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Abstract—Due to their nature, Eolic parks are situated in zones
with difficult access. As a result, management of Eolic parks using
remote sensing techniques is of great importance. In addition, the
huge amount of data managed by Eolic parks, together with their
nature (distributed, heterogeneous, produced, consumed at differ-
ent times, etc.) makes them ideal to apply big data techniques.
In this paper, we present a multilayer hardware/software archi-
tecture that applies cloud computing techniques for managing
big data from Eolic parks. This architecture allows tackling the
processing of large, distributed, and heterogeneous data sets in a
remote sensing context. An innovative contribution of this work
is the combination of different techniques at three different layers
of the proposed hardware/software architecture for Eolic park big
data management and processing.

Index Terms—Big data, cloud computing, Eolic parks, remote
sensing, wind turbine.

I. INTRODUCTION

D URING the last years, research in renewable energies and
smart grids has been gaining more and more popularity

not only in companies but also in governments and agencies.
Among these energies, the Eolic one has attracted a lot of inter-
est, as it currently generates more than 5% of the world total
power consumption (284 GW). It is expected that, no later than
2020, the Eolic energy will supply nearly 20% [1] of the world
demand.

An Eolic park is formed by one or more electric substations.
Each substation is formed by a set of wind turbines. Substations
can now have up to 150 wind turbines, and there are compa-
nies managing hundreds of Eolic parks, thus having to manage
the information coming from more than 10 000 wind turbines.
As a result, an important challenge in Eolic parks is how to
monitor and control the behavior and security of wind tur-
bines. Attending to the number of wind turbines and the amount
of data generated in each one, the monitoring system has to
deal with a flow of data of more than 130 Gb/min. These data
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are generated at different levels: wind turbine, substation, and
control center.

Due to their nature, Eolic parks are commonly situated in
rural zones or in the open sea, which impose some problems
in terms of accessibility. In this context, data acquisition and
management (which is often subject to some kind of high
performance computing due to the massive volumes of data
involved) is generally performed by means of remote sensing
techniques [2], [3]. This fact, together with the great volume
of data to be processed, the distributed nature of such data,
the heterogeneity of the data sources, and the different times
of data production (synchronous and asynchronous), together
with the different data structures involved (some structured but
most of them not structured), and the fact that each node of
the system can act as both producer and consumer, make Eolic
parks an ideal scenario for the application of big data techniques
for remote sensing [4]. According to the definition provided
in [5], mainly three aspects characterize big data: 1) the data
are numerous; 2) the data cannot be categorized into regular
relational databases; and 3) data are generated, captured, and
processed rapidly. The data collected from Eolic parks conform
to these characteristics; hence the application of big remote
sensing data processing techniques can provide an important
asset for the management of Eolic parks as a relevant source of
renewable energy.

Most available solutions for controlling and monitoring Eolic
parks are mainly based on hardware procedures, i.e., by means
of a combination between sensors and programmable logic con-
trollers (PLCs), in which software techniques have played a
secondary role. However, the combination of research results
coming from different fields such as big data [5], web engi-
neering [6], data visualization [7], and cloud computing [8],
[9] can lead to obtaining better solutions from different points
of view: performance, scalability, economy, maintenance, user
experience, etc. In this paper, we develop a new multilayer
software/hardware architecture for controlling and monitor-
ing Eolic parks. This architecture which is applied to a case
study allows tackling the processing of large, distributed and
heterogeneous (regarding its source, formats, and production
velocity) data sets in a remote sensing context. In the pre-
sented case study, we define three different levels for data
management: wind turbine, substation, and control center. An
important contribution (from a big data processing perspec-
tive) is given by different strategies that are specifically adopted
in each layer. While the wind turbine level makes use of low
cost devices for optimizing data management and transfer, the
control center layer makes use of advanced features such as
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Fig. 1. Multilayer architecture adopted by solutions currently being used for
Eolic park management.

cloud computing provided by the infrastructure of Amazon Web
services (AWSs).

This paper is organized as follows. Section II establishes the
requirements of the system. Section III describes some related
work in the literature and identifies the main problems and
the solutions currently being used in Eolic parks. Section IV
presents the proposed architecture, which is split into three dif-
ferent layers. Section V describes the implementation of the
system and provides some information about its experimental
validation. Finally, Section VI concludes the paper with some
remarks and hints at plausible future research lines.

II. REQUIREMENTS OF THE SYSTEM

In this section, we describe the main requirements for Eolic
park management. Fig. 1 shows the multilayer architecture cur-
rently used in most developments. As shown in Fig. 1, the
architecture can be decomposed into three different layers or
levels: A) wind turbine layer; B) substation layer; and C) con-
trol center layer. The first layer (A) is mainly in charge of
gathering data from sensors (such as cameras, volumetric sen-
sors, etc.) and also from managing actuators (such as alarms
and lights) and sending the data to the next layers. The second
(B) and third (C) layers are in charge of storing logs, processing
tasks for data analytics, applying automatic rules for trigger-
ing actuators, applying visualization techniques for the obtained
operators, among several others. The volume of data generated
each day in Eolic parks is high (near to 15 Mb/min in each wind
turbine), and the data are coming from multiple sources (sen-
sors) with diverse formats, different storage needs, and with
different production and consumption rhythms. In addition to
this dynamically generated data, there are other static data sets
that do not change over time (e.g., wind turbine geographical
location/position, name, etc.)

In the following, we summarize the main requirements of
systems with the architecture described in Fig. 1.

1) Data production and consumption: The three layers act
both as data producers and consumers. The data produced
can be either stored or transmitted to be consumed by a
different layer. A consumed data can be stored, processed
for triggering an action, or visualized for operators.

2) Data processing: Each layer must incorporate data pro-
cessing capabilities in order to filter data or transform it
into useful information.

3) Data storage: An important requirement is that data must
be stored in the three levels as presented in Fig. 1. Levels
B and C generally store logs and analytical/operational
tasks, while level A stores the data necessary for working
in offline mode when connection problems arise.

4) Data transmission: Another important requirement of the
system architecture described in Fig. 1 is that the data
must flow bidirectionally among the three existing levels.

5) Scalability. Finally, in terms of scalability, the incorpo-
ration of new wind turbines in substations or new sub-
stations in the system is important requirement in order
to guarantee the full incorporation of the system in new
Eolic parks.

Once the main requirements have been presented, next we
show some related works, from both, an academy point of view
and industrial point of view.

III. RELATED WORK

During the last years, big data techniques have been rapidly
adopted in different areas. However, in the industrial environ-
ment, big data techniques have not been adopted so quickly
[10]. In [11], big data techniques are used for analyzing data in
industrial processes, but with a limited scope for remote sens-
ing. In [12], a big data architecture is proposed for federated
sensor services, but without an implementation. More related
to energy production, in [13], big data and stream data mining
techniques are used for accurately predicting the energy pro-
duction from renewable sources. This work is more focused
on prediction than monitoring and is not based on a multilayer
architecture.

With no doubt, those related works which are closer to our
contribution come from the field of smart cities, where a sim-
ilar data ecosystem to Eolic parks can be found (in terms of
data heterogeneity, data distribution, different production, and
consumption rhythms, etc). For example, in [14], an architec-
ture for cloud-based big data analytics for smart future cities
is proposed. However, an implementation is not provided in
this contribution. The work in [15] tries to determine human
dynamics by analyzing the ecosystem defined through the tri-
angle formed by big data, smart cities, and wearable computing.
Here the focus is on gathering data from different and hetero-
geneous distributed sensors, but without providing a multilayer
architecture.

From an industrial point of view and focusing on level A
in Fig. 1, a common solution to address the aforementioned
requirements has been the use of PLCs [16]. This represents
a hardware solution in which a computer is used in indus-
trial environments for automation tasks in electromechanical
processes. However, the solution based on PLCs does not com-
pletely address the requirements as Table I shows. Specifically,
the first three rows of Table I summarize the main prob-
lems with the existing solution (based on PLCs) regarding the
requirements established above. In the PLC solution, each wind
turbine has sensors connected to the PLC and data are sent from
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TABLE I
MAIN PROBLEMS OF THE EXISTING (PLC-BASED) SOLUTION

AND DESIRED PERFORMANCE AFTER SOLVING

THE EXISTING PROBLEMS

level A to level B (not vice versa) without being filtered or pro-
cessed, resulting in a huge amount of data to be transmitted.
This means that, if there is no connection at that time, the data
are lost (in addition, no storing capabilities are provided).

As shown in Table I, the main problems of the PLC-based
solution are located in levels A and C. Concerning level A, the
main drawbacks are related with the fact that there are neither
consumption, nor processing or storing capabilities, and also to
the fact that the transmission mode is only unidirectional. This
means that most of the actions have to be taken by operators and
forced to deploy a powerful transmission channel (+10MB/s).
Regarding level C, the main drawbacks are the data storage and
processing capabilities due to the continuous re-dimensioning
of servers and database infrastructure. Finally, the scalability of
the overall system is low, while the cost is quite high.

IV. PROPOSED MULTILAYER BIG DATA ARCHITECTURE

This section describes the additions performed to the clas-
sic architecture in Fig. 1 in order to cope with the requirements
of modern processing scenarios in Eolic parks, i.e., obtaining
the desired performance highlighted in rows 4–6 of Table I.
Specifically, we describe for each layer the hardware and data
management-oriented modifications conducted. Fig. 2 illus-
trates the main parts of the proposed system, which will be
explained separately.

A. Wind Turbine Layer

This layer is in charge of orchestrating all sensors and actu-
ators by means of a rule-based system. The enhancements
conducted to this layer can be summarized as follows. From
the hardware perspective, the main modification is that the PLC
has been substituted by a Raspberry Pi [17], [18] which is con-
nected to both sensors (such as cameras, volumetric sensors,

Fig. 2. Proposed multilayer big data architecture for Eolic park management.

smoke detectors, etc.) and actuators (such as alarms, lights, etc.)
This brings several important benefits:

1) The Raspberry Pi has processing capabilities and can be
easily programmed.

2) The Raspberry Pi can provide persistent storage using a
built-in MySQL database that allows saving the data when
the connection links are not available, thus allowing an
offline working mode.

3) By means of the Raspberry Pi, the communication is now
bidirectional. Although the Raspberry Pi can use WiFi,
Wimax, or 3G networking capabilities, we use a sim-
ple Ethernet connection due to the long distances among
wind turbines and also to avoid disturbances from the
spinning turbines. This means that the Raspberry Pi can
act both as a producer as well as a consumer. This allows
us to fully exploit the potential of the Raspberry Pi as
a PLC, by connecting it to appropriate interfaces for
input/output (I/O).

It should be noted that the Raspberry Pi used in our con-
figuration has an ARM 700 processor at 700 MHz and RAM
memory of 512 MB. Regarding its connectivity, the Raspberry
Pi has two USB ports and HDMI. Its computing capability is
roughly that of a Pentium III processor but with one-tenth of
its electrical consumption (5 W vs. 50 W). The Raspberry Pi
chosen uses a 64-GB SD card for local storage. This reduces
the number of write operations to the same area of the card,
extending its life. The operating system (Raspbian OS Linux)
is located on this SD card.

The Raspberry Pi also has the capacity to transmit data to
the server located at the substation layer. This is done through
the MAC address of the Raspberry Pi (in the case of video
transmission, this is continuously sent to a fixed directory at
the substation layer). At this layer, the activation of actuators
is performed using the HTTP POST protocol. All the sensors
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and actuators are connected to the Raspberry Pi thanks to the
Arduino shield [19]. The Raspberry Pi is connected to a router
that provides the Internet connection. When the Raspberry Pi
loses the connection with the substation layer, it stores the local
data produced coming from its sensors and the timestamp for
each one to be resent later. Our proposed combination of a soft-
ware and hardware approach for the wind turbine layer favors
the scalability of the system and reduces its cost, being 60% less
than the same layer in the previous design reported in Fig. 1.
This reduction mainly comes from two facts: 1) the price of
the Raspberry Pi is much lower than the price of the PLC; and
2) the installation of the Raspberry Pi is easier (plug and play)
and quicker than that of the PLC.

From a data management perspective, it should be noted that
the wind turbine layer is the level that produces the most sig-
nificant amount of data, mainly due to the high number of
data producers located in this layer. Specifically, each wind tur-
bine produces 14 MB of data per minute (which amounts to
near to 20 GB of data per day). This massive volume results
from a video frame configuration of 320× 240 pixels with 15
frames/s. The rest of the sensors produce about 1 Mb of data
per day. In this regard, the preprocessing logic that we have
implemented in the Raspberry Pi saves nearly 80% of data to be
communicated to the subsequent level (substation layer). This
information can be simply stored on the SD card in case of com-
munication problems. In the following section, we describe the
modifications conducted to the substation layer.

B. Substation Layer

This level is in charge of receiving data from the associated
wind turbines and processing it for storage and visualization
purposes. The level is also in charge of performing actuations
automatically based on rules, or transferring data to the control
center layer. In the following, we describe the improvements
obtained in this layer, which come mainly as a result of the
modifications conducted to the wind turbine layer.

From a data management perspective, thanks to the prepro-
cessing performed in the wind turbine layer, here we can receive
nearly 600 GB/day. The processing performed at this level
allows both controlling the different wind turbines belonging
to a specific substation in an autonomous way, and reducing
the amount of data to be transferred to the control center layer
(105 GB/day approximately).

From a hardware dimension perspective, the servers installed
in this layer are based on the Intel Xeon E5-2600 processor.
These servers dramatically boost application performance and
offer highly efficient memory management. Specifically, the
large storage capacity (30 TB) allows recording a large amount
of video data and reports. The hardware has been selected in
order to facilitate the scalability of the system and its portability
to new stations.

C. Control Center Layer

This layer is in charge of receiving data from the substation
layer and processing/storing it or performing tasks related to
analytics, visualization, and automatic actuation based on rules.
In the following, we describe the modifications performed to

this layer from a data management and also from a hardware
perspective.

From the data management point of view, the control cen-
ter manages more than 65 substations simultaneously, which
means that it receives information from all of them almost
constantly. Specifically, the control center receives a data flow
of 75 Mb/min from each substation, which can reach a data
flow of 4.76 GB/min (6.69 TB/day) from all the available wind
turbines that manages. This large volume of data requires a
cutting-edge infrastructure that facilitates massive data storage
and processing.

From a hardware point of view, a main contribution of our
design is that we completely replace the hardware infrastruc-
ture of the system in Fig. 1 by cloud services provided by
the AWS infrastructure1 to store and manage the resources.
To perform big data analytics at this level with an increas-
ing volume of data, production velocity and variety of infor-
mation, cloud computing services are required, allowing us
for the automatic management of resources to meet demand.
This represents a significant contribution as we virtualize the
required hardware resources in the cloud while taking advan-
tage of the advanced computing infrastructure provided by
cloud resources. Specifically, the modifications conducted to
layer C in Fig. 1 (attending to the different services provided)
can be summarized by the following contributions.

1) Data analytics (sublayer C.1): This sublayer has been
designed to perform all the data processing operations
required by the system. It is based on a high performance
computing environment [9] that allows for the manage-
ment of a large amount of data. It provides autoscaling
capacities seamlessly to the spike of demands, maintain-
ing the overall performance of the system. This complex
computational workload is managed using parallel pro-
cesses that also increase significantly the computational
throughput and the availability of resources. Specifically,
all these virtual instances are run within a placement
group that provides low latency between instances and
databases.

2) Control services (sublayer C.2): This sublayer is provided
to manage and perform the visualization and interaction
services, which allow us to review all the data processed
by the data analytics section. It is based on the so-called
elastic web scalable computing nodes. Autoscaling fea-
tures are also provided in this section. The load balancing
nodes automatically distribute the incoming traffic across
the virtual instances. The proposed design enables us to
improve fault tolerance and performance in general. All
the information, reports and data collected in the subja-
cent layers and already processed in the data analytics
section can be managed here.

3) Massive data storage (sublayer C.3): This sublayer is
mainly in charge of the data warehousing procedures
needed for analytics. It is implemented by a com-
modity cluster-based solution that delivers fast query
performance technology to improve I/O efficiency and
parallelize queries across multiple nodes. We have also

1[Online]. Available: http://aws.amazon.com
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implemented a variety of innovations to obtain very high
query performance on datasets ranging from gigabytes to
petabytes in size. Specifically, we use columnar storage,
data compression, and zone maps to reduce the amount
of I/O needed to perform queries. The cluster used for
parallelizing the queries is composed of several nodes.
A master node coordinates the compute (worker) nodes
and handles external communications. The data analytics
(C.1) and control services (C.2) sublayers interact directly
only with the leader node. The compute nodes are trans-
parent to external applications. The master node parses
and develops execution plans to carry out database oper-
ations such as the series of steps needed to obtain results
for complex queries. Based on the execution plan, the
master node compiles code, distributes the compiled code
to the workers, and assigns a portion of the data to each
compute node. Each worker then executes the compiled
code and sends intermediate results back to the master
node for final aggregation. Each compute node has its
own dedicated CPU, memory, and attached disk storage.

V. SYSTEM IMPLEMENTATION AND EXPERIMENTAL

VALIDATION

The software system developed for the Raspberry Pi at the
wind turbine layer (A) has been developed using Python [20].
The database used at this level is MySQL,2 which is enough for
the volume of data to be processed. The operational logic and
visualization systems used in the substation layer (B) and con-
trol center layer (C) have been developed using model-driven
engineering [21] principles. To be more precise, the WebRatio
[22] tool has been used. The code of the deployed applications
is based on J2EE (a platform-independent, Java-centric envi-
ronment for developing, building, and deploying web-based
enterprise applications online) running on Apache servers. The
interface of the applications is based on HTML5.

Fig. 3 shows a screenshot of the state of a particular wind tur-
bine. The software interface for wind turbines (layer A) allows
their management from the substation layer or the control cen-
ter layer. Using this interface, operators are able to check the
state of each wind turbine and interact with them in a straight-
forward manner. In addition, operators can view the video
streams from the cameras located on each wind turbine in real
time. Fig. 4 shows a screenshot of the state of a particular sub-
station. A color code has been used to indicate the current state
of the controller (red: disarmed; green: armed; orange: isolated;
gray: offline; blue: lights on; purple: alarm on).

A prototype of the system was tested in an Eolic park with
756 wind turbines belonging to six different substations. From
a data management point of view, we obtained a significant
improvement. First, we obtained a significant reduction of data
traffic (more than 65%) and an increase on data processing
speed (about 40%) compared to the current solution being used.
Secondly, the new architecture allowed us to store, process, and
consume data at the wind turbine level, granting bidirectionality
through the different levels. These features were the different
requirements shown in Table I. Additionally, a great degree of

2[Online]. Available: http://www.mysql.com/

Fig. 3. Software interface: state of a particular wind turbine.

Fig. 4. Software interface: state of a particular substation.

scalability was obtained since the elastic infrastructure used at
level B and C dynamically adapted to the growth of processing
and storing necessities. Last but not least, from an economic
point of view, we obtained a significant reduction at the cost of
level A (from 900$ per wind turbine to just 130$).

VI. CONCLUSION AND FUTURE LINES

This paper has described a new system based on big data
strategies to manage and process the huge amount of data
generated in Eolic parks. The system approaches the prob-
lem from a remote sensing perspective, and has been designed
in order to cope with the specific characteristics of the data
generated in this context (apart from its huge volume, the
data are distributed, heterogeneous, asynchronous, and bidi-
rectional, which complicates the design of the system). The
proposed solution is based on the use of three different levels
where different techniques apply. The first level (wind turbine
layer) incorporates preprocessing capabilities by using low cost
devices such as the Raspberry Pi. The solution adopted allows
saving more than 80% of the cost of the previous solution, based
on a specialized hardware (PLC). The second level (substation
layer) is implemented using traditional database management
with a local server. Finally, the third level (control center layer)
is based on the use of cloud computing techniques which allows
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us to manage data storage and processing, together with data
analytics and visualization tasks. This multilayer architecture
has been tested with success in one of the most important
electric companies in the world with a great presence in the
renewable energies sector.

Our future work will be focused on two main directions. On
one hand, we will improve the system by including the use of
drones for gathering external information. On the other hand,
we are also planning on applying the results obtained from our
tests to other Eolic parks of the same company, with the aim of
demonstrating the scalability of our system.

ACKNOWLEDGMENT

The authors would like to thank the guest editors and the
anonymous reviewers for their valuable comments and sugges-
tions to improve the paper.

REFERENCES

[1] E. F. Camacho, T. Samad, M. García-Sanz, and I. Hiskens, “Control for
renewable energy and smart grids,” in The Impact of Control Technology,
T. Samad and A. M. Annaswamy, Eds. IEEE Control Systems Society,
vol. 31, no. 5, pp. 26–27, 2011.

[2] A. Plaza, Q. Du, Y.-L. Chang, and R. L. King, “Foreword to the special
issue on high performance computing in earth observation and remote
sensing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 3, pp. 503–507, Sep. 2011.

[3] C. A. Lee, S. D. Gasster, A. Plaza, C.-I. Chang, and B. Huang, “Recent
developments in high performance computing for remote sensing: A
review,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 3, pp. 508–527, Sep. 2011.

[4] A. Ferran, S. Bernabe, P. G. Rodriguez, and A. Plaza, “A web-based sys-
tem for classification of remote sensing data,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 6, no. 4, pp. 1934–1948, Aug. 2013.

[5] I. Hashem et al., “The rise of big data on cloud computing: Review and
open research issues,” Inf. Syst., vol. 47, no. 1, pp. 98–115, 2015.

[6] A. Ginie and S. Murugesan, “Web engineering: An introduction,” IEEE
Multimedia, vol. 8, no. 1, pp. 14–18, Jan./Mar. 2001.

[7] M. Lambers and A. Kolb, “Visual assistance tools for interactive visu-
alization of remote sensing data,” in Proc. IEEE Geosci. Remote Sens.
Symp. (IGARSS), 2010, vol. 1, pp. 4745–4748.

[8] J. Dong, Y. Xue, Z. Chen, H. Xu, and Y. Li, “Analysis of remote sensing
quantitative inversion in cloud computing,” in Proc. IEEE Geosci. Remote
Sens. Symp. (IGARSS), 2011, vol. 1, pp. 4348–4351.

[9] P. Cappelaere et al., “Cloud implementation of a full hyperspectral
unmixing chain within the NASA web coverage processing service for
EO-1,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6,
no. 2, pp. 408–418, Apr. 2013.

[10] M. Obitko, V. Jirkovský, and J. Bezdíček, “Big data challenges in
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