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Abstract In this review, we report and analyse the molecular factors involved in cardiogenesis from the earliest stages of devel-
opment, using mainly the chick embryo as a model. The first part of the review demonstrates the areas where car-
diogenic cells are located from gastrula stages, analysing a brief summary of the fate map of cardiogenic cells, from the
epiblast through to the primitive heart tube. The next part analyses the commitment of pre-cardiac cells in cardio-
genesis before, during, and after ingression through the primitive streak. Throughout the different journeys of the pre-
cardiac cells, from the origin on the epiblast level up to the constitution of the tubular heart in the mid-line, the genes
involved in the different stages of the process of cardiogenesis are very numerous. These have a greater or lesser
importance depending on their specificity and the order in which they appear, bearing in mind that they become
more valuable as the developmental process advances and the precursor cells start acquiring the commitment of
pre-cardiac cells. Next, we show some box-filled diagrams to illustrate the dynamic gene expression pattern through-
out the early stages of heart development, grouping the genes by their chronological significance. Finally, we discuss
the implications that this temporal genomic expression could have in the induction and specification of the different
types of cells and regions of the heart.
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1. Introduction
Over the last few years, the challenge to understand the molecular
determinants responsible for heart development has taken on

special relevance. Here, we analyse the molecular determinants of

cardiac specification of the cells programmed to form the heart.

Thus, we will analyse the origin, location, and migration of the pro-

spective cardiogenic cells as well as the possible commitment of

these groups of cells to form cardiac or other structures, their mol-

ecular characteristics, specific gene expression patterns, and finally

the inductive or repressive factors involved in cardiac specification.
We will use the chick embryo as the main model to describe

cardiac development, and we will make specific comments about
other species and models, mainly the mouse, when relevant infor-
mation is available. The number of genes implicated is very large,
but no synthesis has brought the information together in a compre-
hensive manner. Here we use a box-filled diagram to show the
dynamic gene expression pattern throughout the early stages of
development, grouping the genes not for their proteomic or
genomic lineage as is usual in other works, but by their chronological
significance in cardiogenesis. We then discuss the implications that

this temporal genomic expression could have in the induction and
specification of the different types of cells and regions of the heart.

2. Origin, location and migration of
prospective cardiogenic cells
In avian embryos at stages 3a and 3b (Hamburger and Hamilton;1

substaging of stage 3 as described by Schoenwolf et al.2) and PS2–
PS3 (as described by Lopez-Sanchez et al.3), the prospective cardio-
genic cells are located in the epiblast and primitive streak (Figure 1).
Within the epiblast, these cells are bilaterally distributed on both
sides of the primitive streak, caudal to the node.4,5 In the mouse,
the origin and position of the epiblast prospective cardiogenic cells
are similar to the chick.6,7 In the zebrafish, the cardiac precursors
are in the ventral marginal zone at the mid- to late blastula stages.8,9

A few hours later (PS5), the rostral half of the primitive streak, with
the exception of the node, contains the prospective cardiogenic
cells10 (Figure 1), and also the cells that are going to form the endo-
derm which underlies the pre-cardiac mesodermal cells at both
sides of the embryo.5,11,12 Progeny of cells from this region will con-
tribute to all layers of the heart tube, including endocardium, myocar-
dium, and parietal pericardium.2,10 A similar localization and fate of
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cardiogenic cells have been described in the mouse.13 However, it is
still not clear whether the co-alignment of cells in the primitive streak
and heart tube, and the endocardial and myocardial progenitors in the
primitive streak, represent completely separate lineages, as has been
found in the chick, is also true for the mouse.14

Later (HH4) in gastrulation (Figure 1), pre-cardiac cells from the
epiblast invaginate through the primitive streak, and move bilaterally
and cranially,15 to form the bilateral cardiogenic mesoderm,16

located in the anterior position, and constituting the primary
cardiac field, also called the heart-forming region. At this moment,
the pre-cardiac mesoderm is surrounded by the adjacent endoderm,
which comes from the more cranial part of the primitive streak, and
which plays a crucial role during cardiac specification.12

The primary cardiac field does not show precise boundaries, and
the discussion about the limit is still open.17,18 Some studies even
described a single cardiogenic field as a ‘horseshoe-shaped zone’ or
‘cardiac crescent’ continuous across the mid-line, cranial to the pre-
chordal plate.19,20 The organization of the heart-forming region in
two clearly separate regions, as described in the chick embryo at
stage HH5, with a gap between them, has also been shown in amphi-
bians. In the mouse, it is difficult to see independent bilateral cardio-
genic fields, and they are usually described as a single, crescent-shaped
region.21– 23

From stage HH7 begins the organization of the heart rudiment pre-
cardiac splachnic mesoderm, which will form both of the primitive
endocardial tubes, surrounded by the underlying endoderm. From
stage HH9, both primitive endocardial tubes fuse in the mid-line to
form the primitive heart tube, structurally organized in concentric
layers of endocardium and myocardium.24

2.1 Commitment of cardiogenic cells
The fate maps clearly show that the cells which give rise to the heart
come from the epiblast layer, primitive streak, and lateral mesoderm,
and lead us to question at what point during this process the cells
commit to differentiate towards cardiac specification. Numerous

experiments have been conducted in order to answer this question,
mainly based on the transplantation of cardiogenic cells to areas
that are not involved in the formation of the heart, as well as the con-
trary; for example, there are experiments based on the grafting of
prospective primitive streak cardiac cells into the prospective
somitic cells, and vice versa12,25,26 (Figure 2), grafting of prospective
primitive streak cardiac cells into the germ cell crescent,12 rotation
of craniolateral endoderm,26 rotation of mesodermal pre-cardiac
cells and the underlying endoderm,27 or explants of cardiogenic
mesoderm, with or without endoderm.11,28,29 Experimental studies
in the mouse have shown that the epiblast-derived cells differentiated
into myocardial cells, after being transplanted directly to the cardio-
genic field of the late primitive streak embryo without ingression
through the primitive streak or moving within the mesoderm,
suggesting that ingression is not critical for specification of myocardial
fate.30,31

3. Spatial and temporal gene
expression that correlates with
cardiac specification
In this section, we provide a detailed temporal and spatial analysis of
the genes that are expressed in the cellular groups which are going to
contribute to the formation of the tubular heart, with special refer-
ence to data obtained through in situ hybridization in avian embryos.

3.1 Gene expression patterns during
gastrulation
Several genes are expressed from the initial stages of cardiogenesis.
Figure 3 illustrates in red boxes the expression of different genes in pre-
cardiac cells according to their location at the level of the epiblast, primi-
tive streak, and lateral mesoderm. Bmp232 is expressed in pre-cardiac
cells, from stage PS3 in the epiblast, continuing at stage PS5 in the primi-
tive streak, and at stage PS8 in the pre-cardiac lateral mesoderm. In

Figure 1 Schematic diagrams showing the pre-cardiac cells, from stage HH3 (PS3) to stage HH10, in the developing chick embryo. Red indicates the
mesodermal pre-cardiac cells, and green the endodermal cells that are related to cardiogenesis. The section shows the migration of epiblast cells
ingressing through the primitive streak at stage HH4.
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Figure 2 Schematic diagram showing the experimental procedure for the reciprocal transplantation (quail–chick chimera) of primitive streak cells,
between embryos at stages PS5 (pre-cardiac cells, in red) and PS8 (pre-somitic cells, in blue). (A) Whole mount and section after in situ hybridization
and immunocytochemistry (anti-quail) showing the quail pre-somitic cells (brown), transplanted into the pre-cardiac site, expressing cNkx-2.5 at the
level of the pre-cardiac splanchnic mesoderm. (B) Whole mount and section after in situ hybridization and immunocytochemistry showing the quail
pre-cardiac cells (brown), transplanted into the pre-somitic site, expressing Paraxis (specific somitic marker) at the level of the somites. The white line
indicates the level of the respective section. Scale bars represent 400 mm.

Figure 3 The diagrams show in red the expression of different genes in pre-cardiac cells according to their location, as follows: pre-cardiac epiblast
cells (PEC), pre-cardiac primitive streak cells (PPSC), and pre-cardiac lateral mesodermal cells (PLMC).
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Figure 4 Genes expressing from HH5, in mesodermal pre-cardiac cells (MesoPC), reaching the primitive heart tube (A) or not (B). The diagrams on
the left show in red the expression of different genes as described for Figure 3, but in this case the expression of the same genes can be also detected
later in development, as indicated on the right. The expression of the different genes at the level of the primary cardiac field (PCF), primitive endo-
cardial tubes (PET), and primitive heart tube (PHT) is indicated by colors. When a gene is specific for the primary cardiac field, it may be expressed at
the level of the mesodermal pre-cardiac cells (MesoPC, in brown) and/or the adjacent endodermal cells (AEndoC, in green). When a gene is specific
for the primitive endocardial tube, it may be expressed at the level of the heart rudiment pre-cardiac splanchnic mesoderm (HRPSM, in brown) and/or
the underlying endoderm (UE, in green). Finally, the genes expressed at the level of the primitive heart tube may be located in the myocardium (in
yellow) and/or endocardium (in blue), corresponding to the ventricle (half left side) or atrium (half right side).
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contrast, EphB3 (Eph receptor tyrosine kinase33,34), Erm (transcriptional
targets of Fgf signalling35,36), and Vg1 (a member of the Tgfb superfam-
ily37,38) are expressed only in the pre-cardiac cells of the epiblast and the
primitive streak, but not in pre-cardiac lateral mesodermal cells. More-
over, Mkp3 (a MAP kinase phosphatase 336) and Fgfr136,39 are expressed
only in pre-cardiac epiblast cells. Some other genes, Gata-4, -5, and -6
(zinc finger proteins40,41), and Cited2 (formerly melanocyte-specific
gene related gene, MRG142), are expressed in pre-cardiac cells of the
primitive streak and lateral mesoderm, whereas Cerberus (secreted
Bmp and Wnt antagonist43,44) and Fgf838 are expressed only in pre-
cardiac primitive streak cells. Finally, cTnt (cardiac troponin T, respon-
sible for binding of the troponin complex to tropomyosin45,46), Myocar-
din (a serum response factor cofactor47), dHand (member of a family of
muscle-specific basic helix–loop–helix ‘bHLH’ transcription
factors48,49), cClp-1 (cardiac lineage associated protein, related to
Mef250), Cripto (formerly Tdgf1, teratocarcinoma-derived growth
factor51,52), Aldh1A2 (Raldh2; retinaldehyde deshydrogenases, related
to retinoic acid53,54), EphrinB1, and EphrinA2 (both ligands of the Eph
family of receptor tyrosine kinases34) start to be expressed from pre-
cardiac lateral mesodermal cells. These genes are also expressed later
during cardiac specification and differentiation, with different roles.

3.2 Gene expression patterns of ingressed
pre-cardiac mesodermal cells
The primary cardiac field, constituted by the mesodermal pre-cardiac
cells at stage HH5 (PS13), does not show a precise boundary or limit.

There has been an attempt to establish a correlation between the
pattern of expression of some genes with the limits of the primary
cardiac field. cNkx-2.5 has been proposed as the first transcription
factor responsible for the beginning of cardiogenesis; nevertheless,
its expression does not coincide exactly with the described cardiac
fate map.17,18,28 An attempt has also been made to relate these
limits to the expression of Bmp2,32 but in the same way a precise cor-
relation with the fate maps does not exist.18

Figures 4 and 5 illustrate in red boxes the expression of different
genes in cardiogenic cells according to their location at the level of
the primary cardiac field, primitive endocardial tubes, and primitive
heart tube. Moreover, brown and green boxes indicate the expression
at the level of the mesoderm and/or endoderm, respectively.

Gata-4, -5, -6,42,55 cTnt,46 Myocardin,47 dHand,48,49 cClp-1,50 and
Cripto,52 are expressed at the level of the mesodermal pre-cardiac
cells, as well as in pre-cardiac cells in earlier stages. However,
Smad6 (a putative negative regulator of Bmp, Tgfb, and activin signal-
ling56 –58), Tnn1 (troponin I type 149), Usmaar (smooth muscle
a-actin23), Tbx5, Tbx20 (T-box transcription factors59–62), and Pitx2
(a member of the bicoid-related family of homeobox-containing
genes63) are not expressed in pre-cardiac cells in earlier stages. In
contrast, EphB3,33,34 Mkp3,36 Aldh1A2 (Raldh2),53,54 Ezrin (Vil2; a
member of the ezrin–radixin–moesin family of actin binding pro-
teins64), Pea3 (transcriptional targets of Fgf signalling35,36), and
Wnt1165 are less specific to cardiac specification, because they are
also expressed in the neural plate, paraxial mesoderm, or caudal hind-
brain (Figure 4A). All these genes continue to be expressed at the level

Figure 4 Continued
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of the primitive endocardial tubes (with the exception of Wnt11) and
primitive heart tube. Several other genes are excluded from this
rule, as follows (Figure 4B): Cerberus,43,49 EphrinB1, and EphrinA2,34

Islet2 (a member of a family of homeodomain-containing transcription
factors that possess an amino-terminal pair of zinc-binding LIM
domains49,66), and Fgfr2.36 Moreover, Cited2,42 Fgfr4,36 Activin RIIA
(with ability to bind activin-A67), and Hoxd3 (a retinoic acid-
dependent Hox gene68– 70) are limited to the primary cardiac field.
Furthermore, Fgf8 (which is expressed in pre-cardiac primitive
streak cells;38,71 Figure 6A) and Hex (a homeobox gene also known

as Prh72) are not even expressed in heart rudiment pre-cardiac splach-
nic mesoderm, but only in the underlying endoderm.

Some of the genes previously referred to are also expressed at the
level of the adjacent endodermal cells of the primary cardiac field and/
or primitive endocardial tubes (Figure 4), as follows: Bmp2 (Figure 6A),
Gata-5, Gata-6, Smad6, cNkx-2.5 (Figure 6A), EphB3, Mkp3, Ezrin (Vil2),
Cerberus, EphrinB1, Islet2, Fgfr2, and Fgfr4; these probably play some
relevant role in the regulation of mechanisms of cardiogenesis.

The following group of genes (Figure 5A) begins to express at the
level of the heart rudiment pre-cardiac splanchnic mesoderm during

Figure 5 (A) The genes expressed from HH8, in heart rudiment pre-cardiac splachnic mesoderm (HRPSM) reaching to the primitive heart tube. (B)
The genes expressed from stage HH10, at the level of the primitive heart tube. The diagrams on the left show in red the expression of different genes
as described for Figure 3, but in this case the expression of the same genes can also be detected later in development as indicated on the right. The
expression of the different genes at the level of the primary cardiac field (PCF), primitive endocardial tubes (PET), and primitive heart tube (PHT) is
indicated by colors. When a gene is specific for the primary cardiac field, it may be expressed at the level of the mesodermal pre-cardiac cells
(MesoPC, in brown) and/or the adjacent endodermal cells (AEndoC, in green). When a gene is specific of the primitive endocardial tube, it may
be expressed at the level of the heart rudiment pre-cardiac splanchnic mesoderm (HRPSM, in brown) and/or the underlying endoderm (UE, in
green). Finally, the genes expressed at the level of the primitive heart tube may be located in the myocardium (in yellow) and/or endocardium
(in blue), corresponding to the ventricle (half left side) or atrium (half right side).
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Figure 6 (A) Whole mount in situ hybridization of chick embryos from stage PS3 to HH10 showing the expression of three genes related to car-
diogenesis: Bmp2, Fgf8, and cNkx-2.5. Sections of some embryos (indicated by white lines) reveal the expression in pre-cardiac lateral mesodermal cells
(PLMC), mesodermal pre-cardiac cells (MesoPC), adjacent endodermal cells (AEndoC), heart rudiment pre-cardiac splachnic mesoderm (HRPSM),
and underlying endoderm (UE). Scale bars represent 400 mm. (B) Schematic model illustrating the molecular determinants of cardiac specification.
Endoderm-derived signalling molecules, Bmp2 and Fgf8, are involved in the induction of cardiac mesoderm, inducing the expression of cNk-2.5,
Gata-4, Gata-5, Gata-6, and Mef2. Smad6 (a negative regulator of Bmp signalling) expression is induced by Bmp2, which also regulates Fgf8 and
Hex. Wnt11 and the tyrosine hydroxylase gene (Th) are also expressed in cardiac mesoderm. Antagonists from the ectoderm, Wnt3a, and secreted
from the notochord, noggin, suppress cardiac specification. (C) Whole mount in situ hybridization of chick embryos showing the expression of atrial
(Amhc1) and ventricular (Vmhc1) markers. Amhc1 is illustrated at the level of the primitive endocardial tubes (HH8) and primitive heart tube (HH10).
White line indicates the level of the section showing the expression in the heart rudiment pre-cardiac splachnic mesoderm (HRPSM). The third panel
shows a double in situ hybridization (HH11) showing the regionalization during cardiac looping. Amhc1 (dark blue) and Vmhc1 (red). Scale bars rep-
resent 400 mm. (D) Whole mount in situ hybridization of chick embryos showing the expression of micro-RNAs (miR-1, miR-133, and miR-126) at the
level of the primitive endocardial tubes (HH8, top panels) and primitive heart tube (HH10, bottom panels). Scale bars represent 400 mm.
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the formation of the primitive endocardial tubes: Erm,36 Vmhc1 (ven-
tricular myosin heavy chain73), Popeye (Popdc2; encoding protein of
the plasma membrane in muscle cells74), Srf (serum response factor,
a member of the MADS-box75), aCa (cardiac a-actin75), cTnI
(cardiac troponin I76), Mef2c (muscle enhancer factor 2 protein71),
Mef2a,77 eHand (member of a family of muscle-specific basic helix–
loop–helix ‘bHLH’ transcription factors48), Lmod2 (leiomodin, an
actin nucleator in cardiomyocytes49,78), Tgfb3,49 Bmp7,76 Amhc1
(atrial myosin heavy chain69), Th (tyrosine hydroxylase79), Endoglin
(a co-receptor for the Tgfb superfamily80,81), Cdh2 (cadherin 2 type
149), Bmp5,76 cNkx-2.8 (a member of the Nk-2-family of transcription
factors82), Has2 (hyaluronan synthase enzyme83), Tbx2, and Tbx3.84

Immunohistochemistry revealed Fgfr1 at the level of the endoderm
in the primary cardiac field, followed by localization in the pre-cardiac
splachnic mesoderm and underlying endoderm at stage HH8, and
becoming confined to the myocardium of primitive heart tube.85– 87

The additional expression in the underlying endoderm of Cdh2,
Bmp5, cNkx-2.8, Has2, Tbx2, Tbx3, and Fgfr1 probably plays a relevant
role in the regulation of mechanisms of cardiogenesis.

3.3 Gene expression patterns of primitive
heart tube formation
During the formation of the primitive endocardial tubes (HH8) and
primitive heart tube (HH10), the expression of a great number of
genes listed in Figures 4A and 5A is maintained. Vmhc1 is progressively
restricted to the ventricular (anterior) sector, possibly regulated by
the expression of Irx4. Vg1 and Anf also adopt a pattern of expression
restricted to the anterior (ventricular) sector of the tube, suggesting a
role in ventricular differentiation. In addition, the atrial (posterior)
sector is regulated by the expression of Amhc1, the first marker
described for atrial specification. Now we know that the commitment
to atrial differentiation, as well as its caudal prolongation towards the
venous pole, is regulated by Th expression.79 Moreover, other mol-
ecular factors (Figures 4A and 5A) have also been proposed as deter-
minants of atrial specification, as follows: Tbx2, Tbx3, Aldh1A2
(Raldh2), Tbx5, Tbx20, Gata-4, -5, -6, and Bmp2. Special reference
must be given to Gata-5,55 and to Smad6 (possibly regulated by
Bmp signaling;58 Figure 4A) and Endoglin81 (Figure 5A), which are
expressed during differentiation of endocardium.

To conclude the description of the pattern of gene expression, we
will finish with the genes (Figure 5B) that start to be expressed at the
level of the primitive heart tube, as follows: Mlp (muscle LIM protein,
also called Csrp3, cysteine and glycine-rich protein 349), Tmod (tropo-
modulin 149), Bmp10,76 Asb2 [ankyrin repeat and suppressor of cyto-
kines signalling (SOCS) box protein 249], Myl2 (myosin regulatory light
chain 2A49), Vg1,88 Anf (atrial natriuretic factor89), and Irx4 (iroquois-
related homeobox gene90).

4. Molecular regulation of cardiac
specification
It has been proposed15 that the expression of Wnt3a at the level of
the primitive streak acts as a chemo-repellent signal to guide the
movement of cardiac progenitor cells away from the streak, resulting
in lateral migration.

Although ingression of cardiogenic mesoderm is very similar to that
in the chick, in the mouse a mesodermal marker, Mesp1, was used to
trace the first pre-cardiac mesodermal cells that ingress through the

primitive streak,91 suggesting that migration of the cells from the
primitive streak to form the cardiogenic field in the mouse depends
on expression of this gene.92

We have previously reported12,93 that transplanted Hensen’s node
from quail donor to pre-cardiac and non-pre-cardiac regions of chick
host embryos is able induce specific cardiac markers, suggesting that
this organizer could participate in cardiac specification, probably by
means of secreted growth factors (Fgf8 and Bmp2), which are being
expressed in Hensen’s node (Figure 6A).

It is assumed that specification of the cardiac fate requires close
association between the mesoderm of the primary cardiac field and
the underlying endoderm. This model proposes that cNkx2.5
expression in the primary cardiac field is induced by Bmp2, emanating
from the adjacent endoderm28,94 and is based on misexpression
experiments in chick embryos in which ectopic exogenous application
of Bmp2 to the tissue medial to the primary cardiac field resulted in
induction of cNkx2.5 expression.32,94 Furthermore, exogenous Bmp2
is also capable of inducing the expression of Fgf8,71 Gata-4,32,94 Gata-5,
Gata-6,42 Hex,95 and Smad6,58 as well as Tbx2 and Tbx3, all of which
are related to cardiogenesis.84 Also, incubation of pre-cardiac meso-
derm with noggin, an antagonist of Bmp signalling,58,96 inhibits
cardiac myogenesis and expression of myocardial marker genes
(cNkx-2.5, Gata-4, Mef2a, eHand, and Vmhc142).

It has also been shown that several members of the Fgf family are
capable of inducing cardiogenic markers in non-pre-cardiogenic meso-
derm. Thus, the administration of Fgf8 to the tissue lateral to the
primary cardiac field results in cNkx2.5 (and Mef2c), but not Bmp2
and Gata-4, induction,71 which are expressed from the time of early
specification of cardiac precursor cells. Moreover, we have shown
previously93 that Fgf2 and Fgf4 are able to induce the expression of
cNkx2.5 and cNkx2.8 in non-pre-cardiogenic tissue, at the level of
the germinal cell crescent. Interestingly, in some other
non-pre-cardiogenic tissues, such as explanted caudal lateral meso-
derm, a combination of Bmp2 and Fgf4, but neither factor alone, is
able to induce cNkx-2.5 expression.97,98 Administration of Fgf1, 2 or
4 (which are not expressed in pre-cardiac cells) to cultured pre-
cardiac mesoderm cells99 resulted in the formation of vesicles con-
taining an adherent multilayer of synchronously contractile cells, sup-
porting their participation in cardiogenesis and subsequent
development of the embryonic myocardium. All these data suggest
that initial cardiac specification is regulated by complex relationships
between the Bmp and Fgf signalling pathways (Figure 6B).

Wnt11, which is expressed in early avian mesoderm in a pattern
that overlaps with the pre-cardiac regions,65,100,101 can promote
cardiac development within non-cardiac tissue, suggesting that it
may also play a role in the formation of the vertebrate heart.102– 104

In contrast, at the level of the posterior lateral mesoderm, Wnt3a
and Wnt8c signalling act to inhibit cardiac differentiation.105

Here we show a group of genes being expressed specifically at the
level of this underlying endoderm in relation with the primary cardiac
field, as follows: Fgf8 and Hex (Figure 4B; also Fgf1, 2 and 4, identified
by immunohistochemistry99), as well as Bmp5, cNkx-2.8, Has2 (which
is independent of Bmp2 signalling83), Tbx2, Tbx3, and Fgfr1 (Figure 5A).
In a second group of genes, we include those that are expressed not
only in the adjacent endodermal cells (HH5), but also at the level of
the pre-cardiac mesoderm, strongly related with cardiac specification
(Figure 4), as follows: Bmp2, Gata-5, Gata-6, Cripto, Smad6, EphB3,
Mkp3, Ezrin, Cerberus, EphrinB1, Islet2, Fgfr2, and Fgfr4. A third group
of genes is also expressed in the underlying endoderm of the heart
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rudiment pre-cardiac splachnic mesoderm, and start to be expressed
from stage HH8, as follows: cNkx-2.5 and Cdh2. Thus, there may be
different signals for sequential stages that may be needed for the
initial steps in the establishment of the fate of cardiac cells and
others in the later steps of cardiac cell-specific differentiation.

Some genes that were initially expressed throughout the whole
myocardium become restricted to the presumptive atria and ventricu-
lar segments (Figure 6C). Vmhc1 is expressed in the heart rudiment
pre-cardiac splachnic mesoderm and primitive heart tube in all myo-
genic populations, but its expression is later restricted to ventricular
myocytes.73 The posterior heart segment expresses Amhc1, and it
develops into the atria.69 The early activation of Amhc1 expression
in the posterior cardiac myocytes suggests that the anterior heart pro-
genitors differ from the posterior heart progenitors in their myosin
isoform gene expression. It has been proposed that in the chick
embryo, Irx4 (which is downstream of cNkx-2.5 and dHand, and
expressed exclusively in the ventricle106) regulates the chamber-
specific expression of myosin isoforms by activating Vmhc1 and sup-
pressing Amhc1 in the ventricle, while morphogenesis is apparently
not affected by this homeobox gene.90,106

The transcription factor genes Hand1 and Hand2 are also
co-expressed in the primitive heart tube, but later they accumulate
in the ventricular segment.48,107,108 Some other transcription factors
have been identified and, perhaps, are involved in establishing
anterior–posterior patterning of the primitive heart tube. For
example, Hey1 and Hey2 are expressed in atrial and ventricular pro-
genitor cells, respectively.109,110

Furthermore, in the chick and the mouse, the atrial natriuretic
factor (Anf) gene is initially expressed throughout the whole myocar-
dium of the primitive heart tube, and becomes restricted to the ven-
tricular segment.89 In contrast, Gata-4 and Tbx5, with expression
throughout the primary cardiac field, become restricted to the atrial
compartment.40,84,111 It has been proposed that Anf is regulated by
a co-operation of Gata-4 and Tbx5, as well as cNkx-2.5, which are
expressed earlier in cardiogenesis.62,112 However, Tbx20 (which is
induced by Bmp2) represses Anf promoter activity and also inhibits
the activation mediated by Tbx5.62 Our own recent results add
more information about the mechanism to generate atrio-ventricular
specific gene expression. We revealed79 a novel function of Th (tyro-
sine hydroxylase) in cardiac development, acting in concert with
additional factors to define multiple aspects of atrial identity. Th
expression, localized to the heart rudiment pre-cardiac splachnic
mesoderm, induces Amhc1 and Tbx5, and suppresses Irx4 and
Vmhc1. The relationship between Gata-4 expression and retinoic
acid effects has been previously reported.113,114 Furthermore, the
gene for the retinoic acid-synthesizing enzyme, Raldh2, is specifically
expressed within the atrial region.115 Interestingly, Th might be a puta-
tive downstream target of retinoic acid activity in establishing the
anterior–posterior heart tube axis.79

Recently, the identification of micro-RNAs expressed in specific
cardiac cell types has led to the discovery of important regulatory
roles for these small RNAs during cardiomyocyte differentiation and
cell proliferation. In the chick and the mouse, the expression of
miR-1 and miR-133 has been described during cardiac develop-
ment.116,117 As can be seen in Figure 6D, miR-1 and miR-133 are
expressed in pre-cardiac mesoderm, and later expressed in the myo-
cardium of the primitive heart tube. In the mouse, the organization,
regulation and function of miR-1 and miR-133 have been analysed,
i.e. cardiac transcription of miR-1/miR-133 bicistronic precursors is

directly regulated by Mef2 and Srf.118 Additionally, experimental
studies show that over-expression of miR-1 or miR-133 reduces the
expression of Nkx-2.5 during differentiation of mouse embryonic
stem cells.119 Expression of miR-126 is also detected in the pre-
cardiac mesoderm in the developing chick,116 being observed later
in the endocardium of the primitive heart tube and the vascular endo-
thelium (Figure 6D). All these data suggest that micro-RNAs may be as
important as transcription factors in controlling cardiac gene
expression.

From the present review, a complete scenario of the genes involved
in cardiac specification and in the early steps of heart formation can
easily be analysed. The turning on and turning off of a particular
gene or group of genes and the specification to different territories
throughout development is clearly described and shown in
Figures 3–5. This sequential and territorial relationship among genes
is not presented according to gene family but by chronological
order and with an indication of the final commitment of the cells
expressing the gene. Although great progress has been made in
order to produce cardiac cells from stem cells, knowledge of the
genetic and therefore the molecular machinery involved in the for-
mation of the heart is crucial to improve the production of myocardial
cells safely and effectively.120 With this paper, we hope to fill the gap
that is sometimes evident in the literature about the interplay of the
genes that have a role in heart induction and in the early steps of car-
diogenesis. This information could be used to design new therapeutic
approaches based on a safe and precise differentiation of cardiogenic
cells from any kind of stem cells.
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