′2 be the
coordinates of γ′

z(0) in the basis B. With these assumptions, z′1 is negative (as in the
figure). As G(0) = λ, we have

G′

−
(0) = lim

ε→0−

‖γz(ε)− y‖X − λ

ε
·

As SX is differentiable at z,

‖γz(ε)− (z + εγ′

z(0))‖X = o(ε),

so we have

G′

−
(0) = lim

ε→0−

‖z + εγ′

z(0)− y‖X − λ

ε
= lim

ε→0−

‖λx+ εγ′

z(0)‖X − λ

ε
=

lim
ε→0−

‖(0, λ) + ε(z′1, z
′

2)‖X − λ

ε
= z′2,

(3)

where the last equality holds because (0, λ) + ε(z′1, z
′

2) lies in the first quadrant and is
close to (0, λ). In this situation,

‖(0, λ) + ε(z′1, z
′

2)‖X = ‖(0, λ+ εz′2)‖X + o(ε) = λ+ εz′2 + o(ε).

So, G′

−
(0) = z′2.
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The choice of the basis has nothing to do with the value of G′

−
(0). Had we computed

G′

+(0) by using the basis B = {−γ′

x,+(0), x}, we would have arrived at G′

+(0) = z′2,

where (z′1, z
′

2) are the coordinates of γ′

z(0) with respect to B. What we need to see is
that z′2 6= z′2. So, consider the linear automorphism of R2 given by T (a, b) = (a, b) when

aγ′

x,−(0) + bx = aγ′

x,+(0) + bx.

If we had z′2 = z2, then T and the map (a, b) 7→ (z′1a/z1, b) would agree at (0, 1) and
(z1, z2). Both maps are linear and these vectors form a basis, so they must be the same
map. This readily implies that SX is differentiable at x, a contradiction that ends the
proof.

Remark 2.6. Consider R2 endowed with the hexagonal norm ‖ · ‖X defined as

‖(a, b)‖X =

{

max{|a|, |b|} if ab ≥ 0,
|a|+ |b| if ab < 0

The norm ‖ · ‖X is not differentiable at x = (0, 1), but if we take y = (1, 1/3) and
z = (1, 2/3) then ‖γz(t)−y‖X = 1/3+t for t ∈ [−1/3, 1/3], so ‖γz(t)−y‖X is differentiable
at t = 0. So, if ‖ · ‖X is not strictly convex then Proposition 2.5 does not need to hold.

Questions 2.7. Can Proposition 2.5 be generalised to finite-dimensional spaces or arbi-
trary dimension?
Is Proposition 2.5 true if we replace differentiability by C2-differentiability?

2.8. As we will often need to refer to differentiability and non-differentiability points, for
the sake of readability we will denote D(CX) (resp., ND(CX)) the sets where a curve CX

is differentiable (resp., where it is not differentiable) so we will write x ∈ D(CX) (resp.,
x ∈ ND(CX)) instead of x is a differentiability (resp., non-differentiability) point of CX .

Before we proceed with our main results, we need these technical Lemmas:

Lemma 2.9. Let C ⊂ R
2 be a Jordan curve that encloses a convex region and suppose

that the extreme points are all different –that is, there are some c1 = (c11, c
1
2), c

2 = (c21, c
2
2),

c3 = (c31, c
3
2), c

4 = (c41, c
4
2) ∈ C such that

c11 = min{c1 : (c1, c2) ∈ C}, c22 = min{c2 : (c1, c2) ∈ C};

c31 = max{c1 : (c1, c2) ∈ C}, c42 = max{c2 : (c1, c2) ∈ C};

c11 < min{c21, c
3

1, c
4

1}, c22 < min{c12, c
3

2, c
4

2}, c31 > max{c11, c
2

1, c
4

1}, c42 > max{c12, c
2

2, c
3

2}.

Then, for any x = (x1, x2) ∈ R
2 there are u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ C,

t 6= 0 such that
u− v = tx, w1 = u1 and w2 = v2.
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Proof. If x = 0 then we may take any u ∈ C and w = v = u, t = 1. So, we only need to
show that the result holds for x 6= 0. It is clear that we may suppose ‖x‖∞ = 1, so we
will show that for every x ∈ S∞ there exist t, u, v, w as in the statement. If x = (1, 0) we
just need to find u, v ∈ C that belong to the same horizontal line (in this case, w = u)
and if x = (0, 1) it suffices to find u, v ∈ C in the same vertical line and take w = v, so
we may suppose x1x2 6= 0. Suppose that x1, x2 > 0, the other cases are analogous.

As C is convex, there is exactly one point or segment at the undermost end of C.
Suppose it is just one point, say w0 = c2, and analyse what happens when we move along
the curve anticlockwise until we reach the rightmost point or segment of C, suppose again
that it is a singleton, say w1 = c3. As w1 6= w0, we may consider some anticlockwise
parameterization of C that has γ(0) = w0 and γ(1) = w1, we will denote ws = γ(s).

It is clear that, for any s ∈ ]0, 1[, ws is the undermost point of the intersection of C
with the vertical line where it lies. Denote us the uppermost point of this intersection.
Analogously, ws is the rightmost intersection of C with the horizontal line where it lies,
we will denote its leftmost point as vs. What we need to see is that for every proportion
x1/x2 there is some ws such that (ws

1 − vs1)/(u
s
2 − ws

2) = x1/x2.
But the map s ∈ ]0, 1[ 7→ (ws

1 − vs1)/(u
s
2 − ws

2) is continuous and its limits are 0 at 0
and ∞ at 1. So, at some s ∈ ]0, 1[ we get the desired equality.

If instead of one point there is a segment at the bottom of C then we take w0 as the
leftmost point of this segment, if there is one segment at the rightmost end of C then
w1 is at the top of the segment and everything goes undisturbed.

Lemma 2.10. Consider R2 endowed with the norm ‖(λ, µ)‖1 = |λ|+|µ|. Let C ⊂ R
2 be a

convex Jordan curve that does not fulfil the conditions of Lemma 2.9 because some point,
say c, is extreme in two directions. For each a ∈ C, consider the sequence (an)n ⊂ C
defined as a1 = a and, for n ≥ 1, an+1 is the closest point from c that shares some
coordinate with an. In these conditions, (an)n → c unless a is the strict extreme in the
two other directions, in which case an = a, ∀n ∈ N.

2.11. If there are two possible choices for a given an+1 then we choose the point lying in
the same vertical line as an.

Proof. If the conditions in the statement are fulfilled, then it is clear that (an)n has some
accumulation point because C is compact and the accumulation point must be its limit
because (an)n is monotonic in both coordinates. The only possible limit is c, so we are
done.

Theorem 2.12. Let (X, ‖·‖X) be a two-dimensional normed space whose unit sphere SX

is piecewise C1-differentiable and has at least two points x 6= ±x, with x, x ∈ ND(SX).
For any normed plane (Y, ‖ · ‖Y ), every isometry τ : SX → SY is linear.
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Proof. If X is not strictly convex then the result holds by [4, Corollary 3.8], so we may
suppose that ‖ · ‖X is strictly convex.

Suppose there are linearly independent x, x ∈ ND(SX), consider the basis BX =
{x, x}, and let τ : SX → SY be an onto isometry. The only point in SX at distance
2 from x is −x, so it is obvious that τ(−x) = −τ(x) and we obtain that τ(x) and
τ(x) are linearly independent so we may consider the basis BY = {τ(x), τ(x)}. Taking
coordinates with respect to BX and BY , we have x = (1, 0)X, τ(x) = (1, 0)Y , so both x
and −x lie on the same horizontal line and τ(x) and τ(−x) do, too. We are going to
see that this happens to τ(u), τ(v) ∈ SY for any couple u = (u1, u2), v = (v1, v2) ∈ SX

such that u1 > v1 and v2 = u2, i.e., such that u− v = λx for some λ > 0 –observe that,
actually, λ = ‖u − v‖X ∈]0, 2]. Let ⊥x be the only point in SX such that ⊥x ⊥B x and
whose second coordinate is negative (⊥x is unique because ‖ · ‖X is strictly convex, see
[1, Theorem 4.15]). We will denote as C the (relative) interior of the arc of SX that joins
⊥x with −⊥x and contains x, observe that SX = C ∪ −C ∪ {±⊥x}. Consider

Cx = {u ∈ C : τ(u)− τ(v) = λτ(x) if u− v = λx, λ ∈]0, 2]}

We are going to show that Cx = C, so we will have the equivalence

u− v = λx ⇔ τ(u)− τ(v) = λτ(x).

If (un)n → u ∈ C and un ∈ Cx for every n ∈ N, then consider the corresponding
sequences (vn)n, (λn)n. We have, for every n ∈ N,

un − vn = λnx and τ(un)− τ(vn) = λnτ(x). (4)

It is clear that both (vn)n, (λn)n must converge and that

u− v = λx and τ(u)− τ(v) = λτ(x),

where λ = lim(λn), v = lim(vn). So, u ∈ Cx and Cx is, therefore, closed in C.
Suppose now that (un)n → u and u ∈ Cx. Take λ, v and (λn)n, (vn)n such that

u − v = λx, un − vn = λnx. As there are finitely many points in ND(SX), we may
suppose that none of them is un or vn. In this situation, Proposition 2.1 implies that SY

is differentiable at τ(un) and so, Proposition 2.5 implies that τ(un)− τ(vn) = λnyn, with
yn ∈ ND(SY ). As ND(SY ) is finite, there is some y that appears infinitely many times in
(yn)n, so passing to a subsequence we may suppose that τ(un)− τ(vn) = λny for every
n ∈ N. Of course, lim(τ(un))n = τ(u), lim(τ(vn))n = τ(v) and lim(λn)n = λ, so

λy = lim(τ(un)− τ(vn))n = τ(u)− τ(v) = λτ(x),

we obtain that y = τ(x) and this means that Cx is open.
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We have seen that Cx is non-empty –because x ∈ Cx–, closed and open, so the
connectedness of C shows that Cx = C.

So, u−v = λx implies τ(u)−τ(v) = λτ(x). Of course, the same applies to x, so what
we actually have is that u− v = λx+ µx implies τ(u)− τ(v) = λτ(x) + µτ(x) whenever
there exists w ∈ SX such that either w = v + µx = u− λx or w = v + λx = u− µx.

Now we have two options. If we are in the hypotheses of Lemma 2.9, then w exists
for every possible direction, and from the fact that τ is an isometry, we get

‖λτ(x) + µτ(x)‖Y = ‖λx+ µx‖X .

As we have taken coordinates with respect to {x, x} and {τ(x), τ(x)}, we get ‖(λ, µ)‖Y =
‖(λ, µ)‖X. This means that in these coordinates we have ‖·‖Y = ‖·‖X , so [4, Theorem 2.3]
implies that τ is linear.

If we cannot apply Lemma 2.9, then there is some c ∈ SX that is strictly extremal
in two different directions. So, we may apply Lemma 2.10 to show that, given any
a 6= ±c ∈ SX , the sequence (τ(an))n is the same as the sequence ((τ(a))n)n, i.e., the
sequence originated in τ(a). This implies that for every n ∈ N, and with the coordinates
taken again with respect to {x, x} and {τ(x), τ(x)} we have τ(an) − τ(a) = an − a. As
(an)n → c, this means that for every a ∈ C, we have τ(a)− τ(c) = a− c. From here we
readily see that τ is linear in SX and this completes the proof.

Remark 2.13. If the only non-differentiability points in SX are ±x, then it is clear from
the previous proof that u − v = λx implies τ(u) − τ(v) = λτ(x), but we have not
been able to infer from here that τ must be linear. Taking any basis BX = {x, x} and
considering By = {τ(x), τ(x)} we have, in coordinates, τ(α, β) − τ(α′, β) = (α − α′, 0)
for every (α, β), (α′, β) ∈ SX but we have not been able to deduce anything for points
with different second coordinates.

Theorem 2.14 (Mankiewicz Property). Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be strictly convex
normed planes such that both ND(SX) and ND(SY ) are finite and contain more than
three points. Let CX ⊂ X be a piecewise C1 Jordan curve that encloses a convex set. If
there is some isometry CX → CY for some piecewise C1 curve CY ⊂ Y , then τ is affine
and X and Y are isometric.

Proof. First of all, we hasten to remark that in strictly convex spaces, if three points
z1, z2, z3 fulfil ‖z1 − z3‖ = ‖z1 − z2‖+ ‖z2 − z3‖, then z2 belongs to the segment whose
endpoints are z1 and z3, we will denote this segment as [z1, z3]. With this, it is not hard
to see that a curve C encloses a convex region if and only if for every triple of collinear
points z1, z2, z3 ∈ C, the curve C contains the segment [z1, z3]. So, our hypotheses imply
that CY is convex, too.
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The first we need to show is that Corollary 2.3 and Proposition 2.5 still apply in
this situation, i.e., that if u0, v0 ∈ CX fulfil that (u0 − v0)/‖u0 − v0‖X ∈ ND(SX),
then for every u, v ∈ CX we have the equivalence u − v = λ(u0 − v0) if and only if
τ(u)− τ(v) = λ(τ(u0)− τ(v0)).

For the equivalent of Corollary 2.3, we have to make do without −x, but the only
thing really useful of having −x was that x ∈ D(SX) if and only if −x ∈ D(SX). In any
case, we are going to show that x ∈ D(CX) is equivalent to τ(x) ∈ D(CY ). As the proof
is going to be quite different, we will denote the point as a instead of x.

Let a ∈ CX and let us analyse the set

NDif(a) = {b ∈ CX : ‖γa(t)− b‖X is not differentiable at t = 0},

observe that one has a ∈ NDif(a) for every a ∈ CX .
If a ∈ D(CX), then it is clear that a 6= b ∈ NDif(a) implies (a−b)/‖a−b‖X ∈ ND(SX)

no matter whether b ∈ D(CX) or not. As there are only finitely many points in ND(SX),
say ND(SX) = {x1, . . . , xm}, when b ∈ NDif(a) one has b − a = ‖b − a‖Xx

i for some
i ∈ {1, . . . , m} –we are considering as unrelated points xi and −xi.

Claim 1. For any a ∈ D(CX), NDif(a) contains, at most, one segment and finitely many
isolated points. If it contains one segment, then one of its endpoints is a.

Proof. We need to show that for every i ∈ {1, . . . , m}, there is at most one point in
NDif(a) that can be written as b − a = ‖b − a‖Xx

i unless there is a segment that
fulfils it. Indeed, if b1, b2 fulfil b1 − a = ‖b1 − a‖Xx

i and b2 − a = ‖b2 − a‖Xx
i with

‖b1 − a‖X < ‖b2 − a‖X , then b1 lies in the interior of the segment [a, b2] –i.e., the closed
segment whose endpoints are a and b2. As a, b1, b2 ∈ CX and CX encloses a convex
region, the segment [a, b2] is included in CX and it is obvious that there is only one
segment included in CX that has a as its endpoint –recall that CX is differentiable at a.
If a is interior to some segment, then no more segments can arrive to a and it is clear
that ‖γa(t)− b‖X is differentiable at 0 for any point in the same segment.

If we have, instead, a ∈ ND(CX), then NDif(a) includes every b ∈ CX such that
(a− b)/‖a− b‖X ∈ D(SX). Indeed, let x = (a− b)/‖a− b‖X ∈ D(SX) and consider x̄ as
any of the two opposite vectors in SX such that x ⊥B x̄ –i.e, x̄ = ±γ′

x(0) ∈ SX . With
the basis BX = {x̄, x}, the sphere SX and the line {(λ, 1) : λ ∈ R} are tangent. This
implies that, for every µ ∈ ]− 1, 1[, the line {(λ, µ) : λ ∈ R} meets SX in two points,
say b = (b1, b2), c = (c1, c2), and the first coordinates of these points have different sign.
Moreover, as ‖ · ‖X is strictly convex, {(λ, 1) : λ ∈ R} ∩ SX = {x}. Both these facts will
be important later.

Denote a′
−
, a′+ the (different) side derivatives of CX in a. In the basis BX = {x̄, x},

we have a′
−
= (a′

−,1, a
′

−,2), a
′

+ = (a′+,1, a
′

+,2). The speed of growing of ‖γa(t)− b‖X as we

12



are arriving at a in the direction of a′
−
is a′

−,2 and the speed of growing in the direction
of a′+ is a′+,2. This can be seen as in Proposition 2.5 or by thinking this situation as if
we had partial derivatives: ‖γa(t)− b‖X would grow at speed 1 if γ′

a(0) = x = (0, 1) and
the speed would be 0 if γ′

a(0) = x̄ = (1, 0). For any linear combination (a1, a2) we have
speed a2. So, we need to show that a′

−,2 6= a′+,2. As CX encloses a convex region, the
signs of a′

−,1 and a′+,1 are the same –maybe one of them is zero. So, if a′
−,2 = a′+,2, then

we would have two points in SX with the same second coordinate in the same quadrant,
but we have just seen that this cannot happen.

This means that NDif(a) contains every point in CX but, at most, two segments that
include a and finitely many other points. In particular, there exist some open U ⊂ CX

such that U ⊂ NDif(a) and U ∪ {a} is not contained in a metric segment.
Gathering all these facts, we obtain that the metric structure of NDif(a) determines

the differentiability of CX at a –and this implies that τ(a) ∈ D(CY ) if and only if
a ∈ D(CX).

As for the analogous of Proposition 2.5, we need to show that (u − v)/‖u − v‖X ∈
ND(SX) implies (τ(u)− τ(v))/‖τ(u)− τ(v)‖Y ∈ ND(SY ).

So, let x = (u−v)/‖u−v‖X ∈ ND(SX) and consider, as in the proof of Proposition 2.5,
the basis B = {−γ′

x,−(0), x}. We have u and v in the same vertical line and u is over v.
In coordinates, u1 = v1, u2 > v2.

Suppose that u ∈ D(CX) and that there is no segment in CX that contains u and v.
Then, the map

G(t) = ‖γu(t)− v‖X

is not differentiable at t = 0, the proof is the same as the one in Proposition 2.5.
In the proof of Theorem 2.12, we defined C as the interior of one of the arcs that join

⊥x and −⊥x. The analogous way to define this is by taking C as the interior of the arc
that joins the lowermost point or segment in CX with its uppermost point or segment
passing through the right part of CX –so, C does not include any of its endpoints.

Later, we defined

Cx = {u ∈ C : τ(u)− τ(v) = λτ(x) if u− v = λx, λ > 0},

but now we do not have τ(x), so we need to modify the definition of the set Cx. For
this, there is an equivalent way to state u − v = λx and τ(u) − τ(v) = λτ(x). We can
take u0 ∈ C, v0 ∈ CX such that u0 − v0 = λ0x with λ0 > 0, eliminate the condition
u − v = λx by writing u − λx instead of v and define our new subset as any of the
following equivalent ways:

Cx = {u ∈ C : τ(u)−τ(u−λx) = λ(τ(u0)−τ(v0))/λ0, λ > 0},

Cx = {u ∈ C : τ(u)−τ(u−λx) = λ(τ(u0)−τ(u0−λ0x))/λ0, λ > 0}.
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Now, the proof of Theorem 2.12 shows that Cx is open and closed in C. Again, Cx is not
empty because u0 ∈ Cx, so Cx = C. It is clear that if for every u in CX such that there is
exactly one v ∈ CX such that u− v = ‖u− v‖Xx one has τ(u)− τ(v) = λ(τ(u0)− τ(v0))
for some λ > 0, we have the same when u belongs to a segment whose direction is x. So,
denoting y = (τ(u0)− τ(v0))/‖τ(u0)− τ(v0)‖Y we have u − v = ‖u− v‖Xx if and only
if τ(u)− τ(v) = ‖τ(u)− τ(v)‖Y y.

If we consider x ∈ ND(SX), x 6= ±x and u0, v0 ∈ CX such that u0−v0 = ‖u0−v0‖Xx,
then the same argument as before shows that u − v = ‖u − v‖Xx is equivalent to
τ(u)− τ(v) = ‖τ(u)− τ(v)‖Y y, with y = (τ(u0)− τ(v0))/‖τ(u0)− τ(v0)‖Y .

With this, if we consider the bases {x, x} and {y, y}, we have the equivalences

u− v = (‖u− v‖X , 0) if and only if τ(u)− τ(v) = (‖u− v‖X , 0),

u− v = (0, ‖u− v‖X) if and only if τ(u)− τ(v) = (0, ‖u− v‖X).

Now we have two options: if we can apply Lemma 2.10 then the remainder of the
proof goes as the last part of the proof of Theorem 2.12. Otherwise, we can apply
Lemma 2.9 to obtain that, in the bases {x, x} and {y, y}, we have ‖ · ‖X = ‖ · ‖Y . It
remains to show that τ is affine.

Now, we may suppose that Y = X and we need to show that τ(a)− τ(b) = a− b for
every a, b ∈ CX .

In what followswe suppose that CX has no horizontal nor vertical segment. An
analogous idea gives a proof for the other cases. Observe that if a and b belong to the
same horizontal or vertical segment, then we have τ(a) − τ(b) = a − b. We will denote
by W,S,E and N respectively the leftmost, the undermost, rightmost and uppermost
points in CX . We will also denote as SW, SE,NE and NW the closed arcs that join
each pair of consecutive extremal points.

We will denote Ea = {b ∈ CX : τ(a) − τ(b) = a − b}. So, we need to show that
Ea = CX for some (every) a ∈ CX .

For any a ∈ CX , denote a0 = a; a1 ∈ CX is the other point that lies in the same
horizontal line as a0, a2 ∈ CX lies in the same vertical line as a1 and so on. Furthermore,
let a−1 ∈ CX be the point that lies in the same vertical line as a0, a−2 ∈ CX is in the
same horizontal line as a−1. . . This bi-infinite sequence may hit some extremal point and,
so to say, get stuck –but this changes nothing. Moreover, if CX has some vertical or
horizontal symmetry, then a4 = a0 = a−4. Still, everything goes fine. It is clear that,
given n,m ∈ Z, one has τ(an) − τ(am) = an − am. The continuity of the isometry is
enough to ensure

τ(lim(ank))− τ(lim(amk)) = lim(ank)− lim(amk)

for any convergent subsequences (ank), (amk). So, τ(c1) − τ(c2) = c1 − c2 whenever
c1, c2 ∈ {an : n ∈ Z}, i.e., {an : n ∈ Z} ⊂ Ea.
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To end the proof we need three more facts.

Claim 2. For a, b ∈ CX , if there are i1, i2, i3, i4, j1, j2, j3, j4 ∈ Z such that each aik − bjk

lies in the k-th quadrant, then b ∈ Ea or, equivalently, Eb = Ea.

Proof. We may suppose, after composition with some translation, that τ(a) = a. If
τ(a)− τ(b) 6= a− b, then there is some v 6= 0 such that τ(bn) = bn + v for every n ∈ Z.
As ‖ · ‖X is strictly convex, there is a half-plane H such that ‖u− v‖X > ‖u‖X whenever
u ∈ H . Namely, with w =⊥v, H = {αv+ βw : α ∈ ]−∞, 0], β ∈ R}. In particular, there
is a whole quadrant included in H , so for some k ∈ {1, 2, 3, 4} one has

‖τ(aik)− τ(bjk)‖X = ‖aik − bjk − v‖X > ‖aik − bjk‖X ,

a contradiction with the fact that τ is an isometry.

Claim 3. For every a ∈ CX , the intersection of {an : n ∈ Z} with every arc SW, SE,NE
and NW is nonempty.

Proof. Let us see that SW ∩ {an : n ∈ Z} 6= ∅, the other cases follow by symmetry. As
CX is convex, some point b = (b1, b2) belongs to the arc SW if and only if there is no
point c = (c1, c2) ∈ CX such that c1 ≤ b1, c2 ≤ b2 and c 6= b. Given a ∈ CX \ SW , either
a1 or a−1 –maybe both– has a coordinate that is smaller than that of a, say a11 < a1.
If a1 6∈ SW , then a22 < a12 and so on. If there is no n such that an ∈ SW , then the
sequence has an accumulation point, but this accumulation point must be the limit of
the sequence because the sequence is bounded and nonincreasing in both coordinates.
So, we are in the conditions of Lemma 2.10, a contradiction.

Claim 4. For S = (S1, S2) –the undermost point of CX– we have either SW ⊂ ES or
SE ⊂ ES.

Proof. Let b = (S1, b2) ∈ CX be the other point with the same first coordinate as S. It
is clear that b ∈ ES. Given c1 = (c11, c

1
2) ∈ CX with c12 < b2, take c2 = (c11, c

2
2) ∈ CX with,

say, c11 < c21. We have c2 ∈ Ec1 and moreover b− c1, b− c2, S− c2, S− c1 are, respectively
in the first, second, third and fourth quadrants. Claim 2 implies that c1, c2 ∈ ES so, for
every c = (c1, c2) ∈ CX such that c2 ≤ b2 one has c ∈ ES. As CX encloses a convex
region, E1 < b1 < W1 implies b2 ≥ min{E2,W2}. Now we may suppose E2 ≤ b2, that
implies u2 ≤ b2 for every (u1, u2) ∈ SE, so SE ⊂ ES.

Now we just need to use Claims 3 and 4 to see that ES = CX , so we have finished
the proof.

Remark 2.15. After Theorem 2.12, [2, Theorem 1.5] and [4, Corollary 3.8], the only
possibility for the existence of a nonlinear isometry between two-dimensional spheres is
that both of them are strictly convex and one of the following holds:
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• Both spheres are C1-differentiable and at least one of them is not absolutely
smooth.

• None of the spheres is piecewise differentiable, i.e., there are infinitely many points
of non-differentiability in each sphere.

• Both spheres have exactly two points of non-differentiability, say, x and −x.
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