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ABSTRACT 3D Computer Vision algorithms are a subject of research and application for several industrial
processes. The Volume of Interest (VOI) usually refer to sub-objects with basic shapes for computing these
algorithms. However, in many cases the objects are available as irregular shapes with many vertices, and in
order to apply algorithms effectively, it is essential to compute the largest volume parallelepipedon contained
in 3D objects. There are no other approximation algorithms for finding the largest volume parallelepipedon
of arbitrary orientation inscribed in a closed 3D contour with a computational cost better than the algorithm
proposed in this paper, been O(n3).

INDEX TERMS Parallelogram, parallelepipedon, polyhedron, volume of interest (VOI).

I. INTRODUCTION
3D Computer vision algorithms are a subject of research and
application for several industrial processes. These techniques
have been successfully applied in many engineering fields
such as industrial image processing, robotics [1], medical
image processing [2], and food technology [3]–[5]. Many
of these algorithms focus on parts of a 3D object instead of
processing the whole object.

3D objects often show irregular and complex shapes with
many vertices.Therefore, volume of interest (VOI) is widely
used in segmentation tasks, as a significant requirement for
later image analysis. In order to avoid time-consuming global
segmentation, VOIs allow to focus the processing just in the
area of interest. Segmentation and volumetry are essential
tasks for many applications, where 3D volume of interest can
be used as input for the algorithms which estimate the shape
of final objects [6]–[8].

An accurate segmentation of these final objects is often
an essential requirement, being mandatory that these final
objects are within the VOI, for medical reasons, for industrial
engineering purposes, for food technology requirements. . .
Therefore, sometimes, it is not enough to identify an internal
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VOI at a specific volume, but specifically the largest VOI,
for extracting the maximum amount of information possible
from that VOI. Accordingly, it is essential to compute the
largest volume parallelepipedon contained in 3D objects,
as discussed in [9].

The algorithm proposed and developed in this paper comes
from the need for a practical application in the field of food
technology. The dry-cured meat products, mainly Iberian loin
and Iberian ham, constitute products of great importance in
the southwestern region of the Iberian Peninsula. This usually
targets the dry-cured product market, reaching high quality
rates in sensory terms and consumer acceptance [10]. In order
to analyze some key factors for their quality, the ripened
meat is studied by means of the images obtained by magnetic
resonance imaging (MRI), a non-destructive, non-invasive
and innocuous method [11]. On these images, active con-
tours techniques are applied to recognize the main muscle
structures [12]. The shape of the muscles is complex and
irregular, so, they could be represented as closed polyhedral.
Then, computational texture features are extracted from these
muscles as 3D images, whereas these feature extraction algo-
rithms work better over parallelepipedon VOIs.

Several quality parameters related to dry-cured meat can
be computed using computer vision techniques, applied on
MRI. The extraction of computer vision features is needed
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to properly correlate the results obtained by means of com-
puter vision techniques with the results obtained by means
of traditional food technology analysis. The computer vision
features must be extracted from the same muscular structures
in which the physicochemical analysis was carried out [13].
On the other hand, in other occasions it is necessary to
achieve a data set obtained from a VOI. The larger the VOI,
the more information can be obtained from it, which can
improve the classification or prediction algorithms used later
[14], [15]. Therefore, developing an efficient algorithm that
allows the computation of the largest possible VOI is really
important [16].

Besides the applications for food technology presented
in [9], [12], [15], there are different interesting applications
for searching the largest rectangle or parallelepipedon in
any arbitrary orientation, such as biomedical applications (to
detect 2D or 3D regions inMRI, X-ray or computed tomogra-
phy), or engineering applications (to segment areas of interest
in civil engineering or building engineering). . . [6]–[8].
The purpose of this paper is to describe our development of

a computationally efficient method to obtain the largest VOI
contained in 3D object images in order to extract the maxi-
mum possible information with a high degree of precision.

As will be presented in the technical issues section, all
the source code of the algorithm proposed in this paper,
scripts, documentation and non-sensitive data are available
for the scientific community in a GitHub repository. Themain
contributions of this paper can be summarized as follows:
i) an efficient algorithm is presented to compute the largest
VOI of arbitrary orientation inscribed in 3D volume; ii) the
proposed procedure is compared to other similar approaches,
evaluating the time complexity and the space complexity,
being the new proposal the best option; iii) all the source code,
scripts, and documents are provided in a GitHub repository
for the scientific community.

The paper is organized as follows: Section 2 presents a
review of related works. Section 3 introduces the concept of
quasi-lattice polyhedrons (P), and computes the largest vol-
ume parallelepipedon contained within (P) by Algorithm 2.
Then, Section 4 defines a procedure for computing the
largest volume parallelepipedon in an arbitrary solid, and
Section 5 and Section 6 describes the feasibility of computing
the largest volume parallelepipedon for a practical applica-
tion and the repository for download the algorithm. Finally,
Section 7 sums up the conclusions of our research.

II. RELATED WORKS
Various geometric problems have emerged in last decades
relative to polygons and polyhedra. Thus, for polygons many
researchers have studied inclusion problems.

Several studies are based on the largest figures, con-
sidering shapes other than rectangles or parallelepipeds.
DePano et al. [17] solved the problem of finding the
largest inscribed square in O(n2) time, selecting the opti-
mal solution from a finite range of solutions in O(n2)
space. Fekete and Sándor [18] provided an algorithm

for finding all anchored squares in O(n log2 n) time and
O(n log n) space. Melissaratos and Souvaine [19] demon-
strated that in O(n3) time and O(n ∗ k) space, being k the
number of vertices, it is possible to compute the largest tri-
angle inscribed in a simple polygon by applying the shortest
path among the polygonal regions for the maximization of
the triangles areas. Keikha et al. [20] computed the largest
area triangles from an imprecise set of points, in O(n2)
time, or even in O(n log n) time for unit segments. They
also minimized the largest triangles, in O(n4) time. However,
the final figures were not a quadrilateral for these approaches.

For rectangles, Chazelle et al. [21], [22] studied the largest
empty area only for inscribed parallel rectangles, in compu-
tation time O(n log3 n) and O(n) space. Chang and Yap [23]
focused on looking for a largest convex polygon that can
be defined inside any available simple polygon, with high
computation time O(n7) or O(n6) if the desired polygon in
maximized with respect to perimeter. Aggarwal and Suri [24]
found the largest rectangle with largest perimeter within
empty shapes, with time complexity O(n log3 n), and O(n)
memory space. Daniels et al. [25] considered the largest
parallel rectangle to n given points, improving the time com-
plexity up to O(n log2 n) of previous algorithms, with O(n)
storage. Like this, Boland et al. [26] considered the problem
of finding the largest area axis-aligned rectangle contained
in a polygon, in O(n log n) time and space. Knauer et al.
[27], [28] considered approximation algorithms to calculate
the rectangle with the largest area of arbitrary orientation
in a convex polygon with n vertices in O( 1

ε
log 1

ε
log n) for

simple polygons. In the sameway, Cabello et al. [29] obtained
the largest rectangle in O(n3) time, and Choi et al. [30]
considered also the maximun area and perimeter rectangles
in O(n3 log n) time and O(n3) space.

Besides, for rectangles, in Molano et al. [31] the authors
showed how to compute in O(n3) time and O(n3) space the
largest area rectangle of arbitrary orientation in a closed con-
tour workingwith RegionOf Interests (ROIs). To do this, they
first applied the algorithm by Freeman and Shapira [32] to
compute the minimum area rectangle that encloses the closed
contour. Then, they defined a regular partition leading to
build the quasi-lattice polygon S. Finally, they computed the
coordinates of the rectangles with the largest area in S. This
work was successfully developed in a practical application,
previously published in several papers [14], [33]–[35].

It is important to emphasize that Molano et al. com-
puted the largest rectangle in any arbitrary orientation. Con-
sequently, as the authors explained in [31] there is a big
difference in the complexity order with simple polygons,
convex polygons and arbitrary polygons [29]. Years later,
Sarkar et al. [36] approach also obtained a computation time
O(n3) for arbitrary rectangles, and finally, Abuqasmieh et al.
[37] presented an unrestricted-shape geometry algorithm
which run in O(n log2 n) time to find the axis-parallel largest
rectangle inside a given region of interest.

In relation to parallelograms, Jin and Matulef [38] were
a bit further and found the maximum area parallelogram
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inside a convex polygon in O(n2) time and O(n2) space.
Again, the complexity is not comparable with the largest
parallelepipedon of any arbitrary orientation complexity [31].
Instead of considering the largest parallelepipedon inscribed
within a volume, Ausserhofer et al. [39] proposed an algo-
rithm to find maximum area polygons circumscribed about a
convex polygon, in O(n3) time. Although the approach could
be considered slightly similar, time complexity is highly
dependent on the application.

Table1 summarizes the main algorithms based on quadri-
lateral approaches, showing the computational cost.

TABLE 1. Computational cost: rectangle/parallelogram.

The algorithm presented in this paper computes the
largest volume parallelepipedon in any arbitrary orientation,
inscribed in a volume, in O(n3) time and O(n3) space. The
approach is an enhanced 3D version of the previous 2D
approach presented in [31]. By removing the condition of
perpendicularity and calculating the absolute value of the
determinant of two adjacent sides, the parallelogram could
be obtained.

For polyhedral the problem is more complex. It has been
solved for polyhedral being circumscribedwith simple shapes
and minimal volume:

• Spheres: Chien et al. [40] computed the circumscribed
sphere in O(n4) time and O(kn3) space. And Danciger
et al. [41] developed an algorithm to compute the sphere
in O(n4) time.

• Cylinders: Schömer et al. [42] computed the smaller
enclosing cylinder in O(n4 log n) time and O(n3) space,
whereas the approach of Danciger et al. [41] implied
O(n4) time.

• Parallelepipedons: Vivien et al. in [43] obtained a com-
putational cost O(n6) for time, although could be O(n2)
time whether the number of vertices is lower than
O(n5).

• Rectangular box: Baraquet and Har-Peled in [44], and
Rourke in [45] developed approaches with complexities
higher than O(n2 log n) for time, and O(n3) for space.

• Polyhedral, being inscribed with maximal volume: reg-
ular polyhedron [46] with a computational cost of O(n3)
time and O(n3) space.

III. LARGEST VOLUME PARALLELEPIPEDON IN A
QUASI-LATTICE POLYHEDRON
Given the rectangular box R = [a, b] × [c, d] × [e, f ],
a, b, c, d, e, f ∈ Z a regular partition Q of R are
three ordered collections of equally spaced points which
satisfy:

Q1 = {a = x0 < x1 < . . . < xr = b} ∈ P([a, b])

Q2 = {c = y0 < y1 < . . . < ys = d} ∈ P([c, d])

Q3 = {e = z0 < z1 < . . . < zt = f } ∈ P([e, f ])

where Q = Q1×Q2×Q3 = {Rijk = [xi−1, xi]× [yj−1, yj]×
[zk−1, zk ] : 1 ≤ i ≤ r , 1 ≤ j ≤ s, 1 ≤ k ≤ t} ∈ P(R).
We denote GL = {(xi, yj, zk ) : 0 ≤ i ≤ r , 0 ≤ j ≤ s,

0 ≤ k ≤ t}, the cube grid composed of points of the partition
Q, where L, called partition size, is the length of the
side of each cube formed by the cube grid. We state that the
partition Q̇ is finer than the partitionQ, if it is verified that all
points of Q belong to Q̇. We denote Q � Q̇.

Let P be a simple (surface can be deformed continuously
into the surface of a sphere) and proper polyhedron
(can be represented as the finite union of 3-dimensional
lattice simplexes) and supposing that we have defined an
algorithm to enumerate all vertices of the polyhedron whose
coordinates belong to the cube grid GL for a regular par-
tition Q. Moreover, if vi and vj are two adjacent vertices
of P, then they are only connected in the directions, k π4 ,
k = 0, . . . , 7. A polyhedron P, defined in this way, is said
to be a quasi-lattice polyhedron (Fig. 1).

FIGURE 1. Quasi-lattice polyhedron P on a regular partition of partition
size.

We denote ∂P as the family of boundary nodes ofP belong-
ing to the cube grid GL , and its complementary in P, ıP,
the interior points with coordinates in GL , i.e. P = ∂P ∪ ıP.
Similarly, we denote V as the family of vertices of ∂p, and
its complementary in ∂P, we denote ı∂P, i.e. ∂P = V ∪ ı∂P.
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Then we decompose quasi-lattice polyhedron P as follows:

P = V ∪ ı∂P ∪ ıP = {p1, p2, . . . , pn+m+o}

where #(V ) = n, #(ı∂P) = m, #(ıP) = o and #(P) = N =
n+ m+ o ' kn, k ∈ N, if # represents the cardinality of the
set.

Thus, for Figure 1: #(V ) = 18 and V =

{(x0, y0, z0), (x4, y0, z0), (x4, y1, z0), . . .}.

A. VOLUME OF A QUASI-LATTICE POLYHEDRON
Pick’s theorem [47], [48] provides an elegant formula for the
area of a lattice polygons (S) from the numbers of points
on the boundary (∂S) and in the interior (ıS) belonging to
a square grid of side l.

A(S) =
(
#(ıS)+

#(∂S)
2
− 1

)
· l2

The question now is whether it can be generalized to
higher dimensions. Reeve [49], [50] showed that it is not
possible to find an expression like the one above to com-
pute the volume of a lattice polyhedron (P) in terms of
the number of points, in Z3, on the boundary (frP) and
in the interior (intP) of P. However, Kolodziejczyk and
Reay [51] obtained a formula (TheoremIII-A) which uses
only rational lattice points:

Z3
n = {x ∈ R3

: nx ∈ Z3
}, n ≥ 1(Z3

1 = Z3)

Theorem 3.1: If P is a proper lattice polyhedron in RN ,
then its volume V (P) is given by

V (P) =
1

(N + 1)!

N∑
k=1

(−1)N−k
(
N − 1
k − 1

)
(Bk + 2Ik )

where Bk = #(Z3
k ∩ frP) and Ik = #(Z3

k ∩ intP)
Thus, in R3 and for a quasi-lattice polyhedron P:

V (P) =
1

4!

3∑
k=1

(−1)3−k
(

2
k − 1

)
(Bk + 2Ik )

=
1
4!
[B1 + 2I1 − 2(B2 + 2I2)+ B3 + 2I3]

where Bk = #(Z3
k ∩ ∂P) and Ik = #(Z3

k ∩ ıP), k = 1, 2, 3.

B. POINT_IN_POLYHEDRON-VECTOR MATRIX OF P
For the reaminder of this work, it is essential to checkwhether
a point p is inside or outside of a polyhedron P, since the
largest volume parallelepipedon in a quasi-lattice polyhedron
is formed by those points of P in such a way that if we
choose two points, pi and pj, the segment pipj is within P.
For the first problem, point-in-polyhedron, we used
the algorithm proposed by Liu et al. [52] with complexity in
O(logn) where n is the vertice number of the polyhedron. For
the second problem, each segment in P, we define the func-
tion Intersection(A,B:point; P:polyhedron)
computed inO(1) which returns true if it is verified that A and

B as two points of P, then the segment AB does not intersect
with any edge of the polyhedron.

All this is reflected in Algorithm 1 in O(n2logn) where
the upper triangular matrix W of dimension N satisfies the
conditions above.

Algorithm 1 Function Compute_W(P: Polyhedron)
Return W: Matrix
Input: P = V ∪ ı∂P ∪ ıP,

#(P) = N = n+ m+ o ' kn, k ∈ N
Output: MatrixW of vectors −→pipj = pj − pi

for i← 1 to N do
for j← 1 to N do

if i ≥ j then
W (i, j)← 0 // Upper triangular:

avoid calculations.
else

if not Intersection(pi, pj,P) then
W (i, j)← 0

else
// pipj is inside or outside

of P. We choose a point
p.

p← (pi + pj) div 2 ;
if not point_in_polyhedron(p,P) then

W (i, j)← 0
else

W (i, j)← pj − pi

C. MAIN ALGORITHM
To compute the largest volume parallelepipedon in a quasi-
lattice polyhedron P = {p1, p2, . . . , pn+m+o} with coordi-
nates belonging to the cube grid GL , we follow the next
process defined in three steps:
Step1: Compute the set of all parallelograms contained

in the polyhedron P by Algorithm 2 in O(n3) time.
If LP = 〈pi, pj, pk , ps〉 is one of the previous

parallelograms then −→pipj =
−−→pkps, that is, ps =

pj − pi + pk . We define function in O(1) complexity
edge_in_polyhedron(W:matrix; i, j:integer)
which returns true if the vector −→pipj is inside the polyhedron.
Uses the matrixW defined above in the Algorithm 1.

It is also possible to compute the largest area parallelogram
updating the solutions with equal or better area. The complex-
ity order will be same, O(n3).
Step2: Sort in descending order the Parallelograms set

by area {A1, . . . ,Au}.

A1 = {LP11, . . . ,LP
1
n1}

= {〈p1i1 , p
1
j1 , p

1
k1 , p

1
s1〉, . . . , 〈p

1
in1
, p1jn1 , p

1
kn1
, p1sn1 〉}

...
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Algorithm 2 Procedure Compute_Parallelograms (in P:
Polyhedron; Out Parallelograms: Set 〈Parallelogram〉)
Input: P = V ∪ ı∂P ∪ ıP,

#(P) = N = n+ m+ o ' kn, k ∈ N
Output: Parallelograms: set〈parallelogram, A〉, set of

parallelograms LP with area A

for i← 1 to N − 3 do
for j← i+ 1 to N − 2 do

if edge_in_polyhedron(W , i, j) then
for k ← j+ 1 to N − 1 do

if edge_in_polyhedron(W , i, k) then
ps← pj − pi + pk ;
if edge_in_polyhedron(W , k, s)
and edge_in_polyhedron(W , j, s)
then

area← |−→pipj ×
−−→pipk |

// cross product
LP← (pi, pj, pk , ps, area);
Parallelograms.insert(LP);

Au = {LPu1, . . . ,LP
u
nu}

= {〈pui1 , p
u
j1 , p

u
k1 , p

u
s1〉, . . . , 〈p

u
inu
, pujnu , p

u
knu
, pusnu 〉}

where area(LPmt ) = Am, m ∈ {1, . . . , u}, t ∈ {1, . . . , nm} and
Ap > Aq if p < q,∀p, q ∈ {1, . . . , u}

Furthermore, fixed Am,m ∈ {1, . . . , u} and chosen two
paralelogramos LPma = 〈pmia , p

m
ja , p

m
ka , p

m
sa〉 and LPmb =

〈pmib , p
m
jb , p

m
kb , p

m
sb〉 with a < b any of the following possibili-

ties is verified: {
ia < ib
ia = ib ⇒ ja < jb

If we denote LP as the set of all parallelograms contained
in P, then:

LP

= {A1, . . . ,Au}

= {LP11, . . . ,LP
1
n1 ,LP

2
1, . . . ,LP

2
n2 , . . . ,LP

u
1, . . .LP

u
nu}

= {LP1, . . . ,LPn1 ,LPn1+1, . . . ,LPn1+n2 , . . . ,LPn1+...+nu}

= LPM , M ' kn, k ∈ N

Step3: Compute the set of the largest volume paral-
lelepipedon for the polyhedron P.
Definition 3.2: Let LP1,LP2 ∈ LP and π1 ≡ A1x +

B1y + C1z + D1 = 0, π2 ≡ A2x + B2y + C2z +
D2 = 0 the planes defined by LP1 = 〈pi1 , pj1 , pk1 , ps1〉 and
LP2 = 〈pi2 , pj2 , pk2 , ps2〉 from the triples (pi1 ,

−−−→pi1pj1 ,
−−−→pi1pk1 )

and (pi2 ,
−−−→pi2pj2 ,

−−−→pi2pk2 ), respectively. Then, LP1 and LP2 are
equipollents (Fig. 2) if:

• π1 and π2 are parallel, ie, rg
(
A1 B1 C1
A2 B2 C2

)
= 1

•
−−−→pi1pj1 =

−−−→pi2pj2 and
−−−→pi1pk1 =

−−−→pi2pk2

FIGURE 2. Parallelograms LP1, LP2 ⊂ P .

Furthermore, LP1 and LP2 are fundamentals and we
denote 〈LP1LP2〉, if there exists a parallelepipedon LPP ⊂
P generated from previous parallelograms, ie, LPP =

〈LP1LP2〉 ⊂ P. We denote Vol(LPP) = |−−−→pi1pi2 · (
−−−→pi1pj1 ×

−−−→pi1pk1 )|, as the scalar triple product, the volume of paral-
lelepipedon LPP.

We define the functionface_in_polyhedron (LP1,
LP2:parallelogram) computed in O(1) which returns
true if LP1 and LP2 are fundamentals.
Proposition 3.3: Let LPP1,2 = 〈LP1LP2〉, LPP2,3 =
〈LP2LP3〉 be fundamentals parallelograms. Then, there exists
a LPP parallelepipedon such that Vol(LPP) ≥ Vol(LPP1,2)
and Vol(LPP) ≥ Vol(LPP2,3).

Figure 3 shows one of the possible situations in which
LP1,LP2,LP3 may occur.

The function LPP_Max(LPPa,LPPb:
parallelepipedon), where LPPa = 〈LP1aLP

2
a〉 and

LPPb = 〈LP1bLP
2
b〉, computed in O(1) returns the largest

volume parallelepipedon from the above parallelograms.
Algorithm 4 computes the largest volume paral-

lelepipedons contained in a quasi-lattice polyhedron P, and
runs the set of parallelograms sorted in descending order by
area, {A1, . . . ,Au}. If a solution is found, it updates the Par-
allelepipedons set by the procedure Update_solution
computed in O(1) (Algorithm 3). The computational cost is
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FIGURE 3. Fundamentals parallelograms with the largest volume
parallelepipedon LPP = 〈LP1LP3〉.

Algorithm 3 Procedure Update_Solution (in
Volume: Integer; LPP: Parallelepipedon; LPP:
Set〈Parallelepipedon〉; Out LPP: Set〈Parallelepipedon〉)

if Vol(LPP) > volume then
volume← Vol(LPP);
LPP.clear(); LPP.insert(LPP);

else if Vol(LPP) = volume then
LPP.insert(LPP);

O(n3) where n is the number of vertices in the quasi-lattice
polyhedron P.

IV. APPROXIMATION FOR THE LARGEST VOLUME
PARALLELEPIPEDON IN A SOLID
Let solid S ⊂ R3 and a way to calculate the largest volume
parallelepipedon contained in it has been showed.

First, in Borgefors and Strand [53] there exists a convex
body K such that K is the largest convex body enclosed in S.
Besides, K admits an inscribed parallelepipedon [54], [55],
which ensures the existence of the largest parallelepipedon.
Then, we apply the algorithm by Barequet and Har-Peled [44]
andwe compute the rectangular boxR ofminimal volume that
encloses K .
Definition 4.1: Let K be a convex body and Q a regular

partition of the rectangular box R, that encloses K , with
partition size L.

We define lower volume V (K ,Q) and upper volume
V (K ,Q) as the largest volume quasi-lattice polyhedron P
contained in K and the smallest volume quasi-lattice polyhe-
dron P that encloses K , respectively, and both built by points
of GL . By Theorem III-A:

V (K ,Q) =
1

4!

3∑
k=1

(−1)3−k
(

2
k − 1

)
(Bk + 2Ik )

V (K ,Q) =
1

4!

3∑
k=1

(−1)3−k
(

2
k − 1

)
(Bk + 2Ik )

Algorithm 4 Procedure Compute_Largest_
Parallelepipedons (in Parallelograms: Set
〈Parallelogram〉; Out Parallelepipedons: Set
〈Parallelepipedon〉)
Input: {A1, . . . ,Au} ={

LP1, . . . ,LPn1 , . . . ,LPn1+n2+...+nu = LPM
}
:

set〈parallelogram〉, set of parallelograms,
M ' kn, k ∈ N

Output: Parallelepipedons: set〈parallelepipedon〉, set of
largest volume parallelepipedons

Max_volume← 0; Parallelepipedons.clear();
a← 1;
while a ≤ M − 1 do

b← a+ 1;
while b ≤ M and Aa = Ab do

if face_in_polyhedron(LPa,LPb)
// fundamentals
parallelograms

then
Aux.clear();
LPPa,b← 〈LPaLPb〉;
Aux.insert(LPPa,b);
Update_solution(Max_volume,LPPa,b,
Parallelepipedons);
c← b+ 1;
while c ≤ M and Ab = Ac do

if face_in_polyhedron(LPb,LPc) then
LPPb,c← 〈LPbLPc〉;
Aux.insert(LPPb,c);
LPP← LPP_Max(Aux);
Aux.clear(); Aux.insert(LPP);
Update_solution(Max_volume,
LPP,Parallelepipedons);

c← c+ 1;

b← b+ 1;

a← a+ 1;

where Bk = #(Z3
k ∩ ∂P), Ik = #(Z3

k ∩ ıP), Bk = #(Z3
k ∩ ∂P)

and Ik = #(Z3
k ∩ ıP), k = 1, 2, 3.

Clearly, V (K ,Q) ≤ V (K ,Q).
ApplyingAlgorithm 4, the largest volume parallelepipepon

contained inP andP, LPP and LPP respectively exists, whose
volume we denote by VLPP(K ,Q) and VLPP(K ,Q).

We now denote:

V (K ) = sup{V (K ,Q) : Q regularpartition}

V (K ) = inf{V (K ,Q) : Q regularpartition}

Proposition 4.2: Let K be a convex body.
(a) If Q1, Q2 are regular partitions, then V (K ,Q1) ≤

V (K ,Q2).
(b) V (K ) = V (K ).
Proposition 4.3: Let a regular partition Q as finer than Q1

and Q2. Then, GL1 ⊂ GL with P1 ⊂ P where P1 and P are
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FIGURE 4. The real case application with food technology (two modules).

the largest quasi-lattice polyhedron contained in K for the
regular partitionsQ1 andQ, respectively. Furthermore,GL2 ⊂
GL with P ⊂ P2 where P and P2 are the smallest quasi-
lattice polyhedron that enclose K for the regular partitions
Q and Q2, respectively. Therefore, V (K ,Q1) ≤ V (K ,Q) and
V (K ,Q) ≤ V (K ,Q2). Then, V (K ,Q1) ≤ V (K ,Q2). This
proves (a).

We prove (b). By (a), V (K ) ≤ V (K , Q̇) for all Q̇ regular
partition, and as V (K ) ≤ V (K , Q̇) for all Q̇ regular partition,
V (K ) ≤ V (K ). Moreover, as K is a convex body, V (K ) =
V (K ). The common value V (K ) = V (K ) is called volume of
K and is denoted by V (K ).
The following Theorem4.4 shows how the calculation of

the largest volume parallelepipedon contained in a solid
S can be accomplished by finer partitions and applying
Algorithm 4, about the rectangular box R of minimal volume
that encloses the largest convex body K enclosed in S.
Theorem 4.4: Let K be a convex body. Then, there exists

a sequence of regular partitions {Qn}n∈N with Qi � Qi+1
for all i, such that limn→∞(VLPP(K ,Qn)) = VLPP(K ), where

FIGURE 5. The largest volume parallelepipedon in the meat pieces.

VLPP(K ) is the largest volume parallelepipedon contained
in K .
Proposition 4.5: By Proposition4.2(b), V (K ) = V (K ),

then there exists regular partitions Q̇, Q̈ such that |V (K , Q̈)−
V (K , Q̇)| < ε for all ε > 0. We consider a regular partition
Q as finer than Q̇ and Q̈ at once. Then, V (K ,Q) ≤ V (K , Q̈)
and V (K ,Q) ≥ V (K , Q̇). Therefore |V (K ,Q)− V (K ,Q)| ≤
|V (K , Q̈)− V (K , Q̇)| < ε.

Moreover, as VLPP(K ,Q) ≤ V (K ,Q) and VLPP(K ,Q) ≤
V (K ,Q), |VLPP(K ,Q)−VLPP(K ,Q)| < ε. Then, there exists
a sequence of regular partitions {Qn}n∈N with Qi � Qi+1 for
all i such that limn→∞(VLPP(K ,Qn)−VLPP(K ,Qn)) = 0 and
so, limn→∞(VLPP(K ,Qn)) = VLPP(K ).

V. TECHNICAL ISSUES
The evaluation and the implementation of the proposed algo-
rithm, were performed by using C++ programming lan-
guage. All scripts, documentation and non-sensitive data are
available in [56]. As previous studies [57], [58] the repository
can be downloaded under an LGPL V3 license.

VI. PRACTICAL APPLICATION
It was mathematically proven that it is possible to obtain
an approximation algorithm for the problem of finding the
largest volume parallelepipedon of arbitrary orientation in a
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solid. As mentioned above, we have developed a real case
application related to food technology, consisting of two
modules (Figure 4). The initial module (Figure 4a) aims to
select the largest area ROIs for each image according to the
method described in [31]. The second module (Figure 4b)
computes the VOIs according to the ROIs calculated in the
previous step and selects the largest VOI. At this stage, this
selection draws up the maximum volume parallelepipedon
inscribed in the object. Our paper focuses on these two mod-
ules to be followed for feature extraction. The sample needs to
be sufficiently representative. The method returns the largest
volume parallelepipedon VOI enclosed by the muscle.

Once the largest VOI insided the muscle is determined, dif-
ferent computer vision algorithms for feature extraction are
applied to compute quality characteristics of the samples [14],
[15], [59]–[62]. This practical application has been success-
fully applied in previous studies [13], [16]. Figure 5a shows
the Iberian loin reconstruction in 3D by interpolation of all
the images fromMRI. Figure 5b identifies the largest volume
parallelepipedon contained in Iberian loins, and Figure 5c
depicts how this volume can be inscribed in the solid.

VII. CONCLUSION
This paper presents an algorithm for finding the largest vol-
ume parallelepipedon of arbitrary orientation in a solid (3D).
The new proposal is compared to other similar approaches,
achieving the best computational complexities for time and
space. The algorithm also is the only approach allowing any
arbitrary orientation inside the VOI. Any researcher will be
able to use the proposed algorithm since all source code and
documentation are provided in a public GitHub repository.
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