
SPECIAL SECTION ON EMERGING APPROACHES TO CYBER SECURITY

Received March 31, 2020, accepted April 9, 2020, date of publication April 21, 2020, date of current version May 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989113

A Preventive Secure Software Development
Model for a Software Factory: A Case Study
JOSÉ CARLOS SANCHO NÚÑEZ , ANDRÉS CARO LINDO , AND PABLO GARCÍA RODRÍGUEZ
Department of Computer and Telematics Systems Engineering, University of Extremadura, ES-10003 Caceres, Spain

Corresponding author: José Carlos Sancho Núñez (jcsanchon@unex.es)

This work was supported by the Junta de Extremadura (European Regional Development Fund), Consejería de Economía e
Infraestructuras, under Project GR18138 and Project IB16089.

ABSTRACT The number of cyberattacks has greatly increased in in the last years, as well as their
sophistication and impact. For this reason, new emerging software developmentmodels are demanded, which
help in developing secure by default software. To achieve this, the analysis and comparison in depth of
the current models of secure software development is especially important. In this paper, a review of the
most popular secure software models is presented, and a new secure software methodology is proposed,
adapted to all current environments. A practical experiment in a software development company is tested,
as a case study, considering data from real software projects. The results are presented and compared in
two development scenarios: a classic one with a reactive security approach, and another one, emerging and
preventive, that applies security by default in all phases of the software life cycle. In the case study, the total
amount of vulnerabilities is reduced by 68,42%, decreasing their criticality and the temporal impact of their
resolutions. In this way, software security and quality are methodologically improved with the proposed
model, proving that the new emerging approach provides a more secure software.

INDEX TERMS Commercial experiment, preventive model, secure software development, vulnerability
reduction.

I. INTRODUCTION
Multitude of cyberattacks occur every day. The exposure of
vulnerable systems facilitates the proliferation of computer
attacks with serious consequences [1], [2], especially when
attacks are driven to critical infrastructures, industrial pro-
cesses, or IoT (Internet of Things) devices. As a consequence,
security has become a major challenge for software develop-
ment companies.

Classic software development models adopt a reactive
approach, where security tasks are relegated to the final
stages of software life cycle. Nevertheless, software devel-
opment models should integrate functionality and preventive
responses to security problems.

In general, development companies generate software
according to functional requirements. At the testing phase
of the development life cycle, the quality of the software
is determined, and the security problems are identified and
solved. This methodology of development involves several

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

problems, and, besides, the estimation of effort to develop
secure software has a great significance for software com-
panies. In this regard, the National Institute of Standards and
Technology (NIST) affirm that solving a vulnerability during
the post-production phase is up to 30 times more expensive
than solving it during the requirement gathering stage [3].

The costs are exponentially increased when vulnerability
detection tasks are relegated to the testing phase. Reactive
measures can help avoiding vulnerabilities, but they do not
minimize the costs of its resolution, and do not properly
protect systems. This is because the identification of vul-
nerabilities –without knowing their origin– could cause a
redesign, and excessive changes in software implementation.

The consequences of software security failures have an
impact on companies not only at economic levels, but on
corporate reputation and even on the legal breach of the Data
Protection of customers.

To tackle all these issues, this paper presents a new
Preventive Secure Software Development Model, called
Viewnext-UEx model, performing an experimental approach
in an industrial environment. All data of the experiments

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 77653

https://orcid.org/0000-0002-4584-6945
https://orcid.org/0000-0002-6367-2694
https://orcid.org/0000-0001-7573-6272

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

correspond to real software projects of Viewnext, an IBM
subsidiary company, being an interesting standpoint since
few works present results based on the analysis of the real
data in a real world case scenario. For this reason, the study
case presented in the paper is a significant issue of this paper.
The main features of the Viewnext-UEx model are detailed,
discussing some of the strengths of the approach, such as the
development of a tool for training, the process of traceability
and monitoring of risks and security requirements, and the
establishment of good practices for secure coding.

The main contribution of this paper can be summarize as
follows: i) A new emerging Secure Software Development
Model, preventive and flexible, is proposed; ii) Real software
projects have been used to validate the proposal; iii) Secure
software development models have been analyzed and com-
pared in depth; and iv) Software security is methodologically
improved with the application of the proposed model.

II. BACKGROUND AND RELATED WORK
Recent researches in the detection and correction of vul-
nerabilities include reactive security approaches. Hence,
Tran et al. [4] propose an early vulnerabilities detec-
tion model to identify and prevent zero-day attacks.
Murtaza et al. [5] analyze tendencies and patterns of vul-
nerabilities in software. In depth, Abaimov and Bianchi [6]
propose and design CODDLE, a new approach for code
injection detection. However, these works are focused only
in reactive approaches to fix security failures.

On the contrary, new emergingmodels manage the security
in the software development process from the initial stages.
In this way, Apvrille and Pourzandi [7] reveal the need of
considering security in all tasks of the software life cycle.
Others researchers [8] try to reduce vulnerabilities from
the initial stages of development, by minimizing malicious
attacks, from the security requirements engineering process.

The estimation of costs to perform a secure software
development is essential. Yang et al. [9] establish a model
to estimate the effort of secure software development of
operating systems in China. However, the evaluation of the
specific causes of software failures is also complicated. Some
other problems of generating secure software are presented
by Sodiya et al. in [10]. Development of applications that
meet security standards is an arduous process. Even when
artificial intelligence techniques are applied, as Rehman and
Saba propose [11].

According to Solinas et al. [12], security for software
should be no longer optional, but mandatory. In this regard,
most studies focused on secure development aim to introduce
checks and measurements in Software Development Life
Cycle (SDLC). Jones argues that security should be included
in all the process of systems development life cycle [13].
On the other hand, Karim et al. [14] design a security exten-
sion to the SDLC model.

Other studies try to ensure the agile process. In this
way, Kaur et al. [15] propose a spiral model with security.

Othmane et al. [16] integrate security activities into the agile
software development process.

In this paper, several frameworks that integrate security by
default are studied:

• Microsoft Security Development Lifecycle (Microsoft
SDL) [17]

• Agile Security Development Lifecycle [18] in its agile
version

• Oracle Software Security Assurance (OSSA) [19]
• Comprehensive Lightweight Application Security Pro-
cess (CLASP) of the Open Web Application Security
Project (OWASP) [20]

• Team Software Process Secure (TSP-Secure) [21]
• SoftwareAssuranceMaturityModel (OpenSAMM) [22]
from OWASP

• Building Security In Maturity Model Framework
(BSIMM) [23]

These methodologies consider security activities that cover
the whole software development process.

Fig. 1 shows similarities and differences of the models,
through a Venn Euler diagram, comparing easily all the
models.

FIGURE 1. Comparison of the studied models.

The similarities should be integrated in any secure software
development model, in a mandatory way. These activities are
represented in the central part of the diagram.

The comparison shows there are models [19]–[21] shar-
ing security activities, such as abuse cases. Similarly, the
frameworks [19] and [22] converge on the activities related to
policies and securitization of the development environment.

77654 VOLUME 8, 2020

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

TABLE 1. Security activities of the models based on the life cycle.

Few studies analyze in depth the methodologies of secure-
by-default development [24], [25]. Grégoire et al. [26]
compare the similarities of Microsoft SDL [17] and CLASP-
OWASP [20] in a theoretical way. In the same way,
De Win et al. [27] compare Microsoft SDL [17], CLASP-
OWASP [20], and Touchpoints [28] by grouping the similar-
ities of the processes according to the phase of the traditional
life cycle in which they are performed. However, these studies
do not analyze known secure development models. In this
way, Microsoft SDL Agile, TSP-Secure, OpenSAMM and
BSIMM frameworks are not considered in relevant studies.

In addition, none of the papers proposes new security
activities, nor the creation of new models adapted to current
needs. All of them simply shows the similarities drawn from
their studies.

Previous works are only based in classifying and/or show-
ing similarities. In [29] main models of secure software
development ([17]–[23]) are studied, including both agile and
traditional methodologies. As a starting point, a comparative
of all aforementioned works is done, based on the most
recent versions of each framework. Table 1 shows security

activities from these models based on their life cycle. The
Viewnext-UEx model is also included in this comparison.
As can be seen, security activities are included (or not) and
implemented in the models in different ways.

III. THE VIEWNEXT-UEX EMERGING MODEL
In this scenario, is essential to change the software develop-
ment process. New paradigms are required, where the final
software product was developed as a combination of func-
tionality and security, presenting preventive responses that
anticipate vulnerabilities.

In this way, Hamid and Weber propose in [30] a model
driven engineering (MDE) methodological approach focus
on patterns to support the development of secure software
systems. Diaz et al. [31] use DevSecOps techniques to study
the versioned configuration of a cybersecurity monitoring
infrastructure.

This paper presents the Viewnext-UExmodel, an emerging
approach based on a preventive security perspective. This
proposal produces software as functional as that one obtained

VOLUME 8, 2020 77655

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

by means of classic and reactive models, and more secure and
effective for the productivity of a software factory.

The Viewnext-UEx model classifies activities in develop-
ment areas, similar to business tasks, following the organi-
zation of SAMM and BSIMM models. Microsoft SDL and
its agile ASDL version, organize security procedures in a
different way, according to their execution in the traditional
software life cycle.

Fig. 2 shows the Viewnext-UEx emerging model, which is
organized in four areas of development and fourteen security
activities.

FIGURE 2. Viewnext-UEx preventive secure software development model.

The four development areas are: Policies, Secure Devel-
opment Methodology, Supervision, and Observatory.
The Policies area creates and unifies the security strategy

to obtain secure software. It focuses on defining the global
guidelines and security objectives for software projects in
specific sectors. The activities in this area require the active
participation of all the groups involved in the process of
software construction.

The SDL Methodology area is specifically oriented to
develop secure software by default.

The Supervision area controls software security indicators
and performs a final security evaluation of the delivered
software.

The Observatory area performs a continuous surveil-
lance to find unknown vulnerabilities. New research lines
(R&D&I) could be proposed to study and discover unknown
cyberattack techniques.

In relation to the fourteen security activities, Table 2
shows them and the corresponding development
areas.

Ten of the security activities are directly integrated from
the common tasks identified in the central part of Fig. 1.
Another activity (Strategy and orientation), although it is not
included in all the models analyzed, it is considered in the
proposed approach, since it is essential for the application
of the model. The other three activities, identified by (∗)
in Table 2, are new and proposed in the Viewnext-UExmodel.
All these security activities are systematically organized and
planned, as indicated in [32].

TABLE 2. Security activities and their development areas and phases of
the life cycle.

A. POLICIES
Three practices are involved in the Policies area:
Strategy and orientation, a transversal practice, establishes

a unified strategic plan to ensure software security. The Ori-
entation covers the ten most exploited vulnerabilities [33]:
Injection, Broken Authentication, Sensitive Data Exposure,
XXE, Broken Access Control, Security Misconfiguration,
XSS, etc. As a result, the security objectives of each project
are defined and measured.
Training is divided into training in secure design, risk

model, and secure coding. This activity is intended for per-
sonnel involved in the entire software life cycle. More details
can be found in the SECURITY TRAINING section.
Definition of risk obtains a list of security risks related to

business indicators. Business risks are different in a software
project for banking, for the electricity sector, for commercial
sale.

B. SDL METHODOLOGY
In relation to SDL Methodology area, six practices are
considered:
Requirements validation obtains a list of security require-

ments classified based on business functionality, according to
the risks known in the previous activity.
Threat modeling focuses on the design of possible threats

to detect the risk of global development security, reducing the
surface of attacks. The entry points of the application and the
assets to be protected are studied.
Design review evaluates the design and architecture of the

software based on OWASP Application Security Verification
Standard [34] in order to detect security-related problems.
This activity is performed before starting the development,
avoiding potential costs of solving security problems.
Development revision searches for basic vulnerabilities at

the code level through static analysis. A list of vulnerabilities
classified according to type and criticality is obtained.
Security testing is performed by a team of experts who

are not part of the development team. A mixed methodology

77656 VOLUME 8, 2020

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

is applied, by using automated tools and manual tests based
on the OWASP Top 10 vulnerability standards [33]. Again,
a list of vulnerabilities classified according to type and criti-
cality is obtained.
Output validation checks the status of the delivered code,

validating the security objectives established with the client.
A definitive version of the software is obtained without errors
or vulnerabilities.

C. SUPERVISION
In the Supervision area, two activities are considered:
Evaluations and metrics, a transversal task throughout the

development of each software project, focuses on the security
and the cost of implementing the development phases.
State of the project is the first new security practice pro-

posed in the Viewnext-UEx model. The security manage-
ment of several software projects is a complex task. Mainly
due to the parallel progress of the different phases of each
project. This new activity is proposed to avoid the loss of
current security perspective of the project. The objective
of this activity is to verify the compliance of the security
guidelines. These guidelines are established in other activity
of the model. This procedure assess the project in relation
to security. This will allow adapting the resources to solve
critical security situations. In addition, this activity improves
the resolution of incidents that imply compliance with the
software quality standards of the Capability Maturity Model
Integration (CMMI).

D. OBSERVATORY
In the Observatory area three practices are included:
Response plan and incidents, a reactive activity, defines

a planned action policy to identify, evaluate and resolve an
incident, event or vulnerability. The objective is the resolution
of incidents in an effective way.
Security observatory is the second new activity proposed in

the Viewnext-UEx model. The main objective of this activity
is avoiding software insecurity as little time as possible. That
minimizes exposure time and risk factors. Early detection
provides time to find solutions or security patches. Secure
developments of today may not provide the secure software
of tomorrow. Therefore, searching for new unknown vulner-
abilities that emerge every day has become an essential task.
Information from reputable sources in the field of computer
security, where vulnerabilities and recent attack techniques
are published, becomes very useful. This allows the automa-
tion of the work to generate secure software and its validation.
Likewise, this positively affects the reputation of the develop-
ment teams and the trust of the clients.
Vulnerabilities repository, the third new security practice

proposed in the Viewnext-UExmodel, is included to progress
and improve from experience. Although some TPS-Secure,
SAMM and BSIMM models list and manage vulnerabili-
ties, they could be improved. This activity transforms reac-
tive measures into preventive ones, in order to adopt these
improvements in the initial phases of software development.

In this way, it is possible to learn from the security failures of
advanced phases. Therefore, failures and errors are included
in the knowledge base to train the development team. All the
gathered information is used to mitigate future errors. This
activity should be considered as a dynamic practice within the
life cycle of secure software, allowing a capable resolution of
vulnerabilities.

IV. STRENGTHS AND WEAKNESSES OF THE
VIEWNEXT-UEX MODEL
Although classic models ([17]–[23]) have proven their valid-
ity, they present some deficiencies, mainly caused by the
reactive standpoint, where the objective is to fix security
problems instead of preventing them. These are some of
the reasons why these models are becoming outdated. Thus,
the new activities included in the Viewnext-UEx model allow
avoiding vulnerabilities, performing an empirical feedback,
and monitoring the security state of the software during the
development process.

As a result, considering the four development areas and
their fourteen security activities, the Viewnext-UEx model is
performed as an integrated, preventive and flexible approach,
allowing feedback to improve the performance. Table 3 sum-
marize the main features of this model.

TABLE 3. Main features of the emerging Viewnext-UEx model.

Two remarkable features differentiate the proposed model
from others. The first one is the training of developers and
auditors in security matters. The second one is the process
of traceability to identify security risks, to obtain security
requirements or records, and to define good coding practices.
Both features are implemented in a preventive approach.

A. SECURITY TRAINING
A customized environment was built for specialized training
in software security [35]. This allows the reproduction of the
most exploited vulnerabilities, and also offers a double educa-
tional and learning vision to auditors and developers. The tool
provides the user with skills to avoid the most common vul-
nerabilities, their attack/defense vectors and the exploitation
flow. The final goal is the prevention of these vulnerabilities,
as well as the secure codification. A differentiating feature
with respect to other security learning tools such as [36]–[38]

VOLUME 8, 2020 77657

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

is the possibility of simultaneously considering two specific
approaches (see Fig.3): one vulnerable and the other one
protected.

FIGURE 3. Interface of the training security tool.

The vulnerable approach allows accessing to the reserved
information when the application is attacked. It lets viewing
the vulnerable code.

The protected approach avoids the attacks. The scenario
is implemented securely. The environment prevents both
attacks and access to protected information, allowing auditors
and developers to view the secure source code, to learn secure
implementation techniques.

B. TRACEABILITY IN THE SDL METHODOLOGY
The systematic inclusion of security practices in the devel-
opment life cycle requires a process of traceability. The
Viewnext-UEx model prevents design and implementation
of software from being only oriented to functionality [39].
By means of automated questionnaires, intrinsic aspects
of security are extracted from the functional requirements.
Siiskonen et al. propose in [40] similar ways to obtain secu-
rity user stories in a generic way. Thus, the possible security
risks are identified (definition of risks) and transformed into
requirements or security stories (requirements validation).
And threats related to the obtained security requirements are
modeled (threat modeling). This finally allows the production
of a white book of good practices, to perform secure coding.

After the traceability process, activities are checked and
reviewed: design revision, development revision and security
testing. The last two ones use automated tools to measure the
security and quality of the code.

C. WEAKNESSES AND THREAT TO VALIDITY
One real case study is evaluated in this paper. Being a real
case, the comparison of several projects is not practicable.
For a software development company, the economic cost of
developing a project for months is certainly high. However,
the validation of the model in a real case study is feasible
and affordable. Perhaps this is the reason why few works
present experiments based on real projects. As future works,
new experiments could be proposed.

Some of the threats to validity are related to human
resources, due to their differences in abilities, skills, knowl-
edge and experience, in different environments. Another
threat could be related to the methodology, although the
model adapts to any type of possible scenario as indicated
in Table 3 in the ‘‘Flexible’’ feature.

V. COMMERCIAL EXPERIMENT
In this section, the real context of application and the evalua-
tion methodology of the new security model is described. The
main differences at security and productivity in development
software at two scenarios are presented.

A. DESCRIPTION OF THE REAL CONTEXT
The case study described was achieved in Viewnext, an Infor-
mation Technology Services company. This software factory
is currently formed by a team of more than 4,500 profes-
sionals and is specialized in software development. The com-
pany is decentralized and distributed in several offices and
technological innovation centers. The development centers
are located in Spain and Portugal. The company is divided
into practices, which provide remote development and main-
tenance services from any of the innovation centers. The
‘‘ADM Desktop/Web practice’’ performs all the activities in
the SDLMethodology area, except the security testing, which
are accomplished by the ‘‘Quality and Testing practice’’.

The experimental project was developed within the electric
industry sector. The risks of cyberattacks turn the electricity
sector into a high criticality sector. The agile methodology
and the frequency of deliveries to the client determined the
planning of security activities within the life cycle. The secu-
rity status of the project was verified by means of several
tools.

The commercial experiment presented in this paper ana-
lyzed the development of two modules (M1 and M2) of the
same software project. Two scenarios were considered in this
experiment: classic for the development of module M1 and
emerging for module M2. Fig.4 shows the main information
about this project.

FIGURE 4. Description of a software project.

Table 4 shows some indicators of the two modules
(M1 and M2), for the software project developed (Fig.4).
The same team developed both modules, with low security

77658 VOLUME 8, 2020

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

TABLE 4. Specific features of both scenarios.

skills in the early stages of development, and high level at the
later ones.

Fig. 5 shows the implementation phases of the Viewnext-
UEx model, starting with a classic scenario where a software
module, M1, was developed (phase 1) based on a typical life
cycle (agile, cascade. . .). Security skills of the development
team was low, and no security tasks were included in the
development of M1. The hours dedicated to development
were computed according to the phases of the life cycle.

FIGURE 5. Phases of the experiment that differentiate classic from
emerging scenario.

Afterward, the software was evaluated (phase 2) by means
of reactive tasks, such as code analysis and security audits.
The ‘‘Quality and Testing practice’’ of Viewnext performed
the security audit process, which means the development
team did not achieve these tasks (phase 2). They developed
code but the team not evaluated it.

In phase 3, the development team analyzed and fixed the
vulnerabilities found, at the end of the development process,
when the module was finished, reaching this correction in a
reactive way (phase 3) by means of testing tasks.

After finishing the module M1 (classic scenario), the same
development team, developed a second module (M2) with

the same architectural framework, functional and security
complexity, but in an emerging scenario.

In contrast to classic scenario, in the preventive scenario,
the vulnerability detection is anticipated. The emerging sce-
nario found software vulnerabilities in advance during the
development process, without delaying the security tasks
to the latest stages. This scenario followed a preventive
approach, being suitable to implement the proposed model
according to the procedure presented in [41].

First, the development team was trained and formed in
secure codification (phase 4). The security skills of the team
were increased to a high level. Specialized training was
designed to instruct designers and developers, and another
specific training to prepare software and business analysts.
The training security application shown in Fig. 3 was one of
the tools used in this training process.

In phase 5, a secure ecosystem of tools were prepared.
Check and control tools of software security are essential, and
the selection of these tools are important too. In addition, it is
necessary to know fundamental information of the software
project to perform an effective implementation. Table 5 shows
the contact questionnaire used to obtain the most relevant
information of the project. Some questions have a customized
answer, depending on the software project, and others must
be selected. The options corresponding to M2 are highlighted
in bold type.

The set of tools (secure ecosystem) to improve software
security can be configured by knowing the information of
each project. Table 6 shows the tools integrated into the
proposed new model [42].

In the phase 6, the Viewnext-UEx model was used in the
development stage of the emerging scenario, as Fig. 5 indi-
cates, instead of using standard life cycle as agile, cascade. . . .
Security activities of this new model were integrated from
the earliest phases of the software life cycle in the software
development processes.

After the software development process, a security assess-
ment was performed through an audit (phase 7). The evalu-
ation and audit tasks were similar to the implemented in the
classic scenario (phase 2).

Finally, in phase 8, the vulnerabilities found were fixed.
Again, the correction of vulnerabilities was performed as in
the classic scenario (phase 3).

Fig. 6 shows the architecture of the experimental applica-
tion for the emerging scenario.

Eventually, both scenarios were similar and then could
be compared. The main difference between the reactive and
preventive scenarios was related to the software develop-
ment methodology (phase 1 and phase 6, as is specified in
the Fig. 5).

B. SECURITY AND PRODUCTIVITY INDICATORS
The effectiveness of the proposed emerging model was esti-
mated through several indicators related to software security
and productivity performance.

VOLUME 8, 2020 77659

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

FIGURE 6. Application architecture of the emerging scenario.

Besides, to compare the productivity or effectiveness of
each scenario, the development time was also estimated.
It could help to decide between a classic model and the
proposed Viewnext-UEx emerging model.

Several performance indicators were defined, in rela-
tion to the cost and security of development, as table
7 shows. The indicators were used to compare the devel-
opment of module M1 (classic) in relation to module M2
(emerging).

One of the indicators could not be computed (hours ded-
icated to security, per SDLC phase), as M1 did not fol-
low the Viewnext-UEx secure software development model.
That indicator was the main difference between both models.
Following a reactive approach for module M1, computing the
time involved in security activities in development process
was not possible.

The development cost was computed in hours per task,
whereas the security level was determined by the number,
type and criticality of the detected vulnerabilities. The num-
ber of vulnerabilities indicated the total amount of found
vulnerabilities in each of the modules. The type of vulnera-
bilities differentiated those related to application architecture
(web server, application server, database, frameworks, cus-
tom code, etc.) from the ones related to software development
(injections, XSS, broken authentication, sensitive data expo-
sure, etc.). The Common Vulnerability Score System stan-
dard [43] was used to determine the criticality. This standard

classifies vulnerabilities into five categories: critical, high,
medium, low and none.

One of the indicators could not be computed (hours
dedicated to security, per SDLC phase), as M1 did not fol-
low the Viewnext-UEx secure software development model.
That indicator was the main difference between both models.
Following a reactive approach for module M1, computing the
time involved in security activities in development process
was not possible.

VI. RESULTS
In the classic scenario, 2,228 hours were dedicated to the
module M1. Fig. 7 show the time per phase in percentage,
for this module. The hours were computed according to the
phases of the life cycle.

Considering the percentage of time for the development of
M1 (the four initial stages in Fig. 7), the partial percentage
time added up to 88.8%, being 11.2% the percentage of time
to evaluate (2.7%) and correct (8.5%) vulnerabilities.

On the other hand, in the emerging scenario, 794 hours
were dedicated to develop themoduleM2. The time per phase
in percentage for the module M2 is shown in Fig. 8.

In this preventive scenario, 95.6% of the time was devoted
to the M2 development stages (the four initial ones in Fig. 8).
Apparently, only 4.4% of the total time was dedicated to
evaluate (3.1%) and correct (1.3%) vulnerabilities.

77660 VOLUME 8, 2020

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

TABLE 5. Emerging model implementation form.

TABLE 6. Selected toolset to create the secure ecosystem.

The vulnerabilities identified are shown in Table 8 (for the
classic scenario) and Table 9 (for the emerging scenario).

In this point, it is important to detail the time dedicated
to security activities in the emerging scenario, distributed in
the phases of software life cycle (Table 10), by following the
Viewnext-UEx model.

VII. DISCUSSION
This section presents the discussion of applying the proposed
evaluation methodology in both scenarios.

TABLE 7. Cost and development security indicators.

FIGURE 7. Time per phase of M1 module, corresponding to classic
scenario.

FIGURE 8. Time per phase of module M2, corresponding to scenario
emerging.

Security by default was not considered in the classic sce-
nario. As can be seen in Fig. 7, 88.8% of the time was
dedicated to the development of M1, and 11.2% to evaluate
and fix vulnerabilities.

VOLUME 8, 2020 77661

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

TABLE 8. Vulnerabilities identified in the classic scenario.

TABLE 9. Vulnerabilities identified in the emerging scenario.

For the emerging scenario, although the greatest devel-
opment effort was made in the analysis/design, and coding
tasks (Fig. 8), however the security tasks were distributed
almost equally among analysis/design, coding and evalua-
tion. Security by default approach was considered for M2,
which implied not only time to evaluate and correct vulner-
abilities (4.4% as mentioned in the results section) but also
to prevent them. Thus, computing the percentage of time
for development (88.3%) and for security tasks (11.7%) as
Table 10 shows, these percentages are really very similar to
those obtained for the module M1.

TABLE 10. Time dedicated to security compared to time dedicated to
development in hours.

In relation to indicators of rating security, nineteen vulner-
abilities were found in the classic scenario: twelve related
to architecture and seven related to development issues (as
Table 8 shows). Regarding the criticality of the vulnerabil-
ities, ten out of nineteen were classified as critical or high,
while three were of medium criticality and six were of low
criticality.

In contrast, much less vulnerabilities were detected in the
emerging scenario. Particularly, six vulnerabilities (Table 9),
being five of them of architecture and the other one of devel-
opment. In addition, three out of six were of high criticality,
one of medium and two of low criticality.

Tables 8 and 9 are summarize in Fig. 9, which presents a
graphical comparative of both experimental scenarios, show-
ing the number of vulnerabilities found and their level of
criticality.

FIGURE 9. Comparative of vulnerabilities and their criticality identified in
each scenario.

A considerable reduction in the number of vulnerabilities
can be seen in Fig. 9 (nineteen at the classic scenario versus
six at the emerging). This implies a reduction of 68.42%
in the quantity of vulnerabilities that affected software
development.

The study about the impact of those vulnerabilities is also
essential. In the classic scenario, the 73.68% of the vulnera-
bilities found were classified as medium/high/critical. This is
a really worrying percentage. On the contrary, in the emerging
scenario, although the 50% of the vulnerabilities were of high
criticality, none of them was critical.

The Viewnext-UEx preventive model not only reduced
the number of vulnerabilities, but also their criticality and
impact. Consequently, this new proposal developed software
by default more secure than classic models.

The vulnerabilities found for both scenarios are detailed in
table 11, according to their type (architecture or development)
and criticality (based on the Common Vulnerability Scoring
System standard).

Table 11 shows the vulnerabilities found in the experiment,
level of criticality and type of vulnerability (architecture or
development). As Fig 9, this table reveals the great number

77662 VOLUME 8, 2020

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

TABLE 11. Comparative of vulnerabilities identified in each scenario. Criticality classified by CVSS version 3.

of vulnerabilities in the classic scenario compared to the
emerging one. The preventive emerging scenario avoided
most of the vulnerabilities of the classic approach. On the
other hand, some of the vulnerabilities were only found in the
emerging scenario, which could mean they were not detected
in the classic development models.

Fig. 10 presents the percentages of time dedicated on every
of the phases of software development life cycle. It exposes
the emerging model dedicated more percentage time in the
earliest phases, mainly because security issues were consid-
ered in these initial stages of the development.

FIGURE 10. Comparison of time spent for each phase of the development
process of the classic and emerging scenarios.

All the results are presented in percentages of time mainly
because the total amount of development time is different in
each scenario. Time invested was recovered in the final stages
of the development process.

In this regard, a qualitative fact detected by the Scrum
Manager of the project was the time spent on analysis and
design phases compared to the coding stage. The emerging
scenario shown that greater time dedication to the initial
phases of analysis and design reduced the coding time.

In relation to the vulnerability resolution phase, there is
a big difference between the two scenarios (a reduction
of 7.2%). The classic scenario was affected by a great impact
in this phase, due to the reactive approach. However, as men-
tioned above, the emerging preventive scenario distributed
the temporal cost related to security activities among all
phases of software development. In this way, the vulnerability
resolution phase had a minimal cost.

Indeed, the final stage of software development is often
tense and stressful. In addition to possible delays, last-minute
issues can arise, making it desirable to reduce the number
of vulnerabilities that must be fixed as much as possible.
Furthermore, as it has been demonstrated, the final developed
software was not only functionally correct, but also more
secure.

This new proposal in the field of emerging softwaremodels
is the first research that presents comparative results of the
application of a classic and reactivemodel versus an emerging
and preventive one. Few studies have been found to contrast
the results presented in this paper. Mainly due to the big
difficulty of evaluating real software projects, which prove
the novelty of this research.

In addition, direct transfer of knowledge from a research
center to a company like Viewnext is another remarkable
aspect. The company has adopted this new secure software
development methodology in its production system, and is
currently marketing it, which in some way proves the validity
of the proposal.

VOLUME 8, 2020 77663

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

VIII. CONCLUSION
This paper presents the Viewnext-UEx model, a new,
preventive and flexible approach to develop secure software.
The best-knownmodels in secure software development have
been studied and compared, identifying their best practices,
and some of their deficiencies. The new model includes the
better security activities of these well-known models, besides
other security tasks, correcting the weaknesses of the pro-
posed models and following a preventive approach.

The Viewnext-UEx model is tested with real data. The
case study shows that the number of detected vulnerabilities
is reduced by 66%. The criticality of vulnerabilities is also
significantly reduced. All this produces an evident reduc-
tion in costs and times, much more prominent in the final
stages of development. The security and quality of software
is increased, as well as the productivity of development.

The availability of real data together with the compari-
son of the best-known models to identify best practices and
the inclusion of specific activities suggest that the proposed
model could be customized to other business environments.

ACKNOWLEDGMENT
The authors would like to thank Viewnext, an Information
Technology Services company of IBM Spain Group, for the
help provided with the data transfer.

REFERENCES
[1] Cyberthreats and Tendencies Executive Summary 2018, Nat. Cryptol. Cen-

ter Comput. Emergency Team Response, Madrid, Spain, 2018.
[2] Cyber Threats and Cyber Security 2019, Nat. Cryptologic Center Comput.

Emergency Team Response, Madrid, Spain, 2019.
[3] National Institute of Standards and Technology. (2002). The Eco-

nomic Impacts of Inadequate Infrastructure for Software Testing.
Accessed: Jun. 18, 2017. [Online]. Available: https://www.nist.gov/
system/files/documents/director/planning/report02-3.pdf

[4] H. Tran, E. Campos-Nanez, P. Fomin, and J. Wasek, ‘‘Cyber resilience
recovery model to combat zero-day malware attacks,’’ Comput. Secur.,
vol. 61, pp. 19–31, Aug. 2016.

[5] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and A. B. Bener, ‘‘Mining
trends and patterns of software vulnerabilities,’’ J. Syst. Softw., vol. 117,
pp. 218–228, Jul. 2016.

[6] S. Abaimov and G. Bianchi, ‘‘CODDLE: Code-injection detection with
deep learning,’’ IEEE Access, vol. 7, pp. 128617–128627, 2019.

[7] A. Apvrille and M. Pourzandi, ‘‘Secure software development by exam-
ple,’’ IEEE Secur. Privacy Mag., vol. 3, no. 4, pp. 10–17, Jul. 2005.

[8] D. Mellado, E. Fernandez-Medina, and M. Piattini, ‘‘A security require-
ments engineering process in practice,’’ IEEE Latin Amer. Trans., vol. 5,
no. 4, pp. 211–217, Jul. 2007.

[9] Y. Yang, J. Du, and Q. Wang, ‘‘Shaping the effort of developing secure
software,’’ Procedia Comput. Sci., vol. 44, pp. 609–618, Jan. 2015.

[10] A. S. Sodiya, S. A. Onashoga, and O. B. Ajayi, ‘‘Towards building secure
software systems,’’ Issues Informing Sci. Inf. Technol., vol. 3, pp. 635–646,
Jan. 2006.

[11] A. Rehman and T. Saba, ‘‘Evaluation of artificial intelligent techniques
to secure information in enterprises,’’ Artif. Intell. Rev., vol. 42, no. 4,
pp. 1029–1044, Dec. 2014.

[12] M. Solinas, L. Antonelli, and E. Fernandez, ‘‘Software secure building
aspects in computer engineering,’’ IEEE Latin Amer. Trans., vol. 11, no. 1,
pp. 353–358, Feb. 2013.

[13] R. L. Jones and A. Rastogi, ‘‘Secure coding: Building security into the
software development life cycle,’’ Inf. Syst. Secur., vol. 13, no. 5, pp. 29–39,
Nov. 2004.

[14] N. S. A. Karim, A. Albuolayan, T. Saba, and A. Rehman, ‘‘The prac-
tice of secure software development in SDLC: An investigation through
existing model and a case study,’’ Secur. Commun. Netw., vol. 9, no. 18,
pp. 5333–5345, Dec. 2016.

[15] P. Kaur, D. Kaur, and H. Singh, ‘‘Secure spiral: A secure soft-
ware development model,’’ J. Softw. Eng., vol. 6, no. 1, pp. 10–15,
Jan. 2012.

[16] L. B. Othmane, P. Angin, H. Weffers, and B. Bhargava, ‘‘Extending
the agile development process to develop acceptably secure software,’’
IEEE Trans. Dependable Secure Comput., vol. 11, no. 6, pp. 497–509,
Nov. 2014.

[17] S. Lipner, ‘‘The trustworthy computing security development lifecycle,’’
in Proc. 20th Annu. Comput. Secur. Appl. Conf., 2004, pp. 2–13.

[18] Microsoft Corporation. (2010). Agile Development Using Microsoft Secu-
rity Development Lifecycle. Accessed: Jun. 19, 2017. [Online]. Available:
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx

[19] COC Redwood Shores. (2011). Oracle Software Security Assurance.
[Online]. Available: https://www.oracle.com/support/assurance/
index.html

[20] OWASP Project. Comprehensive, Lightweight Application Security
Process. Accessed: Mar. 15, 2020. [Online]. Available: https://
www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/
introduction-to-the-clasp-process

[21] N. Davis, P. L. Miller, W. R. Nichols, and R. C. Seacord, ‘‘TSP-
secure,’’ in Proc. 4th Annu. TSP Symp., 2009, pp. 3–8. [Online]. Available:
http://resources.sei.cmu.edu/asset_files/ConferencePaper/2009_021_001_
298907.pdf

[22] OWASP Project. (2009). Software Assurance Maturity Model. [Online].
Available: http://www.opensamm.org/downloads/SAMM-1.0.pdf

[23] S. Migues, J. Steven, and M. Ware. (2019). Building Security in
Maturity Model. [Online]. Available: https://www.bsimm.com/content/
dam/bsimm/reports/bsimm10.pdf

[24] D. V. Mohino, B. Higuera, B. Higuera, and S. Montalvo, ‘‘The application
of a new secure software development life cycle (S-SDLC) with agile
methodologies,’’ Electronics, vol. 8, no. 11, p. 1218, 2019.

[25] L. Williams, G. McGraw, and S. Migues, ‘‘Engineering security vulner-
ability prevention, detection, and response,’’ IEEE Softw., vol. 35, no. 5,
pp. 76–80, Sep. 2018.

[26] J. Grégoire, K. Buyens, B. D.Win, R. Scandariato, andW. Joosen, ‘‘On the
secure software development process: CLASP and SDL compared,’’ in
Proc. 3rd Int. Workshop Softw. Eng. Secure Syst. (SESS: ICSEWorkshops),
May 2007, p. 1.

[27] B. De Win, R. Scandariato, K. Buyens, J. Grégoire, and W. Joosen,
‘‘On the secure software development process: CLASP, SDL and touch-
points compared,’’ Inf. Softw. Technol., vol. 51, no. 7, pp. 1152–1171,
Jul. 2009.

[28] G. McGraw, ‘‘Software security: Building security in,’’ in Proc. 17th Int.
Symp. Softw. Rel. Eng., Nov. 2006, p. 1.

[29] J. C. S. Núñez, A. C. Lindo, and P. G. Rodríguez, ‘‘Análisis de
metodologías de Desarrollo de Software Seguro,’’ in Proc. Jornadas
Nacionales Investigación Ciberseguridad (JNIC), 2016, pp. 42–47.

[30] B. Hamid and D. Weber, ‘‘Engineering secure systems: Models, pat-
terns and empirical validation,’’ Comput. Secur., vol. 77, pp. 315–348,
Aug. 2018.

[31] J. Diaz, J. E. Perez, M. A. Lopez-Pena, G. A. Mena, and A. Yague,
‘‘Self-service cybersecurity monitoring as enabler for DevSecOps,’’ IEEE
Access, vol. 7, pp. 100283–100295, 2019.

[32] J. C. S. Núñez, A. C. Lindo, P. G. Rodríguez, and Á. Quesada, ‘‘Cat-
egorización de Actividades de Seguridad en el Desarrollo de Soft-
ware,’’ in Proc. Jornadas Ingeniería Softw. Bases de Datos, 2016,
pp. 565–568.

[33] OWASP Top 10—The Ten Most Critical Web Application Security Risks,
OWASP, Bel Air, MD, USA, 2017.

[34] Application Security Verification Standard (2014), OWASP, Bel Air, MD,
USA, Oct. 2014, p. 47.

[35] J. C. S. Núñez, M. L. Castaño, A. C. Lindo, J. A. Félix, G. Rodríguez,
and A. B. Gómez, ‘‘Herramienta de entrenamiento para el desarrollo de
software seguro,’’ in Proc. Actas las 24th Jornadas Ingeniería Software
Bases Datos (JISBD), 2019, pp. 1–4.

[36] OWASP. OWASP WebGoat Project. Accessed: Mar. 7, 2020. [Online].
Available: https://owasp.org/www-project-webgoat/

[37] J. Druin, ‘‘InfoSec reading room introduction to the OWASP mutillidae
II Web,’’ SANS Inst. InfoSec Reading Room, 2013. [Online]. Available:
https://www.sans.org/reading-room/whitepapers/infosec/introduction-
owasp-mutillidae-ii-web-pen-test-training-environment-34380

[38] Damn Vulnerable Web Application (DVWA). Accessed: Mar. 10, 2020.
[Online]. Available: http://www.dvwa.co.uk/

77664 VOLUME 8, 2020

J. C. S. Núñez et al.: Preventive Secure Software Development Model for a Software Factory: Case Study

[39] J. C. S. Núñez, A. C. Lindo, L. Fondón, and J. A. F. de Sande, ‘‘Herramienta
para la identificación de requisitos de seguridad en un Modelo de Desar-
rollo Seguro,’’ in Proc. Reunión Española Sobre Criptología Seguridad la
Información (RECSI), 2018, pp. 92–95.

[40] P. Pietikäinen, J. Röning, T. Siiskonen, and V. Ylimannela, Handbook of
The Secure Agile Software Development Life Cycle. Oulu, Finland: Univ.
of Oulu, 2014.

[41] J. C. S. Núñez, A. C. Lindo, P. G. Rodríguez, and J. A. F. de Sande,
‘‘Metodología de Implantación Empresarial de unModelo deDesarrollo de
Software Seguro,’’ in Proc. Jornadas Nacionales investigación en Ciberse-
guridad (JNIC), 2017, pp. 128–133.

[42] J. A. F. de Sande, J. C. S. Núñez, and A. C. Lindo, ‘‘Evaluación y selección
de un ecosistema de herramientas para un enfoque preventivo y continuo en
modelos de desarrollo seguro de software,’’ in Proc. Jornadas Nacionales
Investigación en Ciberseguridad (JNIC), 2018, pp. 87–94.

[43] Common Vulnerability Scoring System V3.0: Specification Document.
Forum Incident Response Secur. Teams, Morrisville, NC, USA, 2015,
pp. 1–21.

JOSÉ CARLOS SANCHO NÚÑEZ received the
degree in computer science from the University of
Extremadura, in 2015. He is currently a Substi-
tute Professor with the Department of Computer
and Telematic Systems Engineering, University
of Extremadura, and a member of the Media
Engineering Group (GIM). He has participated in
several national congresses and workshops and
has made a research stay at the Complutense
University of Madrid, Spain. His research interest

includes audit and security software development.

ANDRÉS CARO LINDO received the B.Sc. and
M.Sc. degrees in computer science, in 1993 and
1998, respectively, and the Ph.D. degree in com-
puter science from the University of Extremadura,
Spain, in 2006. He has been anAssociate Professor
with theDepartment of Computer Science, Univer-
sity of Extremadura, since 1999. He is also the Lab
Head of the Media Engineering Group, University
of Extremadura. He has participated in several
Research and Development projects. He is a coau-

thor of numerous research SCI journal articles. His research interests include
cybersecurity, big data and machine learning, and pattern recognition.

PABLO GARCÍA RODRÍGUEZ received the
Ph.D. degree in computer science, in 2000. He was
the Director of the School of Technology, Cáceres,
from 2017 to 2019, where engineering studies
are teaching in civil, building, computing, and
telecommunications. He is currently the General
Director of the Digital Agenda of the Government
of the Autonomous Community of Extremadura,
Spain. His teaching was mainly centered on sub-
jects of programming and information systems in

computer engineering. His research interests include the Internet of Things
(IoT), bigdata and pattern recognition, and image analysis.

VOLUME 8, 2020 77665

