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Abstract—Deep neural networks (DNNs), including convolu-
tional (CNNs) and residual (ResNets) models, are able to learn ab-
stract representations from the input data by considering a deep
hierarchy of layers that performs advanced feature extraction.
The combination of these models with visual attention techniques
can assist with the identification of the most representative parts
of the data from a visual standpoint, obtained through a more
detailed filtering of the features extracted by the operational
layers of the network. This is of significant interest for analyzing
remotely sensed hyperspectral images (HSIs), characterized by
their very high spectral dimensionality. However, few efforts have
been conducted in the literature in order to adapt visual attention
methods to remotely sensed HSI data analysis. In this paper,
we introduce a new visual attention-driven technique for HSI
classification. Specifically, we incorporate attention mechanisms
to a ResNet in order to better characterize the spectral-spatial
information contained in the data. Our newly proposed method
calculates a mask that is applied on the features obtained by
the network in order to identify the most desirable ones for
classification purposes. Our experiments, conducted using four
widely used HSI datasets, reveal that the proposed deep attention
model provides competitive advantages in terms of classification
accuracy when compared to other state-of-the-art methods.

Index Terms—Hyperspectral image classification, visual atten-
tion, feature extraction, deep learning, residual neural networks.
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HYPERSPECTRAL image (HSI) classification is a very
active research field in remote sensing and Earth ob-

servation [1], [2]. This is due to the excellent characteri-
zation that HSI instruments can provide for large areas on
the surface of the Earth. HSI data are often collected by
imaging spectrometers mounted on aerial or satellite platforms,
and comprise hundreds of images at different (continuous
and narrow) wavelengths, usually from the visible to the
near infrared regions of the electromagnetic spectrum. As
a result, high-dimensional data cubes are obtained in which
each pixel captures the emitted, reflected and transmitted light
over the observed land cover materials. Each pixel (vector)
in the data cube can be interpreted as a spectral signature or
fingerprint that uniquely characterizes the observed materials
of the target area [3]. Such data cubes provide a wealth
of spectral and spatial information, a property that is very
useful for monitoring the surface of the Earth [4], [5] in
a wide range of applications, such as precision agriculture
[6]–[8], environmental and natural resources management [9],
surveillance [10]–[12], and others [13].

HSI classification has been usually tackled as an optimiza-
tion problem, trying to assign each pixel of the scene to a
certain land cover class by adapting traditional image analysis
methods to HSI data [14]. For instance, standard machine
learning methods assume that the HSI data cube is a collection
of spectral vectors with no spatial arrangement, exploiting
only the spectral information to discriminate and classify the
pixels. Several unsupervised and supervised spectral-based
approaches have been applied to interpret HSI data, including
k-means clustering [15], k-nearest neighbors (KNN) [16],
support vector machines (SVMs) [17], [18] and other kernel-
based methods [19], [20], logistic regression (LR) [21] or
random forest (RF) [22], among many others. However, the
classification of HSI data involves certain difficulties not to
be found in other kinds of image data (in addition to the
huge amount of information contained in HSI data cubes [2]).
Specifically, traditional supervised classification approaches
are largely affected by the curse of dimensionality [23], which
may hamper the accuracy of the classifier when the number
of available labeled training samples is limited in relation to
the (high) dimensionality of the data. This is also due to the
high cost and effort involved in expert annotation of labeled
data, a fact that can result in an under-complete training
process which is prone to over-fitting (this is also known
as the Hughes phenomenon [24]). Moreover, HSI data sets
present high intra-class variability and inter-class similarity,
resulting from atmospheric interferers, spectral variability and
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the configuration of the sensor. These aspects bring additional
difficulties when characterizing the data and call for new
techniques that can better exploit the rich spatial and spectral
information contained in HSI scenes.

To address some of the aforementioned issues, several deep
neural network (DNN) models have been developed in the
literature [25]. These flexible architectures, composed by a
stack of layers, allow multiple techniques to include and
process not only the spectral signatures, but also the spatial-
contextual information contained in the captured scenes. Based
on the idea that spatially adjacent pixels often belong to
the same class, these classifiers take advantage of spatial
information to reduce sample variability. In fact, it is well-
known that the extraction of spectral-spatial features is very
useful to improve the classification process, helping to reduce
label uncertainty and intra-class variance. As a result, joint
spectral-spatial methods can often perform better than purely
spectral or spatial-based ones. However, in deep learning (DL)
methods there is a problem of how to fuse the spectral and
spatial information. Focusing on stacked autoencoders (SAEs)
[26] and deep belief networks (DBNs) [27] we can find
several techniques that concatenate the spectral signatures and
the spatial information extracted from neighbouring pixels by
taking advantage of simple dimensionality reduction methods
such as the principal component analysis (PCA) [28]–[31], or
more sophisticated methods such as superpixels [32], guided
filtering [33] or morphological profiles [34], [35], among
others. Traditional fully connected architectures admit vector
inputs, so the spatial structure is usually lost. In this sense
convolutional neural networks (CNNs) [36] are a powerful
tool for the analysis of HSI images due to their capacity to
accurately characterize both the spectral and spatial-contextual
information contained in HSI data cubes [37], being able to
effectively extract features with a high-level of abstraction
from the raw data and achieving excellent classification results
[38].

However, DL-based models are not totally immune to the
curse of dimensionality and the Hughes phenomenon. In fact,
CNNs tend to quickly overfit when few labeled samples are
available. To overcome this limitation, several techniques have
been developed, including: i) semi-supervised and active learn-
ing (AL) techniques [39], able to deal with overfitting when
very few training samples are available, ii) residual learning
(e.g., using residual networks or ResNets) [40], [41] and dense
connections (e.g. using dense networks or DenseNets) [42],
[43], which can alleviate the loss of information and vanishing
gradient problems of very deep and complex architectures, and
iii) the development of new information routing techniques
such as capsule modules (e.g., using capsule networks or
CapsNets) [44], [45]. Despite these advances, CNN-based
models still present a main limitation when dealing with HSI
data. In fact, they can be hindered by the mode-operation of
their own convolution filters, which treat the input content
completely equally, while probably not all spectral-spatial
information provided by the input hyperspectral pixels is
equally interesting, informative, relevant and/or predictive for
classification purposes [46].

In the area of computer vision, several efforts are now

being made to improve DL techniques, overcoming the equal
treatment of the convolution kernel by incorporating visual
attention mechanisms. The goal of these techniques is to
explore in detail the objects or regions that stand out in a
given scene [47], as opposed to convolutional methods, whose
kernels treat equally the whole content in the image. The
main idea is to simulate the human behavior, as we try to
understand an image by selecting a subset of features that
contain the most relevant characteristics instead of treating
the full scene equally. In fact, the human brain focuses on
the most valuable and informative stimulus perceived by
the eyes, ignoring other irrelevant information. Such visual
attention mechanisms are based on two kinds of components
[48]: i) bottom-up (stimulus-driven) components, which are
traditionally related with automatic/involuntary processing of
salient visual features in raw sensory information and are
performed in a feed-forward way, and ii) top-down (goal-
oriented) components, that modulate bottom-up component
behavior through voluntary attention to certain characteristics,
objects, or regions in the space. The study of these com-
ponents, together with their characteristics, has resulted in a
great variety of attention-driven techniques [49], turning visual
attention into a hot research topic.

In the remote sensing literature, several attention-driven
techniques have been developed for detecting salient regions
[50]–[56] and target objects [57]–[60]. However, their appli-
cation to HSI data has been quite sparse [61], [62]. Although
the adaptation of visual attention techniques to deep models is
demonstrating excellent performance in several classification
tasks [63]–[65], there is still room for contributions in the area
of HSI classification.

In this paper, we develop a new spectral-spatial visual
attention-driven technique for HSI classification. Our newly
developed technique combines the use of advanced visual
attention mechanisms with powerful feature extraction ap-
proaches based on DNNs for spectral-spatial HSI classifica-
tion. As a case study, we introduce visual attention mecha-
nisms in the ResNet architecture (A-ResNet). The translation
of a visual attention working mode to DNNs for HSI data
processing allows to increase the sensitivity of the network
to those features that contain the most important and useful
information for classification purposes. In this regard, the main
innovative contributions of our work can be summarized as
follows:
• The development, for the first time in the literature, of

a visual attention-driven mechanism (incorporated into a
ResNet architecture) for spatial-spectral HSI classifica-
tion. This is done by introducing a dual data-path atten-
tional module as the basic building module, considering
both bottom-up and top-down visual factors to improve
the feature extraction capability of the network.

• A detailed comparison between our attention-driven
model and traditional pixel-based machine learning and
spectra-spatial DL-based techniques for HSI classifica-
tion, demonstrating that the proposed model is able to
outperform current state-of-the-art classifiers.

• A study of how the performance of the considered classi-
fiers is affected by perturbations in the data, introducing
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controlled noise in the samples. To this end, four well-
known and publicly available HSIs are considered in our
experiments: Indian Pines (IP), University of Pavia (UP),
Salinas Valley (SV), and University of Houston (UH)

The remainder of this paper is organized as follows. In
section II we introduce the basic principles of CNNs and
the ResNet model. Section III describes in detail our newly
proposed A-ResNet methodology. Section IV discusses our
experimental results. Finally, Section V concludes the paper
with some remarks and hints at plausible future research lines.

II. RELATED WORK

A. Convolutional Neural Networks (CNNs)

DNNs are characterized by a hierarchical structure com-
posed by a deep stack of processing layers, placed one after
the other. Such deep structure allows these models to learn
representations of the original input data with multiple levels
of abstraction, from the most concise ones (at the first layers)
to the most abstract ones (at the end of the architecture). Such
multi-level representations of the data allow for a powerful
mechanism of feature extraction, in which each layer is able
to discover (or reinforce) different relations, distributions and
structures in the data, supported by features extracted by
previous layers. In this sense, the architecture of CNNs is
based on receptive fields, and follows the behaviour of neurons
in the primary visual cortex of a biological brain [66], [67].
These models have become a state-of-the-art in remote sensing
data analysis, outperforming many algorithms [68]. CNNs are
typically composed of two main parts: i) the feature extractor
net, and ii) the classifier.

The feature extractor is composed by several kinds of n-
dimensional blocks or layers, depending on how the infor-
mation is used and how it is processed by these blocks. A
HSI dataset X can be seen as a collection of spectral vectors
X ∈ R(n1·n2)×nbands , where n1 · n2 denotes the number of
spectral pixels in the scene and nbands is the number of
spectral bands. Each pixel in the scene is given by xi ∈
Rnbands = [xi,1, xi,2, · · ·xi,nbands

]. CNN models composed
by one-dimensional (1-D) blocks process only the spectral
information in the data, and are also known as spectral-
based CNNs. These models exhibit similar disadvantages as
traditional pixel-based processing methods. On the contrary,
if we apply a spectral dimension reduction technique over
X, for example PCA [69], [70] and retain only the first PC,
the hyperspectral image can be treated as a 2-D matrix of
spatial information X ∈ Rn1×n2 , where n1 × n2 denotes
the number of rows and columns in the scene. Traditional
CNNs employ 2-D blocks to process the spatial information
contained in the input data, which in RGB data corresponds
with the whole image. However, to process the HSI X using
both spatial and spectral information, we need to extract,
for each pixel xi,j ∈ Rnbands , a neighborhood window or
spatial patch pi,j ∈ Rd×d, which comprises the set of d × d
pixels that surround the central sample xi,j . The usual way
to perform the classification is to assign the label yi,j of
the central pixel xi,j to the entire patch pi,j . Although such
spatial-based classification strategy can achieve good results,

Fig. 1. Visualization of a convolutional layer operation with 2D kernel.
Unlike fully-connected layers, the l-th convolutional block presents local
connectivity to small regions of the whole input volume, that is, the z-
th filter’s weights W(l) are applied over windows of the input volume
X(l−1) ∈ Rn

(l−1)
1 ×n

(l−1)
2 ×K(l−1)

defined by the receptive field of size
k(l) × k(l), taking into account the full depth K(l−1) of the input data
(highlighted as green and yellow patches), slipped by a stride determined by
s(l). It can be observed that the z-th kernel produces, for each region, a
scalar value (represented as a smaller rectangle) which is allocated into the z-
th feature map, giving as a result an output volume X(l) ∈ Rn

(l)
1 ×n

(l)
2 ×K(l)

that comprises K(l) feature maps of n(l)
1 × n

(l)
2 features each.

the loss of significant spectral information is often critical
in many applications [37], [38]. A third way to classify the
HSI scene X is to exploit the spatial-contextual information
together with the full or filtered spectra, retaining the full
spectral information from the original bands (or a significant
percentage of it, by means of an appropriate number of
principal components) and creating spectral-spatial patches
or data sub-cubes pi,j ∈ Rd×d×nchannels . In this sense, the
spectral-spatial CNN model allows to treat the data in 3-D
fashion by combining both sources of information (spatial and
spectral) in a most natural and simple way, by considering 3-D
sub-blocks extracted from the input data cube.

Using spectral-spatial patches as inputs, the feature extractor
net of the spectral-spatial CNN model hierarchically applies
three kinds of operations: i) convolution, ii) non-linear acti-
vation, and iii) donwsampling by pooling. The convolutional
layer is the main processing block, composed by K filters
defined by their receptive field. In this sense, regarding the
dimension of the filters, the CNN can be understood as 1D, 2D
or 3D depending on whether its receptive field is of dimensions
K × q, K × k × k or K × k × k × q, respectively, being
q and k the spectral and spatial components of the kernel
(in this context, the proposed model implements a spectral-
spatial convolutional-based model with 2D kernels). In fact,
the convolutional layer can be interpreted as a sliding-window
method, where the windows/kernel of the block slide over the
spatial and spectral dimensions of the input volume using a
stride s(l):

X(l) = W(l) ∗X(l−1) + b(l), (1)

where X(l) is the output volume of the l-th layer, composed
by K feature maps and obtained as the convolution (∗) of the
input volume X(l−1) and the layer weights W(l) and biases
b(l). More specifically, each feature of the X(l) in Eq. (1) is
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obtained as follows:

x
(l)z
i,j = (W(l) ∗X(l−1) + b(l))i,j =

k(l)−1∑
î=0

k(l)−1∑
ĵ=0

(
x
(l−1)
(i·s(l)+î),(j·s(l)+ĵ)

·w(l)

î,ĵ

)
+ b(l),

(2)

where x
(l)z
i,j ∈ R is the (i, j)-th element of the z-th feature

map of X(l) (with z = 0, 1, · · · ,K(l) − 1 and K(l) being the
number of filters of the layer), x(l−1)

i,j ∈ RK(l−1)

is the (i, j)-
th element of the input volume X(l−1), w(l)

î,ĵ
is the (̂i, ĵ)-th

weight of the layer weights W(l), b(l) denotes the biases,
and s(l) is the stride, being k(l) × k(l) the receptive field of
the l-th layer. Fig. 1 presents a graphical visualization of the
operations conducted by Eqs. (1) and (2).

Convolutional blocks extract the features contained in the
input volume by applying a linear dot product. In order to
learn non-linear relationships present in the data, a non-linear
activation function is adopted before sending the resulting
output volume to the following layer X(l) = H

(
X(l)

)
, being

H(·) usually implemented by the Rectified Linear Unit (ReLU)
[71]. Also, with the aim of reducing the spatial dimensions of
the output volume, and also to summarize the obtained features
and obtain a certain invariability to geometric transformations,
a non-linear sub-sampling strategy is implemented by the
pooling layer. In fact, the pooling layer applies a sample-based
discretization process, selecting from small windows of the
input volume those values that satisfy the selection criteria,
being the max-pooling one of the most widely used methods
for this purpose. It simply slides a spatial kernel k×k over the
input volume, selecting the maximum value for each region,
as Eq. (3) indicates:

pool
(l)z
i,j = max

(a,b)∈Ri,j

x
(l)z
a,b , (3)

where pool
(l)z
i,j represents the (i, j)-th output value of the

pooling associated with the z-th feature map, and x(l)za,b denotes
the (a, b)-th element contained by the pooling region Ri,j that
encapsulates a spatial receptive field around the position (i, j)
[72].

At the end of the feature extractor net, a final output X(l) is
obtained that contains an abstract representation of the original
input data. Usually, this output is flattened in order to allow the
classifier to perform the final categorization of the input data.
Normally, the classifier is implemented by one or more fully-
connected layers of a multilayer perceptron (MLP), creating
an end-to-end structure.

B. Residual Neural Networks (ResNets)

CNNs present several problems when processing HSI data.
In particular, they tend to overfit when very few labeled
samples are available to perform the training procedure, and
they also can suffer from loss of information when deep
structures are implemented. To overcome the first problem,
several strategies have been developed in the literature, such as
the use of data regularization and dropout techniques, data aug-
menting, or semi-supervised and active learning approaches.

Fig. 2. Graphic visualization of a standard residual unit. The final output
volume is obtained as the aggregation of the original input volume X(l−1)

and the resulting output volume of the hidden stack of layers, G
(
X(l−1)

)
,

where G(·) refers to the convolutions, normalizations, pooling steps and
activation functions applied along the stack over the input data. As a result,
the architecture reinforces the learning process of the entire model by reusing
previous information in the following layers: X(l) = G

(
X(l−1)

)
+X(l−1).

However, the loss of information is produced by the vanishing
gradient problem [73]. In this case, for very deep architectures,
the errors become quite hard to propagate back correctly,
and the gradient signal tends to zero [74]. Several strategies
have also been developed to deal with this problem, such as
data normalization techniques [75] or new optimizer/activation
functions [76], [77]. However, the accuracy of deep CNNs still
can saturate due to the complexity of the mapping function
of the convolutional blocks and the hard learning of these
functions [78]. In this sense, the architectural modifications
introduced by ResNets can improve the learning process of
convolutional layers by learning small residuals and adding
them to the input volume of each layer, instead of transforming
the whole input volume directly. In order to differentiate the
CNN and ResNet models, we note that the main building block
of a CNN is composed by the convolutional layer and the
non-linear activation function, so Eq. (1) with H(·) can be
re-written as:

X(l) = H
(
W(l) ∗X(l−1) + b(l)

)
simplifying X(l) = H

(
X(l−1)

) (4)

Eq. (4) indicates that the CNN hierarchically extracts the fea-
tures, processing them by the successive layers that compose
the architecture. Instead of that, the ResNet uses the residual
unit as a building block [79] and is composed by a stack
of several layers, normally convolutional layers stacked with
ReLUs and batch-normalization layers, and with two types of
connections allowing different kinds of data streams (see Fig.
2):
• The traditional forward connection, that connects the

current layer with the previous and the following ones,
extracting from the original input volume X(l−1) a rep-
resentation G

(
X(l−1),W(l),B(l)

)
, where G(·) approxi-

mates the residual function referring to those operations
that are applied over the input data by all the stacked
layers of the residual unit, which depends on the weight
matrices W(l) = {W(i)}N−1i=0 of the N convolutional
layers associated to the l-th residual unit, and the cor-
responding biases B(l) = {b(i)}N−1i=0 .
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Fig. 3. Standard architecture of the proposed network, with i) the network’s head, composed by a convolutional layer C(1) that presents the input volume
data X to the ii) network’s body, composed by the residual attention module, A(2), whose output is finally vectored through an average pooling and sent to
the iii) network’s tail, composed by one fully connected layer that performs the final classification. Two branches: trunk and mask, compose the attentional
module: i) the trunk branch (upper path), composed by t residual blocks that perform feature extraction from the data; ii) the mask branch (bottom path),
composed by a symmetrical downsampler-upsampler structure in which r residual blocks are allocated (in between each down/up-sampling step) to extract
information from the current scale, adding a shortcut connection to link the downsampling step (/2) with its corresponding upsampling (×2) counterpart
to combine both kinds of data (instead of the bottleneck part, where only 2 · r residual blocks are stacked one after the other), and followed by a sigmoid
function to prepare the mask, which is applied over the trunk feature data. The resulting output is sent to iii) a final group of p residual blocks located at the
end of the module.

• The shortcut connection, that communicates the original
input volume with the end of the residual unit, performing
an identity mapping that allows to reuse the previous
information to reinforce the learning of the residual block.

At the end, residual learning is introduced into Eq. (1) as:

X(l) = G
(
X(l−1),W(l),B(l)

)
+X(l−1)

simplifying: X(l) = G
(
X(l−1)

)
+X(l−1)

(5)

where the previous features are exploited once again by the
next unit, which reinforces the learning and allows the gradient
to be transmitted.

III. ATTENTIONAL RESIDUAL NETWORK (A-RESNET)
FOR HYPERSPECTRAL IMAGE CLASSIFICATION

The combination of convolutional kernels and residual con-
nections make the ResNet a very powerful and efficient model
for image analysis, in general, and for HSI processing in
particular. Based on this architecture, this section develops a

new architecture for HSI classification that incorporates visual
attention mechanisms in order to extract more discriminatory
features, improving the model performance and enhancing
its accuracy. In this sense, analogous to the original ResNet,
the proposed spectral-spatial A-ResNet for HSI classification
adopts a basic building block, called attentional module [65],
that contains two data-paths or branches: i) the trunk branch,
and ii) the mask branch. Fig. 3 presents the overall archi-
tecture of the proposed attentional neural network for HSI
data classification. Focussing on the attentional module, the
specifications of each part are discussed in detail below.

A. Attentional Module → Trunk Branch
The attentional module can be denoted as A(l), with l being

the number of layers, and receives the volume X(l−1) as
input data, which is forward-propagated through two different
paths, being the trunk branch the simplest and easiest one
to implement. It is composed by t residual blocks, which
are stacked one by one, performing a feature extraction and
processing task. These residual blocks can be implemented
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following previous works such as the basic residual block and
its bottleneck implementation [78], the wide residual block
[80], and the pyramidal residual block and its bottleneck
variation [41], [81], among other complex structures [79], [82],
[83]. The obtained features can be denoted as X(ltrunk) =
Trunk

(
X(l−1)), and contain the high-level data representation

of the module. At this point, and following visual attention
principles, the next step is to single out the most relevant
features from all of the available information contained into
X(ltrunk), masking the least interesting parts for the learning
procedure. In this sense, an attention mask X(lmask) must be
calculated and applied over the processed features of the trunk
branch.

B. Attentional Module → Mask Branch

As mentioned before, the input module X(l−1) is propagated
through two paths, with the mask branch being in charge of
calculating and applying the attention mask X(lmask) over the
output features obtained by the trunk branch, X(ltrunk). In fact,
its goal is to obtain a weight matrix with the same dimensions
of X(ltrunk), that softly weights the trunk’s output features to
highlight the most important ones, simulating the element-wise
soft attention mechanism.

In order to obtain the final X(lmask), the mask branch
applies a network architecture over X(l−1). It is based on
a spatial downsampler-upsampler structure with r residual
blocks, allocated between each pair of down/up-sampling steps
and with skip connections between each downsampling step
and its upsampling counterpart (similar to the hourglass net-
work [84]), following the anatomical connections of cortical
processing [85] where feedforward connections transform the
input into fast behavioural responses, whereas skip/feedback
connections modulate these responses using perceptual context
or attention. Moreover, each sampling step (coupled with
its corresponding r residual blocks) provides semantic in-
formation about the input data, from low-level cues (edges,
color, intensity) to high-level cues which, coupled with the
forward connections (aimed at collecting global information
from the data) and skip connections (which allow to combine
multi-scale data taking into account global information and
original features) simulate the bottom-up and the top-down
attention selection of the visual cortex [86]. In this sense, the
downsampler-upsampler structure stacks as many down/up-
sampling steps as possible, until the smallest feasible spatial
resolution of the data is reached.

In the attention module A(l), the naive application of the
attentional mask over the trunk features in the spatial-spectral
domain gives the following output:

X(l) = X(lmask) ·X(ltrunk) (6)

However, Eq. (6) presents several limitations. Considering the
mask X(lmask) as a collection of values in the range [0, 1], its
application over trunk features may degrade them in deeper
layers. Also, if the mask contains in most of its elements a
value that is equal or close to 0, it may disregard relevant

Fig. 4. Graphic visualization of the architecture of the internal residual blocks
that conform the trunk branch of the attentional module (top row) and those
that conform the mask branch (bottom row). Convolutional details are given
in Table I.

features of the trunk branch. In order to overcome these
problems, Eq. (6) is reformulated as follows:

X(l) =
(
1 +X(lmask)

)
·X(ltrunk) (7)

In this case, Eq. (7) allows to propagate the characteristics
extracted from the trunk branch, where the mask branch sup-
presses the least significant features to facilitate the detection
of important features. The combination of both allows to single
out the salient features.

Finally, the masked output volume is passed through a tail
composed by p residual blocks that performs a final feature
extraction step, taking into account the features that have been
highlighted in the previous phase.

C. Proposed Network Topology

The proposed network for spectral-spatial HSI data clas-
sification has been developed to work with 3-D sub-cubes
pi,jRd×d×nchannels extracted around each spectral pixel xi,j

of the original scene, taking d = 11 as the spatial height
and width dimensions [40]. These input patches are passed
through the network, which is composed by the network’s
head, attentional body, and classification tail (see Fig. 3) in
order to extract relevant features and perform their corre-
sponding classification. The head of the network is given
by a convolutional layer C(1) with batch-normalization and
ReLU, which prepares the data to be processed by the rest of
the network, followed by one or several attentional modules,
depending on the complexity of the problem. As mentioned
above, the l-th attentional module A(l) is, in turn, composed
by several residual blocks ∗R(l)

i (see Fig. 3):

• t residual blocks, denoted as (t)R
(l)
i , with i = 1, · · · , t,

for extracting features in the trunk branch.
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TABLE I
BASIC ARCHITECTURE OF THE RESIDUAL BLOCKS OF THE TRUNK AND

MASK BRANCHES, WHERE Kmiddle = Kinput/2.

Layer ID Kernel size Stride Padding
Bottleneck residual block from trunk branch

C(1) Kmiddle × 3× 3×Kinput s = 1 p = 1

C(2) Kmiddle × 3× 3×Kmiddle s = 1 p = 1

C(3) Kinput × 3× 3×Kmiddle s = 1 p = 1
Residual blocks from trunk branch

C(1) Kinput × 3× 3×Kinput s = 1 p = 1

C(2) Kinput × 3× 3×Kinput s = 1 p = 1

• r(2DU) residual blocks, denoted as (m)R
(l)
i , being DU

the number of down/up-sampling steps for processing
multi-scale data and obtain the attention module mask.
For instance, in Fig. 3, with DU = 2 down/up-sampling
steps, there are 4r residual blocks

• p residual blocks denoted as pR
(l)
i with i = 1, · · · , p,

located at the end of the module for post-processing the
filtered data.

In total, the attention module is composed by t+r(2DU)+p
residual blocks, being t = 2, r = 1 and p = 1, while DU
depends on the spatial size of the input volume. The residual
block architecture of the trunk branch is composed by three
sub-blocks of convolutional layers, batch-normalization and
ReLU (see Fig. 4), whose kernels are defined in Table I,
creating a spectral-bottleneck architecture in order to better
analyze the spectral-spatial domains [87], while the residual
blocks of the mask and the ending of the module follow the
simple residual unit designed in [78]. Kernels are defined in
Table I. As we can observe, each kernel performs a convolution
operation using windows of size 3 × 3, with padding p = 1.
In this context, the output of the attention module, X(l),
maintains the same spatial-spectral dimensions as the input,
X(l−1), in the sense that all its residual blocks keep the
volume dimensions constant. This allows us to add a lot of
flexibility to the model, which is able to stack modules one
after another (as plug-&-play structures). In order to avoid the
overfitting problem caused by the large number of parameters
that must be trained, we propose a simple architecture with
one attentional module. Details can be found on Table II.

Furthermore, the network has been optimized using the
Adam optimizer [76] with 300 epochs, where the learning
rate decays half of its value on epochs 50, 100 and 200,
using a batch size of 100. Also nchannels = 40 principal
components have been considered as the input spectral bands,
being d = 11.

IV. EXPERIMENTAL RESULTS

A. Experimental Configuration

With the aim of testing the performance of the proposed
attentional network for spectral-spatial HSI classification, a
battery of experiments have been performed on a desktop
computer equipped with a 6th Generation Intel R© CoreTMi7-
6700K processor, with 8M of Cache, clock speed of 4.20GHz
and 4 cores/8 way multi-task processing. From the point of

TABLE II
TOPOLOGY OF THE PROPOSED ATTENTION NETWORK, WHERE nchannels

INDICATES THE NUMBER OF CONSIDERED SPECTRAL BANDS.

Input convolutional layer
ID Kernel size Stride
C(1) 64× 1× 1× nchannels s = 1

Attention module
ID Processed data Parameters

A(2) 11× 11× 64

t = 2
r = 1
p = 1
DU = 2

Average pool
ID Kernel

AV POOL 2× 2
Fully connected layer

ID Input × output neurons Activation
FC 576× nclasses Softmax

view of memory, it is equipped with 40GB of DDR4 RAM,
with serial speed of 2400MHz, and a Toshiba DT01ACA
HDD with 7200RPM and 2TB of storage capacity. Also, it
is equipped with a graphic processing unit (GPU) NVIDIA
GeForce GTX 1080 with 8GB GDDR5X of video memory
and 10 Gbps of memory frequency, and an ASUS Z170 pro-
gaming motherboard. The operating system is Ubuntu 18.04.
In order to efficiently implement the proposed approach, our
models have been parallelized on the available GPU using
Pytorch.

B. Hyperspectral Datasets

Four public and widely used HSI data sets have been
considered in our experiments: Indian Pines (IP), University of
Pavia (UP), Salinas Valley (SV), and Kennedy Space Center
(KSC). Table III shows, for each dataset, its corresponding
ground-truth with the number of samples per class. In the
following, we summarize the characteristics of each dataset:
• Indian Pines (IP) dataset was collected by the Airborne

Visible InfraRed Imaging Spectrometer (AVIRIS) [88] in
1992, over an agricultural area in Northwestern Indiana
using 145 × 145 pixels with spatial resolution of 20
meters per pixel (mpp), and 224 spectral bands in the
wavelength range from 0.4 to 2.5µm. After deleting 24
bands due to water absorption and null values, a total
of 200 spectral bands are considered for experimental
purposes. The ground-truth is divided into 16 different
classes (Table III).

• University of Pavia (UP) dataset was collected by the
reflective optics system imaging spectrometer (ROSIS)
[89] in 2002, over the Engineering School at the Univer-
sity of Pavia, Northern Italy, using 610×340 pixels with
spatial resolution of 1.3mpp, and 103 spectral bands in
the wavelength range from 0.43 to 0.86µm. The ground-
truth is divided into 9 different classes (Table III).

• Salinas Valley (SV) dataset was collected by the AVIRIS
sensor in 1998 over an agricultural field in Salinas
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TABLE III
NUMBER OF SAMPLES OF THE INDIAN PINES (IP), UNIVERSITY OF PAVIA (UP), SALINAS VALLEY (SV) AND UNIVERSITY OF HOUSTON (UH)

DATASETS.

INDIAN PINES (IP) UNIVERSITY OF PAVIA (UP) SALINAS (SV)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples
Background 10776 Background 164624 Background 56975

Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009
Corn-notill 1428 Meadows 18649 Brocoli-green-weeds-2 3726
Corn-min 830 Gravel 2099 Fallow 1976

Corn 237 Trees 3064 Fallow-rough-plow 1394
Grass/Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678
Grass/Trees 730 Bare Soil 5029 Stubble 3959

Grass/pasture-mowed 28 Bitumen 1330 Celery 3579
Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11271

Oats 20 Shadows 947 Soil-vinyard-develop 6203
Soybeans-notill 972 Corn-senesced-green-weeds 3278
Soybeans-min 2455 Lettuce-romaine-4wk 1068
Soybean-clean 593 Lettuce-romaine-5wk 1927

Wheat 205 Lettuce-romaine-6wk 916
Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268
Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 207400 Total samples 111104

UNIVERSITY OF HOUSTON (UH)
Color Land cover type Samples train Samples test

Background 649816
Grass-healthy 198 1053
Grass-stressed 190 1064
Grass-synthetic 192 505

Tree 188 1056
Soil 186 1056

Water 182 143
Residential 196 1072
Commercial 191 1053

Road 193 1059
Highway 191 1036
Railway 181 1054

Parking-lot1 192 1041
Parking-lot2 184 285
Tennis-court 181 247

Running-track 187 473

Total samples 2832 12197

Valley, California, using 512×217 spectral samples with
224 spectral bands (20 of which were discarded due to
water absorption and noise). The ground-truth contains
16 classes (Table III).

• University of Houston (UH) dataset [90] provides an
interesting benchmark, first presented by the IEEE Geo-

science and Remote Sensing Society Image Analysis and
Data Fusion Technical Committee during the 2013 data
fusion contest [91]. It was gathered by the Compact
Airborne Spectrographic Imager (CASI) in June 2012
over the campus of the University of Houston and the
neighboring urban area, forming a ata cube of dimensions
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349 × 1905 × 144, with spatial resolution of 2.5m and
spectral information captured in the range from 0.38 to
1.05µm, containing 15 ground-truth classes divided in
two categories: training (top UH map in Table III) and
testing (bottom UH map in Table III).

C. Results and Discussion

In order to test the performance of proposed attention-
guided network for spectral-spatial HSI data classification,
four main experiments have been carried out:

1) Our first experiment one performs a comparison be-
tween the proposed attention-driven network and seven
different and widely-used HSI classifiers available in
the literature: i) random forest (RF), ii) multinomial
logistic regression (MLR), iii) support vector machine
(SVM), iv) multilayer perceptron (MLP), v) spectral
CNN (CNN1D), vi) spatial CNN (CNN2D), and vii)
spectral-spatial residual network (ResNet). In this con-
text, the four HSI datasets described in the previous
subsection have been used. We extracted patches of size
11 × 11 × 40. For the IP scene, we used 15% of the
available labeled data per class for training (and the rest
of the available labeled data for testing). For the UP
and SV scenes, we used 10% of the available labeled
data for training. Finally, for the UH scene we used the
available (fixed) training set (see Table III).

2) Our second experiment expands the initial comparison
carried out in the first experiment using different clas-
sifiers and particularly focusing on different spectral-
spatial methods carried out on the UP dataset with
the fixed training set adopted in [92]. In this case, the
following classifiers have been considered: i) Markov
random field combined with Gaussian class-conditional
model (MRF-Gauss), ii) contextual SVM (CSVM) [93],
iii) CNN with extinction profiles (EP-CNN) [94], iv)
CNN with a previously applied PCA (PCA), v) CNN
with extended morphological profiles (EMP-CNN), and
vi) CNN with Gabor filter (Gabor-CNN). Focusing on
convolutional models, the EP-CNN is fed by patches of
size 27 × 27 × nbands, while the proposed attentional
model and PCA-CNN, EMP-CNN and Gabor-CNN em-
ploy input patches of size 27× 27× 3.

3) Our third experiment performs a comparison between
the original spectral-spatial ResNet and the proposed A-
ResNet, evaluating the evolution of the overall accuracy
of both classifiers when different training ratios are
considered for the IP, UP and SV scenes. In particular,
5%, 10% and 15% ratios have been considered for the IP
scene, and 1%, 5% and 10% ratios have been considered
for the UP and SV scenes. Again, the input patches have
been extracted with size of 11× 11× 40.

4) Finally, our fourth experiment analyzes in detail the
performance of the proposed network as compared with
the original ResNet model in the presence of noisy data.
In this case, several levels of noise have been tested, with
noise being modeled as a normal distribution with µ = 0
and σ = {0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40}.

In order to carry out the aforementioned comparisons, some
widely-used measures have been considered, including the
overall (OA) and average (AA) accuracy, the kappa coeficient
(K) and the execution times (in seconds).

1) Experiment 1: Comparison between standard HSI classi-
fiers and the proposed methods: First experiment performs a
comparison between the proposed network and some of the
most well-known HSI classifiers available in the literature.
These methods can be divided into spectral-based ones (RF,
MLR, SVM, MLP and CNN1D), spatial classifiers (CNN2D),
and spectral-spatial classifiers (ResNet and A-ResNet). For all
the spectral-spatial methods, the input patch size has been
set to 11 × 11 × 40. In order to perform a fair comparison,
the ResNet has been implemented with the basic architecture
of the proposed network in Table II, where the ResNet is
composed by the same network’s head and tail, and the same
architecture of the trunk brach inside the network’s body.

The obtained results are reported in Tables IV-VII, where
the corresponding average and standard deviation values (ob-
tained after five Monte Carlo runs) are also displayed. Focus-
ing on the obtained OA values, we can observe that spatial and
spectral-spatial methods are, in general, able to outperform
pixel-based methods (RF, MLR, SVM, MLP and CNN1D),
being residual based models (i.e. ResNet and A-Resnet) able
to outperform the results obtained by the CNN2D. Focusing
on the ResNet and the proposed A-Resnet, the performance of
the latter is better than the performance of the former, being
able to reach higher OA values than the original ResNet,
in particular, in the classification of the IP and SV scenes.
Another interesting aspect is the AA, which is higher in the
proposed A-ResNet than in the original ResNet, indicating
that, on average, the high OA achieved is not due to peaks in,
say, very well ranked classes, but to a generally better rank
for all classes. This is also supported by the smaller standard
deviation values exhibited by our A-ResNet. In particular, we
can highlight the good performance of the proposed model
in small classes, (for instance Alfalfa and Oats in the IP
scene or Lettuce romaine 6wk in the SV scene), where the A-
ResNet is able to reach better accuracy values than the basic
ResNet. Focusing on SV and UH scenes (Tables VI and VII,
respectively), the obtained OA values may lead us to think
that both ResNet and A-ResNet exhibit a similar behaviour.
However, the standard deviation of A-ResNet is significantly
smaller, indicating more robust and stable results (as the AA
scores also suggest).

In addition, some of the obtained classification maps are
shown in Figs. 5-7. It can be observed that the classification
maps obtained by pixel-based classifiers show salt-and-pepper
noise in almost the full IP dataset and in some classes of
SV, particularly, Vinyard-untrained and Grapes-untrained. In
the UP scene, the RF missclassifies a large amount of pixels
in the Bare Soil class, for instance. In contrast, spectral-
spatial methods greatly reduce these effects, with ResNet and
A-ResNet being able to obtain classification maps that are
close to the original ground-truth. In addition, if we compare
the original ResNet to our A-ResNet, we can see that the
classification maps produced by the latter exhibit borders
between classes that are more sharply defined and clean than
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TABLE IV
CLASSIFICATION RESULTS FOR INDIAN PINES (IP) DATASET USING 15% OF THE AVAILABLE LABELED DATA

Class RF MLR SVM MLP CNN1D CNN2D ResNet A-ResNet
Alfalfa 20.00±8.01 32.82±13.51 62.05±12.07 50.77±9.65 44.61±5.28 75.38±10.20 84.62±3.62 89.23±1.92

Corn-notill 61.53±1.95 75.07±0.99 81.45±1.21 78.90±3.01 81.04±2.19 91.54±0.76 94.64±1.48 97.69±0.85
Corn-min 53.62±2.61 57.96±2.32 70.55±2.40 66.27±2.53 70.69±0.36 86.95±3.59 95.26±3.32 99.29±0.48

Corn 35.12±2.90 45.67±6.03 72.93±4.93 61.19±6.40 60.10±2.79 88.56±4.02 84.48±6.83 92.24±2.61
Grass/Pasture 84.39±4.29 86.98±1.94 93.17±2.26 89.61±2.65 92.34±0.88 86.05±2.40 96.49±0.55 99.02±0.74
Grass/Trees 96.10±0.93 96.36±0.94 97.32±0.26 96.55±0.39 97.29±1.24 96.13±1.92 98.06±0.97 99.77±0.38

Grass/pasture-mowed 29.57±10.79 47.83±15.80 84.35±3.48 75.65±5.90 69.57±11.99 82.61±11.00 85.22±5.22 93.04±5.90
Hay-windrowed 96.11±2.98 99.16±0.71 98.32±0.66 97.54±1.36 98.18±0.79 97.88±0.40 100.00±0.00 100.00±0.00

Oats 1.18±2.35 18.82±6.86 51.76±12.56 61.18±15.16 44.70±16.89 65.88±21.18 68.24±10.91 90.59±7.98
Soybeans-notill 65.96±2.63 66.54±1.77 77.87±2.13 78.18±5.23 78.67±1.92 89.85±2.91 94.65±1.65 98.57±0.51
Soybeans-min 89.13±3.07 79.53±1.71 85.10±0.72 86.10±2.71 83.42±3.44 95.28±1.45 97.57±0.77 99.37±0.18
Soybean-clean 46.59±4.62 58.25±3.33 79.09±0.99 78.85±3.36 83.97±1.05 88.65±2.04 90.28±3.77 97.14±0.87

Wheat 92.18±4.20 98.51±0.59 98.39±1.23 98.74±0.67 98.62±0.28 97.82±2.42 99.89±0.23 100.00±0.00
Woods 94.53±0.59 95.31±0.75 95.59±0.54 94.55±1.30 94.51±0.97 98.40±0.57 99.14±0.32 99.57±0.31

Bldg-Grass-Tree-Drives 40.55±5.01 63.90±2.81 61.28±3.42 65.55±3.48 67.44±4.86 89.21±6.02 93.54±3.53 99.58±0.41
Stone-steel towers 83.54±1.96 85.06±2.58 87.60±5.74 89.37±4.43 87.59±3.53 82.53±6.27 89.87±6.46 97.72±1.68

OA 75.31±0.48 77.76±0.48 84.48±0.23 83.50±0.47 84.02±0.83 92.69±0.53 95.94±1.32 98.75±0.31
AA 61.88±0.98 69.24±1.51 81.05±1.44 79.31±1.23 78.30±1.01 88.29±2.01 92.00±2.27 97.05±1.01

K(x100) 71.41±0.54 74.46±0.56 82.26±0.28 81.13±0.54 81.75±0.90 91.65±0.60 95.37±1.51 98.58±0.36
Time (s.) 1.29±0.54 6.05±0.56 0.25±0.28 26.46±0.54 53.91±0.90 59.28±0.60 61.57±1.51 92.56±0.36

(a) RF (b) MLR (c) SVM (d) MLP (e) CNN1D (f) CNN2D (g) ResNet (h) A-ResNet
(75.31%) (77.76%) (84.48%) (83.50%) (84.02%) (92.69%) (95.94%) (98.75%)

Fig. 5. Classification maps provided for the Indian Pines (IP) dataset by different methods (see Table IV).

TABLE V
CLASSIFICATION RESULTS FOR UNIVERSITY OF PAVIA (UP) DATASET USING 10% OF THE AVAILABLE LABELED DATA

Class RF MLR SVM MLP CNN1D CNN2D ResNet A-ResNet
Asphalt 91.63±0.58 92.39±0.59 94.29±0.47 93.81±1.33 95.85±0.52 98.01±0.65 99.01±0.27 99.80±0.09

Meadows 97.71±0.36 96.09±0.48 97.49±0.12 97.58±0.45 98.13±0.41 99.41±0.15 99.91±0.03 99.97±0.03
Gravel 66.88±2.70 73.27±0.98 80.84±1.30 78.11±3.87 81.48±1.98 93.90±1.73 97.82±0.42 99.56±0.24
Trees 89.10±1.25 86.90±1.34 94.21±1.18 93.59±1.25 94.15±1.34 98.14±0.36 99.28±0.15 99.74±0.07

Painted metal sheets 98.60±0.39 99.59±0.31 99.22±0.31 99.52±0.16 99.82±0.08 99.57±0.35 99.92±0.13 99.97±0.04
Bare Soil 64.35±1.30 77.83±0.77 90.91±0.71 91.64±1.27 91.71±1.66 98.08±0.49 99.99±0.02 100.00±0.00
Bitumen 77.66±1.29 56.34±4.95 87.35±1.12 85.53±2.34 87.52±0.88 89.72±2.86 96.86±0.53 99.16±0.32

Self-Blocking Bricks 88.52±0.77 86.68±1.18 87.47±0.48 88.92±1.25 85.68±2.32 98.28±0.69 98.13±0.26 99.73±0.20
Shadows 99.74±0.23 99.67±0.12 99.86±0.09 99.53±0.25 99.88±0.07 98.87±0.51 99.95±0.06 99.88±0.10

OA 89.37±0.15 89.73±0.31 94.10±0.10 94.04±0.22 94.61±0.21 98.27±0.14 99.39±0.06 99.86±0.04
AA 86.02±0.29 85.41±0.63 92.40±0.16 92.02±0.45 92.69±0.10 97.11±0.25 98.99±0.12 99.76±0.05

K(x100) 85.67±0.20 86.27±0.41 92.17±0.14 92.09±0.28 92.84±0.28 97.71±0.18 99.19±0.09 99.82±0.05
Time (s.) 4.29±0.20 8.63±0.41 0.44±0.14 68.22±0.28 139.58±0.28 139.82±0.18 93.63±0.09 205.89±0.05

(a) RF (b) MLR (c) SVM (d) MLP (e) CNN1D (f) CNN2D (g) ResNet (h) A-ResNet
(89.37%) (89.73%) (94.10%) (94.04%) (94.61%) (98.27%) (99.39%) (99.86%)

Fig. 6. Classification maps provided for the University of Pavia (UP) dataset by different methods (see Table V).

those obtained by the original ResNet (for instance, in the SV
scene, the A-ResNet provides a better separation between the
Fallow-rough-plow field and the Vinyard-vertical-trellis and
Grapes-untrained classes).

2) Experiment 2: Comparison between advanced spectral-
spatial HSI classifiers and the proposed method: In order
to focus in more details on spectral-spatial classifiers, this
experiment compares the proposed attentional model with
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TABLE VI
CLASSIFICATION RESULTS FOR SALINAS VALLEY (SV) DATASET USING 10% OF THE AVAILABLE LABELED DATA

Class RF MLR SVM MLP CNN1D CNN2D ResNet A-ResNet
Brocoli green weeds 1 99.46±0.14 99.47±0.16 99.63±0.20 99.57±0.12 99.88±0.10 99.45±0.32 99.61±0.47 99.95±0.04
Brocoli green weeds 2 99.83±0.05 99.94±0.06 99.91±0.08 99.87±0.09 99.96±0.02 99.51±0.38 99.99±0.01 99.99±0.01

Fallow 99.15±0.42 98.60±0.77 99.68±0.09 99.44±0.28 99.85±0.16 99.62±0.21 98.75±0.48 99.01±0.35
Fallow rough plow 99.42±0.25 99.28±0.29 99.31±0.33 99.25±0.58 99.57±0.15 99.89±0.16 99.76±0.20 99.92±0.07

Fallow smooth 97.87±0.38 99.12±0.32 99.35±0.17 99.09±0.42 99.05±0.47 99.88±0.10 99.25±0.61 99.86±0.19
Stubble 99.68±0.10 99.92±0.06 99.80±0.17 99.85±0.09 99.85±0.07 99.78±0.26 100.00±0.00 100.00±0.00
Celery 99.39±0.09 99.89±0.06 99.54±0.17 99.57±0.22 99.84±0.06 99.64±0.10 99.82±0.09 99.88±0.13

Grapes untrained 84.42±0.93 87.98±0.50 90.51±0.40 86.88±1.75 90.98±1.33 95.60±0.42 97.45±2.51 99.77±0.09
Soil vinyard develop 99.07±0.17 99.73±0.17 99.92±0.03 99.73±0.23 99.83±0.18 99.54±0.20 99.98±0.02 99.99±0.01

Corn senesced green weeds 91.56±1.09 95.79±0.54 97.71±0.48 96.56±1.05 98.03±0.22 98.45±0.84 99.38±0.39 99.92±0.07
Lettuce romaine 4wk 94.13±0.69 95.90±1.02 98.88±0.39 97.81±0.34 98.33±0.94 98.73±0.90 98.96±0.43 99.60±0.16
Lettuce romaine 5wk 98.79±0.23 99.63±0.15 99.79±0.07 99.65±0.12 99.96±0.03 99.58±0.51 100.00±0.00 100.00±0.00
Lettuce romaine 6wk 97.86±0.92 99.03±0.45 98.88±0.98 99.03±0.20 99.17±0.58 99.13±0.95 98.91±0.39 99.76±0.28
Lettuce romaine 7wk 91.34±1.77 96.03±0.70 97.65±1.34 96.80±0.82 97.34±0.80 97.53±0.84 99.48±0.52 99.94±0.05

Vinyard untrained 60.46±2.51 66.63±0.91 70.54±1.26 77.81±2.20 79.52±1.99 95.01±1.21 97.47±2.06 99.84±0.08
Vinyard vertical trellis 97.06±0.84 98.89±0.52 99.18±0.28 99.08±0.26 99.00±0.30 97.00±1.35 99.91±0.14 99.84±0.13

OA 90.12±0.43 92.35±0.13 93.67±0.15 93.73±0.11 95.01±0.22 97.94±0.20 98.92±0.87 99.85±0.04
AA 94.34±0.31 95.99±0.13 96.89±0.20 96.87±0.06 97.51±0.17 98.65±0.25 99.29±0.41 99.83±0.05

K(x100) 88.98±0.48 91.47±0.14 92.94±0.17 93.02±0.11 94.44±0.24 97.71±0.22 98.80±0.97 99.83±0.04
Time (s.) 2.85±0.48 65.21±0.14 0.94±0.17 86.63±0.11 177.78±0.24 177.29±0.22 203.93±0.97 287.58±0.04

(a) RF (b) MLR (c) SVM (d) MLP (e) CNN1D (f) CNN2D (g) ResNet (h) A-ResNet
(90.12%) (92.35%) (93.67%) (93.73%) (95.01%) (97.94%) (98.92%) (99.85%)

Fig. 7. Classification maps provided for the Salinas Valley (SV) dataset by different methods (see Table VI).

TABLE VII
CLASSIFICATION RESULTS FOR UNIVERSITY OF HOUSTON (UH) DATASET

Class RF MLR SVM MLP CNN1D CNN2D ResNet A-ResNet
Grass healthy 82.49±0.05 82.62±0.00 82.34±0.00 81.58±0.38 81.75±0.69 80.48±2.48 82.15±0.47 81.39±1.05
Grass stressed 83.36±0.15 83.93±0.00 83.36±0.00 81.67±0.67 95.04±5.33 85.49±2.45 85.09±0.08 84.91±0.49
Grass synthetic 97.82±0.25 99.80±0.00 99.80±0.00 99.64±0.08 99.88±0.10 88.99±7.40 98.26±0.52 98.38±0.36

Tree 91.74±0.31 98.01±0.00 98.96±0.00 88.69±1.11 89.45±0.59 83.66±3.02 89.55±1.69 86.14±2.20
Soil 96.80±0.20 97.16±0.00 98.77±0.00 97.08±0.43 98.63±0.56 100.00±0.00 100.00±0.00 100.00±0.00

Water 99.16±0.28 94.41±0.00 97.90±0.00 94.41±0.00 95.94±1.68 92.59±2.33 95.80±0.00 97.34±1.90
Residential 75.28±0.47 74.25±0.00 77.43±0.00 76.79±2.03 80.88±3.59 74.65±3.56 77.28±0.93 76.96±5.42
Commercial 33.01±0.32 65.15±0.00 60.30±0.00 55.82±4.08 80.32±6.54 80.85±5.07 79.09±1.14 77.45±3.91

Road 69.40±0.35 69.12±0.00 76.77±0.00 69.91±5.40 77.09±5.76 81.34±3.26 88.63±2.35 88.35±1.06
Highway 43.86±0.31 54.44±0.00 61.29±0.00 49.71±3.46 72.57±13.83 63.69±1.40 71.47±10.58 86.89±12.40
Railway 70.36±0.25 76.09±0.00 80.55±0.00 75.67±1.37 86.36±6.43 93.74±3.18 98.14±1.16 96.28±1.45

Parking lot1 54.77±0.81 73.39±0.00 79.92±0.00 77.16±5.41 91.91±1.68 96.96±2.01 98.79±0.31 98.04±1.40
Parking lot2 60.14±0.36 68.42±0.00 70.88±0.00 72.21±2.98 74.74±3.34 82.88±3.09 80.42±3.24 79.37±5.21
Tennis court 98.87±0.40 98.79±0.00 100.00±0.00 99.03±0.20 99.36±0.32 98.79±1.33 100.00±0.00 100.00±0.00

Running track 97.50±0.21 95.98±0.00 96.41±0.00 98.31±0.33 98.14±0.49 97.34±3.23 99.96±0.08 99.87±0.25
OA 73.09±0.11 79.53±0.00 81.86±0.00 77.98±0.79 86.66±0.44 85.18±0.42 88.20±0.86 88.71±0.67
AA 72.16±0.08 76.97±0.00 79.04±0.00 81.18±0.68 88.14±0.35 86.76±0.21 89.64±0.75 90.09±0.37

K(x100) 71.09±0.11 77.89±0.00 80.43±0.00 76.29±0.85 85.53±0.47 83.90±0.45 87.18±0.93 87.73±0.73
Time (s.) 2.68±0.11 21.25±0.00 0.37±0.00 46.09±0.85 94.41±0.47 165.33±0.45 10.44±0.93 34.23±0.73

several spectral-spatial methods discussed in [92]. In this
context, the proposed A-Resnet has been adapted to receive the
same input data as PCA-CNN, EMP-CNN and Gabor-CNN,
extracting from a fixed training set available for the UP scene
[92] the same patches with size 27× 27× 3.

The obtained results can be observed on Table VIII. Focus-
ing on the methods described in [92], it is interesting to note
that the convolution-based ones are able to reach the highest
OA scores, being Gabor-CNN the best one in [92] (thanks to
the ability of the Gabor filter to extract and encode highly
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TABLE VIII
CLASSIFICATION RESULTS FOR UNIVERSITY OF PAVIA (UP) DATASET WITH THE FIXED TRAINING SET USED IN [92].

Class MRF-Gauss CSVM EP-CNN PCA-CNN EMP-CNN Gabor-CNN ResNet A-ResNet
Asphalt 84.84 92.56 88.43 92.23 95.87 87.75 86.53 90.74

Meadows 72.56 73.60 91.64 97.72 99.50 97.25 96.96 99.10
Gravel 65.12 71.68 75.95 52.85 61.12 70.92 89.31 92.51
Trees 96.63 98.97 96.53 89.46 94.81 97.09 93.03 92.89

Painted 99.91 100.00 98.56 99.46 95.15 98.83 98.38 97.21
Bare 92.34 96.35 57.87 57.66 64.84 64.62 55.36 66.16

Bitumen 91.95 92.46 80.43 91.42 80.63 76.66 85.12 82.06
Self-Blocking 94.59 97.41 98.10 98.06 97.26 99.05 97.32 96.88

Shadows 98.99 95.09 96.84 98.48 96.08 98.36 82.52 81.51
OA 81.78 84.58 87.01 88.93 91.37 91.62 89.45 92.06
AA 88.55 90.90 87.15 86.37 87.25 87.83 87.03 88.68

K(x100) 76.76 80.31 83.08 85.44 88.67 89.14 85.52 89.11

(a) IP scene (b) UP scene (c) SV scene
Fig. 8. Evolution of the overall accuracy (Y-axis) for the ResNet and the proposed model (A-ResNet) when classifying the IP (a), UP (b) and SV (c)
hyperspectral scenes, using different training ratios.

TABLE IX
OVERALL ACCURACY OF RESNET AND THE PROPOSED MODEL (A-RESNET) OVER THE IP, UP AND SV DATASETS WHEN DIFFERENT NORMAL RANDOM

PERTURBATIONS ARE INSERTED INTO THE DATA

Normal Perturbation µ = 0, σ = 0.10 µ = 0, σ = 0.20 µ = 0, σ = 0.40 µ = 0, σ = 0.80 µ = 0, σ = 1.60 µ = 0, σ = 3.20 µ = 0, σ = 6.40
Dataset ResNet A-ResNet ResNet A-ResNet ResNet A-ResNet ResNet A-ResNet ResNet A-ResNet ResNet A-ResNet ResNet A-ResNet

IP 95.05 98.84 94.93 98.78 94.67 98.74 92.63 98.45 82.97 96.38 61.13 80.40 35.06 52.87
UP 99.29 99.85 99.28 99.84 99.07 99.69 96.09 96.9 83.67 88.49 64.74 75.01 41.57 51.08
SV 98.90 99.81 98.69 99.64 97.60 98.73 94.19 95.51 87.57 90.77 71.08 83.1 39.05 53.28

(a) IP scene (b) UP scene (c) SV scene
Fig. 9. Degradation of the overall accuracy (Y-axis) of ResNet and the proposed model A-ResNet for IP (a), UP (b), SV (c) and KSC (d), comparing the
accuracy reached with the original data (σ = 0) and the accuracy reached with perturbed data, being σ = {0.01, 0.02, 0.03, 0.04, 0.05} (X-axis)

discriminant spatial features). However, the A-ResNet is able
to outperform the OA values of the methods reported in [92],
exhibiting 92.06% OA, which is around 0.44 percentage points

higher than the Gabor-CNN.

3) Experiment 3: Evolution of overall accuracy of ResNet
and A-Resnet when different training ratios are considered:
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Focusing on residual models, the original ResNet and the
proposed A-ResNet, this experiment studies the behaviour
of both models when different amounts of labeled data are
available to perform the training step. The IP, UP and SV
scenes have been considered, training the models with 5%,
10% and 15% of the available labeled samples for the IP scene,
and 1%, 5% and 10% of the available labeled samples for the
UP and SV scenes, respectively.

The obtained results are graphically displayed in Fig. 8. We
can observe that, when few training samples are used (5%
for IP and 1% for UP and SV, respectively), the proposed
A-ResNet model is able to reach the best OA values with the
lowest standard deviation, suggesting that the proposed method
is able to better address the problem of overfitting when few
training samples are provided to the network, obtaining robust
results. As we feed more samples to the network, the accuracy
gap between the original ResNet and proposed A-ResNet
becomes smaller, although the deviation of the attentional
network is always much smaller than that of the standard
ResNet. This indicates that the proposed method is able to
improve the standard ResNet when few training samples are
employed, achieving at least the same result when a reasonable
amount of training samples are used (see Fig. 8(c), obtained
using 10% of the available labeled samples for the SV scene).

4) Experiment 4: Comparison between the basic ResNet
and the proposed method: Motivated by the previous experi-
ment, the fourth experiment studies in more detail the behavior
of the basic ResNet and the proposed model A-ResNet. The
goal of this experiment is to validate the performance and
robustness of the proposed method with respect to ResNet
when the test data is corrupted. In remote sensing, it is
desirable to generate models that process data in a robust
manner, for instance training and testing the classifier model
with data obtained at different temporal acquisitions, or after
different captures of the same area. These situations introduce
certain disturbances or changes in the training and testing data
to which the models must be able to respond in a reliable
manner. As a result, this experiment evaluates how Resnet
and A-ResNet behave when they have to deal with perturbed
data.

In order to simulate perturbed data, the original IP, UP and
SV datasets have been modified through a random normal
distribution with mean µ = 0 and seven different standard
deviation values σ = {0.10, 0.20, 0.40, 0.80, 1.60, 3.20, 6.40}.
Neural models have been trained over the original datasets
using 15% of the available labeled samples from IP, and 10%
of the available labeled samples from UP and SV. Again,
patches of 11 × 11 × 40 have been employed as the input
data. The obtained results are given in Table IX.

With slight disturbances (σ = 0.10), we can observe that
the ResNet exhibits a small decay of OA values in comparison
with the case that no perturbations are present in the IP (-0.89)
and UP (-0.1) datasets, while in the SV dataset the difference
is very small (-0.02), as we can observe in Fig. 9. In turn,
the A-ResNet is not significantly affected by the introduced
perturbations. For instance, in the IP scene, it is even able to
outperform the ResNet in terms of OA, being 0.09 percentual
points better when noise is not included.

However, as the noise level increases, we can see how
the OA of the standard ResNet decreases significantly, in
particular from σ = 1.6. Therefore, the features extracted by
the standard ResNet from these datasets are not relevant or
generic enough to be applied in scenarios with perturbations.
Instead of that, the performance of the proposed models
remains more stable. For instance, for the IP dataset, the A-
ResNet exhibits a degradation of 2.37 percentage points, while
the ResNet exhibits a degradation of 12.97 points. Also, in
the experiments with the UP and SV scenes, the ResNet is
more affected than the A-ResNet, although the gap between
the two seems smaller. However, with greater σ values, the
gap becomes larger. This behaviour can be also observed for
the rest of σ values (see Fig. 9): ResNet reaches the lowest
OA and exhibits the worse degradation of performance with
perturbed data, while the proposed model maintains a high OA
and significantly lower degradation.

The OA values in Table IX and the degradation performance
in Fig. 9 indicate that the proposed model is more robust to
perturbations in the data, achieving high OA values. Also, it is
able to extract more discriminative features from the original
training data in comparison with ResNet, being the A-ResNet
the most robust architecture for all datasets (even in presence
of significant distortions).

V. CONCLUSIONS AND FUTURE LINES

In this work, a new model for spatial-spectral HSI clas-
sification has been proposed by combining a deep learning
architecture (ResNet) and visual attention techniques. The
filtering system introduced by the visual attention model,
following bottom-up and top-down visual selection, allows
for a post-processing of the extracted data, enhancing the
quality of the feature extraction process as well as obtaining
more representative and significant features, leading to a more
precise and robust classification of HSI data.

Our experimental comparisons have been conducted using
four publicly available HSI datasets, evaluating the proposed
visual attention-driven model (A-ResNet) versus seven stan-
dard machine learning and deep learning classifiers and six
advanced spectral-spatial methods, revealing that the proposed
networks exhibit competitive results when compared to state-
of-the-art techniques such as CNNs (combined with different
techniques) and ResNets. Also, a deeper comparison between
the ResNet and the proposed model with different amounts
of training data and perturbed data revealed that our newly
proposed model is able to extract more relevant, discriminative
and complete features from HSI scenes, exhibiting robustness
to network degradation when very limited training samples
and/or highly disturbed data are considered.

As future work, we intend to improve the parameter op-
timization mechanism of the proposed network (particularly
when very few labeled samples are available) in order to
reduce the effect of overfitting. Also, we are planning to
combine additional visual attention techniques with other deep
models, with the aim of enhancing the quality of the extracted
features and the final classification results.
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