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Abstract—Land-cover classification is an important topic for
remotely sensed hyperspectral (HS) data exploitation. In this re-
gard, HS classifiers have to face important challenges, such as the
high spectral redundancy, as well as noise, present in the data,
and the fact that obtaining accurate labeled training data for
supervised classification is expensive and time-consuming. As a
result, the availability of large amounts of training samples, needed
to alleviate the so-called Hughes phenomenon, is often unfeasible
in practice. The class-imbalance problem, which results from the
uneven distribution of labeled samples per class, is also a very
challenging factor for HS classifiers. In this article, a comprehensive
review of oversampling techniques is provided, which mitigate the
aforementioned issues by generating new samples for the minority
classes. More specifically, this article pursues a twofold objective.
First, it reviews the most relevant oversampling methods that can
be adopted according to the nature of HS data. Second, it provides
a comprehensive experimental study and comparison, which are
useful to derive practical conclusions about the performance of
oversampling techniques in different HS image-based applications.

Index Terms—Hyperspectral (HS), imbalance, machine
learning, oversampling.

I. INTRODUCTION

HYPERSPECTRAL (HS) imagery plays a fundamental
role in many important remote sensing applications, in

which the spectral-spatial resolution of the acquisition instru-
ment becomes particularly relevant [1]. In this regard, extensive
research work has been conducted on different HS-related areas,
including image fusion [2], [3], spectral unmixing [4], [5], [6],
target detection [7], [8], and fast processing [9], [10], [11], [12].
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In particular, HS image classification and segmentation are some
of the most active research domains within the remote sensing
community, mainly because they steadily work for providing
accurate earth’s surface estimates and land-cover predictions,
which eventually allow modern society to deal with current and
future technological challenges and needs [13], [14], [15].

HS imaging combines conventional spectroscopy techniques
with digital imaging to collect detailed spectral and spatial
information from an observation area, producing a large data
cube (X) for each recorded scene. In this context, HS classifica-
tion/segmentation consists of assigning to each pixel (spectral
vector) in the data, a single classification label [16], i.e, given
the HS scene X ∈ RH×W×D, defined by its height (H) and
width (W ) dimensions, together with the number of spectral
bands (D), respectively, and the set of C possible land-cover
classes, the purpose is obtaining the data-label pair {xi, yi} for
all the pixel of the scene (i ∈ [1, N ] defining N = WH), with
yi = 1, . . . , C denoting the corresponding label. The improved
performance of HS classifiers comes from the capacity of HS
instruments to capture images using hundreds of narrow and
contiguous spectral bands, which are recorded from different
wavelengths of the electromagnetic spectrum, providing detailed
spectral-spatial information of the target scene. For instance, one
of the most popular sensors within the remote sensing commu-
nity is the airbone visible infrared imaging sensor spectrometer
(AVIRIS) [17], which collects 224 bands in the spectral range
400–2500 nm with 20 m of spatial resolution. Other popular HS
instruments are the reflective optics system imaging spectrome-
ter (ROSIS) [18], or the compact airborne spectrographic imager
(CASI) [19], which have also been used to collect multiple
remotely sensed data benchmarks [20]. Regardless of the ac-
quisition instrument, HS processing techniques take advantage
of the detailed spectral and spatial resolution available to provide
a precise material identification over specific earth surface areas
of interest [16], [21].

In this context, from kernel-based classification methods [22],
[23], through statistical models [24], to the most recent deep
learning approaches [25], [26], [27], [28], different paradigms
have been successfully proposed and applied to process and
classify remotely sensed HS data. Following the natural evo-
lution of artificial intelligence and automatic processing algo-
rithms, from traditional machine learning (ML), which tend to
hand-crafted feature processing, to the current state-of-the-art
dominated by deep learning (DL) models, characterized by their
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unparalleled ability to automatically extract deep and abstract
features, the scientific community has provided interesting HS
classifiers based on supervised, unsupervised, and semisuper-
vised approaches [29], [30]. In spite of their technical dif-
ferences, all these technologies share a common requirement:
they should all cope with the intrinsic complexity of the HS
image domain. On the one hand, HS data often contains a high
level of spectral redundancy, as narrow contiguous bands tend
to be highly correlated and prone to produce spectral leakage
on the radiance acquisition process [31]. Moreover, HS data
cubes contain noise due to uncontrolled changes in atmospheric
conditions and instrumental limitations, which are coupled with
significant spectral mixing due to the tradeoff between spectral
and spatial resolutions, results in high data variability. On the
other hand, obtaining accurate labeled training data is expensive
as well as time consuming. This eventually introduces an impor-
tant limitation on the availability of ground-truth (labeled) HS
data, and also contrasts with the requirement of large amounts
of training samples needed to alleviate the so-called Hughes
phenomenon [32]. The lack of training samples prevents the
classifier from covering both the variability of the data and the
complexity introduced by the high dimension of the features. As
a result, the model does not fit properly and its behavior degrades
rapidly. Similarly, this shortcoming poses a major challenge
in semantic segmentation, given the requirement of pixel-level
annotations, which are expensive and time-consuming to obtain.
Indeed, training datasets for image semantic segmentation are
often small and do not cover the full range of variations that can
occur in real-world images.

A. Class Imbalance

In addition to these problems, there is also an important aspect
that significantly affects remotely sensed HS data collections:
the large class-imbalance problem [33]. This is characterized
for having a training set with highly irregular distribution in
terms of the number of samples per class, which may eventually
introduce an important bias to the classes with more samples
during the training process. Indeed, processing methods tend
to fit more closely to the majority classes, producing large
classification errors for minority classes. Regardless of whether
these class differences are naturally present over the earth’s
surface or artificially generated by some external factors, the
class-imbalance problem is a challenging factor when it comes
to remotely sensed HS image classification [34], [35] and se-
mantic segmentation [36]. With the ongoing developments in
HS imaging acquisition and processing technologies, the earth’s
surface is being characterized in an unprecedented level of
detail, providing rich information for multiple purposes, such
as fine-grained land-cover classification (with an inherent class
asymmetry). As more ambitious land-cover classification tax-
onomies are proposed, the class-imbalance problem is more
likely to occur, since the class heterogeneity in the earth’s
surface is naturally diverse [37]. Different approaches have been
developed to properly tackle the class-imbalance problem, such
as cost-sensitive methods, kernel-based methods, and active
learning methods [38], [39], [40]. Notwithstanding their positive

impact on final accuracy, these approaches have a number of
limitations that hinder their performance in real HS scenes, e.g.,
kernel-based models and active learning have a high computa-
tional burden, while cost-sensitive methods have to define mis-
classification costs that are not usually available in HS datasets.
Generally, patch-based processing methods have enhanced the
classification of HS data by capturing fine-grained details and
reducing the impact of within-class variability (the so-called
salt and pepper classification noise) using small patches of the
images, such as U-Net models. Novel works include hyperspec-
tral change detection [41] and generative adversarial minority
oversampling (3-D-HyperGAMO) strategies to increase the ac-
curacy [35]. Nonetheless, these approaches could exacerbate
data imbalance issues when certain classes are underrepresented
in the patches, which can be solved by balancing the classes
within the patches. Furthermore, patch-based approaches are
usually computationally intensive, especially when dealing with
high-resolution images or large datasets, and requiring from pre-
processing steps to improve the performance, such as normaliza-
tion or data augmentation. Traditionally, HS data dimensionality
reduction methods, such as spectral band selection or the popular
principal component analysis (PCA), have been used to simplify
the feature space, reducing the complexity of the processing
models while better separating samples belonging to different
classes. Notwithstanding the improved results, these methods
do not address the imbalance problem.

Over the past years, extensive research work has been con-
ducted to address the class-imbalance problem [42], [43], [44].
From a general perspective, there are two main trends to deal
with imbalanced datasets: 1) preprocessing; and 2) cost-sensitive
techniques. Whereas the preprocessing approach is focused
on modifying the original data collection to relieve the class-
imbalance effect, the cost-sensitive solution proposes to manage
these deviations in the classifier itself. Although both frame-
works have shown to obtain competitive results in many different
application domains, many works in the literature adopt the
preprocessing scheme because of its simplicity and more generic
design, as it does not affect the classification process itself [45].
The preprocessing strategy, is separated into two primal alterna-
tives: 1) oversampling and; 2) under-sampling. Focusing on the
former, oversampling techniques aim at generating new sam-
ples for the minority classes. On the contrary, under-sampling
methods are focused on eliminating samples from the majority
classes, thus, alleviating the class imbalance effect. From a
general perspective, both resampling methods have been studied
over standard data collections, where the oversampling scheme
has become the predominant approach [46]. Nonetheless, the
special complexity of HS images makes it difficult to extrapolate
general purpose oversampling results to the remotely sensed HS
image domain.

B. Contributions and Article Structure

Given the aforementioned issues, this article pursues a
twofold objective. First, it reviews the most relevant oversam-
pling methods that can be adopted according to the nature of HS
data. Second, it provides an experimental study and comparison



PAOLETTI et al.: COMPREHENSIVE SURVEY OF IMBALANCE CORRECTION TECHNIQUES 5299

Fig. 1. Oversampling procedure for imbalanced HS scenes. From the imbalanced dataset X, minority Xβ and majority Xα subsets are extracted. Consequently,
each pixel-label pair (xi, yi) within Xβ and Xα has its corresponding class. Oversampling strategy is applied to generate a new balanced dataset X.

useful to derive practical conclusions about the performance of
oversampling techniques in different HS image-based applica-
tions. Moreover, this article presents a comprehensive analysis
of state-of-the-art oversampling techniques used to improve the
classification accuracy of underrepresented classes in HS scenes.
In addition, the investigation extends to alternative class balanc-
ing methods for semantic segmentation. The contributions of this
work provide valuable insights for improving the performance
of HS image classification and related tasks, which can have
significant implications in various domains, such as remote
sensing.

The rest of this article is organized as follows. Section II
provides a detailed discussion about some popular oversampling
techniques, which have been widely-adopted for HS image
classification. Section IV presents an experimental comparison
of these techniques, using different widely-used classifiers and
detailing the evaluation metrics that have been considered in
Section IV-B, and the set of benchmark HS scenes in
Section IV-A. This section also provides best practice recom-
mendations for the selection of oversampling techniques in
different application domains. Finally, Section V concludes this
article with some remarks and hints at plausible future research
lines.

II. OVERSAMPLING FOR HS IMAGE CLASSIFICATION

In recent years, several efforts have been made toward devel-
oping novel techniques to effectively classify remotely sensed
HS data [16], [21], [47], [48], [49]. Despite all the conducted
research, there are still significant challenges to deal with, as
the air-borne and space-borne image acquisition technologies
are continuously improved [14]. In general, the increase of
the spectral-spatial resolution of modern HS sensors makes
the task of identifying pixel and subpixel components more
complex, since more detailed information is available for the
study and classification of the earth’s surface. In addition, the
class-imbalance problem also has a considerable impact on
the final land-cover classification performance, mainly because
minority classes may not have enough samples to be properly
represented and generalized [45]. To this extent, oversampling
techniques have shown to be excellent tools to balance the class
distribution in the dataset, while guaranteeing a detailed earth
surface characterization. In this context, the study conducted
by [50] aimed to tackle the challenge of landslide classification

in remote sensing images through the use of oversampling
techniques. The results of this research highlight the effective-
ness of oversampling methods for imbalanced data issues and
demonstrate the potential of these techniques in the scope of
remote sensing data analysis.

This section describes the most popular oversampling meth-
ods in the remotely sensed HS image classification domain,
providing their technical details. The overall procedure is shown
in Fig. 1.

In this research, multiple oversampling techniques are re-
viewed, which can be divided into three groups—random-based,
SMOTE-based, and adaptive synthetic sampling (ADASYN).
First, random oversampling is a naive technique for class balanc-
ing based on the replication of existing training samples. Second,
SMOTE consists of generating synthetic samples for minority
classes. Due to the fact of showing good results in several
applications, some variations have been proposed to improve
its effectiveness. Finally, ADASYN applies adaptive learning to
reduce class imbalance by adjusting the corresponding decision
boundaries to those minority samples that are harder to learn.

A. Random Oversampling

The random oversampling method (RANDOM) is the most
basic technique to balance a data collection. In particular, this
method randomly duplicates samples of the minority class until
the classes are balanced. From a mathematical point of view,
X can be considered as an imbalance dataset comprising N
samples with their corresponding labels, {xi, yi}Ni=1, i.e.,

X = {(x1, y1), (x2, y2), . . . , (xN , yN )}
and assuming there are two classes, one majority (Xα) and
one minority (Xβ), the entire dataset could be divided into two
subsets, by splitting those samples that belong to the majority
class (identified as xα), and those that belong to the minority
class (identified as xβ). According to (1), there must be more
samples from the majority class than from the minority class,
i.e., Nα >> Nβ

Xα = {xα
j , y

α
j }Nα

j=1 = {(xi, yi) ∈ X|yi = α}Ni=1 (1a)

Xβ = {xβ
j , y

β
j }Nβ

j=1 = {(xi, yi) ∈ X|yi = β}Ni=1. (1b)

In this context, the RANDOM method samples new minority
class instances by randomly replicating the original samples of
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Xβ until getting Nα = N ′
min, where N ′

min is the new number
of samples in the minority class after the oversampling. From
a geometric perspective, the newly generated samples for the
minority classes are always placed on the coordinates of an
existing sample. As a consequence, it is noteworthy that this
method only works for increasing the number of samples in
the minority classes, without introducing any data variety in the
newly generated samples.

Despite the simplicity of the random oversampling approach,
this method is quite prone to over-fitting given that the same
information is replicated multiple times within the minority
classes. In this regard, some alternatives have been proposed
to mitigate the issue of over-fitting in classification tasks. For
instance, one of the most popular solutions involves addressing
the noise problem that can arise during data oversampling, where
generating synthetic data points that are too similar to existing
data points can lead to over-fitting. To address this issue, re-
searchers proposed the application of noise-robust oversampling
(NROMM) [51] technique in the minority classes.

B. Synthetic Minority Oversampling Technique (SMOTE)

The synthetic minority oversampling technique (SMOTE)
[52] is one of the most popular oversampling methods. In par-
ticular, this algorithm is based on generating synthetic samples
of the minority classes by using their corresponding nearest
neighbors. Assuming the mathematical notation described in
Section II-A, where xα denotes any sample from the majority
class and xβ any sample from the minority class (for simplicity,
the index j can be omitted), the SMOTE method defines two
predefined input parameters:K andω. ParameterK refers to the
number of neighbors that are computed for each minority sample
xβ , while parameter ω indicates the amount of oversampling to
be performed.

The first step is to compute K nearest neighbors for each
sample belonging to the minority classXβ , producing a subset of
minority nearest neighbors Kβ . Note that only minority samples
are considered when computing its nearest neighbors xβ

k . This
is expressed by the following:

Kβ = {xβ
k ∈ Xβ : xβ

k ∈ KNN(xβ)} ∀k ∈ [1,K]. (2)

Once theK neighbors are computed for each minority sample
xβ , the next step generates new synthetic samples according
to an oversampling parameter, ω. Let S be the set of synthetic
samples. The number of samples to be generated, |S|, is obtained
as shown in the following:

|S| = |Xβ | · ω = Nβ · ω. (3)

The generation of synthetic samples is performed by drawing
a segment between the selected minority sample, xβ and a
random minority neighbor, xβ

k . Then, the distance between these
two samples is multiplied by a random scalar, λ ∈ [0, 1]. In this
way, if λ is lower than 0.5, the new sample will be created
closer to the processed minority sample, xβ . Analogously, if
λ is greater than 0.5, the synthetic sample will be located closer
to the corresponding neighbor, xβ

k . Equation (4) represents the
generation of a synthetic sample s. The number of repetitions

will depend on parameter ω

s = xβ + λ · (xβ
k − xβ). (4)

SMOTE seeks to address class imbalance by generating
synthetic samples in underrepresented regions of the feature
space. By augmenting the density of minority class instances
in these regions, SMOTE aims to improve the identification
of the underrepresented class. Various extensions of this al-
gorithm have been developed to enhance its consistency and
robustness, particularly in challenging scenarios. Four distinct
variants of the SMOTE algorithm are discussed below, each with
its unique characteristics: BORDERLINE-1, BORDERLINE-2,
SVM-SMOTE, and K-Means SMOTE.

1) SMOTE BORDERLINE-1 (SMOTEBD1): Many existing
classification algorithms estimate accurate decision boundaries
among classes in order to obtain high precision and reliabil-
ity when classifying the input data. Nevertheless, the samples
located in boundary regions (known as borderline samples)
are more likely to be misclassified, as the level of uncertainty
is higher due to the spectral mixture. Precisely, oversampling
techniques can take advantage of this to produce more relevant
synthetic data.

Contrary to the regular SMOTE version, which does not
consider class boundaries, the BORDERLINE-1 [53] focuses
on the borderline samples of the minority classes to generate
more consistent class separability with the newly generated syn-
thetic data. Specifically, the SMOTE BORDERLINE-1 works as
follows, requiring the K and ω parameters, too.

The first step of Borderline-1 is to calculate the K̃ nearest
neighbors for each minority sample from Xβ . Considering Xα

k

as the subset of neighbors of xβ ∈ Xβ belonging to the majority
class, Xα, Borderline-1 considers three kinds of samples: noisy,
dangerous and safe. Based on the number of majority samples,
|Xα

k | in the neighborhood of xβ , the algorithm follows the next
considerations.

1) If |Xα
k | = K̃, the xβ sample is noisy since its whole

neighborhood belongs to the majority class.
2) If K̃/2 ≤ |Xα

k | < K̃, xβ is dangerous because most of its
neighboring samples are within the majority class.

3) If 0 ≤ |Xα
k | < K̃/2, xβ is safe or secure as most of its

neighborhood belongs to the minority class.
Let consider Xβ

D ⊂ Xβ as the set of dangerous minority
samples. For each sample xβ ∈ Xβ

D, K minority neighbors are
computed to obtain the desired Kβ . Once minority neighbors
are computed, the number of samples to be generated, |S| is
calculated following:

|S| = |Xβ
D| · ω. (5)

Then, a random number, 1 ≤ θ ≤ K of minority neighbors
from Kβ is selected for each danger sample until |S| is reached.
As in SMOTE, the generation of synthetic samples is performed
according to (4).

As a result, the oversampling process can be conducted only
by considering the borderline samples, labeled as danger, to
increase the density on the minority class boundaries.
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2) SMOTE BORDERLINE-2 (SMOTEBD2): Inspired by
BORDERLINE-1, the BORDERLINE-2 algorithm [53] con-
siders a wider data diversity when generating the new syn-
thetic samples. In order to achieve this goal, the SMOTE
BORDERLINE-2 algorithm not only considers elements of the
minority class (Xβ) when computing the neighborhood of the
borderline or danger samples, Xβ

D, but also elements of the
majority class (Xα) in order to produce a higher data variation
in the minority class. Precisely, this higher variability introduces
diversity into the training, which helps to reduce over-fitting.

Whereas the SMOTE BORDERLINE-1 algorithm is designed
to produce new samples from the boundaries of minority classes,
the SMOTE BORDERLINE-2 extension relaxes this constraint
by introducing synthetic samples closer to majority class sam-
ples. Generation of new samples is performed as shown in
(4) by introducing the random scalar, λ ∈ [0, 0.5] to calculate
the location of the new synthetic sample around the minority
observations.

3) SVM-SMOTE: Support vector machines (SVMs) have
shown a huge potential to identify class boundaries in many
different application domains effectively [12]. Nevertheless, the
class-imbalance problem within remote sensing HS domain is
not an exception [23]. Some authors are focused on modifying
the SVM classification process to manage the class-imbalance
problem [54]. SVMs also provide a robust framework to generate
new synthetic samples. For instance, Japkowicz and Stephen
[55] demonstrated that SVMs are excellent tools to deal with
such imbalance issues, since class boundaries are typically based
on a small number of support vectors.

In this context, the SVM-SMOTE method [56] is a popular
oversampling technique, which exploits the robustness of SVM
when dealing with high-dimensional data to generate new syn-
thetic samples of minority classes. Likewise, BORDERLINE-1
and BORDERLINE-2, SVM-SMOTE also increases the mi-
nority class density in those feature space areas with a high
uncertainty level.

Considering the imbalanced dataset described in (1), the first
step to apply SVM-SMOTE is training an SVM classifier with all
the available training data, i.e., X. Thus, the optimal hyperplane
that best divides classes Xα and Xβ is found. The location of
the sample x on/under the hyperplane is described as follows:

w · x+ b = 1

w · x+ b = − 1. (6)

To generate the weights, w, such that only the support vectors
determine the borderline regions between classes, an optimiza-
tion algorithm is necessary. Consequently, the support vectors,
which are minority samples located in the vicinity of the class
boundary, are used to determine the weights. Let Xβ

b ∈ Xβ , a
set of minority support vectors and xβ

b ∈ Xβ
b , a support vector.

The computation of K nearest neighbors to form K is shown in
the following:

K = {xk ∈ (Xα ∪Xβ : xk ∈ KNN(xβ
b )} ∀k ∈ [1,K].

(7)

In contrast to previous methods, only the borderline minority
instances that are approximated by support vectors are over-
sampled. Consequently, original SMOTE (3) is redefined into
the following:

|S| = |Xβ
b | · ω. (8)

Nonetheless, it must be noted that, when dealing with large
imbalance problems, the decision hyperplane that best maxi-
mizes the margin between samples of different classes may
be biased toward the majority class [57]. This produces two
main issues: 1) minority instances lie far from the optimal
decision hyperplane; and 2) SVMs bias majority instances when
majority and minority observations overlap in feature space. In
this regard, an interpolation procedure generates a new sample
between two points, as depicted in (9a) when most of the points
in K belong to the majority class. Otherwise, extrapolation is
conducted as represented by (9b)

s = xβ
b + λ · (xk − xβ

b ) (9a)

s = xβ
b + λ · (xβ

b − xk). (9b)

One important difference between SVM-SMOTE and
SMOTE that should be noted is the fact that new instances are
generated in order, i.e., SVM-SMOTE iterates the neighborhood
from the closest sample to the further one.

4) K-Means SMOTE: When addressing data sparsity, it is
advisable to carefully deliberate before implementing oversam-
pling. For certain problems, it may be the case that samples
within the same class do not adhere to any discernible pattern,
thus necessitating the establishment of suitable criteria for par-
titioning the data. To address this issue, the initial step involves
employing the K-means algorithm to partition the data into n
clusters, wherein each observation is assigned to the cluster
the centroid of which is closest. This process is inspired by the
unsupervised classifier, Douzas et al. [58], which implements the
K-means SMOTE. Three stages are performed, i.e., clustering,
filtering, and oversampling:

K-Means SMOTE is applied to an imbalanced dataset as
described in (1). The first step consists in clustering data using
K-Means algorithm. Let C be a set of n clusters as specified in
the following:

C = {C1, C2, . . . , Cn|Ci ∈ K-Means(X)}. (10)

In comparison with SMOTE, K-Means algorithms requires
an additional parameter, the imbalanced ratio threshold (IRT ).
This parameter determines the necessity of applying oversam-
pling for a specific cluster Ci. The following provides the
calculation of the imbalance ratio given a cluster, IR(Ci):

IR(Ci) =
|Cα|
|Cβ | . (11)

Then, the set of m clusters, m ≤ n, to be oversampled is
defined in the following:

C′ = {C ′
1, C

′
2, . . . , C

′
m|IR(C′i) < IRT}. (12)

Finally, to determine the amount of oversampling to be per-
formed in each cluster, sampling weight, SWm is calculated
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according to the density of minority samples in the feature space
for each cluster. In this regard, high sampling weights yields
more synthetic samples. The total number of synthetic samples
to be generated is given by the following:

|S| =
m∑
i=1

SWi · ω. (13)

C. Adaptive Synthetic (ADASYN) Oversampling

The adaptive synthetic sampling approach (ADASYN) is a
popular oversampling approach implemented by He et al. [59].
Specifically, this technique addresses the class imbalance prob-
lem by gradually adapting the corresponding decision bound-
aries to the minority classes.

In addition to the training dataset provided by (1), it is nec-
essary to define some input parameters: IRth, ω and K. The
first parameter is used to manage synthetic sample generation.
ω refers to the desired oversampling ratio. Finally, parameter K
refers to the number of neighbors that are computed for each
minority sample xβ ∈ Xβ during the oversampling process.

As a first step, the imbalance ratio must be calculated, IR,
between minority and majority classes, Xβ and Xα, respec-
tively. Provided that the obtained value is lower than IRth, the
ADASYN algorithm proceeds to the next step. Conversely, if the
value exceeds IRth, oversampling is concluded. The calculation
of this value is shown in the following:

IR =
|Xβ |
|Xα| =

Nβ

Nα
. (14)

The number of synthetic samples to be generated is calculated
at this point as showed in the following:

|S| = (|Xα| − |Xβ |) · ω = (Nα −Nβ) · ω. (15)

At this stage, the computation of K nearest neighbors is nec-
essary for each minority sample in Xβ . In contrast to SMOTE,
both majority, Xα, and minority, Xβ , samples are considered.
This process can be formulated as shown in the following:

K = {xk ∈ (Xα ∪Xβ) : xk ∈ KNN(xβ)} ∀k ∈ [1,K].
(16)

Following the neighbors calculation, ratio of majority sam-
ples,Rα is computed for each minority sample in order to decide
the amount of oversampling per minority sample, as shown in
the following:

Rα =

{
r1, r2, . . . , rn|ri = |Kα

i |
|K|

}
. (17)

Each ratio ri must be normalized using the following:

r′i =
ri∑Nβ

i=0
ri

. (18)

Once this ratio is computed, the expected number of synthetic
samples to be created per sample, denoted by |Si|, can be
estimated using the following:

|Si| =
Nβ∑
i=0

r′i · |S|. (19)

The procedure to generate synthetic samples for each minority
sample, xi ∈ Xβ , is the same as in (4).

The idea behind the ADASYN algorithm is based on using
the r′i density ratio to determine the number of synthetic samples
required for each minority class sample xi. This differs from
the behavior of other oversampling methods, which consider
the sample position belonging to the minority class (BORDER-
LINE) or are based on a random criterion (SMOTE). In practice,
the density ratio of the ADASYN represents a quantification of
the weight distribution for each minority class sample according
to its difficulty level in the corresponding learning process. In
this context, ADASYN is focused on generating more synthetic
samples in the most challenging areas of the dataset, in order to
encourage learning features from minority class samples (which
are more difficult to be detected).

D. Comparative Summary

Table I provides a comparison of the different oversampling
methods applied in the research using the following criteria.

1) Based on SMOTE: These methods generate new synthetic
samples based on SMOTE algorithm. Therefore, the loca-
tion of the new sample is calculated between the processed
sample and its neighbors belonging to minority classes.

2) Selection of generator samples: This criterion identifies
the selection method for the generator samples in the Toy
dataset.

3) Use of classifier: These oversampling methods train a
classifier to identify generator samples or clusters prior
to the generation of synthetic samples.

4) Sample generation method: This criterion identifies the
method used to create a new sample from an existing one.

5) Location of new synthetic samples: Location of the syn-
thetic samples in the feature space after applying an over-
sampling technique.

To better understand how each of the reviewed methods
works, a synthetic dataset has been created with three classes
(one majority and two minority) as shown in Fig. 2. As previ-
ously discussed, when oversampling is performed using random
oversampling, new minority class samples are always generated
on the coordinates of an existing sample. SMOTE-based meth-
ods generate new samples with different patterns. It is interesting
to discuss the differences between Borderline1 and Borderline2.
It is visible how the former method generates new samples
considering the majority class since new samples are generated
in the center of the axes. However, Borderline1 is limited to the
boundaries of the minority classes. Moving to SVM-SMOTE
it can be seen how new samples are generated taking into
account support vector samples. This can be seen because most
new samples are generated along a few directions. In the case
of K-Means SMOTE, one minority class (displayed in green)
clearly show how two clusters were created and new samples
are generated inside them. Finally, concluding ADASYN oper-
ational mode using only the plots is more difficult. Nevertheless,
newly generated samples are surrounded by samples from other
classes. This will force the classifier to learn boundaries between
classes.
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TABLE I
COMPARISON OF REVIEWED OVERSAMPLING ALGORITHMS

Fig. 2. Graphical comparison of oversampling methods reviewed over a synthetic dataset with three classes. To visualize results one class is considered as majority
(blue) and the rest are minority classes (green and orange). The graphical plots depicting the oversampling techniques utilized in this study include ranges for both
features, yet serve no actual analytical significance and are solely for the purpose of visualization. (a) Original. (b) RANDOM. (c) SMOTE. (d) SMOTE-BL1.
(e) SMOTE-BL2. (f) SVM-SMOTE. (g) K-Means SMOTE. (h) ADASYN.

III. TACKLING CLASS IMBALANCE BY MEANS OF

LOSS FUNCTION

Oversampling techniques have been widely used to tackle
the class imbalance problem, providing competent results. In
this framework, there is another set of methods that require
special attention in this work, due to their promising perfor-
mance when facing class imbalance and their high impact on
the design of the processing method. Indeed, great efforts have
been invested to design more descriptive loss functions with the
aim of facilitating the processing method to traverse the objective
function surface toward the desired result. In this regard, with
the aim of reducing the negative impact of class imbalance,
multiple loss functions have been developed to increase the
weight of underrepresented classes, playing a crucial role in the
enhancement of the classification/segmentation performance for
underrepresented classes. Most common functions are: 1) mul-
ticlass cross-entropy loss; 2) focal loss; 3) cyclical focal loss;
4) asymmetric focal loss.

The multiclass cross-entropy (CE) loss function assumes that
all classes in a given dataset X are equally represented, which
is not often in real-world scenarios. The probability distribution
generated by the model represents the likelihood of each pixel
belonging to a particular class, i.e., considering C classes, each

P (xi|yi = c) provides the probability that xi belongs to the
cth class ∀c ∈ [1, C], i.e., P (xi|yi = c) = 1 if it is the correct
classification label (i.e., the true label Yc), or P (xi|yi = c) = 0
otherwise. The loss is minimized across all classes equally, with-
out considering their distribution. The operation of cross-entropy
is calculated by the following for a specific sample xi, where
P (xi|yi = c) is the class predicted probability:

LCE = −
C∑

c=1

Yc log (P (xi|yi = c)) . (20)

For the sake of simplicity, xi and yi can be obviated from (20),
simplifying the expression to LCE = −∑C

c=1 Yc log(Pc)
Regarding the focal loss (FL) [60], it weights the loss calcu-

lation, assigning higher weights to misclassified samples, while
reducing the importance of the correct classified ones (down
weighting). Indeed, focusing on those samples where processing
fails the most will ensure that the process improves its results on
hard samples over time. This is demonstrated in (21a), where γ
is the focusing parameter. Furthermore, an α-balanced variant
is used as described in (21b), where αc is the balancing factor

LFL = −
C∑

c=1

(1− Pc)
γ log (Pc) (21a)
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LFL = −
C∑

c=1

αc (1− Pc)
γ log (Pc) . (21b)

This model emphasizes on identifying and prioritizing samples
that are challenging to classify, while mitigating the influence
of easily classifiable samples. The selection of the most suitable
loss function is contingent upon the specific objectives of the
semantic segmentation task at hand, aimed at improving the
performance of the model and addressing the challenge of class
imbalance.

Cyclical focal loss (C-FL) [61] is a novel variant for the focal
loss based on the learning-rate scheduler. The integration of a
cyclical learning rate aids in improving model convergence by
enabling the network to escape from suboptimal local minima,
while simultaneously mitigating the impact of over-fitting and
improving generalization. The C-FL functionality is based on a
linear schedule, i.e., ξ, defined in terms of the fraction between
the current epoch e and the total number of epochs E, and a
fixed cyclical factor fc ≥ 1, which provides the cycles of ξ (with
fc = 1, ξ has one cycle over the epochs, from a value of 1 at the
first epoch, to a value of 0 in the last epoch; with fc = 2, ξ has
two cycles, from a value of 1 at the first epoch, to a value of 0 in
the epoch E/2, and again rising to a value of 1 in the last epoch,
and so on)

ξ =

⎧⎨
⎩
1− fc

e
E if fc × e ≤ E

(fc e
E )−1

fc−1 otherwise.

Indeed, ξ controls the loss function at every epoch, which
is expressed as a combination of FL and the CFL, each one
controlled by the corresponding focusing parameters γ1 and γ2

LC−FL = ξCFL+ (1− ξ)FL

= ξ

(
−

C∑
c=1

(1 + Pc)
γ1 log (Pc)

)

− (1− ξ)

(
−

C∑
c=1

(1− Pc)
γ2 log (Pc)

)
. (22)

Lastly, asymmetric focal loss (A-FL) [62] aims to prioritize
the learning of harder-to-classify examples, which are typically
the minority class examples in such datasets. A-FL loss achieves
this by assigning different weights to the loss function for each
class c based on the difficulty of the classification task. In this
regard, the loss function assigns a higher weight to minority class
samples that are more challenging to classify, while assigning
a lower weight to majority class examples that are easier to
classify. An approximation of this calculation is shown in the
following:

LA−FL = L+ + L−

=

(
−

C∑
c=1

(1− Pc)
γ1 + log(Pc)

)

+

(
−

C∑
c=1

(Pc)
γ2 − log(1− Pc)

)
. (23)

IV. EXPERIMENTAL RESULTS

A large set of experiments on different real and popular
HS datasets, using different classifiers widely known by the
scientific community, has been performed in order to evaluate
the impact of the oversampling techniques reviewed above. In
the following, the description of the HS datasets, the set of
metrics used for the evaluation of the experiments, the setting
and motivation of the experiments performed, and a detailed
discussion of the results obtained are provided.

A. Datasets

Three widely used HS images, with different spatial and
spectral characteristics and different numbers of labeled sam-
ples, have been used to conduct the experimental validation of
oversampling methods: Indian Pines (IP), Botswana (BW), and
Kennedy Space Centre (KSC) scenes. The IP and KSC scenes
were collected by the AVIRIS, while BW was gathered by the UT
center for space research purposes. Figs. 3–5 show a summary
of the HS scenes, including the number of labeled samples per
class, as well as the available ground-truth information. These
datasets (along with the training and test sets) are all available
from the IEEE Geoscience and Remote Sensing Society (GRSS)
Data and Algorithm Standard Evaluation website (DASE) at:
http://dase.grss-ieee.org.

1) The IP scene [see Fig. 3(a)] was captured in 1992 over
the Indian Pines test site in NW Indiana, an agricultural
area characterized by its crops of regular geometry and
also forest regions. The scene consists of 145 × 145 pixels
with spatial resolution of 20 meters per pixel (mpp) and
with 224 spectral bands, which have been collected in the
wavelength range from 0.4 to 2.5 microns. From these
bands, 24 were removed as they are null or water absorp-
tion bands (particularly, [104–108], [150–163] and 220),
considering the remaining 200 bands for the experiments.
The available ground truth comprises 16 mutually exclu-
sive classes. In addition to the original scene, a spatially
disjoint train-test scene (DIP) has been used to evaluate the
behavior of certain spectral-spatial classifiers (see Fig. 4).

2) The KSC scene [see Fig. 3(b)] was also provided by
AVIRIS during a flight campaign in 1996. The spectral
information ranges from 400 to 2500 nm, with 512 × 614
pixels and 176 spectral bands. Also, some low signal-to-
noise ratio (SNR) bands have been removed. The ground-
truth is divided into 13 mutually exclusive classes, per-
taining to upland and wetland areas.

3) The BW dataset (see Fig. 5) was acquired over the Oka-
vango Delta, Botswana, by the Hyperion sensor on the
satellite EO-1. The scene contains 1496 × 256 pixels char-
acterized by 30 m of spatial resolution, and 242 bands
in the spectral range 400–2500 nm. It must be noted
that 97 uncalibrated and water-corrupted bands have been
removed, keeping the remaining 145 spectral bands [35].
The ground truth comprises 14 different and mutually
exclusive land-cover classes, including seasonal marshes,
occasional swamps and drier woodlands located in the
distal part of the Delta.

http://dase.grss-ieee.org
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Fig. 3. Ground truth of Indian Pines (IP) and Kennedy Space Center (KSC) datasets. (a) Indian Pines (IP). (b) Kennedy Space Center (KSC).

Fig. 4. Spatially disjoint training and test samples of Indian Pines (IP) scene.
(a) Disjoint train. (b) Disjoint test.

Fig. 5. Ground truth of Botswana (BW) dataset.

4) The AeroRIT (see Fig. 6) [63] scene was captured using
a Cessna aircraft with two types of camera systems flown
over the Rochester Institute of Technology’s university
campus. The first system had an 80 MP RGB silicon

sensor, while the second had a VNIR hyperspectral Head-
wall Photonics Micro Hyperspec E-Series CMOS sensor.
The original resolution of AeroRIT is 1973 × 3975 pixels,
covering a broad spectral range from 397 nm to 1003 nm.
In order to ensure the reliability of the data, ambiguous
and inconsistent pixels were removed, resulting in a scene
with a final resolution of 1920 × 3968. The processing
hyperparameters and dataset configuration were extracted
from the original study.

B. Evaluation Metrics

When extracting knowledge for imbalanced data, it is
necessary to implement evaluation metrics that assess model
performance. In this regard, Table II provides the metrics
considered in this study to evaluate the performance of the
different oversampling methods. They are provided in terms
of the confusion matrix of a binary classification problem, i.e.,
considering the two classes Positive and Negative. In this regard,
from the distribution of classifier performance on the data, the
measurements collected by Table II are expressed as a function
of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN), where the first two concepts refer to
the results correctly predicted by the model, and the last two
to the results incorrectly predicted by the model, for both the
positive and negative classes, respectively.

C. Experimental Settings

In this section, a detailed comparison between sev-
eral oversampling algorithms, i.e., RANDOM sampling,
SMOTE, SMOTE-BORDERLINE-1 (SMOTEBD1), SMOTE-
BORDERLINE-2 (SMOTEBD2) and SVM-SMOTE, is per-
formed on different classifiers, considering both traditional
machine learning algorithms and state-of-the-art deep learning
models, to evaluate the impact of oversampling on the final clas-
sification results. It must be noted that both K-means-SMOTE
and ADASYN are not evaluated, as they impose severe restric-
tions on the minimum number of samples required for generating
synthetical data properly. Indeed, these two methods have to
run KNN algorithm to determine if a minority sample has to be
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Fig. 6. Ground truth of AeroRIT dataset.

TABLE II
EVALUATION METRICS

oversampled. Conducted experiments require a minimum of five
neighbors to compute distances in the data space. Consequently,
when using 5% or lower amounts of labeled samples, some
minority classes do not meet the required threshold. For instance,
IP scene has a severe lack of samples for several land-cover
classes (such as Oats and Grass/pasture-mowed). Hyperparam-
eter optimization is conducted using GridSearch and tenfold
cross-validation over the whole experimental pipeline, including
the oversampling algorithm and the classifier. In this strategy, a
wide range of hyperparameters is tested on the original training
set over ten partitions for each conducted experiment. As a result,
the optimal values for each hyperparameter in the pipeline are
estimated. Thus, it has been decided to show their performance in
Sections II-B4 and II-C, respectively, but not to evaluate them
experimentally. To evaluate the classification results obtained
after the application of the other oversampling methods, all the
measures foreseen in Table II have been adopted. In order to as-
sess the impact of class imbalance, the study employs a rigorous
methodology consisting on five Monte Carlo runs. In each run,
the same seed is utilized for all algorithms to ensure consistency
and uniformity in the evaluation process. The experimentation

aims to analyze the robustness of the results to changes in the
selected training data for imbalanced classes.

Regarding the classifiers, two different experiments have been
conducted. The former performs a comparison between different
standard and widely used pixelwise classifiers. Specifically,
the following classifiers have been considered to evaluate the
behavior of the oversampling methods on traditional machine
learning models, i.e., multinomial logistic regression (MLR) [4],
SVM [22], and shallow and deep multilayer perceptron (MLP
and DMLP) [13]. The same procedure has been followed to
fairly evaluate the oversampling methods. In particular, different
amounts of randomly selected training data are selected from the
HS scene (3%, 5%, 10%, 15%, and 20%). Then, the oversam-
pling algorithms are applied to increase the number of samples
within the training sets, producing an augmented set. Finally,
the supervised classifiers are trained on the augmented training
set and the obtained inference results provide the impact of the
oversampling strategies. To further explore the impact of over-
sampling models, a detailed comparison is provided considering
the 5% of training data, taking into account the oversampling
technique with the highest G-mean score (OS), and comparing
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Fig. 7. Obtained G-Mean on Indian Pines (IP) scene. Included charts present the results of several oversampling algorithms, namely random oversampling
(RANDOM), synthetic minority oversampling technique (SMOTE), SMOTE-BORDERLINE-1 (SMOTEBD1), SMOTE-BORDERLINE-2 (SMOTEBD2), support
vector machine SMOTE (SVMSMOTE), and principal component analysis SMOTE (PCA). Multiple machine learning models were employed for the evaluation:
(a) multiple linear regression (MLR); (b) support vector machine (SVM); (c) multilayer perceptron (MLP); (d) deep multilayer perceptron (DMLP).

its results with the ones obtained using techniques of no over-
sampling, i.e., training data without oversampling (RAW), and
spectral reduced data based on principal components analysis
(PCA) [32].

The next experiment conducts a comparison between different
state-of-the-art deep learning models to evaluate the impact of
oversampling techniques. In this sense, an ablation study is
performed using the convolutional neural network (CNN) as
main structure [25]. Particularly, CNN3-D is used as the baseline
classifier. Based on the CNN3-D, the CNN3-D + OV is built
by introducing a convex 3-D hyperspectral patch generator unit
to oversample the minority classes [35]. The comparison also
includes the ssGAN3-D [64], a semisupervised classifier, and the
3-D-HyperGAMO [35], which is considered as a combination
of the CNN3-D + OV and ssGAN3-D.

The last experiment, evaluates the impact of class imbalance
on the performance of semantic segmentation models trained
with different loss functions, i.e, cross-entropy (CE), focal loss
(FL), asymmetric focal loss (A-FL), and cyclical focal loss
(C-FL). To this end, the models were trained on an imbal-
anced dataset and tested using the mean intersection over union
(mIoU) and overall accuracy (OA) metrics. A detailed compar-
ison of these models is conducted for multiple image patches
configurations.

D. Evaluation on Standard Machine Learning Classifiers

For each HS dataset, the classification results obtained
by standard machine learning algorithms when introducing
different oversampling techniques is evaluated. In particular,
Figs. 7–9 depict the evolution of the G-Mean obtained by
the MLR, SVM, MLP, and DMLP in IP, KSC, and BW
scenes when using raw data (no oversampling, none), PCA,
random, SMOTE, SMOTEB1, SMOTEB2, and SVM-SMOTE
techniques with different amounts of training data, i.e., 3%,
5%, 10%, 15%, and 20%. Furthermore, Tables III–V provide
a detailed comparison in terms of F1, G-mean, OA, and AA,
using a 5% of the labeled data to train the models, and focusing
on the oversampling technique with the best G-mean (OS), raw
data, and PCA-reduced data.

1) Results on Indian Pines: Fig. 7 provides the G-mean
score of each classifier implementing the different oversampling

TABLE III
CLASSIFICATION RESULTS FOR IP SCENE

techniques. Furthermore, the respective standard deviation are
shown after five Monte Carlo runs. In general, the classifiers
improve their results with increasing training data, with the
results obtained by the DMLP, MLP, and SVM being superior
to the MLR. Indeed, it is important to note that the MLR
algorithm requires at least a 20% of labeled samples to obtain
similar results (slightly inferior) to those produced by the other
classifiers when training with 10% of labeled samples. In this
sense, the DMLP obtains the best G-mean score (84.65%), while
classifiers with PCA obtain the lowest results. Regarding the
standard deviation, the SVM exhibits the most reliable/stable
behavior.

It is interesting to note how how, for different classifiers, the
final results of classification with oversampling methods vary
slightly. In fact, the results obtained show that the effectiveness
of an oversampling strategy does not vary too much depending
on the classifier. The percentage of samples constituting the
training set also influences the final results, albeit to a lesser
extent. Thus, for instance, MLR achieves better results with
SVM-SMOTE technique when using 3% of labeled data, with
SMOTE when using 5%–10%, and with RANDOM oversam-
pling when considering 15%–20%, although the results between
these three techniques are quite similar, with slight variations
in the variance (SMOTE is more stable in general); similar
behavior can be observed in SVM between SVM-SMOTE,
SMOTE, and RANDOM methods, with SMOTEBD1 achieving
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Fig. 8. Obtained G-Mean on Kennedy Space Center (KSC) scene. Included charts present the results of several oversampling algorithms, namely random oversam-
pling (RANDOM), synthetic minority oversampling technique (SMOTE), SMOTE-BORDERLINE-1 (SMOTEBD1), SMOTE-BORDERLINE-2 (SMOTEBD2),
support vector machine SMOTE (SVMSMOTE), and principal component analysis SMOTE (PCA). Multiple machine learning models were employed for the
evaluation: (a) multiple linear regression (MLR); (b) support vector machine (SVM); (c) multilayer perceptron (MLP); (d) deep multilayer perceptron (DMLP).

the best results when using 5% (closely followed by SMOTE);
however, for shallow MLP, the RANDOM technique provides
the best classification results with few data, closely followed by
SVM-SMOTE and SMOTE when using 15%–20% of training
data, and finally for DMLP, both RANDOM and SVM-SMOTE
impact favorably on the final results. For all cases, classifiers
with PCA obtain the worst G-mean scores, while SVM-SMOTE,
SMOTE, and RANDOM obtain the best results.

To further elaborate on these results, Table III provides the
classification results for IP in terms of accuracy per class,
F1-Score, G-Mean, OA, and AA. Moreover, classifiers have
been trained with 5% of labeled samples, considering RAW data,
PCA-based data and the best oversampling strategy (OS). The
last one was determined by the G-mean value, thus, the MLR
includes SMOTE, the SVM implements SMOTEBD1, and both
the MLP and the DMLP take RANDOM oversampling strategy.
Once more PCA-based classifiers obtains the lowest accuracy,
while OS-based classifiers generally obtain the best values, with
certain exceptions in the MLR algorithm. Indeed, oversampling
enhances the classification performance in terms of F1, G-mean,
OA, and AA in the SVM, MLP, and DMLP classifiers, but
only in terms of G-mean and AA in the MLR. The DMLP
algorithm outperforms the other classification methods, with F1
(75.07%), G-Mean (84.65%), OA (75.32%), and AA (75.15%).
Focusing on the minority classes 7-Oats and 9-Grass/pasture-
mowed, all classifiers significantly enhance the identification and
classification of samples of these land-cover types by means of
oversampling techniques.

2) Results on Kennedy Space Center: In this section, RAN-
DOM, SMOTE, SMOTEBD1, SMOTEBD2, and SVM-SMOTE
oversampling methods are evaluated against the KSC dataset.
Once more, results obtained over RAW data and PCA-based
data are included. Classifiers have been trained with 3%, 5%,
10%, 15%, 20% of randomly selected data. The rest of the data
was used for testing.

Obtained G-mean score is depicted by Fig. 8, coupled with
the respective standard deviation after five Monte Carlo runs.
At first glance, it can be seen that KSC requires few samples to
estimate the overall scene. Indeed, with 3% of training samples,
the G-mean exceeds 85% for all classifiers, while in IP, they
need almost 5%–10% of training data. Once more, the value
of G-Mean is improved as the training set increases. Also, the

DMLP obtains the best classification result, closely followed
by the SVM when there are few training samples (3%–5%).
Indeed, the differences between DMLP and SVM are practically
negligible.

Similar to IP scene, the G-mean scores prove that the effec-
tiveness of an oversampling strategy does not vary too much de-
pending on the classifier. Once more, the percentage of samples
constituting the training set influences the final results, albeit to
a lesser extent as the obtained results change proportionally.
Nevertheless, the spectral nature of the image does play an
important role. While IP is known for its large spectral mixture,
KSC is challenging due to scarcity of labeled samples. In this
scene, it can be seen that the PCA-based classifiers obtained
better results than RAW and that even the oversampling methods,
such as in the MLR (with 15% of labeled data), MLP (with
5%, 15%, and 20% of the training data) and DMLP (for all
amounts of training data). Moreover, RAW-based results are
sometimes very close to those obtained by the oversampling
methods, especially in the MLR, it is pretty close to the best
oversampling method (SVM-SMOTE) and even superior with
3% of training data. Focusing on MLR: with 3%, RANDOM and
RAW-based techniques obtain the best G-mean; with 5%, SV-
SMOTE and RAW-based methods achieve the best results; with
10% of labeled data, SVM-SMOTE and RAW-based provide the
best score, and with 15%–20%, the SVM-SMOTE outperforms
the other strategies. Regarding SVM: with 3%, SMOTEBD2
clearly outperforms the other techniques, however, its perfor-
mance decreases by 5%, where SMOTEBD1 and SMOTE are
the best oversampling methods; with 10%, all the strategies
obtain very similar results, with the exception of SMOTEBD2;
with 15%, SVM-SMOTE, SMOTE, and RANDOM achieve
the best G-mean scores, and finally, with 20% of labeled data,
SMOTEBD1, SMOTE, and RANDOM outperform the results
of the other sampling strategies. Related to MLP: with 3% of
training data, SMOTEBD2 provides the best G-mean, followed
by RANDOM oversampling; with 5%, PCA and SMOTE offer
the best accuracy; with 10%, RANDOM, PCA, and SMOTE
obtain the best G-mean values; with 15%, PCA, SVM-SMOTE
and SMOTE are the best oversampling techniques, and finally,
with 20% of the training data, PCA, RANDOM, and SMOTE
reach the best results. Similar behavior is exhibited by the DMLP,
where PCA and SMOTEBD2 stand out with 3% of labeled
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Fig. 9. Obtained G-Mean on Botswana (BW) scene. Included charts present the results of several oversampling algorithms, namely random oversampling
(RANDOM), synthetic minority oversampling technique (SMOTE), SMOTE-BORDERLINE-1 (SMOTEBD1), SMOTE-BORDERLINE-2 (SMOTEBD2), support
vector machine SMOTE (SVMSMOTE), and principal component analysis SMOTE (PCA). Multiple machine learning models were employed for the evaluation:
(a) multiple linear regression (MLR); (b) support vector machine (SVM); (c) multilayer perceptron (MLP); (d) deep multilayer perceptron (DMLP).

TABLE IV
CLASSIFICATION RESULTS FOR KSC SCENE

data; PCA is undoubtedly the best technique, followed by far
by SMOTE with a training percentage of 5%; again PCA is
the best with 10% of labeled data, followed by SMOTEBD1
and SMOTEBD2, and finally, the SMOTE technique is only
surpassed by PCA with 15% and 20% of training.

To further explore these results, Table IV provides the classi-
fication measurements obtained over the KSC scene with 5% of
the training data. Consistent with Fig. 8, the best F1, G-mean,
and OA values are provided by the MLR with no oversampling
method. This is because KSC samples are very sparse and
oversampling techniques based on interpolations may introduce
too much variability/noise in the new samples, while RANDOM
oversampling makes information redundant. Also, MLP and
DMLP improve their classification by PCA, which alleviates
the overfitting caused by the large spectral dimension, although
the SMOTE oversampling outperforms the results achieved by
RAW-data. Focusing on SVM, the generation of new samples
to balance the training set improves the classification results
in comparison with the RAW and PCA-based data. Focusing
on the minority class 7-Swap, all classifiers with oversampling
techniques improve its identification and classification.

3) Results on Botswana: Fig. 9 provides the obtained G-
mean score and the respective standard deviation after 5 Monte
Carlo runs of the spectral classifiers using RAW, RANDOM,
SMOTE, SMOTEBD1, SMOTEBD2, and SVM-SMOTE strate-
gies. In this case, MLR obtains the best G-mean score when
few labeled data are available (3%). Nevertheless, this behavior

TABLE V
CLASSIFICATION RESULTS FOR BW SCENE

changes when the training set increases. As a result, the clas-
sifiers offer a similar performance when training with 20% of
labeled samples.

Unlike the other HS datasets, BW is quite balanced, so in
many cases, RAW-data are the best option to train the classi-
fiers. Nevertheless, it is noted that when the number of labeled
samples of BW is limited, it is highly recommended to apply
preprocessing techniques (PCA or oversampling methods) to
reduce the overfitting and/or increase the number of minority
class samples. Focusing on MLR, the best oversampling strate-
gies per training are: RANDOM (3%); SMOTEBD1 and SVM-
SMOTE (5%); SVM-SMOTE (10%), and RAW, RANDOM,
and SMOTE (15%–20%). Regarding SVM, the best strategies
are: SMOTE (3%); RAW followed by RANDOM and SMOTE
(5%–10%), and RANDOM and SMOTE (15%–20%). Related
to MLP: SMOTE (3%); PCA followed by RANDOM (5%);
SMOTE(10%); RAW closely followed by RANDOM (15%),
and RANDOM oversampling (20%). Finally, MLP achieves the
best results in terms of G-mean when using: PCA and RANDOM
(3%); PCA and SMOTEBD1 (5%); SMOTE and SVM-SMOTE
(10%); SMOTEBD2 (15%), and SVM-SMOTE (20%).

Finally, Table V provides the classification metrics obtained
by the spectral classifiers over BW scene, considering 5% of
training data. In general, the application of oversampling meth-
ods improves the classification results in comparison with RAW
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TABLE VI
CLASSIFICATION RESULTS OF CNN3-D, CNN3-D + OV, SSGAN3-D, AND 3-D-HYPERGAMO USING DISJOINT TRAIN-TEST IP DATASET AND BY RANDOMLY

SELECTING 5% TRAINING SAMPLES FROM KSC AND BW DATASETS

and PCA-data. For instance, the classification measurements
obtained by MLR, SVM, and MLP are noticeably improved
when using augmented training. Focusing on F1 and G-Mean,
the MLR algorithm outperforms the rest of the classifiers. Never-
theless, it is quite interesting that, in the minority class 2-Hippo
grass, PCA is more beneficial for some classifiers.

E. Experiment on Deep Learning Classifiers

Currently, deep learning models have established themselves
as the current state of the art (SoTA) due to the unparalleled
results achieved in automatic image processing. In particular,
the CNN has stood out in recent years, thanks to its ability to
automatically extract descriptive spatial-spectral features from
the data. Notwithstanding the impressive classification result
achieved by this architecture [30], their results are significantly
degraded by the scarcity of training data and the high variability
of the samples. In this sense, oversampling techniques are of
great interest to improve the processing of deep networks. Some
interesting efforts have been conducted to implement oversam-
pling techniques for deep models. This experiment compares the
performance of the baseline CNN3-D, the CNN3-D + OV (with
oversampling), the ssGAN, and the 3-D-HyperGAMO models.

Table VI provides the obtained results, in terms of OA and
AA. The highest values of the different evaluation metrics among
classifiers are represented in bold. Focusing on the DIP dataset
(see Fig. 4), the comparison ensures that there is no spatial
overlap between both training and testing samples. It is interest-
ing to note that, despite including an oversampling-mechanism
(or precisely because of its inclusion), the CNN3-D + OV
provides the poorest accuracy results. The complexity of the
model, coupled with the sparsity of the data and the large
spectral mixture (which increases intraclass variability), prevent
the model from achieving better results. Furthermore, the com-
parison between CNN3-D and CNN3-D + OV highlights the
weak performance of the latter for the disjoint IP dataset. On the
contrary, 3-D-HyperGAMO model provides the best accuracy,
as it extract useful information from those pixels adjacent to the
minority classes. Focusing on minority classes, such as 16-Stone

steel towers, the generation of synthetic samples made by the
3-D-HyperGAMO model enhance effectively their classification
in comparison with other models, such as the ssGAN3-D. In
contrast, poor results are obtained for the 7-Grass/grass-stone
class with CNN3-D + OV and ssGAN3-D compared to 3-D-
HyperGAMO. This is mainly because the methods (CNN3-D,
CNN3-D + OV, and ssGAN3-D) fail to extract information for
classes with a low number of training samples, as they do not
properly cover the features of minority classes. Finally, the
oversampling strategy applied to CNN3-D does not introduce
any new information, and thus, its classification results are
worse. This fact is aggravated by the high complexity of the
IP training set. In addition, Fig. 10 depicts the classification
maps produced by the CNN3-D, CNN3-D + OV, ssGAN3d, and
3-D-HyperGAMO models. The resulting maps tend to smooth
the boundaries between different land cover types. Particularly,
the 3-D-HyperGAMO attains a visually comprehensible classi-
fication map with a clear and distinguishable border zones, and
the noise is very localized and reduced compared to the other
deep models. On the contrary, the CNN3-D and CNN3-D + OV
result in noisy classification maps with slight differences.

Focusing on the KSC scene, the classifiers have been trained
with 5% of labeled samples randomly chosen from the available
data. Note that the class imbalance ratio in this scene is lower
than in the IP dataset. Nevertheless, the results obtained in
Table VI indicate that better results are obtained for almost
all land cover classes by alleviating the imbalance problem
using oversampling-based models. In this context, the baseline
model, i.e., the CNN3-D, achieves the highest accuracy val-
ues for classes 1-Scrub, 9-Spartina marsh, and 11-Salt marsh.
Nonetheless, regarding the minority classes, such as the 7-Swap,
the 3-D-HyperGAMO provides a huge improvement (+13.07%)
over the baseline model. In contrast to the IP scene, the results
obtained on KSC reveal that the random selection of labeled
samples provides a significant improvement in classification per-
formance. Once more, the 3-D-HyperGAMO classifier reports
the highest overall metrics for OA (95.31%) and AA (92.26%).
Moreover, Fig. 11 provides the graphical results of the CNN3-D,
CNN3-D + OV, ssGAN3d, and 3-D-HyperGAMO models. The
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Fig. 10. Classification maps of Indian Pines (IP) obtained from: (a) 3-D convolutional neural network (CNN3-D); (b) CNN3-D with oversampling (CNN3D + OV);
(c) semisupervised generative adversarial network (ssGAN); (d) 3-D hyperspectral generative adversarial minority oversampling (3-D-HyperGAMO) classifiers.
(a) CNN3-D (75.17%). (b) CNN3-D + OV (73.39%). (c) ssGAN (84.57%). (d) 3-D-HyperGAMO (86.96%).

Fig. 11. Classification maps of Kennedy Space Center (KSC) obtained from: (a) 3-D convolutional neural network (CNN3-D); (b) CNN3-D with over-
sampling (CNN3D + OV); (c) semisupervised generative adversarial network (ssGAN); (d) 3-D hyperspectral generative adversarial minority oversampling
(3-D-HyperGAMO) classifiers. (a) CNN3-D (92.48%). (b) CNN3-D + OV (92.54%). (c) ssGAN (90.31%). (d) 3-D-HyperGAMO (95.31%).

Fig. 12. Classification maps of Botswana (BW) obtained from: (a) 3-D convolutional neural network (CNN3-D); (b) CNN3-D with oversampling (CNN3D + OV);
(c) semisupervised generative adversarial network (ssGAN); (d) 3-D hyperspectral generative adversarial minority oversampling (3-D-HyperGAMO) classifiers.
(a) CNN-3D (94.99%). (b) CNN3-D + OV (94.83%). (c) ssGAN (95.43%). (d) 3-D-HyperGAMO (97.43%).

CNN3-D and CNN3-D + OV tend to classify the left zone as 11-
Salt marsh, while the ssGAN3d and 3-D-HyperGAMO models
identify the zone as 1-Scrub. Nonetheless, the labeled pixels in
the test remain correctly classified overall, despite the scarcity
of ground truth. In addition, CNN3-D and CNN3-D-OV classify
the 12-Mud flats and 5-Oak/Broadleaf classes oppositely in the
center and bottom of the image, although both achieve general
improvements compared to ssGAN.

Finally, the performance of the spectral-spatial classifiers on
the BW scene is evaluated by randomly selecting 5% of the
data for training. It is noteworthy that BW suffers from the
lowest class imbalance ratio compared to the IP and KSC scenes.
Indeed, the minority and majority classes, i.e., 2-Hippo grass and

9-Accacia woodlands, contain 101 samples and 314 samples,
respectively, with a difference of 213 samples. This indicates
an imbalance ratio of approximately 3:1. Obtained results are
reported in Fig. 5. Once again, the 3-D-HyperGAMO model
outperforms the other classifiers in performance, achieving OA
(97.43%) and AA (97.4%). Focusing on some minority class,
such as the 2-Hippo grass, obtained results show a slight im-
provement when oversampling is conducted. As in the KSC
experiments, the ability to classify minority classes benefits
from standard oversampling due to the generation of training
data. Fig. 12 depicts the classification maps obtained by the
considered classifiers. Similar to previous experiments, the ss-
GAN3d and 3-D-HyperGAMO models produce quite similar
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TABLE VII
PERFORMANCE EVALUATION OF LOSS FUNCTIONS ON THE AERORIT DATASET

Fig. 13. AeroRIT image patches obtained for cross entropy loss (CE-L),
focal loss (FL), asymmetric focal loss (A-FL), and cyclical focal loss (C-FL)
experiments. The first row shows patches obtained using a patch size of 170,
the second row shows patches obtained using 197, and the third row displays
patches obtained using 703. Patches are extracted from the test samples.

results, particularly at the left and right areas of the HS image. In
contrast, on the left side of the classification maps, the CNN3-D
and CNN3-D-OV classifiers identify a large number of pixels
belonging to classes 13-Exposed soils and 12-Mixed mopane.

F. Assessing Imbalance Methods for Semantic Segmentation

As stated before, semantic segmentation is a crucial task
in computer vision and machine learning applications, where
class imbalance poses a common challenge. Indeed, it is pretty
common that certain classes are significantly underrepresented
in the training data, which can lead to a poor performance of the
segmentation model. To tackle this challenge, several imbalance
methods have been evaluated, including loss functions such
as focal loss (FL), cross entropy (CE), asymmetric focal loss
(A-FL), and cyclical focal loss (C-FL). Next, an evaluation of the
effectiveness of these loss functions in semantic segmentation
tasks is conducted for the AeroRIT dataset.

The behavior of the aforementioned loss functions is pre-
sented in Table VII. The mean intersection over union (mIoU)
metric is reported for each class along with the respective
number of training (SamplesTR), validation (SamplesVAL), and
test samples (SamplesTE). It can be observed that a notable
imbalance training percentage (ImbalanceTR) is present for
the majority of the classes. Specifically, classes vegetation and
roads exhibit an imbalance percentage of 46.82% and 30.93%,
respectively, while classes cars and water have significantly less
training data (i.e., minority classes). It is pertinent to note that the
overall accuracy (OA) metric exhibits similar results across all

models, thereby rendering it unsuitable for the comprehensive
evaluation of a segmentation model performance. However,
balance-aware methods, such as FL, A-FL, and C-FL, signifi-
cantly improve the mIoU, whereas CE performs the worst among
the evaluated models due to its inability to address imbalanced
classes.

Finally, Fig. 13 presents the prediction patches for studied
loss functions, where the aforementioned benefits through the
mIoU are observable for the FL, A-FL, and C-FL models. These
models shown a better representation of the original. Therefore,
obtained findings suggest that balance-aware methods through
loss functions should be considered in the development of se-
mantic segmentation models for imbalanced datasets.

V. CONCLUSION

This article provides a review of different oversampling
and class imbalance methods for the classification of remotely
sensed hyperspectral scenes. Specifically, the goal of these meth-
ods is to alleviate the problem of class imbalance. Different
oversampling algorithms have been reviewed, i.e., Random
oversampling, SMOTE, SMOTE BORDERLINE-1, SMOTE
BORDERLINE-2, SVM-SMOTE, K-Means SMOTE, and
ADASYN. Moreover, comprehensive experiments have been
conducted to empirically evaluate the random oversampling,
SMOTE, SMOTE BORDERLINE-1, SMOTE BORDERLINE-
2, and SVM-SMOTE oversampling methods over widely used
machine learning classifiers, such as the MLR, SVM, shallow
MLP, and deep MLP, using different amounts of training data.
Also, three deep learning approaches have also been tested,
i.e., CNN3-D + OV, ssGAN3-D, and 3-D-HyperGAMO. As
a result, the impact of oversampling methods during HS data
classification has been estimated.

The obtained results demonstrate that the exploitation of
oversampling techniques enhances the training procedure, while
improving the final classification performance without mod-
ifying the operational behaviour of the main classifier. Also,
it has also demonstrated the limitations of some oversampling
mechanisms, such as K-Means SMOTE and ADASYN, with
restrictive constraints on the minimum number of samples per
class. On the other hand, it highlights the need to generate new
oversampling mechanisms for deep networks that allow a good
tradeoff between the complexity of the architecture and the final
results. Additionally, the evaluation of imbalance methods in
semantic segmentation has revealed several insights. First, it was
observed that the traditional cross-entropy loss function strug-
gles with imbalanced datasets, resulting in poor performance for
minority classes. This has highlighted the importance of using
balance-aware loss functions for addressing class imbalance.
Finally, the study has shown that overall accuracy is not a reliable
metric for evaluating performance on imbalanced datasets, and
mIoU should be preferred instead.

As future work, it is proposed to extend the study performed
to new techniques of both oversampling and undersampling, the
latter being of great interest, in order to test the classification ca-
pabilities after selecting a subset of samples from the original set.
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