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Abstract

Purpose
To compare aqueous humour (AH) dynamics in the presence of a precrystalline (Implant-
able Collamer Lens®; ICL) or iris-fixed (Artiflex®) phakic intraocular lens (PIOL).

Methods
By computational fluid dynamics simulation, AH flow was modelled through a peripheral iri-
dotomy (PI) or central lens hole (both 360 μm) in the presence of an Artiflex or ICL lens,
respectively. The impacts of AH flow were then determined in terms of wall shear stress
(WSS) produced on the endothelium or crystalline lens. Effects were also modelled for dif-
ferent scenarios of pupil diameter (PD 3.5 or 5.5 mm), ICL vault (100, 350, 800 μm) and
number of Artiflex iridotomies (1 or 2) and location (12 or 6 o'clock).

Results
For a PD of 3.5 mm, AH volumes flowing from the posterior to the anterior chamber were
37.6% of total flow through the lens hole (ICL) and 84.2% through PI (Artiflex). For an
enlarged PD (5.5 mm), corresponding values were 10.3% and 81.9% respectively, so PI
constitutes a very efficient way of evacuating AH. Central endothelialWSS in Pa was lower
for the large vault ICL and the Artiflex (1−03 and 1.1−03 respectively) compared to the PIOL-
free eye (1.6−03). Crystalline lensWSS was highest for the lowest vault ICL (1−04).
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Conclusions
AH flow varied according to the presence of a precrystalline or iris-fixed intraocular lens.
Endothelial WSS was lower for an implanted ICL with large vault and Artiflex than in the
PIOL-free eye, while highest crystallineWSS was recorded for the lowest vault ICL.

Introduction
To correct high myopia, two of the most popular options are the placement of a posterior
chamber (PC) or anterior chamber (AC) iris-fixed phakic intraocular lens (PIOL) such as the
implantable collamer lens (ICL, STAAR Surgical AG, Nidau, Switzerland)1 [1,2] or Artiflex
(Ophthec, The Netherlands)1, respectively [3,4].

Despite infrequent complications, these PIOLs have common potential risks such as ocular
hypertension, pupillary block, pigment dispersion, endothelial damage, angle narrowing, and
cataracts [3±10].

An implanted PIOL is an obstacle that hinders the passage of AH from the PC to the AC
through the pupil, forcing the AH to redistribute. To prevent such AH flow complications, a
peripheral iridotomy (PI) is performed before placement of an iris-fixed lens while the latest
ICL model (V4c) has a central hole or aquaport for AH flow [11±13]. In effect, AH plays a key
role in many complications. Thus, in the presence of a PIOL, reduced AH could directly cause
ocular hypertension or mechanical trauma, and indirectly may lead to the development of cat-
aract or endothelial damage by compromising oxygen and nutrient delivery to the cells.

To date the dynamics of AH flow[14±17] following the implant of a PIOL has been barely
addressed.[18±21] Kawamorita et al. [18] suggest that AH flow on the anterior surface of the
crystalline lens is improved by the presence of the central-hole in the ICL more than by an iri-
dotomy. Repetto et al. [20] examined the response of the cornea and iris to AH flow effects
produced after iris-fixed PIOL placement. Interestingly, Yamamoto et al. [22] showed that AH
flow through a PI is affected by pupil diameter (PD) and this flow could have possible effects
on the endothelium.

In the past few years, clinical studies have assessed the efficacy and safety of the more widely
used PIOLs, posterior chamber and iris-fixed [23±26]. However, no previous study has com-
pared AH flow dynamics in the presence these two PIOL types. The present study was des-
igned to compare AH flow and the endothelial and crystalline stresses produced by this flow in
the presence of these intraocular lenses in relation to factors such as PD, lens vault and number
or location of iridotomies.

Methods
The PIOLs numerically simulated were implantable collamer lens (ICL1, STAAR Surgical
AG, Nidau, Switzerland) and Artiflex1 (Ophtec, The Netherlands).

The ICL is a foldable phakic lens made of collamer, a biocompatible, flexible, and absorbent
material with a convex-concave central optic zone. This precrystalline lens is placed in the PC
between the iris and crystalline lens and is supported by its haptics in the ciliary sulcus. The
model employed was V4c which has a 360-micron hole in the middle of the optics, or KS-A-
quaport (STAAR Surgical AG). This port facilitates AH flow from the PC to AC, avoiding the
need for a PI as with previous ICL models. This PIOL was simulated using an 11 spherical
diopter rigid lens.

Aqueous humour dynamics in response to phakic lenses
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Artiflex is a foldable AC iris-fixed lens with two haptics as claws. It is made of polysiloxane
and has a convex-concave body. This lens was simulated for a single iridotomy of 360 µm at 12
or 6 o'clock, and a double iridotomy of 360 µm each at 10 and 2 o'clock.

We also simulated an eye without a PIOL. Standard values for the adult human eye and the
lenses used in the simulations are provided in Table 1. Fig 1 shows the dimensions of the ante-
rior segment in eyes implanted with ICL or Artiflex and in the PIOL-free eye employed in the
simulations.

Numerical simulation
A three-dimensional full study simulation based on computational fluid dynamics (CFD) was
performed with Ansys Fluent software (v16.2, ANSYS Inc. Pennsylvania, USA) enhancing our
previous geometry model [19]. Simulations were conducted in steady laminar flow mode, set-
ting a constant AH inflow rate of 2 µL/min (3.34 x 10±8 kg/s) and outflow boundary condition
at the outlet section [19]. No-slip boundary conditions were prescribed on the solid surfaces.
The behaviour of AH is Newtonian and incompressible. It was assumed that the fluid is

Table 1. Variables included in the numerical simulation based on standard values for an adult human eye and
implantable collamer lens (ICL) and Artiflex lens measurements.

Variable Value
Anterior chamber diameter (mm) 12
Anterior chamber depth (mm) 3.20
Crystalline lens diameter (mm) 9.0
Crystalline lens thickness (mm) 4.0
Iris thickness (mm) 0.18
Distance between iris and crystalline (µm) for ICL 0.93
Distance between iris and crystalline (mm) for Artiflex and PIOL-free eye (in the center of the lens) 0.27
ICL lens
Distance between iris and lens (mm) 0.12
Lens length (mm) 8.75
Lens width (mm) 3.50
Lens thickness (mm) 0.12
Central hole diameter (µm) 360
Vault = distance between crystalline and ICL lens (µm) 100; 350; 800
Artiflex lens
Lens length (mm) 8.5
Lens width (mm) 6
Lens thickness (mm) 0.45
Iridotomy (microns) 360
Other parameters Value
Linear expansion coefficient of aqueous humour b (K-1) 0.0003
Density of aqueous humour ρ0 (kg/m3) 998.2
Dynamic viscosity of aqueous humour µ (Pa�s) 0.001
Gravitational acceleration g (m/s2) 9.81
Thermal conductivity K (W/m�K) 0.6
Specific heat Cp (J/kg�K) 4182
Inflow surface area (mm2) 42.39
Outflow surface area (mm2) 86.75

mm = millimetres; kg = kilograms; m/s2 = metres per second.

https://doi.org/10.1371/journal.pone.0202128.t001
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removed through the trabecular meshwork at the same rate as it is produced. We did not con-
sider the uveoscleral pathway, only the trabecular pathway as this accounts for 90% of AH
removal. The temperature of the iris and the crystalline lens was set to 37ÊC.The temperature
of the anterior cornea was set to 34ÊCwhen the eye is open, and 37ÊCwhen is closed (the eye-
lid covers the cornea). The temperature of the posterior corneal surface was calculated assum-
ing a linear distribution across the cornea. The lenses were considered as adiabatic walls
because their thermal conductivities are much smaller than that of AH. The buoyancy effects
of the temperature gradient were modelled through the Boussinesq approximation assuming a
fluid density change with temperature of: r ¼ r0 1 � b T � T0ð Þ½ �. In a grid dependence anal-
ysis, we constructed three grids comprising coarse, medium or fine cells. Static pressure at a
fixed point was used as the reference variable. When results for the fine and coarse grids were
compared with those for the medium grid (7.5x105), variation was under 1% so the medium
grid was selected for the final calculations. WSS values lower than 10−4 Pa and 10−7 Pa could
not be calculated reliably when the eye is open and closed, respectively.

Fig 1. Standard measurements for a human eye used in the simulations. Anterior segment dimensions employed in the simulations and the phakic lens implanted:
ICL (A), ICL vault 800 µm (B, note the anterior displacement of the lens), Artiflex (C) and normal eye without a phakic intraocular lens (D).

https://doi.org/10.1371/journal.pone.0202128.g001
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Iridocorneal angle width was set at 30 degrees [10]. For this we had to modify the angle
using the software to adjust it to the high vault. Although the eye is fairly symmetrical about its
axis, this symmetry is broken by gravity, and consequently flow is three-dimensional. The
effects of gravity were also taken into account in the simulations.

Dynamic viscosity of 0.001 Pa s described for a normal human eye was used, [14]. We
examined the influence of the dynamic viscosity by considering the values 0.75−3 Pa s and
0.90−3 Pa s [27,28].

Variables analysed
The AH volume flowing through the passage ways tested (central hole in ICL and iridotomy in
Artiflex) from the PC to AC were compared for 14 scenarios differing according to: lens type
(ICL versus Artiflex), pupil diameter (PD, 3.5 or 5.5 mm), ICL vault (distance between the
anterior surface of the crystalline lens and the posterior surface of the ICL) simulated as nar-
row (100 microns, V100), standard (350 microns, V350), or wide (800 microns, V800), and
number (one or two) and location (12 or 6 o'clock) of iridotomies for Artiflex. Also, these situ-
ations were studied for both an open and a closed eye. To illustrate AH flow when the eye is
open, the trajectory analysis presented in Fig 2 shows streamlines coloured by velocity magni-
tude, i.e., from when AH is synthesized in the ciliary body to when it exits via the trabecular
meshwork. It may be seen a typical vortex due to the natural convection. S1 Fig shows the tra-
jectory analysis in the closed eye.

Wall shear stress (WSS) on the endothelium (Fig 3) was calculated for the whole corneal
surface and for successive concentric rings: >11 mm, 9±11mm, 7±9mm, 5±7mm, 3±5mm,
and central 3 mm.

Fig 4 shows AH velocity as it passes through the central ICL hole and through the PI (Arti-
flex), and Fig 5 shows the pressure distribution, along with its relationship with the anterior
segment structures.

Fig 2. Streamlines of aqueous humor in the 12 scenarios modelled depending on the type of lens implanted (ICL, Artiflex or normal PIOL-free eye), pupil diameter
(PD 3.5 to 5.5 mm), ICL vault (V 100, 350, 800) and number of iridotomies (1 or 2 for Artiflex). The colour represents the velocity magnitude.

https://doi.org/10.1371/journal.pone.0202128.g002
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Fig 3. Wall shear stress on the corneal endothelium produced by aqueous humor flow through the central hole (ICL) or iridotomy (Artiflex) according to pupil
diameter (PD = 3.5 to 5.5 mm), ICL vault (V = 100, 350, 800) and number of Artiflex iridotomies (1 or 2).

https://doi.org/10.1371/journal.pone.0202128.g003

Fig 4. Velocity contours of AH flow through the central hole (ICL) or iridotomy (Artiflex) in the vertical plane according to pupil diameter (PD = 3.5 to 5.5 mm),
ICL vault (V = 100, 350, 800) and number of Artiflex iridotomies (1 or 2).

https://doi.org/10.1371/journal.pone.0202128.g004
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WSS on the crystalline lens was also assessed (Fig 6). In the figure, the crystalline lens
appears in blue and the PIOL is superimposed.

Also, the influence of the thickness of the passage between the iris and lens, in the Artiflex
and the PIOL-free eye situations was calculated (270 µm versus 3 µm in the center of the lens;
476 µm versus 154 µm in the pupillary border; see Fig 7).

Results
When the eye is open, the difference between the posterior cornea and iris temperatures is
around 3ÊCand this creates buoyancy forces that drive the flow of AH in the AC. The liquid
climbs over the (hot) iris and falls down next to the (cold) posterior cornea forming a vortex
that occupies the whole chamber. The flow in the PC is almost isothermal and, therefore,
much weaker, being essentially determined by the injection of AH through the ciliary body
and the exit across the pupil. When the eye is closed, AH is essentially kept at the body temper-
ature, and thermal convection does not occur, so the situation is completely different. In this

Fig 5. Pressure contours in the anterior segment through the central hole (ICL) or iridotomy (Artiflex) in the vertical plane according to pupil diameter (PD = 3.5
to 5.5 mm), ICL vault (V = 100, 350, 800) and number of Artiflex iridotomies (1 or 2).

https://doi.org/10.1371/journal.pone.0202128.g005
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section, we firstly describe the results obtained for an open eye, and then we mention the dif-
ferences with respect to the closed eye case.

The simulations for an open eye show that a significant amount of liquid is evacuated
through the central hole of the ICL lens from the PC to the AC (ICL, V350 and PD 3.5 mm),
being 37.6% of the total flow rate (i.e., 62.4% passed through the pupil). This percentage was

Fig 6. Wall shear stress on the crystalline lens produced by aqueous humor flow through the central hole (ICL) or iridotomy (Artiflex) according to pupil diameter
(PD = 3.5 to 5.5 mm), ICL vault (V = 100, 350, 800) and number of Artiflex iridotomies (1 or 2).

https://doi.org/10.1371/journal.pone.0202128.g006

Fig 7. Velocity contours of aqueous humor flow in the vertical plane passing through an iridotomy at 6 o'clock
from the anterior to the posterior chamber for the large (left) and small (right) crystalline-to-iris distance.

https://doi.org/10.1371/journal.pone.0202128.g007
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notably reduced to 10.3% when the pupil was enlarged to 5.5 mm. That flow rate plunges
when the pupil dilates because the hydraulic resistance of the channel formed by posterior iris
surface and anterior ICL surface sharply decreases in that case, which means that most of AH
volume can pass directly through the pupil. For the Artiflex lens, 84.2% passed through the PI
and this proportion fell slightly to 81.9% when the pupil was enlarged. In the double iridotomy
scenario, AH volume was 95.5% through both iridotomies and diminished to 89.3% for a PD
of 5.5 mm. So, PI constitutes a very efficient way of discharging AH from the PC to the AC.
This occurs due to the pressure reduction taking place in front of the PI due to thermal convec-
tion in the AC (Fig 5). In fact, if the iridotomy is at 6 o'clock, the opposite effect is produced:
the flow is inverted, passing 79% of AH flow from the AC to the PC, due to the increase of
pressure in front of the PI associated to thermal convection in the AC (Fig 5).

Our data indicate that the reduction in AH flowing through the channels produced when
the pupil enlarges was proportionally larger for the ICL than Artiflex lens, also in the ICL V800
scenario (39.6% of the AH volume drop to 14.1%), being more drastic (16 times; 27.6% to
1.7%) in the low vault ICL. The explanation for this could be that for a narrow vault the resis-
tance will increase due to the considerably narrowed space.

WSS on the whole endothelial surface (Table 2 and Fig 3) was lower for the scenario ICL
V800 (3−04 Pa) compared with the remaining situations: ICL V100, the PIOL-free eye and the
Artiflex (7−04 Pa for all). Central endothelial WSS was lower for ICL V800 and for Artiflex
(1.0−03 Pa and 1.1−03 Pa respectively) than for ICL V100 or PIOL-free eye (1.5−03 Pa and 1.6−03

Pa). Peripheral endothelial WSS (ring 7±9mm) was highest also for the ICL V100 (1−03 Pa)
being similar compared with the PIOL-free eye (1−03 Pa), than for the V800 scenario (5−04 Pa),
and 1.25 times greater compared with Artiflex (1 iridotomy, PD 3.5 mm) (8−04 Pa).

So, the highest corneal WSS quantified was for the PIOL-free eye or the physiological con-
dition. The large difference between the flow intensities in the AC and PC also explains why
the central hole of the ICL lens, or the peripheral iridotomies made when Artiflex lens is
implanted, does not considerably influence the magnitude and spatial distribution of the WSS
in the cornea. The presence of an Artiflex lens in the AC does substantially modify the flow

Table 2. Aqueous humor volume andWall shear stress (WSS) produced on the endothelium and crystalline lens for the 14 scenarios modelled according to pupil
diameter and the phakic intraocular lens (PIOL) implanted (Implantable collamer lens, ICL; Artiflex; or normal PIOL-free eye) in an open eye (taking into account
the convection).

Open eye ICL vault (µm) Artiflex PIOL-free
eyeParameter 100 350 800 1 iridotomy

(12 o'clock)
1 iridotomy
(6 o'clock)

2 iridotomies

Pupil diameter (mm) 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5
Flow through central hole or iridotomy (%) 27.6 1.70 37.6 10.3 39.6 14.1 84.2 81.9 82 79 95.5 89.3 N/Aa N/

Aa

Volume through central hole or iridotomy
(m3/s)

9.23−12 5.68−13 1.26−11 3.44−12 1.32−11 4.70−12 2.82−11 2.74−11 2.75−11 2.65−11 3.18−11 2.99−11 N/Aa N/
Aa

WSS whole cornea (Pa) 7−4 7−4 6−4 6−4 4−4 3−4 7−4 7−4 7−4 7−4 7−4 7−4 7−4 8−4

WSS ring >11 mm (Pa) 3−4 3−4 3−4 2−4 2−4 1−4 5−4 5−4 5−4 5−4 5−4 5−4 3−4 3−4

WSS ring 9±11mm (Pa) 8−4 8−4 6−4 6−4 4−4 2−4 7−4 6−4 7−4 6−4 7−4 7−4 8−4 8−4

WSS ring 7±9mm (Pa) 1.0−3 1.0−3 9−4 8−4 5−4 4−4 8−4 7−4 7−4 7−4 7−4 8−4 1.0−3 1.1−3

WSS ring 5±7mm (Pa) 1.2−3 1.3−3 1.1−3 1.1−3 7−4 7−4 9−4 9−4 9−4 9−4 9−4 9−4 1.2−3 1.4−3

WSS ring 3±5mm (Pa) 1.4−3 1.5−3 1.2−3 1.3−3 9−4 9−4 1.0−3 1.0−3 1−3 1−3 1.0−3 1.0−3 1.4−3 1.6−3

WSS ring <3 mm (Pa) 1.5−3 1.6−3 1.4−3 1.4−3 1.0−3 1.0−3 1.1−3 1.1−3 1.1±3 1.1±3 1.1−3 1.1−3 1.6−3 1.8−3

WSS crystalline lens (Pa) 1−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 <10−4 7−4

aN/A: Not applicable

https://doi.org/10.1371/journal.pone.0202128.t002
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pattern in that region. The buoyancy-driven vortex breaks into two smaller ones, located sym-
metrically with respect to the ACmid-plane. This effect changes the distribution of WSS over
the posterior corneal surface.

Fig 4 shows the flow velocity in the different scenarios. For ICL V350 and V800 the increased
flow velocity of the jet through the central hole was dissipated in the AC, neutralized by the con-
vection, and did not affect the endothelium. However, in the V100, this AH stream could impact
on the central endothelium, as quantified byWSS. This increase of WSS in this case can also be
explained in terms of the variation of the temperature field due to ICL. Lowest central endothe-
lial WSS was recorded for the ICL V800 (1−03 Pa), because theWSS decreases monotonously as
the vault increases. For instance, theWSS at the central endothelium decreases about 50% of its
value when the vault increases from 100 to 800 µm. This effect is probably caused by changes in
the iris geometry due to the increment of the vault, rather than by the ICL lens itself.

The stream of AH through a PI could increase the magnitude of WSS in the peripheral
endothelium. This does not occur because that stream is neutralized by the convection.

Regarding the peripheral (9±11mm) and central (<3 mm) endothelial WSS, they were
lower for ICL V800. It should be noted that PD affected more the distribution of endothelial
WSS for ICL than for Artiflex, for which WSS representations and values were similar irre-
spective of PD (Fig 3 and Table 2).

WSS on the crystalline lens was highest for ICL V100 (1−04 Pa) and a small PD, than in the
other situations (Fig 6), followed by the case of ICL V350 and same PD. In the remaining situa-
tions, it may be observed that no WSS increase was produced. In this figure, it may also be
seen that PD is an important determinant for ICL V100 since as the pupil enlarges, WSS on
the crystalline lens drops to nearly normal values.

When the eye is closed, AH is essentially kept at the body temperature, and thermal convec-
tion does not occur, so the situation is completely different (see Table 3). In this case, the liquid
in the AC flows in the radial direction from the pupil towards the trabecular pathway at a very
small speed. In the presence of an Artiflex lens, the volume that flows through the PI is the
same irrespective of its location, superior or inferior. The flow in the PI diminishes from

Table 3. Aqueous humor volume andWall shear stress (WSS) on the endothelium and crystalline lens for the 14 scenarios modelled according to pupil diameter
and the phakic intraocular lens (PIOL) implanted (Implantable collamer lens, ICL; Artiflex; or normal PIOL-free eye) in a closed eye (without convection).

Closed eye ICL vault (µm) Artiflex PIOL-free eye
Parameter 100 350 800 1 iridotomy (12

o'clock)
1 iridotomy
(6 o'clock)

2 iridotomies

Pupil diameter (mm) 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5
Flow through central hole or iridotomy

(%)
73.4 8.6 88.2 20.2 89.7 22.6 6.1 3.2 6.1 3.2 11.6 6.6 N/Aa N/Aa

Volume through central hole or
iridotomy (m3/s)

2.46−11 2.88−12 2.95−11 6.76−12 3.00−11 7.6−12 2.05−12 1.06−12 2.05−12 1.06−12 3.89
−12

2.20−12 N/Aa N/Aa

WSS whole cornea (Pa) 1.30−05 1.30−05 1.68−05 2.01−05 3.35−05 7.1−05 1.23−05 1.23−05 1.23−05 1.23−05 1.22−05 1.22−05 1.28−05 1.30−05

WSS ring >11 mm (Pa) 2.37−05 2.46−05 3.08−05 3.82−05 6.05−05 1.3−04 2.47−05 3.65−07 2.47−05 3.65−07 2.47−05 2.46−05 2.36−05 2.46−05

WSS ring 9±11mm (Pa) 3.77−06 4.02−06 5.00−06 6.1−06 1.07−05 2.47−05 2.88−06 5.54−07 2.88−06 5.54−07 2.77−06 3.16−07 3.75−06 3.95−06

WSS ring 7±9mm (Pa) 3.14−06 3.37−06 4.15−06 4.84−06 9.41−06 1.44−05 8.63−07 3.00−06 8.63−07 3.00−06 7.73−07 3.28−07 3.15−06 4.43−07

WSS ring 5±7mm (Pa) 3.20−06 2.31−06 4.09−06 3.32−06 8.70−06 8.13−06 5.60−07 2.47−05 5.60−07 2.47−05 4.72−07 4.06−07 3.23−06 1.30−06

WSS ring 3±5mm (Pa) 3.52−06 1.00−06 4.68−06 1.58−06 8.95−06 2.54−06 4.46−07 8.50−07 4.46−07 8.50−07 4.31−07 7.43−07 3.17−06 2.47−06

WSS ring <3 mm (Pa) 3.00−06 3.91−07 4.61−06 1.06−06 1.07−05 2.57−06 3.93−07 4.17−07 3.93−07 4.17−07 4.24−07 2.89−06 2.05−06 3.24−06

WSS crystalline lens (Pa) 2.6−04 3.1−05 6.9−05 1.6−05 2.0−06 4.4−06 1.7−05 8.3−06 1.7−05 8.3−06 1.6−05 8.1−06 9.0−06 9.0−06

aN/A: Not applicable

https://doi.org/10.1371/journal.pone.0202128.t003
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84.2% when the eye is open to 6.1% when the eye is closed, and it increases through the central
hole of the ICL from 37.6% to 82.2%. In addition, the resulting WSS on both the endothelium
and the lens becomes negligible when the eye is closed.

It was observed a significant influence of the viscosity value on the flow pattern. In the pres-
ent study, as described by Fitt. et al. for a normal human eye, a dynamic viscosity of µ = 0.001
Pa s was used [14]. The percentage of flow that crosses the PI varies from 84% for the µ = 1e-3

Pa s [14], to 108% (a small reverse flow takes place in the pupil) for the µ = 0.75e-3 Pa s [27],
93% for the mu = 0.90e-3 Pa s [28].

Regarding the influence of the thickness of the passage between the iris and lens, reducing
that distance from 476 µm to 154 µm considerably increases the pressure in the PC, but hardly
affects the characteristics of the buoyancy flow in the AC. In fact, our simulation shows an
increase by a factor around 7.5 of the pressure drop between the PC inlet section and the center
of the pupil, while the WSS on the cornea remained practically the same.

The thickness of the passage between the iris and crystalline can significantly affect the flow
crossing the iridotomy, especially the reverse flow taking place through the iridotomy located
at 6 o'clock. If the iridotomy is located at 12 o'clock, the flow rate crossing that orifice increases
from 84.2% to 85.2%. This increase is very small because most part of the AH volume already
flows through the iridotomy even with the thick passage is considered. When the iridotomy is
located at 6 o'clock, the increase of pressure in the PC reduces the reverse flow from 79% to
60.5%. Fig 7 shows the velocity magnitude in the vertical plane calculated in the presence of an
iridotomy at 6 o'clock with the large (left) and small (right) crystalline-to-iris distance.

Discussion
Both posterior chamber and iris-fixed PIOLs seem satisfactory options to treat high myopia
[1±4,10,23±25], with no differences in efficacy or safety detected in a recent meta-analysis.[26]
Our findings point to different AH flow behaviour and different WSS produced by this flow
on the endothelium and crystalline lens depending on the type of lens implanted.

The AH volume flowing through the ICL central hole varied from 1.7 to 39.6% of the total
volume (depending on the vault and PD), and from 79 to 95.5% through the PI of the iris-
fixed Artiflex lens (according to the presence of one or two iridotomies), so PI constitutes the
most efficient way of discharging AH from the PC to the AC. Pupil size was also found to
largely condition AH behaviour, in the ICL more than in the Artiflex. This meant that for a
pupil enlarged from 3.5 to 5.5 mm, the fluid volume flowing through the central port in the
ICL diminished to�14.1%, and for the PI in Artiflex dropped to 81.9%. Thus, in the case of
pupillary block (because of full contact between PIOL lens and iris), the PI could be more
effective in preventing IOP elevations, showing that a single iridotomy seems effectively
enough, so a double iridotomy is not necessary in terms of fluid dynamics.

In agreement with our results (Fig 4), Dvoriashyna et al.[29] described that most of AH
flows through the PI, with almost all of it going through the PI for diameters larger than
150 µm. They described that the ideal size and location of a PI are influenced by various geo-
metrical and fluid mechanical factors, the most relevant of which are the size of the hole, also
analyzed by our group in a previous paper [19], and the length and height of the iris±lens chan-
nel. On the contrary, the location of the iridotomy only changes the total flow by 2% from an
iridotomy placed in the middle of the PC to one placed peripherally, which is because the pres-
sure is approximately uniform across the PC.

In our study, if the PI is located at 6 o'clock, the flow is inverse, passing 79% from the AC to
the PC. This is one of the reasons why many ophthalmologists perform an inferior PI in the
pigmentary dispersion syndrome, to reduce the gradient differences between AC and PC, and
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to solve the iris concavity. Accordingly, Dvoriashyna et al. noted that, possibly in response to
pupillary movements, the direction of flow through the PI would reverse and the jet of AH will
impact on the crystalline lens, and could cause cataract related to the possible occurrence of
large values of the WSS on the lens opposite to the iridotomy [29]. Based on our results, we
consider that it is highly unlikely that this magnitude of WSS could damage the lens.

Previous papers have reported thicknesses of the passage between the iris and crystalline
much smaller than the one considered in this work. For instance, Silver and Quigley consid-
ered crystalline lens-to-iris minimum distances between 3 and 7 µm [30]. In our study in the
physiological case, the reduction of the passage between the iris and crystalline (from 476 µm
to 154 µm) considerably increases the pressure in the PC, but hardly affects the characteristics
of the buoyancy flow in the AC, while the WSS on the cornea remained practically the same.

In the Artiflex the flow crossing the iridotomy could be significantly affected by the thick-
ness of that passage, especially the reverse flow taking place through the iridotomy located at 6
o'clock, due to the increase of pressure in the PC that reduces the reverse flow from 79% to
60.5%.

Besides the risks of the pupillary block and ocular hypertension [31] two other main clinical
concerns regarding the use of a PIOL are endothelial damage and cataract [24±26,32±34].

Endothelial cell loss related to the implant of an ICL has been estimated at 6.5% surgically
induced during the first year, and an average yearly loss rate of 1.2% after that [23]. In a recent
clinical study, Jonker et al.[25] described in myopic patients implanted with the iris-fixed
PIOL significant linear chronic endothelial cell loss of 16.6% and 21.5% from 6 months to 10
years postoperatively. This indicates that the endothelial cell threshold should be carefully
determined for subsequent safe combined PIOL removal and cataract surgery.

It is generally thought that in terms of inducing damage to the endothelium, an AC lens
could be more dangerous than a PC lens. In our simulations, no significant differences were
observed between this PC and AC lenses. Interestingly, the WSS produced on the whole and
central endothelium was lower for an ICL V800 and Artiflex than in the normal PIOL-free
eye. It has been hypothesized that the loss of endothelial cells could be due to an increase of the
WSS on the cornea, however, Repetto et al. aimed that this speculation is not supported by the
results of their study, thus alternative mechanisms should be invoked to explain this clinical
finding [20]. In a pig model, Kaji et al.[35] determined a WSS greater than 0.1 Pa as the critical
point at which cells start to detach from the cornea. In our simulations, WSS in the presence of
both lenses was much lower than this value yet still within physiologically acceptable limits, as
also observed by Konghar et al.[21] in a simulation for a perforated Artiflex. We think that,
probably, only in the case of a large inflammation in uveitis or after an eye trauma with syne-
chias around the pupil and in the PI or the central hole of the lens, the WSS could reach higher
stresses values on the cornea. However, the level of WSS at which corneal endothelial damage
would be sustained is unknown.[29]

These lenses are a barrier for AH flow, as them shields the pupil. We hypothesized that this
reduction in the WSS in the presence of the PIOLs comparing with the PIOL-free eye or the
physiological condition could probably indicate a compromised supply of nutrients delivery to
the endothelium, rather than cell damage due to mechanical trauma. In agreement with our
findings, Repetto et al.[20] observed that WSS on the cornea was lower in the presence than
absence of an iris-fixed lens and suggested that the PIOL shielded the central cornea and could
induce a lower rate of oxygen and nutrient supply.

In our simulation models, pupil size did not emerge as a major determinant of endothelial
WSS, affecting, and only slightly, in the case of the ICL. Yamamoto et al.[22,36] demonstrated
that pupil constriction leads to a marked increase in AH flow through the PI against the cor-
neal endothelium, producing mechanical stress that is likely responsible for the peripheral
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corneal decompensation that sometimes occurs after a PI, especially in eyes with shallow AC.
Dvoriashyna et al.[29] described that for certain PI diameters, the jet velocity through the PI
might be large enough to cause possible corneal damage. In the present work, we also observed
that increasing the flow rate through the PI may affect the peripheral endothelium, especially
in the case of smaller pupils, but those WSS values are unlikely to damage the endothelium.

In the open eye there is a double vortex of streamlines due to the convection, very different
from the radial streamlines that would be observed in the closed eye. Moreover, the main dif-
ference is that in the open eye much larger flow that starts on the opposite side to the iridot-
omy hole ends up draining into the PI. In a report by Kawamorita et al.[18] they suggested
that the central-hole ICL leads to improved AH circulation in the front of the crystalline lens,
being more physiological or homogeneous the circulation. However, they did not account for
the effect of thermal gradients, which is the main mechanism for AH flow in an open eye. On
the contrary, we have observed that the jet through the central hole is dissipated by the convec-
tion in the AC.

The other main concern related to the use of a PIOL is the development of cataract because
candidates for these lenses are usually young patients with clear crystalline lenses. Several stud-
ies have shown that a narrow vault ICL increases the risk of cataract formation [24±26]. In the
present study, we also observed that crystalline WSS was highest for ICL V100, but in larger
pupil size, dropped to nearly normal values. However, in the remaining scenarios, WSS was
not increased compared to the physiological condition of the PIOL free eye. Thus, different to
the vault, PD seems not to be a determinant of crystalline WSS, such that in the presence of a
very narrow or wide vault, it is better to have a large PD to minimize the stress produced on
the crystalline lens.

The main limitation of our study was that it was based on a simulated theoretical model as
it is difficult to measure AH dynamics in the human eye in vivo. Thus, we should interpret our
findings with caution as theoretical results will always have inherent limitations [14±21]. The
results are likely to depend significantly on the geometrical characteristics of the models. As an
ophthalmologist, we cannot modify some variables such as the convection, the pressure con-
tour or the viscosity of the AH, but we could decide the type of lens implanted and the location
and size of the iridotomy, and we could also choose between different sizes of the lens that
could change the dimensions of the anterior segment (the iris-lens channel depth, vault, ante-
rior chamber angle) and consequently the AH distribution. Despite expected bias, however,
bioengineering simulations can improve our understanding of ocular physiology and changes
produced in response to surgery.

This is the first study to simulate AH dynamics in response to the presence of two types of
phakic lens, a posterior chamber ICL lens versus an Artiflex iris- fixed lens. Several factors
affecting AH dynamics were explored such as different-sized vaults following ICL implant, the
presence of one or two and the location of the iridotomies in the case of the Artiflex lens and
different pupil size. More work is needed to confirm our findings and further our understand-
ing of the changes produced following the implant of different PIOLs including impacts pro-
duced on AH dynamics, especially in terms of alterations to the metabolism of anterior
segment structures.

In conclusion, AH flow varies depending on the type of phakic lens implanted, ICL or Arti-
flex. AH flow varied according to the presence of a precrystalline or iris-fixed intraocular lens.
PI constitutes a very efficient way of evacuating AH. Endothelial WSS was lower for an
implanted ICL with large vault and Artiflex than in the PIOL-free eye, while highest crystalline
WSS was recorded for the lowest vault ICL.
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Supporting information
S1 Fig. Streamlines of AH in the 12 scenarios modelled depending on the type of lens
implanted (ICL, Artiflex or normal PIOL-free eye), pupil diameter (PD 3.5 to 5.5 mm),
ICL vault (V 100, 350, 800) and number of iridotomies (1 or 2 for Artiflex). The colour rep-
resents the velocity magnitude.
(PDF)
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