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Abstract—Convolutional neural networks (CNNs) exhibit good
performance in image processing tasks, pointing themselves as
the current state-of-the-art of deep learning methods. However,
the intrinsic complexity of remotely sensed hyperspectral im-
ages (HSIs) still limits the performance of many CNN mod-
els. The high dimensionality of HSI data, together with the
underlying redundancy and noise, often make standard CNN
approaches unable to generalize discriminative spectral-spatial
features. Moreover, deeper CNN architectures also find challenges
when additional layers are added, which hampers the network
convergence and produces low classification accuracies. In order
to mitigate these issues, this paper presents a new deep CNN
architecture specially designed for HSI data. Our new model
pursues to improve the spectral-spatial features uncovered by
the convolutional filters of the network. Specifically, the proposed
residual-based approach gradually increases the feature map
dimension at all convolutional layers, grouped in pyramidal
bottleneck residual blocks, in order to involve more locations as
the network depth increases while balancing the workload among
all units, preserving the time complexity per layer. It can be seen
as a pyramid, where the deeper the blocks, the more feature maps
can be extracted. Therefore, the diversity of high-level spectral-
spatial attributes can be gradually increased across layers to
enhance the performance of the proposed network with HSI
data. Our experiments, conducted using four well-known HSI
datasets and ten different classification techniques, reveal that our
newly developed HSI pyramidal residual model is able to provide
competitive advantages (in terms of both classification accuracy
and computational time) over state-of-the-art HSI classification
methods.

Index Terms—Hyperspectral imaging (HSI), Convolutional
neural networks (CNNs), Residual networks (ResNets).
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HYPERSPECTRAL imaging (HSI) collects valuable in-
formation for monitoring the surface of the Earth [1],

thus addressing important remote sensing applications includ-
ing environmental management [2], agriculture [3], surveil-
lance [4], and physics [5]. In general, HSI science aims at
acquiring data using hundreds of (narrow) spectral bands in
order to simultaneously provide detailed spectral and spa-
tial information. Therefore, HSIs are particularly useful for
providing highly precise material identification by analyzing
discriminative spectral and spatial features over specific areas
of interest [6].

In the literature, different kinds of unsupervised and super-
vised approaches have been proposed to classify HSI data [7].
Unsupervised methods do not make use of labeled data, so they
do not need a supervised training phase, which makes them
suitable when poor prior knowledge of the considered scenes is
available. In this sense, unsupervised clustering methods such
as K-means [8] are used. Recently, more sophisticated unsu-
pervised methods have been developed to efficiently extract a
proper set of features for remote sensing data classification and
segmentation purposes. In this sense, information theory ap-
proaches are showing an increasing potential in remote sensing
data management and analysis because they pursue to uncover
hidden data interactions and correlations, which eventually can
be very useful to deal with the inherent complexity of HSI
data. For instance, [9] presents a new unsupervised feature
extraction approach based on data-driven discovery for data
classification, which exploits mutual information maximiza-
tion in order to retrieve the most relevant features. Another
relevant information theory-based approach is the one in [10],
where the authors present an efficient classification framework
that relies on an entropy-based feature selection together with
a Pareto optimality criteria in order to detect relevant HSI data
patterns for classification purposes.

Whereas unsupervised methods only rely on the data itself
to categorize the pixels in the scene, supervised models have
shown to provide more accurate results by learning the data
relations from a given training set containing ground-truth
information [11]. Over the past years, a wide variety of
supervised machine learning paradigms have been successfully
applied to remotely sensed HSI classification [12]. Support
vector machines (SVMs) and kernel-based methods [13],
statistical procedures as principal component analysis (PCA)
[14] or logistic regression [15], Bayesian models [16], random
forest (RF) [17] and neural networks [18] are amongst the most
popular approaches.

Nonetheless, the intrinsic complexity of hyperspectral im-
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agery still makes many of these approaches unable to consis-
tently provide satisfactory classification results, especially un-
der challenging scenarios [1]. Note that the number of training
samples in the HSI field is usually rather limited compared to
the available number of spectral bands, and this fact typically
results in an under-complete training process which is prone
to over-fitting, i.e. the so-called Hughes phenomenon [19].
Additionally, spectral redundancy and noise are often present
in HSI since contiguous bands tend to be highly correlated, and
the physical limitations of the acquisition technology always
introduce some sort of signal perturbations.

Several strategies have been adopted in the remote sensing
field to mitigate these problems and, consequently, improve
the resulting HSI classification accuracy. This includes feature
extraction [20]–[23], band reduction [24]–[27], data augmen-
tation [28], and active learning techniques [29]–[31] [32].
However, one of the most popular research lines to deal
with the high complexity of the HSI domain is based on
developing spectral-spatial classifiers [6], which can achieve
better classification performance than pixel-wise classifiers,
since they take into account not only the information of the
spectral signatures but also the spatial-contextual information.
For instance, in [33] the authors resort to discriminative low-
rank Gabor filtering which is shown to be particularly effective
for spatial-spectral HSI classification. Approaches such as
this often pursue a reduction of classification uncertainty by
combining each pixel spectra with the size and shape of the
corresponding structure to which it belongs, therefore highly
powerful models are usually required to effectively exploit the
HSI spectral-spatial components [34], [35].

In this scenario, supervised deep learning models are at-
tracting increased attention. Deep network-based approaches
[36], [37] have been recently introduced to the hyperspectral
community, showing a great potential in the field of remote
sensing classification. The main idea behind deep learning is
to extract higher abstract semantic features from the original
data with a hierarchical representation method. In other words,
the supervised deep learning approach may be considered
as a nonlinear mapping from the feature space to the label
space, achieving higher expressibility through a hierarchy of
layers. In [38], Chen et al. proposed a stacked auto-encoder
(SAE) to extract the high-level features for HSI classification
using spectral-spatial information. In [39], Zhao et al. also
exploited a stacked sparse autoencoder (SSA) to extract layer-
wise more abstract and deep-seated features from spectral
feature sets, spatial feature sets and spectral-spatial vectors,
using RF for classification purposes. In [40], Li et al. in-
troduced the deep belief network (DBN) for spectral-spatial
feature extraction and classification of hyperspectral images.
In [41], Zhong et al. introduced a diversity promoting prior
into the pre-training (unsupervised) and fine-tuning procedure
(supervised) of the DBN model in order to enhance HSI
classification performance. However, these models suffer from
spatial information loss, because they require flat spatial HSI
patches (in one dimension) to satisfy their input requirements,
and may not effectively exploit the spatial information [42].
In [43], Ma et al. tried to overcome these limitations by
implementing a spatial updated deep auto-encoder (SDAE) in

order to exploit jointly spectral and spatial features from HSIs,
replacing each feature with the weighted average computed
from the surrounding samples. To further address this issue,
Chen et al. proposed the use of convolutional neural networks
(CNNs) for HSI classification [44]. Compared to SAE and
DBN, the CNN model allows using spatial HSI patches as
data input, providing a natural way to incorporate this kind of
information and enhance the classification performance.

Several CNN-based models can be found in the literature
for HSI classification using spectral-spatial features. Following
the pixel-based approach, in [45] Mei et al. presented a CNN
model integrating spectral signatures and spatial context by
preprocessing each pixel, i.e. calculating the mean of the
pixel neighborhood and the mean and standard deviation per
spectral band of this neighborhood. In [46], Li et al. com-
bined the CNN model with pixel-pairs to learn discriminative
features, using a majority voting strategy to obtain the final
classification result. Other relevant approaches are [47], [48],
where Yang et al. and Zhang et al. respectively proposed two
different CNN models to separately extract spectral and spatial
features (the last one merging PCA with CNN), combining
them by a softmax regression classifier. Moreover, Zhao and
Du [49] combined a spatial feature extraction process based
on the CNN model with a spectral feature extraction process
based on the balanced local discriminant embedding (BLDE),
stacking the obtained features and then performing a final
classification step. Although these methods merge different
kinds of techniques in addition to CNNs to separately extract
spectral-spatial information, they do not take full advantage
of the joint spectral/spatial correlation information. In contrast,
the deep models in [50]–[52] can learn both the spatial and the
spectral information, taking as input data 3D blocks from the
original hyperspectral image and calculating 3D convolution
kernels for each pixel together with its spatial neighborhood
and the corresponding spectral information.

However, training very deep CNNs with HSI data is still
difficult, due to the loss of information produced by the
vanishing gradient problem [53], where gradients obtained
by the activation outputs of each processing layer of the
network tend to be smaller, making a poor propagation of
activations and gradients and elongating the cost function.
As result, the accuracy of deep CNNs is saturated and then
degrades rapidly. Recently, advanced deep CNN schemes
have been proposed to uncover highly discriminative spectral-
spatial features pervading the HSI data. It is the case of
the residual network (ResNet) [54], which defines a CNN
extension based on processing blocks, called residual blocks
[55] as fundamental structural elements to facilitate learning of
deeper networks and enabling them to be substantially deeper.
These residual blocks are modules with the same topology that
perform a set of transformations whose outputs are aggregated
by summation. In fact, ResNet can be interpreted as a large
ensemble of much shallower networks [56], creating a much
deeper architecture than its plain counterparts, ensuring a min-
imum loss of information by modeling each block closer to an
identity mapping than to a zero mapping, and adding shortcut
connections between each residual block so that they receive
more detailed information rather than just abstract information.
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As result, ResNet models [55], [57], [58] may outperform
standard deep CNNs in HSI analysis and classification [50],
[59].

In this paper, we propose a new residual network model
based on pyramidal bottleneck residual units to achieve fast
and accurate HSI analysis and classification, using both spec-
tral and spatial information. This new deep model is composed
by several blocks of stacked convolutional layers, which have
a diabolo (bottleneck) architecture in which the output layer is
larger than the input layer. In this way, the number of spectral
channels in the original HSI cube is increased step by step on
each block, creating the illusion of a pyramid where, as the
residual units are deeper, more feature maps can be extracted,
allowing to learn more robust spectral-spatial representations
from HSI cubes. However, these HSI pyramidal bottleneck
residual units are still computationally expensive, which forces
to adopt acceleration techniques to reduce execution time.
In this sense, the proposed network has been accelerated
using graphics processing units (GPUs). The obtained results
(using four well-known hyperspectral datasets) show that the
proposed model can outperform not only the spectral-spatial
CNN, but also the baseline HSI-ResNet classification results,
extracting more discriminative spectral-spatial features without
the need to use large amounts of training data, which may have
great uncertainty.

The remainder of the paper is organized as follows. Section
II describes the proposed method. Section III validates the
proposed model by drawing comparisons with other state-
of-the-art HSI classification approaches. Finally, Section IV
concludes the paper with some remarks and hints at plausible
future research lines.

II. METHODOLOGY

This section is structured as follows. First, we set notation
and provide an overview of classic CNNs while highlighting
the connections of our newly proposed model with the tra-
ditional CNN architecture. Then, we introduce the proposed
hyperspectral pyramidal residual network model.

A. Convolutional Neural Networks

Traditional neural networks (deep or shallow ones) are char-
acterized by 1D architectures composed by fully connected
layers, e.g. multilayer perceptrons (MLP), AEs or DBNs,
which can lead to the loss of HSI structural information,
in particular the intrinsic 2D data information contained in
the spatial domain of the hyperspectral images, because of
the vector-based feature alignment of each layer [60]. Instead
of that, CNN models are able to automatically exploit not
only spectral information but also relevant spatial-contextual
features and also spectral-spatial features, depending on their
architecture. Moreover, CNNs employ local connections de-
fined in each layer to deal with spectral-spatial dependencies
via sharing weights, i.e. layers are applied over defined and
small regions of the input data, obtaining an output volume
composed by feature maps which will be the input of the next
layer.

Let us suppose a hyperspectral image X ∈ RN×W×H ,
where N , W and H are the spectral bands, width and height
respectively. The pixel xi,j of X (with i = 1, 2, ...,W
and j = 1, 2, ...,H) can be defined as the spectral vector
xi,j ∈ RN = [xi,j,1, xi,j,2, ..., xi,j,N ]. Also, we can define
a neighboring region pi,j ∈ Rd×d around xi,j , composed
by pixels from (i − d

2 , j − d
2 ) to (i + d

2 , j − d
2 ) and from

(i − d
2 , j +

d
2 ) to (i + d

2 , j +
d
2 ). If p takes into account the

spectral information, it can be defined as pi,j ∈ RN×d×d.
Depending on the architecture of the CNN layers and the kind
of data that they use as input (the pixel vector xi,j ∈ RN ,
the spatial region pi,j ∈ Rd×d, or the spectral-spatial region
pi,j ∈ RN×d×d), we can classify CNNs into three categories:

1) Spectral-based classification approaches, also called 1D-
CNNs, which are conceptually simple and easier to
understand and implement because these models follow
the pixel vector-based approach of traditional networks,
being the spectral feature xi,j ∈ RN of the original HSI
data directly deployed as the input vector. As a result,
each 1D-layer obtains an output composed by n feature
vectors, being n the number of filters or kernels.

2) Spatial-based classification approaches, also called 2D-
CNNs, which are the most widely used for image anal-
ysis and categorization tasks. In these models, the HSI
is normally pre-processed via PCA or similar dimen-
sion reduction methods (such as independent component
analysis -ICA- [61] or maximum noise fraction -MNF-
[62], among others) in order to reduce the number of
spectral bands, and neighboring regions pi,j ∈ Rd×d are
extracted from the original image in order to create the
input patches that 2D-CNN models process to extract the
spatial feature representation. As result, each 2D-layer
obtains an output made up of n feature maps.

3) Spectral-spatial classification approaches, also called
3D-CNNs, make use of a 3D-architecture to jointly ex-
tract spectral-spatial information. In this case, neighbor-
ing spatial-spectral regions pi,j ∈ RN×d×d are extracted
from the original image in order to create the input data
blocks that feed the network.

The proposed method makes use of 2D-CNN approaches,
implementing 2D layers. However, all the spectral bands will
be used in order to create the input data blocks pi,j ∈ RN×d×d

instead of reducing the original spectral signatures using PCA.
This will allow us to extract not only spatial information,
but also spectral information, in a fast and integrated way,
performing a full spectral-spatial feature extraction and further
allowing 3D processing. In particular, four kinds of CNN
layers will be used by the proposed architecture:

1) Convolution layers (CONV), that perform a dot product
between their weights and biases and small windows of the
input volume data defined by a kernel k × k, obtaining an
output volume composed by n feature maps, being n the
number of kernels:

pl+1 = ϕ (Wl · pl + bl) (1)

where pl+1 is the output with n feature maps of the l-th CONV
layer, Wl is weight matrix defined by the filter bank with
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kernel size k × k, and bl of the i-th CONV layer, pl is the
output feature maps of the l− 1-th CONV layer and ϕ(·) the
non-linear activation function.

2) Batch normalization layers (BATCH-NORM) that re-
duce the covariance shift by means of which the hidden unit
values shift around, allowing a more independent learning
process in each layer. It regularizes and speeds up the training
process, imposing a Gaussian distribution on each batch of
feature maps:

BN(x) =
x− mean[x]√

Var[x] + ϵ
· γ + β (2)

being γ and β learnable parameter vectors, and ϵ a parameter
for numerical stability.

3) Nonlinearity layers that embed a nonlinear function
applied to each feature map’s component in order to learn
nonlinear representations. In this layer, the rectified linear unit
(ReLU) [63], [64] has been implemented.

4) Pooling layers (POOL) that reduce data variance
and computation complexity, making the features location-
invariant summarizing the output of multiple neurons in
CONV layers through a pooling function, e.g. max-pool or
average-pool.

B. Proposed Hyperspectral Deep Network for Spectral-Spatial
Classification

We denote a hyperspectral data cube as X ∈ RN×W×H ,
containing two spatial dimensions: the width W and height
H , and one spectral dimension, the number of spectral bands
or channels N . In order to exploit both sources of information,
we present a learning framework based on very deep CNNs,
with the aim of performing accurate spectral-spatial HSI
classification, taking into account the spectral signature of each
pixel xi,j ∈ X and its spatial neighborhood. However, training
very deep CNNs becomes more difficult as depth increases due
to the loss of information produced by the vanishing gradient
problem [53], where the activation outputs of the network
produce a poor propagation of activations and gradients, being
gradients close to zero, which elongates the cost function that
must be optimized and cannot sufficiently change the model
weights at each iteration. This hampers the convergence of the
network from the beginning, where accuracy first saturates and
then degrades rapidly.

Fig. 1. Typical residual unit architecture R
(i)
j . The F(·) + pj is performed

by the shortcut connection, with element-wise addition.

One of the most effective ways to solve the vanish-
ing/exploding gradient problem is the use of a ResNet model
[54], through a residual block-based [55] architecture. This
model can be interpreted as a large ensemble of many grouped
and shallower networks, similar to a matrioska. Let us consider
a ResNet that is composed by M groups or modules. The i-
th module Mi, with i = 1, 2, ...,M , will be composed by
R(i) residual units and the j-th residual unit R(i)

j of Mi, with
j = 1, 2, ..., R(i) composed by a few stacked layers, normally
CONV layers stacked with ReLUs and BATCH-NORM layers.
In this architecture, two types of connections are given (see
Fig. 1), the feedforward connection that connects layer-to-
layer, i.e. each layer is connected with the previous one and
the next one, and the skip or shortcut connection between
each residual unit, i.e. a linear layer that connects the input
of R

(i)
j with its output, preserving information across layers.

In this way, two operations are carried out related with these
connections [see Eq. (3)], residual learning by feedforward
connections and identity mapping by shortcut connections:

yj = h(pj) + F(pj ,Wj)

pj+1 = ϕ(yj)
(3)

where pj and pj+1 are the input and output feature maps of
the j-th residual unit respectively, Wj =

{
W

(j)
l |1 ≤ l ≤ Lj

}
is the weight matrix of the Lj CONV layers associated to
the j-th residual unit, F(·) is the residual function, h(pj) =
pj is the identity mapping and ϕ(·) is an activation function
(normally a ReLU). The goal of the network is to learn the
residual function F(·) with respect to h(pj) = pj .

Also, in the ResNet each R
(i)
j shares the same topology,

whose outputs are aggregated by summation and subject to
two design rules: 1) for the same output feature map spatial
size, the layers have the same number of filters n, and 2)
if the feature map size is halved, the number of filters n is
doubled in order to preserve the time complexity per layer.
The main idea behind this structure is that each residual unit
is configured to perform the same recognition task as a single
layer of the traditional CNN.

Fig. 2. Different residual unit architectures showing only CONV layers:
(left) traditional residual units, where CONV layers have exactly the same
topology; (center) bottleneck residual units, where feature maps are reduced
and restored in depth for the input and output layers, maintaining the size
between units; (right) pyramidal bottleneck residual units, where the number
of channels of the CONV layers are gradually increased at every unit, resulting
in progressively wider layers.

An interesting point of ResNets is the design of the residual
blocks, depending on the size of the obtained feature maps of
each CONV layer (as we can observe in Fig. 2 looking at the
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Fig. 3. Proposed hyperspectral pyramidal residual network architecture model. The input block pi,j ∈ RN×d×d is passed through five different modules that
compose the hyperspectral pyramidal residual network: C, P1, P2, P3 and the output module. C is composed by a CONV and a BATCH-NORM layers, while
P1, P2 and P3 modules, also called pyramidal modules, are composed by three pyramidal bottleneck residual units (B(i)

1 , B(i)
2 and B

(i)
3 , being i = {1, 2, 3}

the pyramid layer). These residual units are composed by three BATCH-NORM layers followed by their corresponding CONV layers and with a ReLU at
the end of the unit. Instead of P1, that maintains the spatial size, P2 and P3 reduce the data space adding strides equal to s = 2 (green CONV layer) and a
downsampling layer. Finally, the output module is composed by a downsampling layer and a fully connected layer that performs the final classification. Each
CONV layer has its own number of filters and kernel sizes, n1 and k1 for the first module and n

(j)
l and k

(j)
l for the pyramid layers (being j = 1, 2, 3 the

j-th residual unit B(i)
j and l = 1, 2, 3 the number of the l-th CONV layer). The fully connected layer is composed by Nclass neurons, being Nclass the

number of different land-cover classes in the original HSI data.

gray contours that indicate the size of each layer). As opposed
to traditional residual units, where each CONV layer shares
the same topology, bottleneck residual units [54] have demon-
strated to be more economical than the former, where the input
and output CONV layers first reduce and then restore the depth
dimension of the feature maps, allowing a faster execution of
each residual unit. The pyramidal bottleneck residual unit [57]
is a modification of the latter that outperforms the results of
traditional residual units. This kind of units are characterized
by a diabolo architecture, with the output layer being larger
than the input layer (from the number of channels point of
view), which imposes a processing on the identity mapping
h(pj) = pj because of the different depth sizes between
the original input feature map pj and the resulting feature
maps of the residual function F(pj ,Wj). In order to solve
this issue in a parameter-free way, pyramidal residual networks
[57] implement a zero-padded shortcut, i.e. they add extra zero
entries padded until reaching the increased dimension.

However, these residual units have been traditionally devel-
oped for only spatial feature extraction, in order to perform
RGB image analysis and processing. Here we introduce, for
the first time in the literature, a new residual unit inspired
by pyramidal bottleneck residual units to perform spectral-

spatial classification of HSI data. Fig. 3 provides a graphical
illustration of our model architecture, that follows the same
matrioska scheme of a ResNet. In this case, each module Mi is
renamed as pyramidal module Pi, where the j-th residual unit
is implemented as a pyramidal bottleneck residual unit B(i)

j .
Also, this network implements zero-padded identity-mapping
shortcut connections for each B

(i)
j , h∗(·).

Traditionally, CNNs are fed with a completely normalized
image prior in order to perform classification. However, HSI
data typically exhibit land-cover classes that are highly mixed
within the image X ∈ RN×W×H , so each pixel xi,j ∈ RN

needs to be sent one by one to the network. In order to exploit
spectral-spatial information, 3D neighboring blocks around
each xi,j are extracted, denoted by pi,j ∈ RN×d×d, and
sent to the model as input data, following a border mirroring
method described in [52]. Moreover, the original HSI data X
is normalized to zero mean and unit variance. Patches pass
through five different modules, which compose the very deep
neural network: one input module called C, three pyramidal
modules called P1, P2 and P3, and the final output module.

The input module C is made up of a CONV layer, with
a kernel size N × k1 × k1 and a number of kernels n1,
followed by a BATCH-NORM layer. This module performs a
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first spectral-spatial feature extraction from the original input
data, preparing its output feature maps for the rest of the
network.

The next pyramidal modules, P1, P2 and P3, are composed
by three pyramidal bottleneck residual units each one, i.e.
B

(i)
1 , B

(i)
2 and B

(i)
3 , with i = {1, 2, 3}. At this point, a

new architecture for the pyramidal bottleneck residual units
has been implemented in order to perform spectral-spatial
HSI feature processing. As we can observe in Fig. 3, each
B

(i)
j is made up of several stacked layers, in particular three

CONV layers, preceded by the corresponding BATCH-NORM
layers, with a ReLU activation function at the end of the unit.
Specifically, the distribution of the layers can be summarized
as follows: BATCH-NORM1 − CONV1 − BATCH-NORM2

− CONV2 − BATCH-NORM3 − CONV3 − ReLU.
In order to exploit the spectral-spatial information contained

in HSI data, the l-th CONV layer of the j-th residual unit
has been implemented with a filter bank defined by its own
kernel size, n(j)

l−1×k
(j)
l ×k

(j)
l , and its own number of kernels,

n
(j)
l . As a result, each CONV layer takes into account all the

spectral information contained in its input feature maps, which
is defined by the number of feature maps of the previous layer
n
(j)
l−1, and processes the spatial information within a window

over the feature maps defined by k
(j)
l ×k

(j)
l . In this way, each

layer exploits both kinds of featuresÑ spectral and spatial,
computing its output feature maps via Eq. (1), with n

(j)
l maps.

Moreover, following the implemented spectral-spatial pyra-
midal bottleneck residual block B

(i)
j , the output feature map

can be obtained by reformulating Eq. (3) as follows:

y
(i)
j = h∗(p

(i)
j ) + F(p

(i)
j ,W(i)

j )

p
(i)
j+1 = ϕ(y

(i)
j )

with F(p
(i)
j ,W(i)

j )equals to:

for l in L: p(i)
j = W

(j)
l · BN(p

(i)
j ) + b

(j)
l

(4)

where p
(i)
j and p

(i)
j+1 are the input and output feature maps

of the pyramidal bottleneck residual unit B
(i)
j , respectively,

h∗(p
(i)
j ) is the zero-padded identity-mapping shortcut con-

nection, W(i)
j denotes all the weights and biases of each

CONV layers associated to B
(i)
j , being Lj the number of

CONV layers, F(p
(i)
j ,W(i)

j ) is the dot product between the
input feature maps and the CONV layers weights where
Wj =

{
W

(j)
l |1 ≤ l ≤ Lj

}
being W

(j)
l and b

(j)
l the weight

matrix and bias vector of the l-th CONV layer, ϕ is the ReLU
activation function, and BN(·) is the batch-normalization of
the data. We must highlight that P1 keeps the spatial feature
size, setting the strides in all the CONV layers of each B

(1)
j

equal to s = 1. However, P2 and P3 implement two different
mechanisms to perform downsampling over the input data. As
we can see, in the first residual unit of both modules –B(2)

1 and
B

(3)
1 – there is a CONV layer (in particular CONV2) with stride

equal to s = 2 and a downsampling layer added at the end
of the unit. This last downsampling layer applies an average
pooling over the input data in order to reduce data variance
and extract low-level features from the spatial neighborhood,

feeding those to the next layer. At this point it is interesting
to point that, instead of following the traditional two rules of
residual units, the pyramidal residual network approach has
been adopted in order to calculate the depth at the end of
each B

(i)
j , called N

(i)
j , attempting to gradually increase the

depth of the feature map at each unit instead of doubling it
in certain units, which allows to distribute the computational
burden associated to the increase of the feature maps in an
uniform way. In particular, Eq. (5) [57] has been adopted in
order to linearly increase the depth of feature maps at each
residual unit:

N
(i)
j =

{
A if i = 1 and j = 1

⌊N (i)
j−1 +

α
N(net) ⌋ otherwise

(5)

Here, A is the initial depth of the input volume data, N (i)
j

TABLE I
PROPOSED NETWORK TOPOLOGY. AVERAGE POOLING HAS A KERNEL OF
2× 2 WITH STRIDE 2, AND FC LAYER HAS Nclass NEURONS, BEING

Nclass THE NUMBER OF CLASSES OF EACH DATASET.

Module ID Unit ID CONV ID Kernel size Stride
C/Pi B

(i)
j C

(j)
l k

(j)
l × k

(j)
l

Input module
C − − 3× 3 1

Pyramidal modules

P1

B
(1)
1

C
(1)
1 1× 1 1

C
(1)
2 7× 7 1

C
(1)
3 1× 1 1

B
(1)
2

C
(2)
1 1× 1 1

C
(2)
2 7× 7 1

C
(1)
3 1× 1 1

B
(1)
3

C
(3)
1 1× 1 1

C
(3)
2 7× 7 1

C
(3)
3 1× 1 1

P2

B
(2)
1

C
(1)
1 1× 1 1

C
(1)
2 8× 8 2

C
(1)
3 1× 1 1

B
(2)
2

C
(2)
1 1× 1 1

C
(2)
2 7× 7 1

C
(1)
3 1× 1 1

B
(2)
3

C
(3)
1 1× 1 1

C
(3)
2 7× 7 1

C
(3)
3 1× 1 1

P3

B
(3)
1

C
(1)
1 1× 1 1

C
(1)
2 8× 8 2

C
(1)
3 1× 1 1

B
(3)
2

C
(2)
1 1× 1 1

C
(2)
2 7× 7 1

C
(1)
3 1× 1 1

B
(3)
3

C
(3)
1 1× 1 1

C
(3)
2 7× 7 1

C
(3)
3 1× 1 1

is the dimensionality of the feature map associated to the j-th
residual unit, B(i)

j , that belongs to the i-th module, Pi, and
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N (net) =
∑P

i=1 B
(i) represents the total number of residual

units, being P and B(i) the number of pyramid modules and
the number of pyramidal bottleneck residual units per module,
respectively.

Finally, the output feature maps of the last pyramidal mod-
ule P3 are downsampled one last time with average pooling,
and reshaped into a vector in order to feed a fully-connected
(FC) layer which is added at the end of the network in order
to perform the final classification task. On the other hand, the
neural model has been optimized using the stochastic gradient
descent (SGD) method, with 200 epochs in the comparative
experiments and a variable learning rate, with LR = 0.1 from
epochs 1 to 149 and LR = 0.01 from epochs 150 to 200.

Table I summarizes the proposed architecture by stating the
value of each of the kernel sizes and the number of filters
employed in each CONV layer. The number of kernels n

(j)
l

of each CONV layer depends on the initial selected A and α
values, being A the number of spectral bands (N in our case)
and α = 50.

III. EXPERIMENTS

A. Hyperspectral Datasets

Four well-known hyperspectral datasets have been consid-
ered in the experimental part of the work: Indian Pines (IP),
University of Pavia (UP), Salinas Valley (SV) and Kennedy
Space Center (KSC). Table II shows a brief summary of
the considered HSI images, including the number of samples
per class, as well as the available ground-truth information.
Additionally, a more detailed description of each image is
given below.

• Indian Pines (IP): The IP dataset (Table II) was gathered
in 1992 by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor [65] over an agricultural area in
Northwestern Indiana. Specifically, it covers a set of agri-
cultural fields with regular geometry and also irregular
forest areas. The selected scene contains 145×145 pixels,
with a total of 224 spectral bands in the wavelength range
from 400 to 2500 nm, and spatial resolution of 20 meters
per pixel (mpp). After removing 4 null bands and other
20 bands corrupted by the atmospheric water absorption
effect, the remaining 200 bands have been considered
for the experiments. Moreover, about half of the data
(10249 pixels from a total of 21025) contains ground-
truth information in the form of a single label from 16
different classes.

• University of Pavia (UP): The UP image (Table II)
was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor [66] over the campus at
the University of Pavia, northern Italy. This dataset
mainly contains an urban environment with multiple solid
structures (asphalt, gravel, metal sheets, bitumen, bricks),
natural objects (trees, meadows, soil) and shadows. After
discarding the noisy bands, the considered scene contains
103 spectral bands, with a size of 610 × 340 pixels
in the spectral range from 0.43 to 0.86 µm and with
spatial resolution of 1.3mpp. About a 20% of the pixels

(42776 of 207400) contain ground-truth information from
9 different class labels.

• Salinas Valley (SV): The SV scene (Table II) was
collected by the 224-band AVIRIS sensor over the Salinas
Valley, California, and it is characterized by a spatial
resolution of 3.7 mpp. The area covered comprises 512
lines by 217 samples. As in the case of the Indian
Pines dataset, we discard the 20 water absorption bands,
i.e. [108-112], [154-167] and 224. This image was only
available as at-sensor radiance data, and includes a total
of 16 ground-truth classes, such as vegetables, bare soils,
and vineyard fields.

• Kennedy Space Center (KSC): The KSC data (Ta-
ble. II) was collected by the AVIRIS instrument over the
Kennedy Space Center in Florida in 1996. Once noisy
bands have been removed, the resulting image contains
176 bands with a 512 × 614 size, ranging from 400 to
2500 nm and with 20 mpp spatial resolution. A total of
5122 pixels labeled in 13 classes, representing different
land cover types, are considered for classification pur-
poses.

B. Experimental Configuration

The proposed approach has been compared to a total of
ten different classification methods available in the literature:
1) support vector machine (SVM) with radial basis function
kernel [67], 2) random forest (RF), 3) multi-layer perceptron
(MLP), 4) extreme learning machine (ELM) [68], 5) kernel
extreme learning machine (KELM) [69], 6) one-dimensional
CNN (1D-CNN), 7) two-dimensional CNN (2D-CNN), 8)
three-dimensional CNN (3D-CNN), 9) spectral-spatial residual
network (SSRN) [50] and 10) deep fast convolutional neural
network (DFCNN) [52]. All hyper-parameters have been fixed
in an optimal way for each method.

More specifically, the SVM, RF, MLP, ELM, KELM and
1D-CNN are spectral classifiers. 2D-CNN is a spatial-based
method, where PCA has been applied over the hyperspectral
data in order to extract one principal component (i.e., it reduces
the number of spectral bands N to 1), and 3D-CNN, SSRN,
DFCNN, together with the proposed approach are spectral-
spatial techniques. Considering all these classification methods
and the aforementioned datasets, we provide four different
experiments to validate the performance of the proposed
approach with respect to standard classifiers (experiment 1),
considering different training data percentages (experiment
2), and drawing comparisons with two recent CNN-based
spectral-spatial classifiers (experiments 3 and 4).

1) In our first experiment, the proposed network is com-
pared to the standard SVM, RF, MLP, 2D-CNN and 3D-
CNN classification methods using a training set made
up of 15% of the available labeled data for the IP, UP
and SV datasets. Additionally, the input spatial size is
fixed to N ×11×11 for the 2D-CNN, 3D-CNN and the
proposed model, being N the number of spectral bands.

2) In our second experiment, we compare the classification
accuracy of the proposed approach with regards to
that obtained by spectral methods, in particular SVM,
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TABLE II
NUMBER OF SAMPLES OF THE INDIAN PINES (IP), UNIVERSITY OF PAVIA (UP) AND SALINAS VALLEY (SV) HSI DATASETS.

INDIAN PINES (IP) UNIVERSITY OF PAVIA (UP) SALINAS (SV) KENNEDY S.C. (KSC)

Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples Color Land-cover type Samples
Background 10776 Background 164624 Background 56975 Background 309157

Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009 Scrub 761
Corn-notill 1428 Meadows 18649 Brocoli-green-weeds-2 3726 Willow-swamp 243
Corn-min 830 Gravel 2099 Fallow 1976 CP-hammock 256

Corn 237 Trees 3064 Fallow-rough-plow 1394 Slash-pine 252
Grass/Pasture 483 Painted metal sheets 1345 Fallow-smooth 2678 Oak/Broadleaf 161
Grass/Trees 730 Bare Soil 5029 Stubble 3959 Hardwood 229

Grass/pasture-mowed 28 Bitumen 1330 Celery 3579 Swap 105
Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes-untrained 11271 Graminoid-marsh 431

Oats 20 Shadows 947 Soil-vinyard-develop 6203 Spartina-marsh 520
Soybeans-notill 972 Corn-senesced-green-weeds 3278 Cattail-marsh 404
Soybeans-min 2455 Lettuce-romaine-4wk 1068 Salt-marsh 419
Soybean-clean 593 Lettuce-romaine-5wk 1927 Mud-flats 503

Wheat 205 Lettuce-romaine-6wk 916 Water 927
Woods 1265 Lettuce-romaine-7wk 1070

Bldg-Grass-Tree-Drives 386 Vinyard-untrained 7268
Stone-steel towers 93 Vinyard-vertical-trellis 1807

Total samples 21025 Total samples 207400 Total samples 111104 Total samples 314368

TABLE III
CLASSIFICATION RESULTS FOR THE INDIAN PINES (IP) DATASET USING
15% OF THE LABELED DATA FOR TRAINING AND 11× 11 INPUT SPATIAL

SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 68.04 ±6.95 33.04 ±7.45 62.39 ±13.96 65.87 ±10.34 89.13 ±7.28 93.04 ±7.58
2 83.55 ±1.31 66.68 ±1.67 83.84 ±2.46 81.04 ±3.28 98.33 ±0.71 99.13 ±0.56
3 73.82 ±1.44 56.20 ±2.41 76.37 ±5.03 79.07 ±6.75 98.05 ±1.40 99.54 ±0.36
4 71.98 ±3.86 41.10 ±2.50 68.35 ±6.12 82.70 ±8.34 98.23 ±0.62 99.92 ±0.17
5 94.29 ±0.97 87.12 ±1.73 90.87 ±2.09 69.25 ±10.58 97.56 ±2.84 99.83 ±0.24
6 97.32 ±0.97 95.32 ±1.79 96.95 ±1.10 88.29 ±5.51 98.93 ±1.14 99.89 ±0.13
7 88.21 ±5.06 32.86 ±12.66 78.21 ±10.28 67.86 ±25.65 83.57 ±19.51 99.29 ±1.43
8 98.16 ±0.75 98.49 ±0.81 98.08 ±0.90 96.26 ±1.60 99.41 ±0.61 100.00 ±0.00
9 52.00 ±8.43 13.00 ±3.32 72.00 ±8.12 67.00 ±27.68 65.00 ±21.68 99.00 ±2.00

10 79.49 ±2.76 69.95 ±4.31 82.17 ±5.41 68.82 ±9.80 97.22 ±0.31 98.48 ±0.88
11 86.83 ±1.05 90.66 ±1.18 83.66 ±2.85 86.55 ±3.14 98.12 ±2.16 99.58 ±0.22
12 83.41 ±2.26 55.43 ±4.80 75.89 ±3.33 73.41 ±6.07 93.09 ±5.85 98.55 ±0.64
13 97.41 ±2.99 93.32 ±2.04 98.68 ±0.54 94.54 ±4.80 99.80 ±0.39 99.51 ±0.98
14 96.14 ±0.97 96.45 ±0.76 96.17 ±1.02 96.24 ±2.33 99.43 ±0.33 99.81 ±0.19
15 67.31 ±3.05 50.44 ±2.44 67.80 ±3.56 85.39 ±7.71 96.58 ±2.81 99.53 ±0.30
16 92.47 ±4.14 85.27 ±3.37 88.71 ±2.77 92.90 ±3.97 93.12 ±3.82 98.49 ±1.46

OA (%) 86.24 ±0.38 78.55 ±0.68 85.27 ±0.47 83.59 ±0.88 97.81 ±0.56 99.40 ±0.08
AA (%) 83.15 ±1.10 66.58 ±0.93 82.51 ±1.04 80.95 ±1.55 94.10 ±2.00 98.98 ±0.49
Kappa 84.27 ±0.45 75.20 ±0.81 83.20 ±0.53 81.23 ±1.04 97.50 ±0.64 99.31 ±0.10

Time(s) 208.98 ±1.70 1,301.68 ±45.94 7.31 ±0.15 56.45 ±0.19 39.62 ±0.67 103.21 ±0.47

RF, MLP, ELM, KELM and 1D-CNN, by consider-
ing different training percentages over the IP and UP
datasets, following the same configuration proposed in
[7]. Specifically, we use 5%, 10%, 15%, 20% and 25%
training percentages and set the input patch size of the
proposed approach to N × 7× 7.

3) In our third experiment, the proposed approach is com-

TABLE IV
CLASSIFICATION RESULTS FOR THE UNIVERSITY OF PAVIA (UP) DATASET

USING 15% OF THE LABELED DATA FOR TRAINING AND 11× 11 INPUT
SPATIAL SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 95.36 ±0.30 93.52 ±0.45 94.17 ±1.73 93.43 ±2.70 99.16 ±0.25 99.91 ±0.07
2 98.25 ±0.16 98.29 ±0.18 98.06 ±0.50 97.59 ±0.88 99.77 ±0.17 99.99 ±0.01
3 82.93 ±0.91 75.56 ±1.86 79.27 ±7.04 89.96 ±3.30 96.95 ±1.78 99.77 ±0.14
4 95.93 ±0.70 91.68 ±0.63 94.61 ±2.58 94.16 ±3.24 98.80 ±0.69 99.80 ±0.09
5 99.46 ±0.36 98.88 ±0.49 99.63 ±0.27 97.97 ±2.69 99.90 ±0.17 100.00 ±0.00
6 91.76 ±0.60 74.54 ±0.97 93.60 ±1.70 89.62 ±4.10 99.88 ±0.12 100.00 ±0.00
7 88.59 ±0.65 81.01 ±1.74 88.53 ±3.47 80.20 ±4.82 96.54 ±1.41 99.66 ±0.49
8 90.14 ±0.54 90.70 ±0.75 89.59 ±4.56 96.05 ±1.88 98.56 ±0.78 99.92 ±0.09
9 99.97 ±0.05 99.75 ±0.26 99.63 ±0.28 99.48 ±0.27 99.79 ±0.19 100.00 ±0.00

OA (%) 95.20 ±0.13 92.03 ±0.21 94.82 ±0.26 94.77 ±0.72 99.28 ±0.25 99.94 ±0.01
AA (%) 93.60 ±0.14 89.33 ±0.33 93.01 ±0.60 93.16 ±1.23 98.81 ±0.33 99.89 ±0.05
Kappa 93.63 ±0.17 89.30 ±0.28 93.13 ±0.34 93.05 ±0.97 99.04 ±0.32 99.92 ±0.02

Time(s) 6,084.92 ±55.64 6,188.75 ±35.16 29.10 ±0.92 172.29 ±0.71 140.09 ±1.63 269.19 ±0.66

pared to the SSRN spectral-spatial classifier using four
different spatial sizes, i.e. 5× 5, 7× 7, 9× 9, 11× 11,
and the training configuration considered in [50]. That
is, we consider 20% of the available labeled data for the
IP and KSC datasets, and 10% of the available training
data for the UP dataset.

4) Finally, the fourth experiment compares the proposed
approach with the DFCNN network using three different
spatial sizes, 9×9, 15×15 and 19×19, and we use the
training configuration considered in [52]. Specifically,
the number of randomly selected training samples per
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Fig. 4. From left to right: (a) achieved accuracy (vertical axis) versus employed computing time in seconds (horizontal axis) for the Indian Pines (IP), Pavia
University (PU) and Salinas Valley (SV) datasets; Total execution times of each compared algorithm for the IP (b), PU (c) and SV (d) datasets. In blue and
red we highlight the performance of the GPU and CPU implementations, respectively.

TABLE V
CLASSIFICATION RESULTS FOR THE SALINAS VALLEY (SV) DATASET

USING 15% OF THE LABELED DATA FOR TRAINING AND 11× 11 INPUT
SPATIAL SIZE.

Class SVM RF MLP 2D-CNN 3D-CNN Proposed

1 99.68 ±0.21 99.61 ±0.12 99.72 ±0.42 87.99 ±17.62 100.00 ±0.00 100.00 ±0.00
2 99.87 ±0.12 99.86 ±0.07 99.88 ±0.15 99.75 ±0.23 99.99 ±0.01 100.00 ±0.00
3 99.74 ±0.11 99.22 ±0.51 99.43 ±0.44 81.40 ±10.85 99.94 ±0.07 100.00 ±0.00
4 99.48 ±0.18 99.28 ±0.44 99.61 ±0.27 95.11 ±5.51 99.83 ±0.23 100.00 ±0.00
5 99.24 ±0.31 98.46 ±0.21 99.25 ±0.48 64.31 ±12.09 99.90 ±0.09 100.00 ±0.00
6 99.92 ±0.06 99.80 ±0.09 99.92 ±0.07 99.60 ±0.11 100.00 ±0.00 100.00 ±0.00
7 99.70 ±0.15 99.58 ±0.09 99.82 ±0.12 98.01 ±4.54 99.90 ±0.15 99.99 ±0.01
8 90.87 ±0.39 84.41 ±1.34 85.41 ±8.00 91.89 ±2.44 90.67 ±6.83 99.92 ±0.07
9 99.94 ±0.02 99.07 ±0.17 99.86 ±0.07 98.02 ±1.56 99.99 ±0.01 100.00 ±0.00

10 98.26 ±0.27 93.40 ±0.58 97.15 ±0.77 97.05 ±0.67 99.27 ±0.43 99.91 ±0.09
11 99.61 ±0.34 94.79 ±0.59 97.42 ±2.29 94.58 ±3.59 99.48 ±0.73 99.96 ±0.07
12 99.93 ±0.05 99.08 ±0.29 99.80 ±0.14 92.67 ±5.75 99.76 ±0.38 100.00 ±0.00
13 99.07 ±0.72 98.23 ±0.69 99.40 ±0.28 98.10 ±0.76 99.63 ±0.58 99.98 ±0.04
14 98.08 ±1.00 92.81 ±1.04 97.58 ±0.94 95.25 ±5.74 99.94 ±0.11 100.00 ±0.00
15 72.83 ±0.78 63.32 ±1.82 80.27 ±8.41 87.36 ±3.87 96.18 ±1.52 99.95 ±0.04
16 99.45 ±0.25 98.17 ±0.36 98.97 ±0.38 93.72 ±1.66 99.39 ±0.42 99.93 ±0.06

OA (%) 94.15 ±0.10 90.76 ±0.24 93.87 ±0.70 92.31 ±1.62 97.44 ±1.28 99.97 ±0.02
AA (%) 97.23 ±0.11 94.94 ±0.12 97.09 ±0.33 92.18 ±2.72 98.99 ±0.40 99.98 ±0.01
Kappa 93.48 ±0.11 89.70 ±0.26 93.18 ±0.77 91.43 ±1.81 97.15 ±1.42 99.96 ±0.02

Time(s) 3,110.30 ±29.20 4,694.29 ±158.39 36.42 ±0.11 296.62 ±3.52 260.41 ±6.09 372.51 ±1.46

labeled class is: 30, 150, 150, 100, 150, 150, 20, 150,
15, 150, 150, 150, 150, 150, 50 and 50 in the case of
IP, and 548, 540, 392, 542, 256, 532, 375, 514 and 231
for UP.

In order to assess the results, three widely used quantitative
metrics are used to evaluate the classification performance:
overall accuracy (OA), average accuracy (AA), and Kappa
coefficient. Regarding the hardware environment in which we
have run the experiments, it is composed by a 6th Generation
Intel® Core™i7-6700K processor with 8M of Cache and up
to 4.20GHz (4 cores/8 way multi-task processing), 40GB of
DDR4 RAM with a serial speed of 2400MHz, a graphical
processing unit (GPU) NVIDIA GeForce GTX 1080 with
8GB GDDR5X of video memory and 10Gbps of memory
frequency, a Toshiba DT01ACA HDD with 7200RPM and
2TB of capacity, and an ASUS Z170 pro-gaming motherboard.
Additionally, the used software environment is composed by
Ubuntu 16.04.4 x64 as operating system, CUDA 8 and cuDNN
5.1.5, Python 2.7 as programming languages.

C. Experimental Results

1) Experiment 1: Tables III, IV and V present the classi-
fication results for IP, UP and SV datasets, corresponding to
our first experiment. Specifically, the first column of each table
indicates the corresponding dataset class; the next five columns
show the results obtained by SVM, RF, MLP, 2D-CNN and
3D-CNN classifiers, and the last column contains the result

of the proposed approach. Additionally, the OA, AA, Kappa
coefficient and computational time in seconds are provided
in the last four rows. It should be mentioned that MLP, 2D-
CNN, 3D-CNN and the proposed approach take advantage of
the GPU to accelerate the corresponding procedures. Also, in
Fig. 4 we can observe the latency and execution time results
of the proposed method.

2) Experiment 2: Fig. 5 shows the results obtained in our
second experiment, where different training percentages are
tested using IP and UP datasets. In particular, SVM, RF, MLP,
ELM, KELM, 1D-CNN and the proposed method are tested
considering 5%, 10%, 15%, 20% and 25% of the labeled data
for training. It should be also mentioned that leftmost part of
Fig. 5 contains the results for the IP dataset, and the rightmost
part of Fig. 5 contains the results for the UP dataset.

Fig. 5. Overall accuracy (%) for SVM, RF, MLP, ELM, KELM, 1D-CNN
and the proposed approach when considering different training percentages in
Indian Pines (left) and University of Pavia (right) datasets.

3) Experiment 3: In addition to the global analysis con-
ducted in the first two experiments, we also conduct two
additional experiments to compare the proposed approach
and two recent state-of-the-art spectral-spatial classification
networks. In this experiment, we compare our approach with
SSRN, which has been presented in work [50]. Table VI
provides the classification results obtained by SSRN and the
proposed method. Specifically, the first column contains the
considered spatial input size and the next three columns show
the OA for IP, KSC and UP datasets, respectively. Note that
we use the same training configuration used in [50], that is,
20% of the available labeled data for IP and KSC, and 10%
of the available labeled data for UP.

4) Experiment 4: Table VII shows the results of the com-
parison between the DFCNN method (presented in work [52])
and the proposed approach. In particular, three different spatial
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TABLE VI
OVERALL ACCURACY (%) ACHIEVED BY THE SSRN METHOD [50] AND THE PROPOSED APPROACH WHEN CONSIDERING DIFFERENT INPUT SPATIAL

SIZES.

Indian Pines (IP) Kennedy Space Center (KSC) University of Pavia (UP)
Spatial Size SSRN Proposed SSRN Proposed SSRN Proposed

5× 5 92.83 ±0.66 98.80 ±0.10 96.99 ±0.55 98.81 ±0.07 98.72 ±0.17 99.52 ±0.05
7× 7 97.81 ±0.34 99.26 ±0.06 99.01 ±0.31 99.51 ±0.08 99.54 ±0.11 99.81 ±0.09
9× 9 98.68 ±0.29 99.64 ±0.08 99.51 ±0.25 99.60 ±0.05 99.73 ±0.15 99.87 ±0.03

11× 11 98.70 ±0.21 99.82 ±0.07 99.57 ±0.54 99.79 ±0.11 99.79 ±0.08 99.92 ±0.02

sizes are considered for the IP and UP datasets. Note that
additional spatial configurations are not reported because the
proposed approach already provides an optimal result.

To conclude this section, Figs. 6, 7 and 8 complete the
experimental comparison by providing some of the classi-
fication maps provided by the methods tested in the first
experiment for the IP, UP and SV datasets. As it can be
observed, the proposed method provides spatially consistent
classification outputs with well-delineted object borders and
very few classification interferers.

TABLE VII
OVERALL ACCURACY (%) ACHIEVED BY THE DFCNN METHOD [52] AND

THE PROPOSED APPROACH WHEN CONSIDERING DIFFERENT INPUT
SPATIAL SIZES.

Indian Pines (IP) University of Pavia (UP)
Spatial Size DFCNN Proposed DFCNN Proposed

9× 9 93.94 98.87 ±0.19 - -
15× 15 - - 98.87 99.93 ±0.02
19× 19 96.29 99.45 ±0.14 - -

D. Discussion

According to the reported results, one of the first noticeable
points is the high classification accuracy that the proposed
approach is able to provide in the different considered sce-
narios. That is, the proposed network architecture achieves a
consistent precision improvement when considering not only
the standard spectral classification methods SVM, RF, MPL,
ELM, KELM and 1D-CNN, but also the spatial approach 2D-
CNN and, most importantly, the spectral-spatial methods 3D-
CNN, SSRN and DFCNN.

In Tables III, IV and V, it is possible to observe that the
proposed approach provides the best average results as well as
the highest accuracy values for each individual class in the IP,
UP and SV datasets. In particular, the average improvement
over the second best classifier, the spectral-spatial 3D-CNN,
is +1.59, +2.31 and +1.83 for AO, AA and Kappa metrics.
Additionally, the network presented in this work also shows
a remarkable performance improvement when considering
different percentages of training data. According to Fig. 5,
the proposed approach obtains the highest accuracy result for
all the tested training data percentages in IP and UP datasets.
Besides, the the proposed approach also tends to converge
faster to the maximum accuracy value than the rest of the
tested methods.

These results are also consistent with the corresponding
classification maps shown in Figs. 6, 7 and 8. On the one hand,

spectral methods, such as SVM or MLP, tend to generate rather
noisy classification maps because they do not take into account
the spatial component when providing a pixel prediction. On
the other hand, spatial classifiers, i.e. 2D-CNN, are prone
to alter some object shapes depending on the considered
input spatial size. Precisely, spectral-spatial classifiers work
for overcoming both limitations. As we can see, the proposed
approach certainly provides the classification results that are
more similar with regards to the corresponding ground-truth
classification maps for IP, UP and SV datasets. In addition, it
is possible to observe that the proposed method also reaches
a higher performance. That is, class boundaries are better
defined and background pixels are better classified according
to the actual ground-truth image content. For instance, the
classification map depicted in Fig. 7(h) shows that the pro-
posed approach provides a clean classification result for the
self-blocking bricks class in the UP scene, while noise and
outliers are also significantly reduced with respect to the rest
of the methods.

From this initial comparison, we can note that spatial-
spectral classification algorithms are those which provide
the best performance over all the considered datasets. More
specifically, the RF spectral classifier obtains the lowest aver-
age overall accuracy in the conducted experiments (87.11%),
followed by the spatial 2D-CNN (90.22%) and the spectral
MLP (91.32%) methods. Besides, the spectral SVM approach
shows, on average, a slightly better performance (91.86%).
Nonetheless, the performances provided by the spectral-spatial
methods, i.e. the 3D-CNN network (98.17%) and the proposed
approach (99.77%), are significantly higher. Precisely, this
the reason why we conduct a more detailed performance
comparison between the proposed approach and two recent
spectral-spatial methods, SSRN and DFCNN.

Regarding the SSRN performance comparison, Table VI
shows some important points which deserve to be mentioned.
Although both methods (SSRN and the proposed one) improve
the classification accuracy when considering a higher input
spatial size, the proposed approach provides a substantial
precision gain, especially with smaller input spatial sizes. That
is, the proposed approach pyramidal architecture provides the
advantage of extracting more feature maps as the network
residual units are deeper, therefore it is able to better exploit
the information contained within an input HSI cube in order to
learn more robust spectral-spatial representations. As a result,
the proposed method provides a more accurate (as well as
robust) classification result than the SSRN. In other words,
the proposed method consistently achieves higher accuracy
results and lower standard deviation values than the SSRN,
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a) RGB b) GT c) SVM (86.24%) d) RF (78.55%) e) MLP (85.27%) f ) 2D-CNN (83.59%) g) 3D-CNN (97.81%) h) Proposed (99.40%)

Fig. 6. Classification maps for the Indian Pines (IP) dataset. The first image (a) represents a simulated RGB composition of the scene. The second one (b)
contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding to Table III. Note that the overall
classification accuracies are shown in brackets and the best result is highlighted in bold font.

a) RGB b) GT c) SVM (95.20%) d) RF (92.03%) e) MLP (94.82%) f ) 2D-CNN (94.77%) g) 3D-CNN (98.54%) h) Proposed (99.94%)

Fig. 7. Classification maps for the University of Pavia (UP) dataset. The first image (a) represents a simulated RGB composition of the scene. The second
one (b) contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding to Table IV. Note that the
overall classification accuracies are shown in brackets and the best result is highlighted in bold font.

a) RGB b) GT c) SVM (94.15%) d) RF (90.76%) e) MLP (93.87%) f ) 2D-CNN (92.31%) g) 3D-CNN (97.44%) h) Proposed (99.97%)

Fig. 8. Classification maps for the Salinas Valley (SV) dataset. The first image (a) represents a simulated RGB composition of the scene. The second one (b)
contains the ground-truth classification map. Finally, images from (c) to (h) provide the classification maps corresponding to Table V. Note that the overall
classification accuracies are shown in brackets and the best result is highlighted in bold font.

which means that the class uncertainty is significantly reduced,
no matter the considered spatial size. Note that SSRN obtains
some standard deviation values relatively large considering the
high overall accuracy. For instance, it is the case of the KSC
dataset when considering a 11 × 11 spatial size. As we can
see, SSRN obtains a 99.57±0.54% overall accuracy, whereas
the proposed approach result, 99.79± 0.11%, achieves even a
higher accuracy with a five times lower standard deviation. In
general, the proposed approach exhibits a better classification
performance than SSRN for IP, KSC and UP datasets because
it is able to obtain higher accuracy results with lower standard
deviation values, which also shows that the proposal is robust
in the presence of variability and noise.

A similar trend can be also observed in the reported DFCNN
comparison (Table VII). In particular, the proposed approach
obtains better OA than DFCNN for IP and UP datasets when
considering 9×9, 15×15 and 19×19 spatial sizes, respectively.
Taking all these observations into account, it is possible to

state that the proposed approach provides a more accurate and
robust classification result than all of the other tested methods.
Even though the spectral-spatial classifiers 3D-CNN, SSRN
and DFCNN have shown to obtain relatively high classification
accuracies, the proposed architecture provides a more effective
scheme to reduce the uncertainty when uncovering spectral-
spatial features. That is, increasing the feature map dimension
at all CONV layers, grouped in pyramidal residual blocks,
allows the proposed approach to involve more locations as the
network depth increases while balancing the workload among
all units and preserving the time complexity per layer. As a
result, the diversity of high-level spectral-spatial attributes can
be gradually increased across layers to enhance the capability
of the network to manage remotely sensed HSI data.

The obtained results also demonstrate that the proposed
technique provides a remarkable quantitative improvement,
which indicates that the presented spectral-spatial architecture
is able to generate more distinctive features to effectively
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classify remotely sensed HSI images, achieving the best ac-
curacy performance for all the conducted experiments (see
Tables III-VII) and the most robust behavior when dealing
with different input spatial sizes (see Tables VI and VII).
The effectiveness of the proposed network (when compared
with regular CNN models) lies in its architecture, which pro-
gressively increases the feature map dimension at all residual
units, allowing the proposed approach to involve more 3D
volume locations as the network depth increases. This fact
eventually promotes uncovering a larger variety of high-level
spectral-spatial features, balancing the workload among units
to facilitate the network training process and also allowing
the model to reduce the declining-accuracy phenomenon when
considering significantly deep networks. Based on the reported
results with different HSI datasets, multiple training percent-
ages and several input spatial sizes, we can conclude that the
proposed technique is able to better exploit the spectral-spatial
information contained in a HSI data cube, thus maintaining a
good quantitative performance even with small kernel spatial
sizes.

According to the computational times reported in Tables III-
V, it is also possible to highlight some important aspects
among the tested methods. On average, SVM and RF clas-
sifiers are the most time-consuming methods, followed by the
proposed approach, 2D-CNN and 3D-CNN. Finally, MLP has
shown to be the most efficient technique in computational
terms. Even though the adopted SVM and RF implemen-
tations do not take advantage of GPU acceleration, their
corresponding optimal parameter search tasks are computa-
tionally demanding processes which highly affect the overall
computational time. In the case of the tested neural network-
based methods, the pyramidal residual blocks of the proposed
approach logically require a larger amount of computational
power than simpler architectures. Specifically, the proposed
approach computational time is, on average, a 25% and
43% higher than the corresponding 2D-CNN and 3D-CNN
costs. Despite the fact that the proposed approach obtains a
higher computational time than MLP, 2D-CNN and 3D-CNN
networks, the resulting cost increase is moderate considering
the high number of operations required by the proposed model
when compared to simpler architectures. That is, the proposed
network is able to find spectral-spatial relationships useful to
obtain a relatively more effective model convergence as well
as a remarkable classification improvement. Looking at Fig.
4, we can observe [in Fig. 4(a)] that the proposed approach
takes relatively little time to reach a good accuracy (around
25 seconds), while in Figs. 4(b), (c) and (d) we show the
total execution time of each compared algorithm, being SVM
and RF the two slowest methods. This is mainly due to
the parameter searching process (which is performed in the
CPU), that has a strong influence in the computation times. In
contrast, the MLP is the fastest GPU-implemented classifier,
while the proposed technique is one of the slowest GPU-
implemented methods due to its more complex architecture,
followed by the spatial CNN. Finally, it is also important
to highlight that the proposed approach generally exhibits a
lower computational time than SSRN according to the results
reported in [50].

IV. CONCLUSIONS AND FUTURE RESEARCH LINES

This paper presents a novel CNN-based deep network ar-
chitecture specifically designed to manage large hyperspectral
data cubes. In particular, the proposed new hyperspectral pyra-
midal residual network pursues to improve the straightforward
residual model formulation by better exploiting the potential
of the information available on each unit. The proposed archi-
tecture gradually increases the feature map dimension step by
step at each pyramidal bottleneck residual blocks, composed
by three convolutional layers, as a pyramid, in order to involve
more feature map locations as the network depth increases,
while balancing the workload among all units and preserving
the time complexity per layer. The experimental part of the
work, conducted over four well-known hyperspectral datasets
and using ten different classification methods, reveal that the
new hyperspectral pyramidal residual model is able to provide
a competitive advantage over state-of-the-art classification
methods.

One of the main conclusions that arises from this work is
the relevance of using spectral-spatial information when clas-
sifying hyperspectral data. In this regard, the newly proposed
approach is able to uncover highly descriptive spectral-spatial
classification features throughout the implemented network
convolutional filters. That is, our adopted strategy for gradually
increasing the feature map dimension at all residual-based
units allows us to consider a higher variety of spectral-spatial
attributes as the network depth increases, because more image
locations can be simultaneously considered. Eventually, this
fact leads to classification improvements by means of the
combined spectral-spatial features, which help to better discern
among classes in multiple HSI datasets and experimental
settings. Although other recent approaches, such as SSRN
and DFCNN, exhibit very good classification performance,
the new proposed hyperspectral pyramidal residual model is
able to outperform their results and also to provide a more
robust behavior when considering different input spatial sizes.
Another important point is related to the amount of data used
for training purposes. Although deep learning methods usually
require a significant amount of labeled data, the proposed
approach has shown to provide consistent performance im-
provements with respect to other state-of-the-art models using
different percentages of training data.

Despite the good results provided by the proposed approach,
there are several unresolved issues that may present challenges
over time. In particular, our future work will be aimed at the
following directions: (i) reducing the computational complex-
ity of the proposed HSI classification network by developing
new methods to optimize the model parameters, (ii) developing
more efficient parallel implementations of the proposed model,
and (iii) integrating advanced data augmentation and active
learning schemes into the proposed classification framework.
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[24] A. MartÍnez-UsÓMartinez-Uso, F. Pla, J. M. Sotoca, and P. Garcı́a-
Sevilla, “Clustering-based hyperspectral band selection using informa-
tion measures,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 45, no. 12, pp. 4158–4171, 2007.

[25] S. A. Robila, “Band reduction for hyperspectral imagery processing,”
in Computational Imaging VIII, vol. 7533. International Society for
Optics and Photonics, 2010, p. 75330W.

[26] X. Xu, Z. Shi, and B. Pan, “A new unsupervised hyperspectral band se-
lection method based on multiobjective optimization,” IEEE Geoscience
and Remote Sensing Letters, vol. 14, no. 11, pp. 2112–2116, 2017.

[27] S. Feng, Y. Itoh, M. Parente, and M. F. Duarte, “Hyperspectral band
selection from statistical wavelet models,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 55, no. 4, pp. 2111–2123, 2017.

[28] J. Shen, X. Cao, Y. Li, and D. Xu, “Feature adaptation and augmentation
for cross-scene hyperspectral image classification,” IEEE Geoscience
and Remote Sensing Letters, vol. PP, no. 99, pp. 1–5, 2018.

[29] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Spectral-spatial classification of
hyperspectral data using loopy belief propagation and active learning,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 2,
pp. 844–856, Feb 2013.

[30] Z. Zhang and M. M. Crawford, “A batch-mode regularized multimetric
active learning framework for classification of hyperspectral images,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 11,
pp. 6594–6609, 2017.

[31] C. Liu, L. He, Z. Li, and J. Li, “Feature-driven active learning for
hyperspectral image classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 56, no. 1, pp. 341–354, 2018.

[32] J. M. Haut, M. E. Paoletti, J. Plaza, J. Li, and A. Plaza, “Active learning
with convolutional neural networks for hyperspectral image classification
using a new bayesian approach,” IEEE Transactions on Geoscience and
Remote Sensing, pp. 1–22, 2018.

[33] L. He, J. Li, C. Liu, and S. Li, “Recent advances on spectral-spatial
hyperspectral image classification: An overview and new guidelines,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 3,
pp. 1579–1597, March 2018.

[34] M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-
Dias, and X. Li, “Spectral–spatial classification of hyperspectral data
using local and global probabilities for mixed pixel characterization,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 10,
pp. 6298–6314, 2014.

[35] W. Liao, M. Dalla Mura, J. Chanussot, and A. Pižurica, “Fusion
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