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de Elvas s/n, 06006, Badajoz, Spain. coco@unex.es

2020 Mathematics Subject Classification: 46B04, 46B20, 52A21, 52A10, 53A04, 54E35, 54E40

Keywords: Tingley’s Problem, Mazur–Ulam property, smooth Banach space, isometry

Abstract

A Banach space X has the Mazur–Ulam property if any isometry from the unit sphere of X onto the unit
sphere of any other Banach space Y extends to a linear isometry of the Banach spaces X,Y . A Banach
space X is called smooth if the unit ball has a unique supporting functional at each point of the unit
sphere. We prove that each non-smooth 2-dimensional Banach space has the Mazur–Ulam property.

1. Introduction

By the classical result of Mazur and Ulam [16], every bijective isometry between Banach spaces is
affine. This result essentially asserts that the metric structure of a Banach space determines its linear
structure. In [14] Mankiewicz proved that every bijective isometry f : BX → BY between the unit balls
of two Banach spaces X,Y extends to a linear isometry of the Banach spaces. In [20] Tingley asked if
the unit balls in this result of Mankiewicz can be replaced by the unit spheres. More precisely, he posed
the following (still open) problem.

Problem 1.1 (Tingley, 1987). Let f : SX → SY be a bijective isometry between the unit spheres of two
Banach spaces X,Y . Can f be extended to a linear isometry between the Banach spaces X,Y ?

Here for a Banach space (X, ‖ · ‖) by

BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1}

we denote the unit ball and unit sphere of X, respectively.
Tingley’s Problem 1.1 can be equivalently reformulated in terms of the Mazur–Ulam property, in-

troduced by Cheng and Dong [6] and widely used in the literature devoted to Tingley’s problem, see
[3], [7], [8], [9], [11], [12], [17], [18], [19], [21].

Definition 1.2. A Banach space X is defined to have the Mazur–Ulam property if every isometry
f : SX → SY of SX onto the unit sphere SY of an arbitrary Banach space Y extends to a linear
isometry of the Banach spaces X,Y .
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In fact, Tingley’s Problem 1.1 asks whether every Banach space has the Mazur–Ulam property. There
are many results on the Mazur–Ulam property in some special Banach spaces like C(K), c0(Γ), `p(Γ),
Lp(µ), see the survey [18]. By a result of Kadets and Mart́ın [13], every polyhedral finite-dimensional
Banach space has the Mazur–Ulam property.

For 2-dimensional Banach spaces this result of Kadets and Mart́ın was improved by Cabello Sánchez
who proved the following theorem in [4].

Theorem 1.3. A 2-dimensional Banach space has the Mazur–Ulam property if is not strictly convex.

Let us recall that a Banach space X is strictly convex if each convex subset of the unit sphere SX
contains at most one point.

A Banach space X is smooth if for every point x ∈ SX there exists a unique linear continuous
functional x∗ : X → R such that x∗(x) = 1 = ‖x∗‖. Geometrically this means that the unit ball BX
has a unique supporting hyperplane at x.

It is well-known [10, 7.23] that a reflexive Banach space X is strictly convex if and only if its dual
Banach space X∗ is smooth.

The main result of this paper is the following theorem, a kind of a dual version of Theorem 1.3.

Theorem 1.4. Each non-smooth 2-dimensional Banach space has the Mazur–Ulam property.

This theorem follows from Propositions 4.2 and 4.6, proved in Section 4. For piecewise C1-smooth
Banach spaces with more than two non-smooth points, Theorem 1.4 was proved by the second author
in [5, Theorem 2.12]. In fact, many steps of the proof of Theorem 1.4 follow the lines of the proof of
Theorem 2.12 in [5].

Remark 1.5. Theorems 1.4 and Proposition 4.6 (on the Mazur–Ulam property of 2-dimensional Banach
spaces whose sphere contains two linearly independent special directions) are essential ingredients in
the main result of the paper [2] answering the Tingley’s Problem in the class of 2-dimensional Banach
spaces.

In the proof of Theorem 1.4 we shall need the following helpful fact, proved by Tingley in [20].

Theorem 1.6. If f : SX → SY is a bijective isometry between unit spheres of finite-dimensional Banach
spaces, then f(−x) = −f(x) for all x ∈ SX .

2. The natural parameterization of the unit sphere of a 2-dimensional Banach space

By a 2-based Banach space we understand any 2-dimensional Banach space X endowed with a basis
e1, e2.

Let X be a 2-based Banach space and e1, e2 be the basis of X.
The polar parameterization of the unit sphere SX is the map

p : R→ SX , p : t 7→ eit

‖eit‖
, where eit = cos(t)e1 + sin(t)e2.

The following properties of the polar parameterization were established in [1, §4].

Lemma 2.1. The polar parameterization p : R→ SX has the following properties:

1. p(t+ π) = −p(t) for every t ∈ R;
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2. the function p has one-sided derivatives

p′−(t) = lim
ε→−0

p(t+ ε)− p(t)

ε
and p′+(t) = lim

ε→+0

p(t+ ε)− p(t)

ε

at each point t ∈ R;

3. the set {t ∈ R : p′−(t) 6= p′+(t)} is at most countable.

4.
c

C
· | sin(ε)| ≤ ‖p(t+ ε)− p(t)‖ ≤ 2C2

c2
· |ε| for any t, ε ∈ R;

5.
c

C
≤ min{‖p′−(t)‖, ‖p′+(t)‖} ≤ max{‖p′−(t)‖, ‖p′+(t)‖} ≤ 2C2

c2
for every t ∈ R,

where c = min{‖eit‖ : t ∈ R} and C = max{‖eit‖ : t ∈ R}.

Lemma 2.1 implies that the function

s : R→ R, s : t 7→
∫ t

0

‖p′−(u)‖ du =

∫ t

0

‖p′+(u)‖du

is continuous and strictly increasing.
For t ∈ [0, π] the value s(t) can be thought as the length of the curve on the sphere SX between the

points p(0) and p(t) in the Banach space X. The number

L = s(π) =

∫ π

0

‖p′−(t)‖dt =

∫ π

0

‖p′+(t)‖dt

is called the half-length of the sphere SX in X.
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The image
S̆X = {p(t) : 0 ≤ t ≤ π}

is called the upper half-sphere of the 2-based Banach space X.
Since the function s is continuous and increasing, there exists a unique continuous increasing function

t : R→ R such that s ◦ t is the identity map of R.
The function

r : R→ SX , r : s 7→ p ◦ t(s),

is called the natural parameterization of the sphere SX .
The following properties of the natural parameterization were established in [1, §5].

Lemma 2.2. The natural parameterization r : R→ SX of SX has the following properties:

1. r(s+ L) = −r(s) for every s ∈ R;

2. the function r has one-sided derivatives

r′−(s) = lim
ε→−0

r(s+ ε)− r(s)

ε
and r′+(s) = lim

ε→+0

r(s+ ε)− r(s)

ε

at each point s ∈ R;

3. the set {s ∈ R : r′−(s) 6= r′+(s)} is at most countable;

4. r is non-expanding and has ‖r′−(s)‖ = ‖r′+(s)‖ = 1 for every s ∈ R.

5. If r is differentiable on some open set U ⊆ R, then r is continuously differentiable on U .

The natural parametrization is closely related to the intrinsic metric on the half-sphere S̆X .
For two points x, y ∈ S̆X , the real number

d̆(x, y) = sup
ε>0

inf
{ n∑
i=1

‖xi − xi−1‖ : x0, . . . , xn ∈ S̆X , x0 = x, xn = y, max
1≤i≤n

‖xi − xi−1‖ < ε
}

is called the intrinsic distance between the points x, y on the half-sphere S̆X . The following lemma can
be proved by analogy with Lemma 3.1 of [1].

Lemma 2.3. If r is continuously differentiable at each point s ∈ (0, L), then the map r�[0,L] is an

isometry of the interval [0, L] onto the half-sphere S̆X endowed with the intrinsic distance.

If r is arbitrary, then we can prove a weaker statement.

Lemma 2.4. For any s ∈ R and small ε we have

‖r(s+ ε)− r(s)‖ = (1 + o(1)) · |ε|.

Proof. If ε > 0, then r(s+ ε) = r(s) + r′+(s)ε+ o(ε) and hence

‖r(s+ ε)− r(s)‖ = ‖r′+(s) + o(1)‖ · |ε| = (‖r′+(s)‖+ o(1)) · |ε| = (1 + o(1)) · |ε|.

By analogy we can show that ‖r(s+ ε)− r(s)‖ = (1 + o(1)) · |ε| for small ε < 0.
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For every parameter s ∈ R let
r′±(s) = 1

2

(
r′+(s) + r′−(s)

)
.

It is easy to see that the vectors r(s) and r′±(s) are linearly independent. Then

1
2 (r′+(s)− r′−(s)) = ̇(s) · r(s) + ̈(s) · r′±(s)

for some real numbers ̇(s) and ̈(s), called the radial and tangential jumps of the derivative r′ at s,
respectively.

It follows that

r′+(s) = ̇(s) · r(s) + (1 + ̈(s)) · r′±(s) and r′−(s) = −̇(s) · r(s) + (1− ̈(s)) · r′±(s).

Lemma 2.5. 1. |̈(s)| < 1.

2. r′−(s) = r′+(s) iff ̇(s) = 0.

3. ̇(s) ≤ 0.

Proof. 1. It is easy to see that the bases
(
r(s), r′−(s)

)
,
(
r(s), r′+(s)

)
,
(
r(s), r′±(s)

)
have the same orien-

tation, which implies that for the basis
(
r(s), r′±(s)

)
the r′±(s)-coordinates 1 + ̈(s) and 1− ̈(s) of the

vectors r′+(s) and r′−(s) are positive and hence |̈(s)| < 1.

2. If r′−(s) = r′+(s), then 0 = 1
2 (r′+(s) − r′−(s)) = ̇(s) · r(s) + ̈(s) · r′±(s) and hence ̇(s) = 0. If

̇(s) = 0, then the vectors r′+(s) = (1 + ̈(s))r′±(s) and r′−(s) = (1− ̈(s))r′±(s) are collinear and hence
they are equal because they have the same norm and the bases (r(s), r′−(s)) and (r(s), r′+(s)) have the
same orientation.

3. The inequality ̇(s) ≤ 0 follows from the convexity of the ball BX , see the following picture.

r -�
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r(s)

r′+(s) r′±(s) r′−(s)

In the following lemma (which can be considered as a quantitative version of Proposition 2.5 in [5])
we use the standard function sign : R→ {−1, 0, 1} defined by the formula

sign(ε) =


1 if ε > 0;

0 if ε = 0;

−1 if ε < 0.
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Lemma 2.6. Let a, b, s ∈ R be such that r is differentiable at b and

0 6= r(b)− r(a) = ‖r(b)− r(a)‖ · r(s).

Let r′(b) = x · r(s) + y · r′±(s) for some x, y ∈ R with y 6= 0. Then y > 0 and for any small ε we have
the asymptotic formula

‖r(b+ ε)− r(a)‖ = ‖r(b)− r(a)‖+ x · ε− sign(ε) · ̇(s) · y
1 + sign(ε) · ̈(s)

· ε+ o(ε).

Proof. The positivity of y follows from 0 6= r(b) − r(a) = ‖r(b) − r(a)‖ · r(s) and the same orientation
of the bases (r(s), r′±(s)) and (r(s), r′(b)), see the following picture.
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r(s)

r′+(s) r′±(s) r′−(s)

r′(b)

r(b)− r(a)
�
�
�
�
��

-
r(a) r(b)

Since r(b)− r(a) = ‖r(b)− r(a)‖ · r(s), for a small ε there exists a small δ such that

r(b+ ε)− r(a) = ‖r(b+ ε)− r(a)‖ · r(s+ δ).

By the differentiability of r at b, we obtain

r(b+ ε)− r(a) = r(b) + r′(b)ε+ o(ε)− r(a) = ‖r(b)− r(a)‖ · r(s) + (x·r(s) + y·r′±(s))·ε+ o(ε) =

=
(
‖r(b)− r(a)‖+ xε+ o(ε)) · r(s) + (yε+ o(ε)) · r′±(s).

If δ > 0, then

r(s+ δ) = r(s) + r′+(s)δ + o(δ) = (1 + (̇(s) + o(1))δ)·r(s) + (1 + ̈(s) + o(1))δ·r′±(s).

If δ < 0, then

r(s+ δ) = r(s) + r′−(s)δ + o(δ) = (1− (̇(s) + o(1))δ)·r(s) + (1− ̈(s) + o(1))δ·r′±(s).

In both cases we obtain

r(s+ δ) = (1 + (sign(δ)·̇(s) + o(1))δ)·r(s) + (1 + sign(δ)·̈(s) + o(1))δ·r′±(s).
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It follows that

(‖r(b)− r(a)‖+ xε+ o(ε)) · r(s) + (yε+ o(ε)) · r′±(s) = r(b+ ε)− r(a) =

= ‖r(b+ ε)− r(a)‖ · r(s+ δ) =

= ‖r(b+ ε)− r(a)‖ ·
(
1 + (sign(δ)·̇(s) + o(1))δ)·r(s) + (1 + sign(δ)·̈(s) + o(1))δ·r′±(s)

)
.

Writing this equation in coordinates, we obtain two equations:

‖r(b+ ε)− r(a)‖ ·
(
1 + (sign(δ)·̇(s) + o(1))δ

)
= ‖r(b)− r(a)‖+ x·ε+ o(ε) (1)

and
‖r(b+ ε)− r(a)‖ · (1 + sign(δ)·̈(s) + o(1)) · δ = y · ε+ o(ε). (2)

The equation (2) implies

δ =
(y + o(1))ε

‖r(b+ ε)− r(a)‖(1 + sign(δ)·̈(s))
=

(y + o(1))ε

‖r(b)− r(a)‖ · (1 + sign(δ)·̈(s))
.

Since y > 0 and |̈(s)| < 1, this implies

sign(δ) = sign(ε) + o(1).

After substitution of δ into the equation (1), we obtain

‖r(b+ ε)− r(a)‖ =
‖r(b)− r(a)‖+ x·ε+ o(ε)

1 + (sign(δ)·̇(s) + o(1))δ
=

=
(
‖r(b)− r(a)‖+ x·ε+ o(ε)

)
·
(
1− (sign(δ)·̇(s) + o(1))δ

)
=

=
(
‖r(b)− r(a)‖+ x·ε+ o(ε)

)
·
(

1− (sign(ε)·̇(s) + o(1))(y + o(1)) · ε
‖r(b)− r(a)‖(1 + sign(ε)·̈(s))

)
=

= ‖r(b)− r(a)‖+ x · ε− sign(ε)·̇(s)·y
1 + sign(ε)·̈(s)

· ε+ o(ε).

Lemmas 2.6 and 2.5 imply the following corollary.

Corollary 2.7. Let a, b, s ∈ R be real numbers such that the map r is differentiable at b, r′(b) /∈ R · r(s)
and 0 6= r(b) − r(a) = ‖r(b) − r(a)‖ · r(s). The map r is differentiable at the point s if and only if the
map

ν : R→ R, ν : ε 7→ ‖r(b+ ε)− r(a)‖,

is differentiable at zero.

3. Recognizing smooth points on the unit sphere

A point x of the unit sphere of a Banach space X is defined to be smooth if there exists a unique
linear continuous functional x∗ : X → R such that x∗(x) = 1 = ‖x∗‖.

The following result of Cabello Sánchez [5, 2.1] shows that smooth points on the unit sphere can be
recognized by measurements of distances on the sphere.
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Lemma 3.1. A point p ∈ SX is non-smooth if and only if there exists positive real numbers δ and ε0

such that for every positive ε < ε0 there are points x, y ∈ SX such that

max{‖x− p‖, ‖y + p‖} < ε and ‖x− y‖ < 2− δε.

Another smoothness criterion is given by the following lemma.

Lemma 3.2. Let X be a strictly convex 2-dimensional Banach space and a, b, c ∈ SX be points such
that r is differentiable at b and 0 6= b−a = ‖b−a‖ ·c. The point c is not smooth if and only if there exist
positive real numbers δ and ε0 such that for every positive ε < ε0 there are two distinct points x, y ∈ SX
such that ‖x− b‖ = ε = ‖y − b‖ and ‖x− a‖+ ‖y − a‖ > 2·‖b− a‖+ δ · ε.

Proof. Assume that the point b is smooth and fix any basis e1, e2 for the space X such that e1 = c.
Let r : R → SX be the natural parameterization of the 2-based Banach space (X, e1, e2). Then
r(0) = e1 = c. Find real numbers α, β such that a = r(α) and b = r(β). Since the point b is smooth, the
function r is differentiable at β. Write the derivative r′(β) as x · r(0) + y · r′±(0) for some real numbers
x, y. Since X is strictly convex and 0 6= b− a = ‖b− a‖ · c, the vector r′(β) is not parallel to the vector
c and hence y 6= 0. By Lemma 2.6, y > 0.

For every ε ∈ [0, 2] let

ε+ = min{s ∈ [0,+∞) : ‖r(β + s)− r(β)‖ = ε}

and
ε− = max{s ∈ (−∞, 0] : ‖r(β + s)− r(β)‖ = ε}.

By Lemma 2.4,

ε+ = ε+ o(ε) = ε+ o(ε+) and ε− = −ε+ o(ε) = −ε+ o(ε−).

If the point c is not smooth, then r′−(0) 6= r′+(0) and ̇(0) < 0 by Lemma 2.5. Then the number

δ = − ̇(0) · y
1− ̈(0)2

is positive.
By Lemma 2.6, for a small ε > 0 we have

‖r(β + ε+)− r(α)‖+ ‖r(β + ε−)− r(α)‖ =

= ‖b− a‖+ x · ε+ −
̇(0) · y · |ε+|

1 + ̈(0)
+ o(ε) + ‖b− a‖+ x · ε− −

̇(0) · y · |ε−|
1− ̈(0)

+ o(ε) =

= 2 · ‖b− a‖+ x(ε+ + ε−)− ̇(0)·y·|ε|(1 + o(1))

1 + ̈(0)
− ̇(0)·y·|ε|(1 + o(1))

1− ̈(0)
+ o(ε) =

= 2 · ‖b− a‖+ o(ε) + 2δ|ε|+ o(ε) = 2 · ‖b− a‖+ (2δ + o(1))|ε|.

and hence there exists ε0 > 0 such that for any positive ε < ε0 and the points x = r(β + ε+) and
y = r(β + ε−) we have

‖x−a‖+‖y−a‖ = ‖r(β+ε+)−r(α)‖+‖r(β+ε−)−r(α)‖ = 2 ·‖b−a‖+(2δ+o(1))|ε| > 2 ·‖b−a‖+δ|ε|.

The choice of ε+ and ε− guarantees that ‖x− a‖ = ε = ‖y − a‖. This completes the proof of the “only
if” part of the lemma.

8



To prove the “if” part, assume that there exist positive δ and ε0 such that for any positive ε < ε0

there exist distinct points x, y ∈ SX such that ‖x− b‖ = ε = ‖y − b‖ and

‖x− a‖+ ‖y − a‖ > 2‖b− a‖+ δ · ε.

By Monotonicity Lemma [15, §3.5], we can assume that ε0 is so small that for any positive ε < ε0 the
set {x ∈ SX : ‖x − b‖ = ε} coincides with the doubleton {r(β + ε+), r(β + ε−)}. Assuming that the
point c is smooth, we conclude that r′−(0) = r′+(0) and hence ̇(0) = 0 = ̈(0). By Lemma 2.6,

‖r(β + ε+)− a‖+ ‖r(β + ε−)− a‖ = 2 · ‖b− a‖+ x · (ε+ + ε−) + o(ε) = 2 · ‖b− a‖+ o(ε).

Replacing ε0 by a smaller positive number, we can assume that

‖r(β + ε+)− a‖+ ‖r(β + ε−)− a‖ = 2 · ‖b− a‖+ o(ε) < 2 · ‖b− a‖+ δ · |ε|

for all positive ε < ε0. But this contradicts our assumption. This contradiction shows that the point c
is not smooth.

4. Special directions on the unit sphere

Definition 4.1. Let X be a Banach space. A point x ∈ SX is called special if for any bijective isometry
f : SX → SY to the unit sphere of a Banach space Y and any points y, z ∈ SX with y − z = ‖y − z‖ · x
we have

f(y)− f(z) = ‖f(y)− f(z)‖ · f(x) = ‖y − z‖ · f(x).

Proposition 4.2. Every non-smooth point of the unit sphere of a strictly convex 2-dimensional Banach
space is special.

Proof. Let c ∈ SX be a non-smooth point of the sphere SX . Since the Banach space X is strictly convex,
the set c⊥ = {x ∈ SX : {x} = SX ∩ (x + Rc)} contains exactly two points. The complement SX \ c⊥
has exactly two connected components. Let A be the connected component of SX \ c⊥ containing the
point c. It follows that SX = (−A) ∪ c⊥ ∪A.

Let θ : A → −A be the function assigning to each point x ∈ A the unique point y ∈ −A such that
x− y = ‖x− y‖ · c. It is clear that the function θ is injective and θ(c) = −c.

Now take any bijective isometry f : SX → SY of SX onto the unit sphere of a Banach space Y and
consider the continuous function

g : A→ SY , g : x 7→ f(x)− f(θ(x))

‖f(x)− f(θ(x))‖
=
f(x)− f(θ(x))

‖x− θ(x)‖
.

Tingley’s Theorem 1.6 implies g(c) = f(c)−f(−c)
‖f(c)−f(−c)‖ = f(c). To prove that the point c is special, it

suffices to check that the function g is constant. To derive a contradiction, assume that the function
g is not constant. Then the image g(A) of A is uncountable, being a path-connected set that contains
more than one point.

Let ΛX ,ΛY be the sets of non-smooth points on the spheres SX and SY , respectively. By Lemma 2.2,
the sets ΛX ,ΛY are at most countable and so is the set ΛY ∪ g(ΛX). Since the set g(A) is uncountable,
there exists a point b ∈ A such that g(b) /∈ ΛY ∪ g(A ∩ ΛX), which means that b is a smooth point of
SX and g(b) is a smooth point of SY . Let a = θ(b) ∈ −A. The definition of the map θ ensures that
b− a = ‖b− a‖ · c.

9



Since the point c is not smooth, we can apply Lemma 3.2 and find positive δ and ε0 such that for
every positive ε < ε0 there exist two distinct points x, y ∈ SX such that ‖x − b‖ = ε = ‖y − b‖ and
‖x− a‖+ ‖y − a‖ > 2‖b− a‖+ δε.

Since f : SX → SY is an isometry and b is a smooth point of the sphere SX , its image f(b) is a
smooth point of the sphere SY , according to Lemma 3.1. Observe that

0 6= f(b)− f(a) = f(b)− f(θ(b)) = ‖b− θ(b)‖ · g(b) = ‖b− a‖ · g(b) = ‖f(b)− f(a)‖ · g(b).

Since the point g(b) ∈ SY is smooth, we can apply Lemma 3.2 and find a positive ε < ε0 such that for
any distinct points u, v ∈ SY with ‖u − f(b)‖ = ε = ‖v − f(b)‖ we have ‖u − f(a)‖ + ‖v − f(a)‖ 6>
2 · ‖f(b)− f(a)‖+ δε.

By the choice of δ and ε0, there exist points x, y ∈ SX such that ‖x − b‖ = ε = ‖y − b‖ and
‖x − b‖ + ‖y − b‖ > 2 · ‖b − a‖ + δε. Since f : SX → SY is an isometry, for the points u = f(x) and
v = f(y), we obtain

‖f(x)− f(b)‖ = ‖x− b‖ = ε = ‖y − b‖ = ‖f(y)− f(b)‖

and

‖f(x)− f(a)‖+ ‖f(y)− f(a)‖ = ‖x− a‖+ ‖y − a‖ > 2 · ‖b− a‖+ δε = 2 · ‖f(b)− f(a)‖+ δε,

which contradicts the choice of ε.

Definition 4.3. Let x, y ∈ SX be two points on the unit sphere of a 2-dimensional Banach space X.
The pair (x, y) is called

� singular if {x,−x} ∩ {y,−y} 6= ∅ or there exists a point z ∈ SX such that
SX ∩ (z + Rx) = {z} = SX ∩ (z + Ry);

� regular if it is not singular.

The following lemma is a variant of Lemma 2.9 in [5].

Lemma 4.4. Let u, v ∈ SX be two points on the unit sphere of a strictly convex 2-dimensional Banach
space X. If the pair (u, v) is regular, then for any point w ∈ SX there exist points x, y, z ∈ SX such that

x ∈ z + Ru, y ∈ z + Rv and 0 6= x− y ∈ Rw.

Proof. By the strict convexity of X, for every z ∈ SX there exist unique points ~u(z), ~v(z) ∈ SX such
that {z, ~u(z)} = SX ∩ (z + Ru) and {z,~v(z)} = SX ∩ (z + Rv). It is easy to see that the function

ϕ : SX → X, ϕ : z 7→ ~u(z)− ~v(z),

is continuous. Since the pair (u, v) is regular, ϕ(z) 6= 0 for any z ∈ SX . Then the function

ψ : SX → SX , ψ : z 7→ ϕ(z)

‖ϕ(z)‖
=

~u(z)− ~v(z)

‖~u(z)− ~v(z)‖
is well-defined and continuous.

By the central symmetry of SX , for every point z ∈ SX we have ~u(−z) = −~u(z) and ~v(−z) = −~v(z),
which implies ψ(−z) = −ψ(z). Therefore, the image ψ(SX) of SX contains two opposite points. By the
connectedness of ψ(SX), for any w ∈ SX there exists z ∈ SX such that

w = ψ(z) =
~u(z)− ~v(z)

‖~u(z)− ~v(z)‖
.

Then the points x = ~u(z), y = ~v(z) and z have the required properties.
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Lemma 4.5. If the unit sphere of a strictly convex 2-dimensional Banach space X contains two linearly
independent special points, then SX contains two special points x, y such that the pair (x, y) is regular.

Proof. Let x, y ∈ SX be two linearly independent special points on the unit sphere of X. If the pair
(x, y) is regular, then we are done. So, assume that (x, y) is singular. Then there exists a point z ∈ SX
such that SX ∩ (z + Rx) = {z} = SX ∩ (z + Ry). It follows that z is a non-smooth point of the sphere
SX . By Proposition 4.2, the point z is special. Taking into account that the Banach space X is strictly
convex, it can be shown that the pairs (x, z) and (y, z) are regular.

r

6

-
�

�
�

�
�
�

�
�
�

�	

x

y

z

The following proposition generalizes Theorem 2.12 in [5] (and uses the same idea of the proof).

Proposition 4.6. A 2-dimensional Banach space X has the Mazur–Ulam property if its sphere contains
two linearly independent special points.

Proof. If X is not strictly convex, then X has the Mazur–Ulam property by Theorem 1.3. So, we
assume that X is strictly convex. Let u, v ∈ SX be two linearly independent special points on SX . By
Lemma 4.5, we can additionally assume that the pair (u, v) is regular.

Let f : SX → SY be a bijective isometry of SX onto the unit sphere SY of an arbitrary Banach space
Y . Let L : X → Y be a unique linear operator such that L(u) = f(u) and L(v) = f(v). We claim that
L�SX = f . Fix any point w ∈ SX and using Lemma 4.4, find points x, y, z ∈ SX such that x = z + au,
y = z+bv and 0 6= x−y = cw for some real numbers a, b, c. Replacing x, y, z by −x,−y,−z, if necessary,
we can assume that c > 0. Observe that |a| = ‖x− z‖. If a > 0, then by the special property of u, the
equality x = z + au = z + ‖x − z‖·u implies f(x) = f(z) + ‖x − z‖ · f(u) = f(z) + a · f(u). If a < 0,
then the equality x = z + au = z − ‖x − z‖u implies z = x + ‖x − z‖·u. By the special property of u,
we have f(z) = f(x) + ‖x− z‖ · f(u) = f(x)− a · f(u) and hence f(x) = f(z) + a · f(u). In both cases
we obtain f(x) = f(z) + a · f(u). By analogy we can show that f(y) = f(z) + b · f(v). Then

f(x)− f(y) = (f(z) + a · f(u))− (f(z) + b · f(v)) = a · f(u)− b · f(v) = a · L(u)− b · L(v).

It follows from x− y = c · w = ‖x− y‖ · w that

L(w) =
L(x)− L(y)

‖x− y‖
=
L(z + au)− L(z + bv)

‖x− y‖
=
a·L(u)− b·L(v)

‖x− y‖
=
f(x)− f(y)

‖x− y‖

11



and finally

‖L(w)‖ =
‖f(x)− f(y)‖
‖x− y‖

= 1.

Therefore, the linear operator L : X → Y is an isometry.
Consider the isometry g = L−1 ◦ f : SX → SX and observe that g(u) = u and g(v) = v. By

Theorem 1.6, g(−u) = −g(u) = −u and g(−v) = −g(v) = −v. Since the space X is strictly convex,
for any distinct points x, y ∈ X and positive real numbers a, b the intersection (x + aSX) ∩ (y + bSX)
contains at most two distinct points, see Monotonicity Lemma in [15, §3.5]. This fact can be used to
show (cf. [4, 2.3]) that each point x ∈ SX is the unique point of the intersection

(u+ ‖x− u‖SX) ∩ (−u+ ‖x+ u‖SX) ∩ (v + ‖x− v‖SX) ∩ (−v + ‖x+ v‖SX)

which implies that g(x) = x and hence f = L�SX
.

5. Banach spaces with exactly two non-smooth points on the unit sphere

Let X be a strictly convex 2-dimensional Banach space whose unit sphere contains exactly two
non-smooth points. Let e1 ∈ SX be one of these non-smooth points. Take any vector e2 ∈ X which
is linearly independent with e1 and consider the natural parametrization r : R → SX of the 2-based
Banach space (X, e1, e2). For this parameterization we have r(0) = e1 and r′−(0) 6= r′+(0) as e1 = r(0)
is a non-smooth point of the unit sphere. Replacing the vector e2 by r′±(0) = 1

2 (r′−(0) + r′+(0)), we can
assume that e2 = r′±(0).

We recall that

1
2 (r′+(0)− r′−(0)) = ̇(0) · r(0) + ̈(0) · r′±(0) = ̇(0) · e1 + ̈(0) · e2

and the numbers ̇(0), ̈(0) are called radial and tangential jumps of the derivative r′ at zero. By
Lemma 2.5, |̈(0)| < 1. We claim that those jumps are determined by the metric of the unit sphere.

For every point x ∈ SX let x be the unique point of the sphere such that {x, x} = SX ∩ (x+ Re1).
The uniqueness of x follows from the strict convexity of X.

Lemma 5.1.

lim
ε→+0

‖r(ε)− r(0)‖
‖r(ε) + r(0)‖

=
1− ̈(0)

1 + ̈(0)
and lim

ε→+0

‖r(ε)− r(ε)‖ − 2

2ε
=

̇(0)

1− ̈(0)
.

Proof. For a small positive ε, find a positive δ such that r(ε) = −r(−δ). Observe that

r(ε) = r(0) + r′+(0)ε+ o(ε) = e1 +
(
̇(0)e1 + (1 + ̈(0))e2

)
· ε+ o(ε) =

= (1 + ̇(0)ε+ o(ε))e1 + (1 + ̈(0) + o(1))εe2

and

r(−δ) = r(0)− r′−(0)δ + o(δ) = e1 −
(
− ̇(0)e1 + (1− ̈(0))e2

)
δ + o(δ) =

= (1 + ̇(0)δ + o(δ))e1 − (1− ̈(0) + o(1))δe2.

The equality −r(−δ) = r(ε) implies (1 + ̈(0) + o(1))ε = (1− ̈(0) + o(1))δ and

ε

δ
=

1− ̈(0) + o(1)

1 + ̈(0) + o(1)
.
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Then

lim
ε→+0

‖r(ε)− r(0)‖
‖r(ε) + r(0)‖

= lim
ε→+0

‖(r′+(0) + o(1))ε)‖
‖−r(−δ) + r(0)‖

= lim
ε→+0

‖r′+(0)+o(1)‖ · |ε|
‖(r′−(0) + o(1))δ‖

= lim
ε→+0

|ε|
|δ|

=
1− ̈(0)

1 + ̈(0)
.

On the other hand,

‖r(ε)− r(ε)‖ = ‖r(ε) + r(−δ)‖ =

= ‖(1 + ̇(0)ε+ o(ε))e1 + (1 + ̈(0) + o(1))εe2 + (1 + ̇(0)δ + o(δ))e1 − (1− ̈(0) + o(1))δe2‖ =

= ‖(2 + ̇(0)(ε+ δ) + o(ε+ δ))e1‖ = 2 + (̇(0) + o(1))ε
(

1 +
1 + ̈(0) + o(1)

1− ̈(0) + o(1)

)
= 2 + 2ε

̇(0) + o(1)

1− ̈(0)

and hence

lim
ε→+0

‖r(ε)− r(ε)‖ − 2

2ε
=

̇(0)

1− ̈(0)
.
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Lemma 5.2. Let s, s̄ ∈ R be two real numbers such that 0 6= r(s) − r(s̄) = ‖r(s) − r(s̄)‖ · e1 and
r(s) /∈ {e1,−e1}. Let r′(s) = xe1 + ye2 and r′(s̄) = xe1 + ye2 for some real numbers x, y, x, y. For a
small real number ε let ε̄ be the unique small real number such that r(s̄+ ε̄) = r(s+ ε). Then

1. y > 0 and y < 0;

2. lim
ε→0

‖r(s̄+ ε̄)− r(s̄)‖
‖r(s+ ε)− r(s)‖

= −y
y

;

3. lim
ε→0

‖r(s+ ε)− r(s̄+ ε̄)‖ − ‖r(s)− r(s̄)‖
ε

= x− x · y
y

;

4. lim
ε→+0

‖r(s+ ε)− r(s̄)‖ − ‖r(s)− r(s̄)‖
ε

= x− ̇(0) · y
1 + ̈(0)

;

5. lim
ε→−0

‖r(s+ ε)− r(s̄)‖ − ‖r(s)− r(s̄)‖
ε

= x+
̇(0) · y
1− ̈(0)

;

6. The numbers x, y, x, y are uniquely determined by the equations (2)–(5).

Proof. It follows from 0 6= r(s)− r(s̄) = ‖r(s)− r(s̄)‖ · e1 that y > 0 and y < 0.
For a small number ε we have

r(s+ ε)− r(s) = (r′(s) + o(1))ε = (x+ o(1))εe1 + (y + o(1))εe2

and
r(s̄+ ε̄)− r(s̄) = r′(s̄)ε̄+ o(ε̄) = (x+ o(1))ε̄e1 + (y + o(1))ε̄e2.

The equality r(s+ ε) = r(s̄+ ε̄) implies

(y + o(1))ε = (y + o(1))ε̄

and then

lim
ε→0

‖r(s̄+ ε̄)− r(s̄)‖
‖r(s+ ε)− r(s)‖

= lim
ε→0

‖r′(s̄) + o(1)‖ · |ε̄|
‖r′(s) + o(1)‖ · |ε|

= lim
ε→0

|ε̄|
|ε|

= lim
ε→0

|y + o(1)|
|y + o(1)|

=
|y|
|y|

= −y
y
.

Also

r(s+ ε)− r(s̄+ ε̄) = r(s) + r′(s)ε+ o(ε)−
(
r(s̄) + r′(s̄)ε̄+ o(ε̄)

)
=

= (r(s)− r(s̄)) + (x+ o(1))εe1 + (y + o(1))εe2 − (x+ o(1))ε̄e1 − (y + o(1))ε̄e2 =

= ‖r(s)− r(s̄)‖e1 + (xε− xε̄+ o(ε+ ε̄)) · e1 =

=
(
‖r(s)− r(s̄)‖+ (x− x · y

y
+ o(1))ε

)
· e1

and hence

lim
ε→0

‖r(s+ ε)− r(s̄+ ε̄)‖ − ‖r(s)− r(s̄)‖
ε

= x− x · y
y
.

By Lemma 2.6,

‖r(s+ ε)− r(s̄)‖ = ‖r(s)− r(s̄)‖+ xε− sign(ε) · ̇(0) · y
1 + sign(ε)̈(0)

ε+ o(ε)

and hence

lim
ε→+0

‖r(s+ ε)− r(s̄)‖ − ‖r(s)− r(s̄)‖
ε

= x− ̇(0) · y
1 + ̈(0)
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and

lim
ε→−0

‖r(s+ ε)− r(s̄)‖ − ‖r(s)− r(s̄)‖
ε

= x+
̇(0) · y
1− ̈(0)

.

Therefore, the items (1)–(5) of Lemma 5.2 are proved.

The equations (4),(5) determine the numbers x, y uniquely because∣∣∣∣∣ 1 − ̇(0)
1+̈(0)

1 ̇(0)
1−̈(0)

∣∣∣∣∣ =
̇(0)

1− ̈(0)
+

̇(0)

1 + ̈(0)
=

2 · ̇(0)

1− ̈(0)2
6= 0.

The equation (2) allows us to find y and then x can be found from the equation (3).

6. Proof of Theorem 1.4

Given any non-smooth 2-dimensional Banach space, we should prove that X has the Mazur–Ulam
property. If X is not strictly convex, then X has the Mazur–Ulam property by Theorem 1.3. If
the sphere SX contains more than two non-smooth points, then X has the Mazur–Ulam property by
Propositions 4.2 and 4.6. So, we assume that X is strictly convex and SX contains exactly two non-
smooth points. Let e1 be one of them. Then −e1 is the other non-smooth point of X.

Take any vector e2 ∈ X \ (R · e1) and consider the natural parameterization r : R → X of the
2-based Banach space (X, e1, e2). Since e1 is a non-smooth point of SX , the one-sided derivatives
r′−(0) and r′+(0) are distinct. Replacing the vector e2 by r′±(0), we can assume that e2 = r′±(0). Let

L = min{s ∈ [0,∞) : r(s) = −e1} be the half-length of the sphere SX , and S̆X = r([0, L]) be the upper
half-sphere of X. By Lemmas 2.2(5) and 2.3, the restriction r�[0,L] : [0, L]→ S̆X is an isometry of [0, L]

onto the half-sphere S̆X endowed with the intrinsic metric.
To show that the space X has the Mazur–Ulam property, fix any bijective isometry f : SX → SY of

SX onto the unit sphere of an arbitrary Banach space Y . It is clear that the space Y is 2-dimensional.
Lemma 3.1 implies that ẽ1 = f(e1) and −ẽ1 are unique non-smooth points of the sphere SY . Repeating
the above argument, we can find a vector ẽ2 ∈ Y \ (R · ẽ1) such that for the natural parameterization
r̃ : R→ Y of the 2-based Banach space (Y, ẽ1, ẽ2) we have r̃′±(0) = ẽ2. Replacing ẽ2 by −ẽ2, if necessary,

we can additionally assume that r̃(ε) ∈ f(S̆X) for small positive numbers ε.
Then f(S̆X) coincides with the half-sphere S̆Y of the 2-based Banach space (Y, ẽ1, ẽ2). Since S̆X

is isometric to S̆Y , the spheres SX and SY have the same half-length. By Lemma 2.3, the restriction
r̃�[0,L] : [0, L] → S̆Y is an isometry of [0, L] onto the half-sphere S̆Y endowed with the intrinsic metric.

The isometry f�S̆X
: S̆X → S̆Y remains an isometry with respect to the intrinsic metrics on the half-

spheres. Then (r̃�[0,L])
−1 ◦ f ◦ r�[0,L] is an isometry of [0, L] which does not move zero and hence is the

identity map of [0, L]. Consequently, r̃(s) = f ◦ r(s) for all s ∈ [0, L]. Using this fact and Lemma 2.2(1),
we can show that r̃(s) = f ◦ r(s) for all s ∈ R.

Let I : X → Y be the linear operator such that I(e1) = ẽ1 and I(e2) = ẽ2. Applying Proposition 4.2
and Theorem 1.6 and 5.1, we can show that the spheres SX and SY have the same radial and tangential
jumps ̇(0) and ̈(0). Lemma 5.2 implies that I(r′(s)) = r̃′(s) for every s ∈ (0, L) with r(s) 6= r(s). Since
X is strictly convex, the set {s ∈ [0, L] : r(s) = r(s)} is a singleton. Now the continuity of the functions
r′ and r̃′ on (0, L) implies that I(r′(s)) = r̃′(s) for all s ∈ (0, L). Since r is continuously differentiable
on [0, L], for every s ∈ [0, L] we have r(s) = r(0) +

∫ s
0

r′(t) dt and hence

I(r(s)) = I(r(0)) +

∫ s

0

I(r′(t)) dt = r̃(0) +

∫ s

0

r̃′(t)dt = r̃(s) = f ◦ r(s).
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By Theorem 1.6 and Lemma 2.2(1),

I(r(s+ L)) = I(−r(s)) = −I(r(s)) = −f(r(s)) = f(−r(s)) = f(r(s+ L))

for every s ∈ [0, L] and hence I ◦ r�[L,2L] = r̃�[L,2L]. Therefore, I is a linear operator extending the
isometry f . The equality I(SX) = SY implies I(BX) = BY , which means that I is a linear isometry of
the Banach spaces X,Y .
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