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Abstract

A statistical approach based on measures of agreement is proposed for use
in a sensory analysis context. This approach considers the idea of using sta-
tistical agreement to provide information on the homogeneity of the raters’
responses, so that this information can then be used to discriminate between
products. It can also be used to measure the expertise level of raters. Al-
though the prime focus is on difference testing by the triangle test (ISO
4120:2008), the proposed methodology can also be applied in other contexts
such as the paired comparison test (ISO 5495:2009) or the duo-trio test (ISO
10399:2010), among others. The proposed approach is not a substitute for
binomial statistical analysis, but rather it can be used as a complement.
It is especially useful when few panelists are available and replications are
needed. An experiment that evaluates two types of Iberian dry-cured pork
loins through the triangle test is performed to illustrate the applicability of
the proposed approach.

Keywords: Binomial model, Beta-binomial model, Difference testing,
Measures of agreement, Multiple raters, Sensory analysis, Triangle test.

1. Introduction1

Sensory analysis can be used to provide subjective information about the2

acceptance of different products, and is also widely used in determining over-3

all quality. As is well known, the use of a panel is a very important tool in4

attempting to describe a product’s different and complex features. But it5

also has some drawbacks, subjectivity and low repeatability, for instance. In6

order to improve the reliability of the results and avoid these problems, some7
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countries have enacted laws which give legal value to sensorial analysis tests8

and are aimed at homogenizing the results. The International Standard-9

ization Organization (ISO) has proposed a standard for sensory analysis to10

ensure that products and services are safe, reliable, and of good quality (see11

International Organization for Standarization (TC34/SC12)). This standard12

has been applied in many different fields: quality control, research and de-13

velopment, market research, protected designation of origin,... For example,14

the International Organization for Standarization (2004b) norm is generally15

used by government agencies to regulate all aspects of the triangle test.16

As well as the triangle test (International Organization for Standarization17

(2004b)), others such as the paired comparison test (International Organiza-18

tion for Standarization (2005)) and the duo-trio test (International Organiza-19

tion for Standarization (2004a)) use the binomial distribution to discriminate20

between products. However, the binomial model is not suitable in situations21

in which there is overdispersion. An extension of the binomial model – the22

beta-binomial model – is used to fit overdispersed binomial data (see Ennis23

and Bi (1998)). The information provided by the binomial model can be24

complemented with that obtained with statistical measures of agreement.25

Agreement among raters is of great importance for researchers and prac-26

titioners who describe and evaluate objects and behaviours in a number of27

fields, including the social and behavioural sciences. Fleiss et al. (1969) and28

Fleiss Fleiss (1971) were two landmark articles on agreement measures. Since29

then, statistical agreement has been an active research area whose techniques30

have been widely used in practice. The most popular measure of agreement31

is Cohen’s kappa. There are, however, many others available, each one with32

its own particular characteristics that make it interesting to use in differ-33

ent contexts. Agresti (1996) presented several modeling techniques for the34

analysis of categorical data, in addition to an invaluable summary of the35

state-of-the-art. Von Eye and Mun (2005) provided a comprehensive ref-36

erence book that analyses rater agreement from four different perspectives,37

including log-linear modeling.38

Although statistical measures of agreement have been widely used in39

many fields of knowledge, especially in the biomedical sciences, they have40

remained almost unexplored in the field of sensory analysis. Nevertheless, a41

few interesting results can be found in the literature. For example, Wu and42

Chen (1995) considered the agreement among raters to evaluate the agree-43

ment of tea sensory data, and Mounchili et al. (2005) considered agreement44

in a sensory analysis of milk samples. In the present communication, a sta-45
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tistical agreement-based approach is presented for sensory analysis. This46

approach proposes the use of an efficient measure of agreement for two or47

more raters in which the response is given on a qualitative scale. It is shown48

how these measures can provide information about the process of seeking for49

differences. The idea is based on measuring the homogeneity of the raters’50

responses, and then using this information to analyse differences between51

products. The proposed approach is connected to the standard binomial52

procedure. Also, measures of agreement can be used to qualify novice raters’53

aptitudes, and mark when they become experts. Although the prime focus54

is on difference testing using the triangle test, the methodology can also be55

applied in other difference or similarity tests (see Bi (2011)).56

There are many examples in the literature showing the importance of57

sensory analysis in terms of designing, testing, launching, and rethinking58

food products. For example, the characterization of dry-cured shoulder of59

pork (Lorenzo et al. (2008)), Iberian dry-cured ham (Mart́ın et al. (2010)),60

pineapple juice (Silva et al. (2010)), and Gamonedo cheese (Ramos-Guajardo61

and González-Rodŕıguez (2011)). In the present study, the differences of two62

Iberian dry-cured pork loins are evaluated through a triangle test by using63

measures of agreement.64

The paper is organized as follows. Section 2 presents a short discussion of65

the main measures of inter-rater agreement and their application to sensory66

analysis. Section 3 describes the agreement-based approach and connects67

it to the standard binomial procedure. Some illustrative examples are also68

presented. In Section 4, an experiment designed involving a triangle test il-69

lustrates the applicability of the proposed approach. Finally, the conclusions70

are presented in Section 5.71

2. Measures of agreement72

Currently there is no standard measure of agreement used by the scientific73

community, although Cohen’s kappa has a long history of use as an index74

of inter-rater agreement. However, Cohen’s kappa is not always the best75

choice (see, e.g., Gwet (2002) and Fletcher et al. (2011)). When two raters76

are involved, there is a wide range of available measures of agreement in77

the statistical literature. For more than two raters, the number of available78

measures is dramatically reduced because of the difficulty of interpreting the79

results. Also, the levels of agreement tend to decrease as the number of raters80
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grows. In the following paragraphs, we shall describe the main measures of81

agreement from the perspective of the proposal of the present work.82

Sometimes, measures of agreement can be affected by chance. When the83

raters are not sure about the correct classification of a product, some guessing84

may occur. Guessing may can be total, if they are not able to distinguish any-85

thing at all, or partial, if they are guessing only some of the samples. When86

two raters make their predictions by chance, they sometimes agree. The87

question is when such agreements should count towards a statistical index of88

agreement. Theoretically, if the agreement by chance can be estimated, then89

this effect could be removed from the total agreement to discover the true90

agreement among raters. This is what chance-corrected measures try to do,91

but it is not at all clear that the final conclusion is reliable. Indeed, some-92

times these measures yield paradoxical and counter-intuitive results. The93

choice between chance-corrected or non-chance-corrected measures has been94

a topic of some debate (see, e.g., Guggenmoos-Holzmann (2006)). However,95

the best option is to use the measure of agreement that by definition and96

meaning best fits the nature of the problem being addressed, regardless of97

whether or not it includes corrections for chance.98

Consider m raters and c alternatives on a categorical scale. For the trian-99

gle, paired comparison, duo-trio, 2-AFC, and 3-AFC tests, the alternatives100

are right (positive) or wrong (negative) responses, i.e., c = 2. For the sake101

of simplicity, we shall first consider the notation for two panelists (m = 2),102

to subsequently generalize it to m ≥ 2. For a qualitative variable X ranging103

over 1, 2 (positive and negative ratings, respectively), nij will denote the ob-104

served frequency for rater 1 giving the response X = i, and rater 2 giving105

the response X = j. The observed frequencies can be presented in a con-106

tingency table of dimension 2 × 2, or generally m × 2. One has, of course,107

that
∑

i

∑
j nij = n. The proportion parameters, ρij, are estimated from the108

observed proportions, i.e., ρ̂ij = nij/n.109

The simplest non-chance-corrected measure is the proportion of overall110

agreement, defined as
∑

i ρii and estimated as
∑

i nii/n. The estimated value111

will be 0 when there is no agreement at all, and 1 when the agreement is112

absolute. This measure has been criticized, because it can be high even with113

hypothetical raters who randomly guess on each case with probabilities equal114

to the observed base rate. There are other non-chance-corrected measures,115

such as the Holley and Guildford G coefficient and the Rogot and Goldberg116

A1 and A2 indices (see Gwet (2002)). These measures were defined for only117

two raters, but they can be extended to three or more. They include the118
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agreement observed for all the possible rater responses, i.e., for the right and119

wrong responses jointly. They are unable to distinguish between agreement120

on right responses and agreement on wrong ones. Since our interest is in121

discriminating products, it is important to know the agreement for the right122

and the wrong cases separately, and while G, A1, and A2 do provide some123

information, they are really unsuitable for the present discrimination context.124

In order to address the problem of analysing the agreement based on125

only one specific response, there are some non-chance-corrected measures126

available for two raters – concordance proportion, Dice index, Goodman and127

Kruskal λr, and the Jaccard measure, among others (see Shoukri (2004)).128

The most interesting measure in this context is Dice index since it is easier129

to interpret than the others and leads to more realistic agreement values.130

Dice’s index has been widely used in several fields of knowledge (see, e.g.,131

Ajmone-Marsan et al. (2001) and LaPara et al. (2002)), but has been left132

practically unexplored in that of sensory analysis. One exception is the work133

of Mounchili et al. (2005) who applied it to the organoleptic analysis of milk134

samples.135

The proposal that we shall describe in the following section is based on136

the use of positive and negative Dice indices to discriminate products and137

assess agreement. In the following paragraphs of this section, we shall present138

the main results for these indices.139

For two raters, the Dice indices are defined as:

D
(2)
i =

2ρii

ρ
(1)
i + ρ

(2)
i

, i = 1, 2,

where ρ
(1)
i and ρ

(2)
i are the marginal probabilities for each rater, i.e, ρ

(1)
i =140

ρi1 + ρi2 and ρ
(2)
i = ρ1i + ρ2i. D

(2)
1 refers to the positive response and D

(2)
2141

to the negative one. Both values are defined in the interval [0, 1], taking142

the value 1 when there is total agreement for the i-th alternative, and 0143

when there is no agreement at all for that alternative. Graham and Bull144

(1998) and Mackinnon (2000) used the delta method to derive formulas for145

the asymptotic standard errors of these specific response measures. Alterna-146

tively, the standard errors can be estimated by Jackknife or nonparametric147

bootstrap (see Severiano et al. (2011)) techniques. We have not found any148

closed expressions for sampling distributions of Dice’s indices for hypothesis149

testing in the literature. However, simulation-based approaches can be used150

to estimate confidence intervals and to test hypotheses.151
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Dice already noted that the similarity measure proposed in an context of152

ecology in that work could be extended to three or more species. Warrens153

(2008) discussed this extension further in analysing similarity coefficients for154

binary data. The Dice index for more than two raters can be defined as:155

D
(m)
i =

mρii...i∑m
j=1 ρ

(j)
i

, (1)

where ρii...i is the proportion parameter for the case where all the raters156

have chosen the alternative i, and ρ
(j)
i is the marginal probability that is157

obtained for rater j with alternative i. This generalized index maintains the158

same properties as the two-rater one. However, there are no longer any closed159

expressions for asymptotic standard errors such as there were in the two-rater160

case. Confidence intervals or hypothesis testing must be performed using161

simulation-based approaches such as Monte Carlo or resampling methods162

(see, e.g., Manly (1997)).163

With respect to the chance-corrected measures, it is worth mentioning
that they have traditionally been far more commonly used than the non-
chance-corrected ones. They can be presented with the common expression:

M(I) =
Io − Ie
1− Ie

,

where Io and Ie are the observed and the expected values of the non-chance-164

corrected index of agreement, respectively.165

The most extensively used measures of agreement are Cohen’s kappa for166

two raters (Cohen (1960)) and Fleiss’s generalized kappa for several raters167

(Fleiss (1971)). They have been applied to the estimation of conjoint agree-168

ment (agreement for all possible alternatives) in many fields of knowledge.169

In the specific field of sensory analysis, there are only a few published appli-170

cations of agreement measures, and most of these use Cohen’s kappa. Pons-171

Sanchez-Cascado et al. (2006) and Baixas-Nogueras et al. (2003) used this172

index to evaluate the agreement between two rejection methods for anchovies173

and hake, respectively, and Jenschke et al. (2007) used it to assess the agree-174

ment between panelists in a beef tasting experiment. Wu and Chen (1995)175

used the multi-rater agreement Kappa to evaluate the agreement of tea sen-176

sory data. Cohen’s Kappa has also been proposed for use in a complementary177

way (see, e.g., Cicchetti and Feinstein (1990a)). A chance-corrected measure178

that could be used for discrimination testing is the conditional Kappa, al-179

though it does suffer from some drawbacks in that context. In the difference180
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problem, it is unusual for the raters to try to guess – they might do so some-181

times, but only in very few cases. Thus, the basic logic behind studying182

a chance-corrected measure such as the conditional kappa is inappropriate183

here. In addition, since both Dice indices are used, the overall agreement184

for the two possible responses is determined from the effect of the marginal185

proportions that are considered in the conditional kappa, so that there is no186

need to correct for possible effects of chance as has to be done in the condi-187

tional kappa. Note also that the agreement given by the conditional Kappa188

is in most case underestimated and that, to distinguish fair agreement, the189

number of agreed responses needs to be very high. Finally, chance-corrected190

measures may yield misleading values for binary ratings, such as in the prob-191

lem to be addressed in the present work (see Guggenmoos-Holzmann (2006)).192

The generalized Dice index does not have these drawbacks, and thus provides193

a clear and realistic measure of the agreement that may be useful in discrim-194

inating products.195

In the following section, we shall present the proposed approach and196

connect it to the standard procedures.197

3. An agreement-based approach198

3.1. Introduction199

The problem of discriminating products is a special case studied in sensory200

analysis. The three standardized tests defined for this kind of problem are201

the triangle test, the paired test, and the duo-trio test. Other tests put for-202

ward in the literature are demonstrating high potential, for example, Tetrad203

(see Garcia et al. (2012)), A-Not A, 2-AFC, and 2-AFCR (see Van Hout204

et al. (2011)). Besides, alternative strategies have been recently considered,205

like Bayesian methodology used by Bi (2011) and Dubnicka (2013). As a206

consequence, differentiation tests is a very active research topic.207

For discrimination problems, it is usual for there not to be many panelists208

available, and for a considerable number of observations to be required for209

the results to be to significant, this latter usually due to the smallness of the210

differences between the products. Meyners and Brockhoff (2003) showed that211

one might be able to add to the power of the test while reducing the number212

of raters by increasing the total number of assessments with replications. In213

particular, the test must be repeated several times to provide the necessary214

amount of information, and then results combined. The question of whether215

it is permissible to combine results from replicated triangular tests has been216
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extensively discussed by various authors. According to Kunert and Meyn-217

ers (1999), if the experiment is properly randomized and controlled then the218

assessments are will be independent and will have a binomially distributed219

success probability. But they also noted that it is difficult for these assump-220

tions to be satisfied when replications are performed, and in such a case the221

choice probability and a measure of heterogeneity should be estimated. The222

binomial distribution assumes the existence of only one source of variability223

– that based on the samples. Therefore, when panelists are rating identically224

from one sample to another, the variance is completely explained by the225

binomial distribution. But rating identically for all replications is unusual,226

although it may sometimes be the case.227

A general problem with discrimination testing is the assumption that all228

panelists have the same probability of discrimination, that there are only two229

kinds of raters – non-discriminators and perfect discriminators. The former230

type always guesses, and the latter always discriminates correctly through231

all the replications. This assumption is unrealistic, and it is evident that232

panelist variability needs to be taken into account when collecting replicated233

observations from the same panelists (see Ennis and Jesionka (2011)). To deal234

with this difficulty, a beta distribution can be used instead of a binomial to235

model variation in inter-trial choice probabilities.236

The beta-binomial model considers the variability among samples as well237

as the variability among raters (also termed overdispersion), making it pos-238

sible to combine responses across raters and replications. This increases the239

power of the test for a small panel size (see Anderson (1988)). The beta-240

binomial distribution is the natural extension of the binomial. It is based on241

the binomial with parameter p following a beta distribution with parameters242

a and b. It is useful to apply the re-parameterization µ = a/(a + b) and243

γ = 1/(a + b + 1), which are the mean of the binomial parameter p and a244

scale parameter that measures its variation, respectively (see, e.g, Ennis and245

Bi (1998)). The scale parameter varies from 0 when there is no overdisper-246

sion to 1 when there is total overdispersion. Ennis and Bi (1998) provide247

hypothesis tests to evaluate whether the parameters differ significantly from248

the quantities of interest. With the proportion µ, one tests whether or not249

the differentiation was the result of guessing. In testing the overdispersion250

parameter, one may study whether the appropriate distribution is the bino-251

mial (H0 : γ = 0) or the beta-binomial (H1 : γ ̸= 0). It is more important,252

however, to correctly estimate and interpret the parameters and their vari-253

ances that apply to the problem at hand.254
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The results given by the binomial and beta-binomial models for the same255

problem are generally sufficiently different for different conclusions to be256

drawn regarding the products being tested. When the sensorial judgement257

of these products is fairly easy to do, it is generally advantageous to collect258

replicated data and analyse it using the beta-binomial model (see Ligget259

and Delwiche (2005)). Even so, the question of overdispersion should be260

considered, because the binomial model might be appropriate in some cases.261

For example, in a test of the sensory quality of cabbage, Radovich et al.262

(2004) found from their use of the beta-binomial model that overdispersion263

was not significant in their case, and that the binomial model was better264

suited to their problem.265

The binomial procedure can be complemented with information obtained266

from an agreement-based approach. Specifically, the positive and negative267

Dice indices can be used to provide information on the homogeneity of the268

raters’ responses. This can then be used to discriminate between products,269

and to provide complementary evidence on their differences. As a spin-off, the270

approach also provides information on the “quality” of the raters involved.271

3.2. Using Dice’s indices272

Firstly in this subsection, we shall consider the relationship between
Dice’s indices and difference tests. For these latter, let p0 be the guess-
ing success probability, where p0 = 1/2 for the 2-AFC, paired, and duo-trio
methods, and p0 = 1/3 for the 3-AFC and triangle methods. If all raters
are guessing then the marginal proportions of success for the m independent
raters are the same, i.e., ρ

(j)
1 = p0, j = 1, 2, . . . ,m. Therefore, the positive

response Dice index is

D
(m)
1 =

mpm0∑m
j=1 p0

= pm−1
0 .

Then, the hypothesis tests273

H0 : D
(m)
1 ≤ pm−1

0

H1 : D
(m)
1 > pm−1

0 (2)

show whether the raters are discriminating the positive response more than274

would be expected by chance. Analogously, for the negative response Dice275

index, one will replace p0 by 1− p0, and test the hypotheses276

H0 : D
(m)
2 ≥ (1− p0)

m−1

H1 : D
(m)
2 < (1− p0)

m−1 (3)
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showing whether the raters fail in the discrimination less than expected by277

chance. For example, in the triangle test with two panelists, when D
(2)
1 and278

D
(2)
2 are significantly greater than 1/3 and less than 2/3, respectively, one279

can assume that the panelists are not guessing and are actually revealing280

differences between the products being evaluated.281

When both hypothesis tests, (2) and (3), are significant, the raters are282

indeed discriminating products. In this case, D
(m)
1 must be large and D

(m)
2283

must be small. This means that the raters are mostly giving correct responses284

(i.e., a high degree of agreement is attained), and therefore they are noticing285

differences between the products. Otherwise, there is no evidence that the286

raters are properly discriminating products. This procedure is also applicable287

using bilateral hypothesis tests.288

Dice indices have several advantages over other measures in studying the289

agreement for difference tests. Together, positive and negative Dice indices290

show the consistency of the raters in the two directions, indicating whether291

the products are different or, on the contrary, are similar. In addition, some292

other measures can report low overall agreement while the separate agree-293

ments for both the positive and negative responses are high. For example,294

the effect of symmetrically unbalanced marginal totals may lead to a low295

value of Cohen’s kappa (see Cicchetti and Feinstein (1990b)). In this case,296

the wrong conclusion may be drawn that the products are similar when they297

are actually different, and the Dice indices could have detected any potential298

differences. Finally, when just one of the positive or negative agreements is299

low, most indices tend also to be low because they reward symmetry between300

agreement and disagreement. in contrast, a low negative dice index with a301

high positive dice index is indicative of major differentiation.302

In order to perform the hypothesis tests of (2) and (3), one must know303

the statistical distributions under the null hypotheses. Sometimes it is not304

possible to derive a closed form expression for a given sampling distribution,305

and indeed this seems to be the case here. No sampling distribution has as306

yet been obtained in a closed form relating to the Dice index. However, sam-307

pling distributions of interest may be estimated by Monte Carlo simulation.308

Using this technique, it is possible to generate approximations to the true309

sampling distributions of the test statistics. The precision of the approxi-310

mation depends strongly on the number of simulations performed. Monte311

Carlo estimation of sampling distributions is widely used in many practical312

settings. For example, the IBM SPSS software package offers it as an op-313
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tion when the data does not satisfy the necessary conditions for asymptotic314

methods to be used or the samples are so large that the computation time315

required is prohibitive. The procedure provides an unbiased estimate of the316

exact p-value (see, e.g., Mehta and Patel (2010)).317

Once the hypothesis tests have been set, the sampling distribution is es-318

timated according to the number of raters m, the number of replications k,319

and the number of simulations. Table 1 presents the critical values for several320

significance levels in different scenarios. These critical values were obtained321

by Monte Carlo estimating the sampling distributions with 1 000 000 simu-322

lations. The estimated sampling distributions for D
(m)
1 are asymmetrically323

distributed with right-side tails, whereas those for D
(m)
2 are approximately324

normal. Since one-sided hypothesis tests are considered, attention must be325

paid to the right (left) tail for the sampling distribution of D
(m)
1 (D

(m)
2 ). A326

reduced table is presented for illustrative purposes.327

D̂
(m)
1 D̂

(m)
2

k = 10 k = 20 k = 30 k = 40 k = 10 k = 20 k = 30 k = 40
m = 2 m = 2
0.01 0.8000 0.6667 0.6316 0.5926 0.99 0.2000 0.3636 0.4324 0.4681
0.025 0.7500 0.6316 0.5833 0.5517 0.975 0.2857 0.4211 0.4706 0.5000
0.05 0.6667 0.5882 0.5455 0.5185 0.95 0.3636 0.4615 0.5128 0.5306
0.1 0.6000 0.5333 0.5000 0.4800 0.9 0.4444 0.5185 0.5455 0.5652

m = 3 m = 3
0.01 0.5455 0.4091 0.3529 0.3243 0.99 0.0000 0.1579 0.1935 0.2308
0.025 0.4615 0.3600 0.3103 0.2857 0.975 0.0000 0.1765 0.2308 0.2647
0.05 0.4000 0.3158 0.2813 0.2553 0.95 0.1579 0.2368 0.2679 0.2917
0.1 0.3333 0.2727 0.2368 0.2195 0.9 0.1765 0.2647 0.3103 0.3288

m = 4 m = 4
0.01 0.3636 0.2667 0.2105 0.1905 0.99 0.0000 0.0000 0.0588 0.1132
0.025 0.3077 0.2105 0.1860 0.1538 0.975 0.0000 0.0784 0.1067 0.1250
0.05 0.2667 0.1667 0.1538 0.1404 0.95 0.0000 0.0851 0.1463 0.1569
0.1 0.2222 0.1429 0.1081 0.0889 0.9 0.0000 0.1509 0.1622 0.1887

Table 1: Critical values for the Monte Carlo estimated sampling distributions.

The rejection regions for the two tests generally grow with increasing328

number of replications and/or number of panelists. This means that less329

positive agreement and more negative agreement are necessary to detect sig-330

nificant results, and consequently to reveal product differences. For example,331

in the triangle test case, rejecting H0 : D
(m)
1 ≤ (1/3)m−1 is difficult when332

there are only 10 replications and 2 panelists. With α = 0.01, a positive333

agreement value greater than 0.8 is needed, and rejecting the null hypoth-334

esis becomes easier as the number of replications increases. For D
(m)
2 , the335

lowest rejection values are attained with 4 raters and 10 replications. With336
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more replications and fewer panelists it is easier to reject the null hypothesis337

H0 : D
(m)
2 ≥ (2/3)m−1.338

In practice, it is not necessary to use a table of critical values and proba-339

bilities, since the approximated sampling distributions are already available,340

and can be used to obtain the necessary p-values. Monte Carlo simulations341

can also be used to calculate the one-sided confidence intervals.342

It must be remarked that the proposed approach is not valid for overdis-343

persed binomial data. In such cases, the beta-binomial model should be used344

instead because the parameter p can have great variability. This possibly345

extreme variability directly affects the estimates of the agreement indices by346

yielding large positive and negative Dice indices. With overdispersion, even347

when there is a clear difference between products, both D
(m)
1 and D

(m)
2 are348

large, leading to misinterpretations if the proposed approach is used. There-349

fore, before applying this proposed approach, it is advisable to perform an350

overdispersion test. In Subsection 3.4, the effect of overdispersion is illus-351

trated with a simulation based example.352

3.3. Pairwise comparisons353

Besides the information on discrimination provided by the approach, the354

problem can also be decomposed into m(m − 1)/2 two-rater problems, i.e.,355

performing pairwise comparisons for all the raters. These comparisons pro-356

vide information on the agreement between raters. This can be useful in357

evaluating the degree of agreement for each panelist relative to the others,358

and to determine the level of expertise of novice trainee panelists.359

These Dice indices can be interpreted in a similar way to that of the360

general problem. Comparison of all the pairwise results together leads to two361

possibilities – either all the panelists agree in the same way by pairs or they362

do not. When all the pairwise comparison hypothesis tests are significant,363

all the panelists are discriminating products in a similar way.364

On the one hand, if all the panelists agree in the same way, i.e., both D
(2)
1365

and D
(2)
2 are similar for all the pairs then the panelists have the same level366

of expertise and roughly the same discriminatory reliability. In particular,367

they all have approximately the same influence on the general agreement and368

on the differentiation between products. On the other hand, if the panelists369

agree differently by pairs, one can identify which of them are the sources of370

the increase or decrease in the general agreement. In Subsection 3.4, we shall371

present an illustrative example of the interpretation of pairwise comparisons.372

12



The proposed framework for pairwise comparisons is particularly helpful373

when novice panelists are being trained by an expert. The expert can be374

taken as the gold standard, with the pairwise comparisons representing an375

objective form of ranking the panelists by efficacy.376

3.4. Illustrative examples377

In this subsection, we shall present three examples illustrating some typ-378

ical scenarios of difference test problems using the triangle test.379

Example 1. Binomial data. We first considered two scenarios in the380

binomial model. In one, the proportion of successes used for the simulation381

was taken to be p = 1/3, corresponding to agreement by chance, so that the382

products should not be discriminated. In the other, we took p = 2/3, corre-383

sponding to the raters being able to properly discriminate between products.384

In each case, 20 000 contingency tables were simulated for 3 raters and 20385

replications, fitting the beta-binomial model, and estimating its parameters386

and the Dice indices, D
(3)
1 and D

(3)
2 . The p-values were for the hypothesis387

tests of the beta-binomial model (see Ennis and Bi (1998)) and of the Dice388

indices (see Subsection 3.2) were also calculated. The averages of the param-389

eter estimates and the p-values over the 20 000 simulations are presented in390

Table 2.391

Param. µ̂ p̂-value γ̂ p̂-value D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

µ = 1/3 0.3330 0.6238 0.0442 0.7957 0.1042 0.3875 0.4372 0.4997
µ = 2/3 0.6667 0.0006 0.0435 0.7995 0.4363 0.0311 0.1035 0.0314

Table 2: Estimated parameters and p-values for binomial simulated data.

The estimates of the parameter µ agree with the pre-set values used to392

generate the data with the binomial model, i.e., p = 1/3 and p = 2/3. The393

hypothesis test is non-significant for the case generated with µ = 1/3, and394

significant for the case generated with µ = 2/3. The overdispersion tests are395

not significant, and the estimates of γ are close to zero in both cases. This396

validates the simulation process.397

When the probability of success is p = 1/3, the positive and negative398

agreement indices are close to their expected values 1/9 and 4/9, respectively.399

According to the estimated p− values, these indices are not significant, and400

consequently the products can not be considered to have been discriminated.401
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Finally, when p = 2/3, both hypothesis tests are significant, indicating that402

the agreement is not by chance, and that the raters properly discriminate403

the products.404

Table 3 presents the results for the pairwise comparisons. All the positive405

Dice indices for the pairs are similar and close to the expected values 1/3406

and 2/3, indicating homogeneity among raters for the positive response. The407

same is the case for the negative response with respect to the expected values408

2/3 and 1/3. Thus, the panelists agree (disagree) and differentiate (do not409

differentiate) in the same way.410

µ = 1/3 D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

Rater 1 vs Rater 2 0.3179 0.4966 0.6588 0.4970
Rater 1 vs Rater 3 0.3165 0.4976 0.6592 0.4976
Rater 2 vs Rater 3 0.3138 0.5036 0.6577 0.4961

µ = 2/3 D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

Rater 1 vs Rater 2 0.6576 0.0450 0.3149 0.0432
Rater 1 vs Rater 3 0.6581 0.0441 0.3163 0.0437
Rater 2 vs Rater 3 0.6577 0.0441 0.3156 0.0434

Table 3: Estimated Dice indices and p-values for pairwise comparisons.

Example 2. Consequences of overdispersion.411

As previously observed, the proposed approach is not valid for overdis-412

persed binomial data. The following is a simulation-based example to illus-413

trate the effects of overdispersion on the Dice indices. The beta-binomial414

model is used to generate the data with different levels of overdispersion:415

low, medium, and high (γ = 0.2, γ = 0.5, and γ = 0.8). Low and high416

success probabilities were also considered (µ = 1/3 and µ = 2/3). Again417

20 000 contingency tables were simulated for 3 raters and 20 replications for418

the different scenarios. The results are summarized in Table 4.419

The estimated values for the parameters of the beta-binomial distribution420

agree with the ones set beforehand, validating the simulation process. It can421

be seen that the Dice indices increase as the overdispersion increases. When422

γ is low, the positive and negative indices are closer to their expected values,423

whereas, when overdispersion increases, the agreement indices increase too.424

Table 5 presents the results for the pairwise comparisons. Again, all the425

Dice index values increase as the overdispersion increases.426

The extreme variability distorts any interpretation of the agreement and427
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Parameters µ̂ p̂-value γ̂ p̂-value D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

µ = 1/3, γ = 0.2 0.3339 0.7516 0.1847 0.3503 0.2426 0.1993 0.5599 0.7618
µ = 2/3, γ = 0.2 0.6668 0.0008 0.1897 0.3388 0.5637 0.0060 0.2474 0.8239
µ = 1/3, γ = 0.5 0.3336 0.7571 0.4804 0.0260 0.5015 0.0328 0.7339 0.9668
µ = 2/3, γ = 0.5 0.6750 0.0001 0.4784 0.0322 0.7407 0.0002 0.4909 0.3769
µ = 1/3, γ = 0.8 0.3329 0.7662 0.7889 0.0005 0.7905 0.0013 0.8961 0.9994
µ = 2/3, γ = 0.8 0.6687 0.0000 0.7860 0.0002 0.9018 1.1 · 10−6 0.7869 0.9642

Table 4: Estimated parameters and p-values for beta-binomial simulated data.

µ = 1/3, γ = 0.2 D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

Rater 1 vs Rater 2 0.4461 0.2928 0.7237 0.6694
Rater 1 vs Rater 3 0.4438 0.2954 0.7234 0.6701
Rater 2 vs Rater 3 0.4455 0.2916 0.7249 0.6803

µ = 2/3, γ = 0.2 D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

Rater 1 vs Rater 2 0.7261 0.0178 0.4467 0.1478
Rater 1 vs Rater 3 0.7263 0.0180 0.4479 0.1500
Rater 2 vs Rater 3 0.7274 0.0174 0.4500 0.2001

µ = 1/3, γ = 0.5 D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

Rater 1 vs Rater 2 0.6493 0.0782 0.8276 0.8975
Rater 1 vs Rater 3 0.6488 0.0782 0.8273 0.8968
Rater 2 vs Rater 3 0.6495 0.0777 0.8280 0.8972

µ = 2/3, γ = 0.5 D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

Rater 1 vs Rater 2 0.8354 0.0020 0.6574 0.5331
Rater 1 vs Rater 3 0.8333 0.0028 0.6466 0.4962
Rater 2 vs Rater 3 0.8236 0.0025 0.6307 0.5013

µ = 1/3, γ = 0.8 D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

Rater 1 vs Rater 2 0.8576 0.0058 0.9311 0.9923
Rater 1 vs Rater 3 0.8573 0.0060 0.9306 0.9923
Rater 2 vs Rater 3 0.8572 0.0062 0.9312 0.9998

µ = 2/3, γ = 0.8 D̂
(3)
1 p̂-value D̂

(3)
2 p̂-value

Rater 1 vs Rater 2 0.9298 0.0001 0.8556 0.8985
Rater 1 vs Rater 3 0.9293 0.0001 0.8522 0.8971
Rater 2 vs Rater 3 0.9314 0.0001 0.8570 0.9067

Table 5: Estimated Dice indices and p-values for pairwise comparisons.

the differentiation. Therefore, the proposed approach must only be applied428

to non-overdispersed binomial data.429

Example 3. Detecting non-accurate raters.430
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The effect of one or more conflictive raters can be analysed in the pair-431

wise comparison framework. Table 6 is the contingency table for a scenario432

in which one rater disagrees with the other two. Non-overdispersed bino-433

mial data are obtained (γ̂ = 0.00001, and p̂ − value = 1). Using the bino-434

mial procedure, the three raters are seen to discriminate between products435

(p̂ = 0.6480, p̂ − value = 2.1 · 10−9), but it can not be seen which panelists436

differentiate and which do not.437

Rater 3
A F Total

R
at
er

1

Rater 2 A 4 21 25
A F 2 2 4

Total 6 23 29
A F Total

A 4 1 5
F F 1 1 2

Total 5 2 7

Table 6: Contingency table.

Table 7 presents the general Dice indices and the pairwise comparisons. It438

can be observed that the hypothesis tests for these indices are not simultane-439

ously significant, indicating that the three raters do not properly discriminate440

between products.441

D̂
(m)
1 p̂-value D̂

(m)
2 p̂-value

Raters 1 vs 2 vs 3 0.1714 0.2294 0.0789 0.1118
Rater 1 vs Rater 2 0.8475 0.0003 0.3077 0.0037
Rater 1 vs Rater 3 0.3000 0.5538 0.1250 8 · 10−5

Rater 2 vs Rater 3 0.3902 0.3526 0.1936 0.0972

Table 7: Estimated Dice indices and p-values.

The hypothesis tests for raters 1 and 2 are significant, denoting that442

they are indeed able to discriminate. In contrast, the comparisons between443

rater 3 and the other two (1-3 and 2-3) indicate that the agreement is by444

chance because the hypothesis tests are not simultaneously significant. It445

is apparent that rater 3 is the only one with low agreement, but that that446
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rater’s failures decisively affect the general agreement. Raters 1 and 2 are447

able to differentiate the given products, but rater 3 is only guessing.448

The following section illustrates the application of the proposed approach449

in a real context.450

4. Application451

An experimental study was performed in order to illustrate the potential452

of the approach in discriminating between two meat products and to evaluate453

the inter-rater agreement. The triangle test was used with the guidelines454

defined by the norm International Organization for Standarization (2004b).455

We shall first describe the experiment.456

Two Iberian pork loins of the same quality (Iberian pigs fed partly on457

fodder and partly on mast) were evaluated. The first is a Carrefour house-458

brand pork loin, and the second is produced by a traditional company, La459

Flor Piornalega. This variety of pork loin is obtained from free-range Iberian460

pigs fed on cereals and mast (acorns) and sacrificed at 12 months. The two461

pieces considered were dry-cured at specialist sites in Spain under very similar462

conditions of humidity and altitude (Guijuelo for the Carrefour product, and463

Piornal for the La Flor Piornalega product). The two loins were tasted by464

three panelists, and the results analysed by the present proposed approach.465

The procedure was as follows. A set of three samples was presented466

simultaneously to each rater, two of them belonging to the same loin. This467

step was repeated several times with different sets of samples. The raters468

had to identify which sample was different in each set presented. There were469

six sessions, and every rater tasted just six sets per session to avoid sensory470

fatigue. In total, therefore, each rater dealt with 36 sets. All three raters471

were novices because the objective was to identify whether any differences472

were noticeable from a regular consumer’s point of view.473

The samples in the sets were displayed uniformly, and all corresponded to474

the same two pieces of pork loin. The experiment was performed under the475

same conditions of temperature and lighting in a standardized tasting room.476

The patterns followed to display the samples were: CPP, PCC, CCP, PPC,477

CPC y PCP, with C being Carrefour and P La Flor Piornalega. To tabulate478

the results, the two possible responses were A if they found the different479

sample, and F if they failed. The results are presented in Table 8. Note480

that the first rater obtained 30 correct responses and only 6 were incorrect,481
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the second rater obtained 28 correct responses and 8 incorrect, and the third482

rater obtained 27 correct responses and 9 incorrect.483

Rater 3
A F Total

R
at
er

1
Rater 2 A 20 4 24

A F 4 2 6
Total 24 6 30

A F Total
A 2 2 4

F F 1 1 2
Total 3 3 6

Table 8: Contingency table for the experimental results.

First, we shall approach the discrimination problem by following the stan-484

dard methodology. Depending on the properties of the data, there are two485

possibilities. If there is no variation among trials then the binomial model486

considered in the norm International Organization for Standarization (2004b)487

can be applied. Otherwise, one should use the beta-binomial model (see En-488

nis and Bi (1998)). In order to choose the model, an overdispersion analysis489

is applied. The maximum likelihood estimates for the beta-binomial param-490

eters are µ̂ = 0.8151 and γ̂ = 0.0921, and the 95% two-sided confidence491

intervals are (0.7355, 0.8948) and (0.0000, 0.3222), respectively. The scale492

parameter estimate is close to zero, and the corresponding hypothesis test493

H0 : γ = 0

H1 : γ ̸= 0, (4)

provides a non-significant result with p − value = 0.3946. There is no evi-494

dence that γ is different from zero, and hence neither of overdispersion being495

present. The binomial model can thus be applied.496

For the binomial model, p must be estimated using the number of correct497

differentiations, xc, and the number of experiments, k ·m = 36 · 3 = 108. In498

this experiment the estimated probability of success is p̂ = 0.8148, with a499

95% two-sided confidence interval equal to (0.7424, 1). The hypothesis test500

H0 : p = 1/3

H1 : p ̸= 1/3, (5)
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yields p− value = 2.2 · 10−16. Thus, the panelists are not guessing, and they501

are discriminating between products.502

The present proposal allows the foregoing information to be comple-503

mented with other aspects, such as how intense the agreement is with respect504

to the differentiation, or whether the panelists differentiate the samples in a505

similar way.506

With respect to the agreement, it can be observed that the most frequent507

result is the agreement among the three raters (A,A,A), which occurs 20508

times out of a total of 36. When there are more than two raters, it becomes509

more difficult to differentiate all the samples simultaneously. In this case,510

the three raters found the different sample for the same sets 56% of the time.511

It is also remarkable that there was only one jointly failed differentiation.512

The proportion of agreement
∑

i niii/n = 21/36 = 0.58 summarizes this513

information. This is quite a high proportion result for three raters, but it is514

interesting to distinguish whether these agreements come from right or from515

wrong differentiations between the two products.516

The generalized Dice index of agreement is used to evaluate the overall517

conditional agreement for each response. The Dice indices are D̂
(3)
1 = 0.71 for518

the correct responses, and D̂
(3)
2 = 0.13 for the incorrect ones. The 95% one-519

sided confidence intervals are (0.3158, 0.8182) and (0,0.5400) respectively.520

These indices lead to the conclusion that the three raters differentiate the two521

samples quite well, because the positive agreement among them is high and522

the negative agreement is low. In order to formalize this result, the proposed523

one-sided hypothesis tests are applied. Monte Carlo simulations were used524

to generate the Dice index distributions for 3 raters and 36 replications.525

Figure 1 shows the distribution of the Dice indices under the null hypotheses526

H0 : D
(3)
1 ≤ 1/9 and H0 : D

(3)
2 ≥ 4/9, respectively.527

The first hypothesis test provides a p − value = 0, i.e., none of the528

1 000 000 values generated from the statistical distribution is greater than529

0.71. The second hypothesis test gives a p−value = 0.000426. Both tests are530

significant, indicating that, simultaneously, the positive agreement is greater531

than expected by chance and the negative agreement is less than expected532

by chance. This means that differences between the two products are indeed533

found. This result reinforces that previously obtained with the binomial534

model. Moreover, this approach yields information about the degree of dis-535

crimination, which, in this case, is high.536

A pairwise comparison provides information about whether the raters537
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Figure 1: Distribution of Dice indices under the null hypothesis for 3 raters and 36 repli-
cations.

are discriminating the samples in a similar way or whether one or more of538

them are influencing the agreement more. Table 9 presents the pairwise Dice539

indices for the three raters. It also gives the p-values according to the tests540

defined in Section 3.541

Note that the positive Dice indices are very similar (from 0.80 to 0.84)542

and are high. The indices for the negative response are also similar (from543

0.29 to 0.40). This emphasizes that the raters all behave in a similar way,544

i.e., there is no rater performing the test in a better or worse way than the545

others. The three raters seem to have a similar capability to differentiate,546
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D
(2)
1 p-value D

(2)
2 p-value

Rater 1 vs Rater 2 0.83 0.0004 0.40 0.0016
Rater 1 vs Rater 3 0.84 0.0002 0.29 0.0149
Rater 2 vs Rater 3 0.80 0.0005 0.35 0.0049

Table 9: Dice indices and p-values for pairwise comparisons.

and they obtained a high degree of differentiation. When performing the547

hypothesis tests, all the p-values are very small (the largest is 0.0005), re-548

jecting the possibility that the panelists are guessing when comparing them549

pairwise. According to these results, the panelists found significant differ-550

ences between the products studied, both all together and individually. The551

degree of differentiation was very high.552

5. Conclusions553

A novel approach to sensory analysis discrimination tests has been de-554

scribed. It is based on the generalized positive and negative Dice agree-555

ment indices, which are used to develop two hypothesis tests. Monte Carlo556

simulation is used to obtain the distribution under the null hypothesis and557

the corresponding p-values. The approach provides information on the dis-558

crimination between products and its strength. Pairwise comparison is used559

to examine the influence of each rater on the discrimination process. This560

framework can also be used to train novice panelists by comparing them with561

experts.562

The present proposal is not a substitute for the traditional method based563

on the binomial distribution, but complements it by providing additional in-564

formation. The applicability of the approach was illustrated by way of some565

examples, and an experiment was performed using the triangle test scheme to566

differentiate between two meat products. The results reinforced those given567

by using the classical binomial model, and showed that the degree of differen-568

tiation was quite high. Moreover, all the raters were good at discriminating569

the products, and none was better or worse than the others in this task.570

The proposed approach is especially interesting when the standardized571

binomial method is not recommended, i.e., when few raters are involved and572

replications are needed. It is also recommendable when the interest is on573

rating novice panelists being trained by an expert, because it allows them to574

be ranked by skill.575
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