
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000 1

Joint Optimization of Response Time and
Deployment Cost in Next-Gen IoT Applications

Juan Luis Herrera , Jaime Galán-Jiménez , José Garcı́a-Alonso , Member, IEEE,

Javier Berrocal , Member, IEEE, and Juan Manuel Murillo , Member, IEEE

Abstract—The irruption of the Internet of Things (IoT) has
attracted the interest of both the industry and academia for their
application in intensive domains, such as healthcare. The strict
Quality of Service (QoS) requirements of the next generation
of intensive IoT applications requires the QoS to be optimized
considering the interplay of three key dimensions: computing,
networking and application. This optimization requirement mo-
tivates the use of paradigms that provide virtualization, flexibility
and programmability to IoT applications. In the computing
dimension, paradigms such as edge or fog computing, Software-
Defined Networks in the networking dimension, along with
micro-services architectures for the application dimension, are
suitable for QoS-strict IoT scenarios. In this work, we present
a framework, named Next-gen IoT Optimization (NIoTO), that
considers these three dimensions and their interplay to place
micro-services and networking resources over an infrastructure,
optimizing the deployment in terms of average response time
and deployment cost. The evaluation of NIoTO in a healthcare
case study reveals a response time speed-up of up to 5.11 and a
reduction in cost of up to 9% with respect to other state-of-the-
art techniques.

Index Terms—Internet of Things, Software-Defined Networks,
Computing in the Network, Edge Computing, Fog Computing,
Quality of Service

I. INTRODUCTION

The increase in the number of Internet-connected devices
in recent years, especially caused by the irruption of the
Internet of Things (IoT) paradigm, has led to an exponential
growth of the amount of traffic flowing through the network.
In particular, it is expected that the number of connected
devices will be more than three times the global population by
2023. Indeed, Machine-To-Machine (M2M) connections will
conform the half of such connected devices (reaching to 14.7
billion M2M connections) in that year [1].

Manuscript received January 00, 0000; revised January 00, 0000; accepted
January 00, 0000. Date of publication January 00, 0000; date of current
version January 00, 0000. This work has been partially funded by the project
RTI2018-094591-B-I00 (MCI/AEI/FEDER,UE), the 4IE+ Project (0499-4IE-
PLUS-4-E) funded by the Interreg V-A España-Portugal (POCTEP) 2014-
2020 program, by the Department of Economy, Science and Digital Agenda of
the Government of Extremadura (GR21133, IB18030), by the Valhondo Calaff
institution, and by the European Regional Development Fund. (Corresponding
author: Juan Luis Herrera.)

The authors are with the Department of Computer Science and Com-
munications Engineering, University of Extremadura, Spain (e-mail: jlher-
rerag@unex.es).

Digital Object Identifier 00.000/JIOT.0000.0000000

The computational IoT tasks and the related data processing
may be computationally intensive, which can not be often
accomplished by regular IoT devices with limited resources
(memory, battery, etc.) [2]. To overcome this difficulty these
tasks are usually offloaded to the cloud, where they can be
executed without compromising available resources. However,
a penalty derived from the latency imposed by the separation
of end devices and the cloud must be paid.

While this approach can be easily used with elastic applica-
tions that do not have strict Quality of Service (QoS) require-
ments (e.g., voice assistants), next-generation IoT applications
(e.g., autonomous driving, Internet of Medical Things (IoMT)
applications) require greater bandwidth and ultra low-latency
constraints that are not feasible with a pure cloud-based
paradigm [3]. Edge and fog computing paradigms represent
a suitable solution for these intensive computational tasks that
must be executed under strict latency requirements [3], [4]. By
moving services from the cloud to the edge of the network
some benefits are obtained: i) a reduction in the required
latency; and ii) the computational load of tasks is restrained
at end devices, since they are offloaded to edge servers [2].

Nonetheless, the time required to execute a request in a
distributed application, or response time, has two components:
latency, and execution time. While the former depends on the
networking fabric and the distance between end devices and
those they offload their tasks to (e.g., cloud, edge nodes),
the latter depends on the computational load of these tasks
and the power of the devices running them. Therefore, three
dimensions are involved in the QoS of IoT applications:
the computing dimension, the networking dimension and the
application dimension. Furthermore, the next generation of
IoT applications require for virtualization, flexibility and pro-
grammability features in these three dimensions [5]. Emerging
paradigms, such as edge and fog computing in the com-
puting dimension, Software-Defined Networking (SDN) for
the networking dimension, and micro-services architectures
in the application dimension, can be enablers for the QoS-
optimal deployment of next-gen IoT applications [2], [6]–
[9]. However, the QoS experienced by applications running
in such architectures depends on the performance provided by
the set of computing and networking resources. Analogously,
such performance depends on the way micro-services and
the SDN controller are placed [4], [7]. Moreover, micro-
services may be replicated to improve the QoS, at the cost
of assessing the number of replicas that must be deployed

0000–0000/00$00.00 © 2021 IEEE

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2280-2878
https://orcid.org/0000-0002-5476-7130
https://orcid.org/0000-0002-6819-0299
https://orcid.org/0000-0002-1007-2134
https://orcid.org/0000-0003-4961-4030

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

2 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

for a given scenario. Therefore, in order to optimally deploy
IoT applications through all three dimensions, the problem
of placing micro-services as well as the SDN controller to
maximize the experienced QoS must be carefully addressed.

In this paper, we provide a framework named Next-gen IoT
Optimization (NIoTO) to optimize the placement of micro-
services and networking resources to optimize the QoS consid-
ering the computing, networking and application dimensions.
In particular, the proposed solution provides i) the optimal
number of micro-service replicas to be placed in the infras-
tructure, ii) the optimal placement of micro-services to be
run in the computing resources of the infrastructure, iii) the
optimal placement of the SDN controller to reduce the required
signalling cost, and iv) the optimal routing of the traffic flows
generated by micro-services, as well as control traffic flows.
To do so, the problem is modeled and formulated using Mixed-
Integer Linear Programming (MILP). Based on a scenario
where next-gen IoT applications are considered, the framework
is evaluated considering two metrics: i) the minimization of
the average response time, and ii) the minimization of the
costs derived from the deployment of the architecture. Finally,
we remark the benefits of jointly considering the application,
computing and networking dimensions to handle today IoT
applications with stringent QoS requirements. The results
obtained in the evaluation show that the use of NIoTO as
an optimization tool is feasible at design-time. Furthermore,
these results show that NIoTO is able to achieve shorter
response times and lower costs compared to other, state-of-
the-art benchmarks. The authors of this paper presented an
initial work, the DADO framework, in [10], focused on the
optimization of response time in IoT applications through
optimal micro-service deployment and SDN controller place-
ment. NIoTO extends DADO by considering deployment cost
along with response time, including the possibility of multi-
objective optimization, as well as trading off cost and response
time. Furthermore, unlike DADO, NIoTO has been evaluated
under a scenario that allows for combined fog and cloud
microservice deployment. The main contributions of this work
are as follows:

• The proposal of the NIoTO framework as a contribution
to the optimization of the response time and deployment
cost in next-gen IoT applications. NIoTO is able to
optimally assess the number of micro-service replicas to
deploy, where to deploy each of them, where to place
the SDN controller, and the optimal routing of both
application and control traffic flows. Furthermore, NIoTO
supports the optimization of both, response time and
deployment cost, by finding the optimal trade-off between
them.

• The description and development of a problem model
that considers both objectives supported by NIoTO. This
model provides a holistic consideration of the optimiza-
tion process, taking into the account the effects of one of
NIoTO’s decisions in a dimension on the rest of the di-
mensions. This model is developed through mathematical
programming techniques, and provided as a mathematical
problem formulation.

• The experimental evaluation of NIoTO in a healthcare-
based next-gen IoT application, focusing on the trade-
off between the two objectives supported by NIoTO and
the performance differences between NIoTO and related,
state-of-the-art frameworks.

The remainder of the paper is organized as follows. Sec-
tion II describes the architecture considered, remarking all the
paradigms acting as enablers. Section III presents the proposed
framework to optimize the application deployment, whose
formulation is detailed in Section IV. Section V presents the
performance evaluation of the framework over a healthcare
scenario. Finally, Section VI concludes the paper.

II. HIERARCHICAL MULTI-DIMENSIONAL ARCHITECTURE

The development of QoS-stringent IoT applications requires
the coordination of three highly related dimensions (Fig. 1):
First, the application dimension, indicating how the software
architecture of the application is modularized and coordinated.
Second, the computing dimension defining the available com-
puting resources and how these modules are deployed on them.
Third, the networking dimension detailing which elements
of the infrastructure will support the communications among
modules. All these dimensions must be visualized in a holistic
way. All of them are highly related and the configuration of
one dimension impacts on the rest and, hence, the final QoS
obtained.

The software architecture of next-gen IoT applications is
usually based on the Service Oriented Computing paradigm
(SOC) since they have to be massively distributed, interopera-
ble and highly evolvable [8]. The Micro Service Architecture
(MSA) pattern allows applications to be split into loosely
coupled collaborating modules. These modules, usually called
Bounded Contexts, APIs or, simply, services, contain one or
more highly coupled micro-services that are usually deployed
together [11]. MSAs are defined in contrast to monolithic ar-
chitectures, in which the application may also be modularized,
but all the modules require to be deployed together. Each of the
micro-services in the MSA may be offered through different
interfaces, which are normally comprised of a communication
protocol and a data format. Some popular interfaces are
web services (SOAP protocol and XML format) [12], gRPC
services (HTTP/2 protocol and Protocol Buffers format) [13]
or RESTful services (HTTP+JSON) [14]. While RESTful is
currently the most popular interface and proposals for its use
in IoMT exist [15], micro-services are not bound to a concrete
interface.

As a running example, which is depicted in Fig. 1, we
base on an IoMT application to track the blood pressure of
a patient and to detect anomalies in their electrocardiograms
(ECG) by making use of data obtained through sensors. Each
user is equipped with an IoT node that samples information
for 15 seconds before sending it for further processing. The
functionalities that are used in this case study are split into
three services: ECG and blood pressure monitoring (green),
data encryption (blue), and anomalies detection (red). Fig. 1a
shows a high level architectural design of this application. This
running example is based on the architecture proposed by [16].

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

HERRERA et al.: JOINT OPTIMIZATION OF RESPONSE TIME AND DEPLOYMENT COST IN NEXT-GEN IOT APPLICATIONS 3

(a) Application dimension. (b) Computing dimension. (c) Networking dimension.

Figure 1: Hierarchical IoMT application with the different dimensions affected to meet stringent QoS requirements.

In addition, their required data input, output and processing
characteristics were obtained from [17].

These services can be deployed independently of one an-
other, so that they can be deployed on the same or on different
machines or servers, or even they can be replicated in order to
balance the load and improve the QoS. Different virtualization
and management technologies, such as Docker or Kubernetes,
are used to reduce the effort and to automate this deployment.
In addition, SOC makes use of some key technical foundations
for the integration of the different services deployed [8],
[18]: service discovery, for identifying the location of each
service; service aggregation, for aggregating the responses; or
service composition, coordinating the execution of complex
functionalities by orchestrating several services.

The development of paradigms such as fog, edge or mist
computing has allowed the development of intensive and QoS
stringent IoT applications following a hierarchical architec-
ture [2]. Services of MSA-based applications can be deployed
closer to end-users in order to reduce network load and to
improve response time [2]. The most resource-consuming
services are still deployed on powerful nodes (such as cloud
or, even, fog nodes) and the QoS stringent services, but
less resource demanding, can be deployed on network nodes
with computing capabilities –edge computing– or even on the
Internet-connected devices themselves –mist computing– [2].
Therefore, a wide range of possibilities to deploy services must
be evaluated, and in which nodes they are finally deployed is
key to meet stringent QoS. Likewise, for complex function-
alities, the deployed services may be coordinated, in order to
achieve the functionalities and the workflows defined, using
service discovery, aggregation and composition modules. The
location of these management modules is also crucial in order
to meet the required QoS.

Fig. 1b shows how the services defined on our running
example are deployed on different layers of the computing

hierarchical architecture depending on the required QoS and
the available computing resources. For instance, the ECG
and blood pressure monitoring service replicas (green service)
is deployed on IoT devices, since this monitoring requires
few computing resources. In addition, different aggregators
(management modules) are also deployed on the upper layer
(at the edge) to compute the responses of the IoT devices
in order to reduce the data traffic, improving the response
time. Likewise, data encryption (blue service) and anomaly
detection (red service) both require some additional resources
so that their replicas are deployed on more powerful nodes
(edge and fog nodes, respectively). Therefore, defining an
optimal computation distribution is highly dependent of the
defined services and the available resources.

The deployment of an IoT application only taking into
account the computing dimension does not always guarantee
the optimal deployment in terms of QoS. In particular, the
network configuration, such as the routing among the deployed
services or the deployment of specific infrastructures, heavily
impacts on the network latency and, hence, on the QoS.
SDN networks allow the deployment of SDN controllers that
leverage virtualization to make the network programmable
based on the SOC principles [19]. Thus, Virtual Network
Functions (VNFs) can be exploited for traffic engineering
purposes in order to improve the network performance [20].
In this way, the SDN Controller Placement Problem (CPP) [7]
identifies the deployment of SDN controllers in an optimal
location to reduce the control latency and response time [21].
Fig. 1c shows that the SDN controller has been placed close
to specific switches, in-between the Edge and Fog layers, in
order to improve the average latency.

However, the network infrastructure has other capabilities
that should also be reused. The application of virtualiza-
tion and service oriented principles to the network infras-
tructure has led to a cloudification of both controllers and

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

4 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

switches [19]. The Multi-Access Edge Computing (MEC)
architecture embeds decentralized cloud capabilities in the
network infrastructure at the network edge. This means that
not only VNFs can be deployed on them, but also they can
provision Virtual Computing Functions [19]. Therefore, IoT
services and other management components (such as the ser-
vice discovery, the aggregator or the compositor) can also be
deployed in the network infrastructure. For instance, ETSI, the
European Telecommunications Standard Institute, proposed
the Management and Orchestration module (MANO) [22] to
manage the different services and modules, their lifecycle,
and to orchestrate them and chain different VNFs to support
workflows. Therefore, the networking dimension is also able
to perform some management tasks for the IoT applications.
Fig. 1c shows that the service discovery and the service com-
positor modules have been deployed on the SDN controller in
order to improve the QoS of the considered IoT application.

Therefore, a hierarchical multi-dimensional architecture
boosts the achievement of stringent QoS requirements of
next-gen IoT applications. Nevertheless, in order to achieve
the optimal deployment and configuration, several dimensions
must be jointly evaluated: the application dimension, the
computing dimension and the networking dimension. In this
paper, we base on an modularized IoT application using the
principles of SOC and MSA [11], and propose a framework
for the optimal placement of IoT services and SDN controllers
in the hierarchical multi-dimensional architecture.

III. NEXT-GEN IOT OPTIMIZATION

Providing the best QoS requires a deployment that jointly
evaluates the application, computing and networking dimen-
sions to optimally place IoT services and SDN controllers.
In this paper, we present the Next-gen IoT Optimization
(NIoTO) framework, which takes all the three dimensions into
account to find feasible deployments that meet the specific
QoS requirements of IoT applications. Although NIoTO is an
extensible framework that can support different types of QoS,
in this paper, we focus on two specific requirements: response
time and cost. These parameters are usually very important
for IoT applications, as well as highly related —i.e, a lower
response time usually requires a higher cost— and, therefore,
a trade-off between them is difficult to achieve [23]. NIoTO
takes as input the characteristics of the application, the network
topology, the computing resources, and the QoS objectives to
satisfy. These inputs are processed by the framework, which
optimizes the QoS considering the three dimensions. Finally,
results are reported as output, detailing the placement of the
IoT services and SDN controllers to provide the optimal QoS
according to the objectives.

A. Inputs

In order to know the optimal deployment design of an
IoT application, different information is required for the three
considered dimensions. These inputs are split into two types
of information in order to improve its reusability and the
extensibility of NIoTO to support other potential QoS require-
ments. These pieces of information are: basic information, and

information that is specific to a QoS objective. The inputs
required by NIoTO, split by their information type and their
dimension, are depicted in a tree diagram in Fig. 2. These in-
puts are fed to NIoTO using open data interchange documents,
such as XML or JSON, structured with a concrete schema,
in which an arbitrary set of elements (e.g., micro-services,
SDN switches, links, computing resources) can be defined.
For each of these elements, the basic information, stored as
its attributes, is mandatory, while QoS-specific information
depends on the QoS to be optimized. Moreover, elements can
be cross-referenced using their IDs, enhancing their reusability
(e.g., a computing resource can be defined only once, and
network links can refer to the definition through its ID).
The use of non-proprietary data interchange formats eases the
integration of NIoTO with other tools, as well as the creation
of parsers to convert other formats to NIoTO inputs and vice-
versa, making it easier to configure and use NIoTO. It is also
possible to create support tools that assist the NIoTO user
on the provision of the inputs (e.g., graphical user interfaces
for NIoTO) using these data formats. Furthermore, each of
the inputs are to be obtained at design-time. Some of these
inputs can be obtained directly, while other inputs need to
be estimated. For this estimation, the application is expected
to be at the late design phase of development, in which
the architectural decisions are already taken and low-level
design has also been performed. Therefore, details such as the
system’s software architecture, the roles and functionalities of
the micro-services, their complexity, or the planned network
and computing infrastructure are known. Such knowledge is
key, as it enables for the obtention of most parameters from the
computing and networking dimensions directly. At this stage,
the analysis of resource consumption, size, and performance
in the application dimension, if performed with adequate
techniques such as [24]–[26], can yield realistic estimates.
The manner of obtention for each of the inputs, as well as
its source, are detailed in Tab. I.

Basic information is always required independently from the
QoS requirements to optimize. For the application dimension,
the data required is the amount of RAM consumed by each
service, the size of its inputs and outputs, and the requests that
should be processed by each service (i.e., the workflows that
are requested, and which device requests which workflow). For
the computing dimension, the available computing resources
(indicating their available RAM) and their location in the
network topology must be provided as input. Finally, for the
networking dimension, the network graph with the set of nodes
and links, as well as link capacities, must be detailed. The three
dimensions are used to specify the basic information in order
to reduce the coupling. With this information, the feasibility
of the deployment for the given IoT application is evaluated
by checking if available resources are not exceeded.

QoS specific information are those inputs required to iden-
tify the optimal deployment for a particular type of QoS.
Currently, NIoTO supports next QoS objectives: response time,
deployment cost, and both of them (to find the best compro-
mise between minimal response time and cost). Response time
is calculated as the average response time for each request,
which is the sum of the time needed to execute every service

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

HERRERA et al.: JOINT OPTIMIZATION OF RESPONSE TIME AND DEPLOYMENT COST IN NEXT-GEN IOT APPLICATIONS 5

Figure 2: Inputs of the NIoTO framework per type of infor-
mation and dimension.

in each request and the time needed to communicate to the
devices where the services of such request are deployed. In
order to evaluate this first objective, the inputs required for
each of the three dimensions are: i) application dimension,
the number of cycles required to execute each service; ii)
computing dimension, the CPU clock speed of each computing
resource; iii) networking dimension, the latency of each link.
The cost objective, on the other hand, is assessed as the
sum of the capital expenditures (CAPEX) (i.e., the cost of
acquiring an asset) of each element used in the infrastructure
plus the operational expenditures (OPEX) (i.e., the ongoing
cost of maintaining an asset) derived from their use. Thus, for
the application dimension, the number of cycles required by
each service is required again. Instead, computing resources
must include their CAPEX and OPEX per cycle. Network
equipment must also report their CAPEX, as well as their
OPEX per second, to optimize this objective.

To execute the NIoTO framework, to find feasible de-
ployments, only basic information is required. If any given
QoS objective must be optimized too, the QoS dependent
information of said objectives has to be provided as well.

Table I: Kind of obtention and source of the input information
for NIoTO at design-time.

Input information Kind of obtention Information source
Micro-service RAM
consumption

Estimation Memory complexity
analysis of each
micro-service

Micro-service input
and output size

Estimation Analysis of the ex-
pected input and out-
put data type of each
micro-service

Cycles per micro-
service

Estimation Time complexity
analysis of each
micro-service

Workflow requests Estimation Definition of the per-
mitted workflows (use
cases) for the appli-
cation, estimation of
the application’s user
base

Available computing
resource

Direct Planning of the
computing devices
to use, analysis of
the datasheets and
documentations of
each planned device

Location of comput-
ing devices in the net-
work

Direct Network planning

CPU clock speed Direct Planning of the
computing devices
to use, analysis of
the datasheets and
documentations of
each planned device

CAPEX of computing
devices

Direct Provided by the sup-
plier

OPEX of computing
devices

Direct (on
demand)/Estimated
(self-hosted)

Provided by the
supplier (on
demand)/planning
of the computing
devices to use,
analysis of the
datasheets and
documentations of
each planned device,
calculation of derived
cost (self-hosted)

Topology graph Direct Network planning
Link capacities Direct Planning of commu-

nication technologies,
analysis of the capac-
ity permitted by each
planned technology

CAPEX of network
equipment

Direct Provided by the sup-
plier

OPEX of network
equipment

Estimated Network planning,
analysis of the
datasheets and
documentations
of each planned
networking device,
calculation of derived
cost

B. NIoTO framework

NIoTO takes all the inputs and provides the optimal de-
ployment plan meeting the defined QoS objectives. To do so,
NIoTO considers how services need to be executed in the
computing resources, how executing these services in certain
computing resources generates network traffic, and how the
network manages such traffic. Following the example defined

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

6 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

in Sec. II: given an example request for detecting anomalies
in an ECG, if both services are deployed in the same machine,
traffic will be sent back and forth between the IoMT device
and said machine. However, if each service is deployed in
a different machine, an additional traffic flow between both
machines is required as well. The best deployment depends
on (according to the QoS objective that has been set) the
QoS the network is able to provide depending on the SDN
controller placement and the QoS provided by each machine.
NIoTO automatically selects the deployment that provides
the best QoS considering all the three dimensions and their
interplay. Nevertheless, a deployment plan that is optimal
at some specific moment could be sub-optimal when the
application context changes. Therefore, the IoT application
deployment plan should be continuously evaluated and mod-
ified to ensure that the defined QoS is always met. There
are two key phases with different time constraints to find the
optimal deployment: design-time, and run-time. During the
design phase, the application and infrastructure barely change
their estimations, and there is no strict time limitation for
obtaining the optimal deployment plan. Instead, during the
execution, the infrastructure is dynamic and the monitored
data often changes, and thus deployment plans are periodically
needed. These periods cannot be very long, especially in
cases in which a sudden spike in requests may require a
deployment adaptation to maintain the QoS. The version of
NIoTO presented in this paper is only suitable for design time
optimization, due to the techniques used on its implementation.
Nonetheless, the development and implementation of a version
suitable for execution time, making use of other techniques
that allow for faster optimizations, is one of our main future
works.

To identify the optimal deployment plan at design-time,
NIoTO makes use of MILP. This technique guarantees that
the solution given as output meets all the constraints and is an
optimal solution considering the given objective function. In
order to support the three considered objectives (response time,
cost and both), three different objective functions are defined.
The MILP formulation of NIoTO tries to find an optimal
deployment that places services and SDN controllers in a
feasible way, respecting next constraints: i) RAM resources
are not exceeded; ii) each traffic flow, regardless if it is control
traffic or not, has a single source, a single destination and it is
fully routed through a set of links (i.e., it is not divisible); and
iii) link capacities are not exceeded. Then, the QoS objective
function is applied so that the deployment is both feasible and
optimal. In the case that both objectives are considered at the
same time, i.e., response time and cost, NIoTO tries to find the
optimal trade-off between them. While using or adding more
resources to the architecture provides better response time, it
is also costly, and vice-versa , thus NIoTO considers both to
find the best compromise.

C. Outputs

NIoTO’s output is a set of the placement decisions, i.e., a
deployment plan for both IoT services and SDN controllers.
The deployment plan follows certain patterns. For instance,

each service replica needs to be deployed on the machine (or
machines) it will be executed, the SDN controllers must be
co-located with switches [7], each SDN switch is under the
control of a single given SDN controller and traffic must be
steered from the device requesting a service (or a set of them)
to the machine where it is executed.

At design time, the deployment plan is a guide for the
application’s operation engineer, system administrator and
network administrator. Information about which elements and
how they should be used, as well as how to make an initial
IoT application and SDN controller deployment are provided.

IV. PROBLEM FORMULATION

In this section, the MILP formulation that the NIoTO
framework uses at design time is detailed. This version holis-
tically optimizes the application, computing and networking
dimensions. This formulation optimizes the number of micro-
service replicas required in the application dimension, where in
the computing dimensions are each of the replicas deployed,
as well as SDN controller placement and traffic routing in
the networking dimension. This formulation is structured into
four tightly coupled elements: parameters, decision variables,
objective function, and constraints, that will be explained in the
same order. Moreover, Table II provides a summary and quick
reference of the notations used throughout the formulation.

A. Parameters

The parameters of a MILP formulation are its inputs: values
that are provided to the formulation at run-time and stay fixed
during the MILP solving process. Thus, the parameters of the
formulation are the inputs of the NIoTO framework.

Let the deployment infrastructure be represented as a graph
G = {V,L}. Let V be the set of vertices, which comprises
both the computing and networking dimensions. The term
vertices is used instead of nodes to avoid confusions with the
term fog nodes. Let C be the set of computing devices in the
infrastructure, and let S be the set of SDN switches, so that
V = C ∪ S;C ∩ S = ∅. Furthermore, let L be the links that
connect the infrastructure’s vertices, i.e., lij ∈ L; i, j ∈ V .

The basic information of each computing device c ∈ C
comprises its amount of available RAM, rc, measured in bytes.
For the response time objective, QoS-specific information
includes the device’s CPU clock speed in Hz, Pc. On the
other hand, deployment cost-specific information comprises
the CAPEX of the device, CAPEXc, and the device’s OPEX
per cycle, OPEXΩ

c .
For each SDN switch s ∈ S, its basic information is

related to its position within the infrastructure, which is
already represented in G. Thus, only cost-specific information
is required: its CAPEX CAPEXs, the CAPEX of an SDN
controller placed in the switch CAPEXCNT

s , its OPEX per
second OPEXs, and the analoguous OPEX of a controller
OPEXCNT

s . Response time QoS-specific information, such
as control latency, depends on controller placement, and thus
cannot be known a priori. Therefore, control latency is not an
input, it is an internal calculation of the formulation instead.
Finally, the size of the control packets used on the SDN

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

HERRERA et al.: JOINT OPTIMIZATION OF RESPONSE TIME AND DEPLOYMENT COST IN NEXT-GEN IOT APPLICATIONS 7

Table II: List of formulation notations.

Parameter Meaning
G Graph that represents the infrastructure
V Set of vertices of G
C Subset of V that are computing devices.
S Subset of V that are SDN switches
L Set of links of G
W Set of workflows of the IoT application
rc RAM memory of the computing device c
Pc CPU clock speed of the computing device c

CAPEXc CAPEX of the computing device c
OPEXΩ

c OPEX per cycle of the computing device c
CAPEXs CAPEX of the SDN switch s
OPEXs OPEX of the SDN switch s

CAPEXCNT
s CAPEX of placing a controller on the SDN switch

s
OPEXCNT

s OPEX of the controller placed on the SDN switch
s

σ Size of the SDN control packets
θij Capacity of the link lij
δij Latency of the link lij

WS(w, c) Boolean function that indicates whether the work-
flow w is requested by the device c or not

Im Size of the input of the micro-service m
Om Size of the output of the micro-service m
Ωm CPU cycles of the micro-service m
ϵOBJ Boolean that indicates whether the QoS objective

OBJ is enabled or not
uc Boolean that indicates whether the computing de-

vice c is in use or not
us Boolean that indicates whether the SDN switch s is

in use or not
Decision variable Meaning

zwcma
Boolean to determine if the micro-service ma of the
workflow w is deployed to the computing device c

fcwma
ij Boolean to determine if the traffic generated by the

computing device c as a consequence of the micro-
service ma of the workflow w is routed through the
link lij

xs Boolean to determine if a controller is placed on the
SDN switch s

yss′ Boolean to determine if the SDN switch s is mapped
to the controller placed on SDN switch s′

cfs
ij Boolean to determine if the control traffic generated

by the SDN switch s is routed through the link lij

network, σ, is required as basic information. Nonetheless, σ
does not depend on the SDN controller’s deployment, but on
the version of the OpenFlow protocol used [27].

The links that bind the infrastructure’s vertices together
have a limited available capacity θij , which is part of their
basic information. For the response time objective, each link’s
latency δij must be known.

On the application dimension, NIoTO models execution as
functionalities. A functionality, or workflow, is a request for
the execution of a micro-service, or the execution of a set
of micro-services in an ordered, pipelined manner. Following
the example from Sec. II, a functionality may request for the
execution of the ECG analyzer, the anomaly detector and the
encryption service, so that the commented ECG outputted by
the first micro-service serves as input to the anomaly detector,
and the anomaly information is later encrypted for its safe
storage. Thus, let W be the set of workflows requested for
the application. Each workflow w ∈ W is requested by a
certain computing device, therefore, let WS(w, c) be a binary
function that evaluates to 1 if c requests workflow w and 0
otherwise. Moreover, let each workflow w ∈ W be an ordered

set of micro-services w = {m1,m2, ...,m|w|}.
Each of these micro-services requires basic information,

namely, the size of its input and output data, Im and Om

respectively, and the amount of RAM it consumes, rm. The
QoS-specific information for response time also includes the
number of CPU cycles that the micro-service requires to fully
execute, Ωm. Micro-services do not need any cost-specific
information, as the costs derived from micro-services are a
consequence of their deployment and execution, and thus,
depend on the resources from the networking and computing
dimensions used to execute them.

Finally, in order to enable and weigh the importance the
QoS objectives, we add a parameter named ϵOBJ , which is a
positive real number, or 0. ϵOBJ represents the weight of the
objective OBJ in the optimization. It is important to note that
the sum of all the values of ϵOBJ through all objectives must
be exactly 1.

B. Decision variables

Similar to how parameters are the inputs of the MILP
formulation, decision variables can be seen as its output: a
set of values that the formulation must manipulate in order to
find the optimal combination of values. Nonetheless, MILP
is only able to manipulate integer decision variables, thus
conditioning the information representation of the output.
Concretely, NIoTO makes use of binary decision variables to
represent information.

Firstly, the micro-service replication deployment must be
modeled. To do so, binary variables are used: let zwcma

be a
binary variable that takes a value of 1 if the micro-service
ma of the workflow w is deployed to the computing device
c, and 0 otherwise. These variables automatically account for
the number of replicas: if different workflows have the same
micro-service deployed to the same computing device, they
are sharing a single replica. Otherwise, multiple replicas exist.
Secondly, the traffic flows generated by the communications
between computing devices (i.e., to request the execution of
the next micro-service in the workflow to another computing
device) must also be modeled. Thus, let f cwma

ij be a binary
variable that takes the value of 1 if the traffic flow generated
by the computing device c as a consequence of the execution
of the micro-service ma of the workflow w is routed through
the link lij , and 0 otherwise. With these decision variables,
NIoTO is able to plan the replication of micro-services at
the application dimension, the deployment of the replicas at
the computing dimension, and the routing of the application’s
traffic through the networking dimension.

Nonetheless, NIoTO must also take the control of the
networking dimension into account, and thus, place SDN
controllers accordingly. To do so, let xs be a binary variable,
that is 1 if there is an SDN controller placed in the switch s and
0 otherwise. Nonetheless, if multiple controllers are placed, the
mapping between SDN controllers and switches (i.e., which
controller is on charge of which switches) must also be found.
Hence, let yss′ be a binary variable, which takes the value of 1
if switch s is mapped to controller s′ and 0 otherwise. Finally,
NIoTO needs to account for the control traffic flows generated

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

8 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

by the communications between switches and controllers to
optimally route it. Let cfs

ij be a binary variable that takes the
value of 1 if the control traffic generated by switch s is routed
through link lij and 0 otherwise.

C. Objective function

While MILP formulations manipulate the values of their
decision variables to provide optimal outputs, they require a
manner to calculate the optimality of the output. This manner
is the objective function, which is a function of the decision
variables. It is important to note that MILP only supports
linear functions, i.e., it is strictly forbidden to multiply or non-
linear operations over decision variables (e.g., multiplying two
decision variables).

To better understand the objective function of NIoTO, we
first define different calculations that will later be integrated.
First, in order to calculate the execution time of a micro-
service, the number of cycles of the micro-service need to be
divided by the CPU clock speed of the computing device it is
deployed to. Thus, if the micro-service ma is deployed to the
computing device c, then its execution time is Ωma

Pc
. However,

it is not possible to know a priori where each micro-service
is executed. What can be known is that, given that ma is part
of workflow w, the variable zwcma

will have the value 1 if it
deployed to c and 0 otherwise. Based on this knowledge, we
can calculate the total execution time of a micro-service in
a workflow by calculating the sum of all possible execution
times in all computing devices, multiplied by zwcma

:

EXECw
ma

=
∑
c∈C

Ωma

Pc
zwcma

Therefore, we define the execution time of a workflow as
the sum of the execution times of its micro-services:

EXECw =

|w|∑
a=1

EXECw
ma

Next, workflow latency needs to be calculated. In the case of
a single flow that traverses a single link lij , latency is defined
as the latency of the link, i.e., δij . In a similar manner to the z
variable of micro-services, the binary variable that contains the
information of whether a flow traverses a link or not is f cwma

ij .
Nonetheless, there is an exception in the case of latency: if the
flow reaches an SDN switch, i.e., if j is an SDN switch, we
need to calculate the control latency of the switch, as it may
need to communicate with the SDN controller. In this case, the
binary variables for SDN control traffic flows is cfs

ij . Thus,
we can define the SDN control latency of a switch as:

CNTLATs =
∑
lij∈L

cfs
ijδij

Thus, with a known control latency, the latency of a traffic
flow from a micro-service to another in the context of a
workflow is is: i) its own latency if j is not an SDN switch,
or ii) its own latency plus the control latency of j otherwise.
To define it with more ease, let SW (i) be a function which

yields 1 if i ∈ S and 0 otherwise. Formally, it is possible to
denote this latency as:

LATw
ma

=
∑
c∈C

∑
lij∈L

(fcwma
ij δij + SW (j)CNTLATj)

Hence, to calculate the total latency of a workflow is the
sum of the latencies of its micro-services:

LATw =

|w|∑
a=1

LATw
ma

Thus, we define the average response time of the deploy-
ment as the average response times of all the workflows
requested, each of them being the sum of the execution time
and latency of the workflow:

RT =
1

|W |
∑
w∈W

EXECw + LATw

For the deployment cost objective, we need to split it in
CAPEX and OPEX. In both cases, we assume that, since
NIoTO operates at design time, any equipment that is not used
will not be acquired, and hence, only the CAPEX of the used
equipment should be considered. Thus, there is a need to know
whether an element is in use or not. In the case of computing
devices, we assume that one is used if it either requests at
least one workflow, or runs at least one micro-service:

uc = max(max
w∈W,a∈[1,|w|

(zwcma
),max

w∈W
(WS(w, c)))

In the case of switches, a switch is used if it belongs to
the route of at least one traffic flow, be it an application or a
control flow:

us = max(max
lis∈L,c∈C,w∈W,a∈[1,|w|]

(fcwma
is), max

lis∈L,s′∈S
(cfs′

is))

Thus, to obtain the CAPEX, we must multiply the CAPEX
of each of the elements by 0 if they are unused, and by 1 if
they are in use, and then sum the results. Formally:

CAPEX =
∑
c∈C

(CAPEXcuc)+∑
s∈S

(CAPEXsus + CAPEXCNT
s xs)

For the OPEX, we also need to account for the usage in
cycles of the computing devices. Formally:

OPEX =
∑
c∈C

(
∑
w∈W

|w|∑
a=1

OPEXΩ
c Ωmaz

w
cma

)+∑
s∈S

(OPEXsus +OPEXCNT
s xs)

For the final objective function, we should take into account
whether each of the QoS objectives is or is not enabled. More-
over, it is recommended to normalize each of the objectives so
the final values on each side are within the same range (e.g.,
between 0 and 1), especially if both objectives are enabled.
The final objective function is shown in Equation (1).

min ϵRTRT + ϵCOST (CAPEX +OPEX) (1)

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

HERRERA et al.: JOINT OPTIMIZATION OF RESPONSE TIME AND DEPLOYMENT COST IN NEXT-GEN IOT APPLICATIONS 9

D. Constraints

With only parameters, decision variables and an objective
function, an MILP formulation will find the combination of
values for the variable that optimizes the objective function.
However, this may lead to illegal situations in our problem:
the limited capacities of computing devices and links could be
surpassed, micro-services could have zero replicas, the SDN
controller could be undeployed, switches may not be related to
SDN controllers... In order to make the solution legal within
the problem, we enforce these rules through constraints.

The constraints of NIoTO are as follows:∑
c∈C

zwcma
= 1∀w ∈ W,a ∈ [1, |w|] (2)

∑
w∈W

|w|∑
a=1

zwcma
rma ≤ rc∀c ∈ C (3)

∑
s′∈S

yss′ = 1∀s ∈ S (4)

yss′ ≤ xs∀s, s′ ∈ S (5)

∑
j∈V

fcwm1
ij − fcwm1

ji =

0 if i ∈ S

WS(w, c)(1− zwim1
) if i = c

−WS(w, c)zwim1
otherwise.

∀i ∈ V, c ∈ C,w ∈ W

(6)

− zwcma−1
+ z′iwcma

≤ 0 (7)

− 1 + zwima
+ z′iwcma

≤ 0 (8)

zwcma−1
+ 1− zwima

− z′iwcma
≤ 1 (9)

− zwcma−1
+ z′′iwcma

≤ 0 (10)

− zwima
+ z′′iwcma

≤ 0 (11)

zwcma−1
+ zwima

− z′′iwcma
≤ 1 (12)

∑
j∈V

fcwma
ij − fcwma

ji =

0 if i ∈ S

z′iwcma
if i = c

−z′′iwcma
otherwise.

∀i ∈ V, c ∈ C,w ∈ W,a ∈ [2, |w|]

(13)

∑
j∈V

cfs
ij − cfs

ji =

0 if i ∈ C

1− ysi if i = s

−ysi otherwise

∀i ∈ V, s ∈ S

(14)

∑
c∈C

∑
w∈W

[(

|w|∑
a=1

fcwma
ij Ima)] +

∑
s∈S

[cfs
ijσ] <= θij

∀lij ∈ L

(15)

Equation (2) guarantees that each micro-service in a work-
flow is instantiated exactly once. Equation (3) enforces the

RAM limit on the computing devices. Equation (4) makes
sure each switch is controller by a single SDN controller,
which must first be deployed as of Equation (5). Equation (6)
guarantees that the traffic flow of starting a workflow has the
workflow’s requester as its source and the computing device
that has deployed the first micro-service of the workflow as
its destination, which is an special case of the general flow
constraint from Equation (13). However, for micro-services
beyond the first of a workflow, it is required to know if the
machine that executed the previous micro-service is the same
as the one hosting the current one, which would require vari-
able multiplication. Since only linear constraints can be used
in MILP, Equations (7-12) are used to linearize the problem by
exploiting the properties of binary variables, which guarantee
that z′iwcma

= zwcma
(1 − zwima

) and z′′iwcma
= zwcma−1

zwima
.

For control flow, Equation (14) has the same role. Finally,
Equation (15) enforces link capacity.

By setting the parameters of the MILP formulation, an
user can apply the NIoTO framework to hierarchical multi-
dimensional architectures, making it possible to optimize the
deployment of arbitrary next-gen IoT applications as long as
they follow the NIoTO model.

V. PERFORMANCE EVALUATION

In this section, the possible benefits achieved when NIoTO
is applied are evaluated: shorter response times and lower
costs. These benefits are the result of NIoTO’s consideration
of the application, computing and networking dimensions by
assessing the number of micro-service replicas, deploying
the micro-services and placing SDN controllers, respectively.
Moreover, the potential drawbacks of NIoTO are also an-
alyzed. At first, the simulation environment is described.
Then, three different sets of experiments are proposed. In
the first one, the MILP solver is run over four topologies
of different sizes with different optimization objectives to
evaluate the trade-off between the deployment cost and the
response time. The second analysis aims at evaluating the
computational complexity of NIoTO by assessing the time
required to optimize different scenarios, while the third one is
devoted to comparing NIoTO’s performance in both, response
time and cost, with that of state-of-the-art benchmarks. This
last analysis is carried out by comparing the response time
and costs yielded by NIoTO with those obtained with the
benchmarks.

A. Simulation Environment

In order to evaluate the performance of NIoTO framework,
four different scenarios based on the example described in
Sec. II have been considered. In each scenario, we vary
the parameters of the three considered dimensions. In the
application dimension, we vary the number of users (and
thus, of workflow requests). In the computing dimension, we
vary the number of fog nodes where such services can be
deployed, as well as the number of gateway nodes connecting
the network fabric to the cloud. The number of SDN nodes
of the network is varied in the networking dimension. To
evaluate the scalability of the proposed solution, values for

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

10 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

previous parameters are increased in each scenario, deriving in
the simulation set-up shown in Tab. III. The different network
topologies leveraged for evaluation were generated using the
Erdös-Rényi model for network generation [28], applying the
parameters for the simulation set-up as reported by Tab. III.
The specific model of each element in the scenario, as well as
their CAPEX and OPEX (retrieved from [29]), are detailed
in Tab. IV. The specific technical characteristics of these
devices, such as their available RAM or CPU clock speed,
were retrieved from the official specifications of each device.
Thus, to retrieve this information, we refer the reader to the
official datasheets and documentations of the computational
resources. Regarding the type of wireless connection used by
IoT devices to connect with the SDN network, both Wi-Fi
and Bluetooth technologies are exploited by Arduino devices,
while 6LoWPAN and ZigBee technologies are used by Texas
Instruments ones. The access layer makes use of these wireless
technologies, while the network core is connected through Gi-
gabit Ethernet links. Link capacities were adjusted according
to the capacity of the link’s technology (e.g., Gigabit Ethernet
links have 1 Gbps capacity, Wi-Fi links have 300 Mbps).
To calculate the length of the links, the hospital in [30] is
used as a reference for size. Thus, each of these links are, at
most, 90 meters long, and their lengths were obtained from
a normal distribution of mean µ = 45 and standard deviation
σ = 18. Their transport latencies were calculated based on
these lengths. Finally, the number of micro-service replicas
that are deployed ranges between 18 and 125, depending on
the number of users in the simulation, since more recurrent
services are replicated as more users need them to maintain
the QoS. The technical details for each of the microservices
can be found in Tab. V

Table III: Parameter setting.

Scenario SDN
Nodes

Users Fog Nodes Gateways

7-node 7 5 1 1
20-node 20 15 3 2
50-node 50 40 10 5
150-node 150 50 20 10

B. Response Time-Deployment Cost Trade-off

The first analysis we propose aims at evaluating the perfor-
mance of the proposed framework over two different metrics:
i) average response time; and ii) deployment cost. At first,
each single objective is independently evaluated. Then, both
metrics are compared to find a suitable trade-off representing
the best deployment cost-response time compromise, giving
the same weight to both metrics.

Fig. 3 shows the outcomes of this analysis in terms of
deployment cost, whereas Fig. 4 depicts the results in the
workflows’ average response time. These two figures present
the analysis for three groups of simulations: i) the objective
function aims at minimizing the average response time; ii)
the objective function is defined as the minimization of the
deployment cost; and iii) a multi-objective function where
the weight given to both metrics is the same. By inspecting

Table IV: Models and costs considered for each infrastructure
element.

Element Model CAPEX OPEX
IoT device Arduino UNO 20 C 6.10 · 10−16

C/cycle
IoT device Texas

Instruments
CC2538

4.65 C 1.59 · 10−16

C/cycle

Fog node Pandaboard 215 C 1.48 · 10−16

C/cycle
Fog node edge.network

instance
0 C 3.47 · 10−16

C/cycle
Cloud node Amazon

Web Services
m5.xlarge
instance

0 C 5.56 · 10−15

C/cycle

Cloud node Google Cloud
Platform E2-
Standard-4
instance

0 C 4.17 · 10−15

C/cycle

SDN switch Ruijie
Networks
RG-S5310-
24GT4XS

641 C 1.15·10−6 C/s

SDN controller Raspberry Pi 3
A+

22.20 C 2.12·10−7 C/s

Wi-Fi base sta-
tion

Pulse Electron-
ics TWR0083

21 C 3.39·10−8 C/s

Bluetooth base
station

Pulse Electron-
ics TWR0083

21 C 1.06 · 10−10

C/s
ZigBee base
station

DIGI XB3-
24Z8UM-J

13.73 C 2.06·10−8 C/s

6LoWPAN
base station

Renesas
Electronics
ZWIR4532-U

28.80 C 3.82·10−7 C/s

Table V: Input information for micro-services, as reported in
[17]

Micro-
service

RAM
required

Input size Output size Execution
cycles

ECG and
blood
pressure
monitor

393 MB 8 Kbps 10 Kbps
(ECG)/1
Kbps
(blood
pressure)

24.44 · 109
cycles

Compression 136 MB 10 Kbps 2.27 Kbps 9.95 · 109

cycles
Encryption 79 MB 2.27 Kbps

(ECG)/1
Kbps
(blood
pressure)

2.30 Kbps
(ECG)/1.02
Kbps
(blood
pressure)

6.18 · 109

cycles

Fig. 3, it is clear that the size of the network highly impacts
the cost of the associated deployment. However, there are no
big differences in the reported cost when the objective of the
optimization is varied, i.e., similar results are obtained for the
optimization of single metrics as well as for the joint aver-
age response time-deployment cost objective. The difference
between the joint objective and cost is negligible, while the
average response time objectives yields deployments between
467 and 8610C more expensive. Nonetheless, if we move
our attention to the results on Fig. 4, several considerations
emerge. At first, the network size negatively impacts the ob-
tained average response time when the optimization objective
is the deployment cost, being up to 16.28 times longer in
large scenarios compared with smaller ones. Conversely, a

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

HERRERA et al.: JOINT OPTIMIZATION OF RESPONSE TIME AND DEPLOYMENT COST IN NEXT-GEN IOT APPLICATIONS 11

longer response time is experienced in smaller scenarios when
response time is the unique metric to optimize. The main
reason behind this behavior is that smaller scenarios have
fewer resources, specially fog nodes, and thus more services
need to be deployed to the cloud. Finally, if both metrics are
equally balanced, the difference in the experienced response
time is negligible.

As a summary, from the previous evaluation , next remarks
are extracted. First, the network size is the parameter that
impacts the cost of infrastructure deployment, regardless the
type of optimization performed. Second, there is a direct
proportional relationship between the network size and the
average response time when the objective of the optimization
is the deployment cost. However, such relationship is inverse
when the metric to optimize is the response time. Finally, if
a joint optimization is performed, no clear impact is experi-
enced.

Average re
sponse tim

e
Both metrics Cost

Objective

0k

40k

80k

120k

160k

Ye
ar
ly
 c
os
t (
€)

Scenario
7-node
20-node

50-node
150-node

Figure 3: Cost as a function of the optimization objective for
the 4 considered scenarios.

Average response time
Both metrics Cost

Objective

0

20

40

60

80

100

120

Av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s) Scenario
7-node
20-node
50-node
150-node

Figure 4: Average response time as a function of the optimiza-
tion objective for the 4 considered scenarios.

C. Computational Analysis

In the following, an analysis of the computation time
required by NIoTO to obtain a solution is performed. NIoTO
has been implemented using Python’s MIP library [31], solved
using Gurobi, and run on a quad-core Intel-based machine at
2 GHz with 16 GB of RAM. Fig. 5 shows the outcomes of
the time required to provide an optimal deployment solution
as a function of the topology size for the three proposed
optimizations.

The first aspect to remark is the exponential increase of
the computation time (note the logarithmic y axis) w.r.t. the
topology size, for each of the three optimizations. As expected,
the joint optimization of response time and cost is the one that
requires more time to provide a solution, taking between 2 and
3.5 times more time than the optimization of a single objective.
Finally, the metric that in general requires less time to converge
is the deployment cost, lasting, on average, 502.55 seconds
less than the response time as a single optimization objective.
This analysis clearly shows that the MILP version of NIoTO,
especially in big scenarios, is mainly suitable for design time
optimization. Nonetheless, the development of a faster version
of NIoTO, able to optimize and adapt the deployment during
execution time, is one of the key future works.

7-node 20-node 50-node 150-node
Scenario

10−1

100

101

102

103

Co
m
pu

ta
tio

n
tim

e
(s
)

Objecti e
A erage response time
Both metrics
Cost

Figure 5: Computation time required to provide an optimal
deployment solution as a function of the topology size.

D. Benchmark comparison

The objective of the final analysis is to compare the re-
sults obtained by NIoTO with other similar, state-of-the-art
techniques. Concretely, two benchmarks are considered for
comparison: ModuleMapping [32], as a benchmark aimed
at response time and resource usage optimization; and Fog-
Part [33], which focuses on optimizing the financial costs of
the deployment. To the best of our knowledge, no benchmarks
that jointly optimize response time and cost have been found:
ModuleMapping focuses exclusively on response time and ig-
nores cost, while FogPart focuses on cost and ignores response
time optimization. Moreover, it is important to note that, out of
these three techniques, only NIoTO has a holistic view of the
hierarchical multi-dimensional architecture. Nonetheless, the
input information was adapted to each of the benchmarks in
order to maintain a fair comparison (e.g., FogPart considers the

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

12 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

cost of sending data from a computing device to the cloud as a
single, aggregated cost, rather than a multitude of CAPEX and
OPEX items [33]; and thus, it was provided as an aggregate
of the CAPEX and OPEX of the network equipment used to
send the data).

The results of the comparison are depicted in Fig. 6 for
average response time and in Fig. 7 for deployment cost, while
they are detailed in Table VI for response time and Table VII
for cost. Moreover, the comparison includes two categories
for NIoTO (one for the appropriate objective and one for
the joint approach), and a single one for the benchmark that
optimizes the appropriate objective (i.e., ModuleMapping for
response time and FogPart for cost). Starting the comparison
with response times (Fig. 6, Table VI), we find NIoTO with
the average response time objective as the best technique for
all the analyzed scenarios, which we consider to be optimal.
Its performance is closely followed by NIoTO optimizing both
metrics, with an average optimality gap of approximately 9.16
ms. ModuleMapping is the last one, with an average optimality
gap of 40.22 ms. The response time of ModuleMapping is
constant through all the topology sizes due to the fact it only
considers two of the three dimensions: application and com-
puting. ModuleMapping uses the computational resources of a
device, as well as the resources required by the micro-service,
as the main metric to select where to deploy a micro-service
to [32]. Since the cloud is consistently the most powerful and
resourceful computing device, ModuleMapping will deploy as
many micro-services as possible there. Due to the usage of
fog nodes to reduce the experienced latency, NIoTO achieves
an average speed-up of 5.11 w.r.t. ModuleMapping.

7-node 20-node 50-node 150-node
Scenario

0

10

20

30

40

50

Av
er
ag

e
re
sp

on
se

 ti
m
e
(m

s)

NIoTO (Average response time)
NIoTO (Both metrics)
ModuleMapping

Figure 6: Average response time comparison of NIoTO and
ModuleMapping.

Table VI: Average response times yielded by NIoTO and
ModuleMapping.

Scenario NIoTO
(average
response time)

NIoTO (both
metrics)

ModuleMapping

7-node 15.005 ms 25.004 ms 50.004 ms
20-node 15.005 ms 23.338 ms 50.004 ms
50-node 12.506 ms 19.120 ms 50.004 ms
150-node 5.508 ms 16.882 ms 50.004 ms

Continuing with cost, as depicted in Fig. 7 and detailed in
Table VII, NIoTO with the cost objective is the optimal solu-
tion for the analyzed scenarios. Once again, we find the next

best solution to be NIoTO optimizing both metrics, with an
optimality gap of approximately 50C (0.08%). FogPart is the
third best technique, with an optimality gap of 3954C (6.22%).
It is important to note that the gap between FogPart and NIoTO
increases with topology size, and thus, using FogPart in larger
topologies may lead to larger optimality gaps. The difference
in costs responds to FogPart’s partial view on the scenario,
not considering the computing dimension. To choose the node
to deploy a micro-service to, FogPart compares the cost of
communicating the previous micro-service in the workflow
with the cloud, and the cost of communicating with a fog node
instead, choosing the most cost-effective communication [33].
Thus, the costs of the computing dimension, such as the
CAPEX of the computing devices used or their OPEX per
cycle, may not be optimal. This is precisely the difference we
find between NIoTO and FogPart. In a general conclusion,
we find NIoTO, with the according objective, as the optimal
solution in terms of response time and cost. Moreover, the
version of NIoTO that optimizes both metrics at the same
time is able to perform better at both dimensions than state-
of-the-art techniques aimed at their optimization.

7-node 20-node 50-node 150-node
Scenario

0k

40k

80k

120k

160k
Ye
ar
ly
 c
os

t (
€)

NIoTO (Both metrics)
NIoTO (Cost)
FogPart

Figure 7: Deployment cost comparison of NIoTO and FogPart.

Table VII: Yearly costs of deploying the scenario using NIoTO
and FogPart.

Scenario NIoTO (cost) NIoTO (both
metrics)

FogPart

7-node 8,070C 8,070C 8,233C
20-node 23,672C 23,673C 23,673C
50-node 59,801C 59,801C 65,644C
150-node 177,508C 177,772C 184,502C

VI. CONCLUSIONS AND FUTURE WORK

As the number of IoT devices grows every year, the de-
mand for QoS-strict IoT applications, hardly suitable for a
cloud-based deployment, does as well. A hierarchical multi-
dimensional architecture is an enabler for this kind of appli-
cations, but optimizing the QoS requires the consideration
of the interplay between the computing, networking and
application dimensions. In this work, we present NIoTO, a
framework to optimally deploy next-gen IoT applications in a
hierarchical multi-dimensional architecture, considering all the
three aforementioned dimensions. NIoTO is able to optimally
assess the number of micro-service replicas in the application

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

HERRERA et al.: JOINT OPTIMIZATION OF RESPONSE TIME AND DEPLOYMENT COST IN NEXT-GEN IOT APPLICATIONS 13

dimension, their deployment in the computing dimension,
and the placement of the SDN controller in the networking
dimension, along with optimizing the routing of the generated
traffic flows. The joint consideration of all three dimensions,
and the optimization of the response time and cost, including
the assessment of the optimal trade-off between them, allows
it to optimize each of the metrics further than related, state-
of-the-art frameworks. In the future, we expect to support
run-time, dynamic optimizations of the deployment through
the development of a faster solver for NIoTO, enabling it to
adapt the deployment to environmental changes. Moreover, we
expect to evaluate NIoTO’s performance over real or emulated
network test-beds.

REFERENCES

[1] Cisco. (2020, March) Cisco Annual Internet Report (2018–2023).
(visited on Jan. 29, 2021). [Online]. Available: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.pdf

[2] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and
A. Zanni, “A survey on fog computing for the internet of things,”
Pervasive and Mobile Computing, vol. 52, pp. 71 – 99, 2019.

[3] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and
K. Mankodiya, “Towards fog-driven iot ehealth: Promises and challenges
of iot in medicine and healthcare,” Future Generation Computer Sys-
tems, vol. 78, pp. 659–676, 2018.

[4] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your apps in
the fog: State of the art and open challenges,” Software: Practice and
Experience, vol. 50, no. 5, pp. 719–740, 2020.

[5] S. Forti and A. Brogi, “Continuous reasoning for managing next-gen
distributed applications,” arXiv preprint arXiv:2009.10245, 2020.

[6] L. Nkenyereye, J. Y. Hwang, Q.-V. Pham, and J. S. Song, “Virtual iot
service slice functions for multi-access edge computing platform,” IEEE
Internet of Things Journal, 2021.

[7] T. Das, V. Sridharan, and M. Gurusamy, “A survey on controller
placement in sdn,” IEEE Communications Surveys & Tutorials, pp. 472–
503, 2019.

[8] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Computer,
vol. 40, no. 11, pp. 38–45, 2007.

[9] D. Kutscher, T. Karkkainen, and J. Ott, “Directions for Computing
in the Network,” Internet Engineering Task Force, Internet-
Draft draft-kutscher-coinrg-dir-02, Jul. 2020, (visited on Jan.
29, 2021). [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-kutscher-coinrg-dir-02

[10] J. L. Herrera, J. Galán-Jiménez, J. Berrocal, and J. M. Murillo, “Op-
timizing the response time in sdn-fog environments for time-strict iot
applications,” IEEE Internet of Things Journal, 2021.

[11] K. Indrasiri. Microservices in practice - key ar-
chitectural concepts of an MSA. (visited on Jan.
14, 2021). [Online]. Available: https://wso2.com/whitepapers/
microservices-in-practice-key-architectural-concepts-of-an-msa/

[12] H. Haas, D. Orchard, F. McCabe, C. Ferris, E. Newcomer, D. Booth,
and M. Champion, “Web services architecture,” W3C, W3C Note, Feb.
2004, https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[13] GRPC, “Documentation — gRPC,” 2021. [Online]. Available: https:
//grpc.io/docs/

[14] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[15] R. Priya, K. H. Prabha, R. Hemalatha, P. Vanmathi, and M. Ilakiya, “A
secured remote health monitoring system based on iot,” Annals of the
Romanian Society for Cell Biology, pp. 17 759–17 765, 2021.

[16] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and
H. Tenhunen, “Fog computing in healthcare internet of things: A case
study on ecg feature extraction,” in 2015 IEEE international confer-
ence on computer and information technology; ubiquitous computing
and communications; dependable, autonomic and secure computing;
pervasive intelligence and computing. IEEE, 2015, pp. 356–363.

[17] A. Limaye and T. Adegbija, “A workload characterization for the internet
of medical things (iomt),” in 2017 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2017, pp. 302–307.

[18] M. Huang, W. Liu, T. Wang, H. Song, X. Li, and A. Liu, “A queuing
delay utilization scheme for on-path service aggregation in services-
oriented computing networks,” IEEE Access, vol. 7, pp. 23 816–23 833,
2019.

[19] Q. Duan, S. Wang, and N. Ansari, “Convergence of networking and
cloud/edge computing: Status, challenges, and opportunities,” IEEE
Network, vol. 34, no. 6, pp. 148–155, 2020.

[20] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and
future directions,” IEEE Communications Surveys Tutorials, vol. 19,
no. 4, pp. 2359–2391, 2017.

[21] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun, “Minimizing
controller response time through flow redirecting in sdns,” IEEE/ACM
Transactions on Networking, vol. 26, no. 1, pp. 562–575, 2018.

[22] ETSI. Open Source NFV Management and Orchestration (MANO).
(visited on Jan. 14, 2021). [Online]. Available: https://www.etsi.org/
technologies/open-source-mano

[23] M. M. Badawy, Z. H. Ali, and H. A. Ali, “Qos provisioning framework
for service-oriented internet of things (iot),” Cluster Computing, pp. 1–
17, 2019.

[24] J. Berrocal, J. Garcia-Alonso, C. Vicente-Chicote, J. Hernández,
T. Mikkonen, C. Canal, and J. M. Murillo, “Early analysis of
resource consumption patterns in mobile applications,” Pervasive and
Mobile Computing, vol. 35, pp. 32 – 50, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574119216300797

[25] M. Ronchetti, G. Succi, W. Pedrycz, and B. Russo, “Early
estimation of software size in object-oriented environments a case
study in a cmm level 3 software firm,” Information Sciences,
vol. 176, no. 5, pp. 475–489, 2006. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0020025505000083

[26] M. Bichier and K.-J. Lin, “Service-oriented computing,” Computer,
vol. 39, no. 3, pp. 99–101, 2006.

[27] Open Networking Foundation, “OpenFlow Switch Spec-
ification 1.3.0,” pp. 1–3205, 2013. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

[28] P. Erdös and A. Rényi, “On random graphs i,” Publ. math. debrecen,
vol. 6, no. 290-297, p. 18, 1959.

[29] J. Herrera, J. Galán-Jiménez, J. Garcı́a-Alonso, J. Berrocal, and
J. Murillo. (2021) Joint optimization of response time and deployment
cost in next-gen iot applications. (visited on Oct. 14, 2021). [Online].
Available: https://tinyurl.com/nioto-capex-opex

[30] G. Maps, “Hospital provincial nuestra sra. de la montaña,” 2021.
[Online]. Available: https://goo.gl/maps/NqsPvQbw7JhaSW8k6

[31] T. A. Toffolo and H. G. Santos, “Python-MIP,” 2021. [Online].
Available: https://www.python-mip.com/

[32] M. Taneja and A. Davy, “Resource aware placement of iot application
modules in fog-cloud computing paradigm,” in 2017 IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM). IEEE,
2017, pp. 1222–1228.

[33] Z. Á. Mann, A. Metzger, J. Prade, and R. Seidl, “Optimized application
deployment in the fog,” in International Conference on Service-Oriented
Computing. Springer, 2019, pp. 283–298.

Juan Luis Herrera received Bachelor’s degree
in software engineering from the University of
Extremadura in 2019. He is a researcher in the
University of Extremadura’s Computer Science and
Communications Engineering Department. His main
research interests include IoT, fog computing and
SDN.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://datatracker.ietf.org/doc/html/draft-kutscher-coinrg-dir-02
https://datatracker.ietf.org/doc/html/draft-kutscher-coinrg-dir-02
https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa/
https://grpc.io/docs/
https://grpc.io/docs/
https://www.etsi.org/technologies/open-source-mano
https://www.etsi.org/technologies/open-source-mano
http://www.sciencedirect.com/science/article/pii/S1574119216300797
https://www.sciencedirect.com/science/article/pii/S0020025505000083
https://www.sciencedirect.com/science/article/pii/S0020025505000083
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://tinyurl.com/nioto-capex-opex
https://goo.gl/maps/NqsPvQbw7JhaSW8k6
https://www.python-mip.com/

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3165646, IEEE Internet of
Things Journal

14 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

Jaime Galán-Jiménez received the Ph.D. in com-
puter science and communications from the Univer-
sity of Extremadura in 2014. He is currently with the
Computer Science and Communications Engineer-
ing Department, University of Extremadura, as an
Assistant Professor. His main research interests are
Software-Defined Networks, 5G network planning
and design, and mobile ad-hoc networks.

Jose Garcia-Alonso (IEEE Memeber) is an Asso-
ciate Professor at the University of Extremadura.
His research interests include software engineering,
mobile computing, pervasive computing, eHealth,
gerontechnology.

Javier Berrocal (IEEE Memeber) is a cofounder
of Gloin. His main research interests are software
architectures, mobile computing and edge and fog
computing. Berrocal has a PhD in computer science
from the University of Extremadura, where he is
currently an associate professor.

Juan M. Murillo (IEEE Member) is a cofounder
of Gloin and a full professor at the University of
Extremadura. His research interests include software
architectures, mobile computing, and cloud comput-
ing.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on May 11,2022 at 16:33:18 UTC from IEEE Xplore. Restrictions apply.

	Joint_Optimization_of_Response_Time_and_Deployment_Cost_in_Next-Gen_IoT_Applications
	JCR_IEEE INTERNET THINGS_2020 (2)

