
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Enhancing Distributed Neural Network Training
Through Node-Based Communications

Sergio Moreno-Álvarez , Graduate Student Member, IEEE, Mercedes E. Paoletti , Senior Member, IEEE,
Gabriele Cavallaro , Senior Member, IEEE, and Juan M. Haut , Senior Member, IEEE

Abstract— The amount of data needed to effectively train mod-
ern deep neural architectures has grown significantly, leading to
increased computational requirements. These intensive computa-
tions are tackled by the combination of last generation computing
resources, such as accelerators, or classic processing units. Never-
theless, gradient communication remains as the major bottleneck,
hindering the efficiency notwithstanding the improvements in
runtimes obtained through data parallelism strategies. Data par-
allelism involves all processes in a global exchange of potentially
high amount of data, which may impede the achievement of the
desired speedup and the elimination of noticeable delays or bottle-
necks. As a result, communication latency issues pose a significant
challenge that profoundly impacts the performance on distributed
platforms. This research presents node-based optimization steps
to significantly reduce the gradient exchange between model
replicas whilst ensuring model convergence. The proposal serves
as a versatile communication scheme, suitable for integration
into a wide range of general-purpose deep neural network (DNN)
algorithms. The optimization takes into consideration the specific
location of each replica within the platform. To demonstrate the
effectiveness, different neural network approaches and datasets
with disjoint properties are used. In addition, multiple types of
applications are considered to demonstrate the robustness and
versatility of our proposal. The experimental results show a global
training time reduction whilst slightly improving accuracy. Code:
https://github.com/mhaut/eDNNcomm.

Index Terms— Data parallelism, deep learning, high-
performance computing (HPC), neural networks, synchronous
communications.

Manuscript received 12 July 2022; revised 8 June 2023; accepted 18 August
2023. This work was supported in part by the Consejería de Economía,
Ciencia y Agenda Digital of the Junta de Extremadura, in part by the
European Regional Development Fund (ERDF) of the European Union under
Grant GR21040, Grant GR21099 and Grant IB20040, in part by the Spanish
Ministerio de Ciencia e Innovacion under Project PID2019-110315RB-I00
(APRISA), in part by the DEEP-EST Project (computing resources), and
in part by the European Union’s Horizon 2020 Research and Innovation
Programme under Grant 754304. (Corresponding author: Juan M. Haut.)

Sergio Moreno-Álvarez is with the Departamento de Ingeniería de Sistemas
Informáticos y Telemáticos, Escuela Politécnica, Universidad de Extremadura,
10003 Cáceres, Spain.

Mercedes E. Paoletti and Juan M. Haut are with the Departamento de Tec-
nología de Computadores y Comunicaciones, Escuela Politécnica, Universidad
de Extremadura, 10003 Cáceres, Spain (e-mail: juanmariohaut@unex.es).

Gabriele Cavallaro is with the Jülich Supercomputing Centre,
Forschungszentrum Jülich, 52428 Jülich, Germany.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3309735.

Digital Object Identifier 10.1109/TNNLS.2023.3309735

I. INTRODUCTION

ADVANCES in machine learning (ML) algorithms have
been partially fostered by the unparalleled growth in

the amount of data available to train deep neural network
(DNN) models. Indeed, with the adequate number of training
samples to cover the parameter space, deep models provide
interesting solutions for a wide range of applications and
tasks, such as medical imaging analysis [1], remote sensing
applications [2], or natural language processing [3], among
others. As a common denominator, the corresponding data is
prepared and presented as input to DNN-based models, which
conduct a feature extraction procedure through a number of
hierarchically stacked layers. These operational layers perform
data transformations by combining the input features and the
parameters comprised by each layer, which are organized as
data-fit filters. Thus, after applying a transfer function, each
layer provides the neural response to the existence of particular
features. This process is refined as the data is processed by
deeper layers, which extract increasingly complex and abstract
features. In this context, the paramount importance of the input
data is well known, which must be sufficient both to cover the
parameter space and capture the variation over the input space.

Large data volumes provide opportunities for training
increasingly complex models. Concurrently, advancements
in both hardware devices and algorithms have substantially
enhanced the performance of such models. However, the
exponential growth of data and its high processing cost have
boosted computational requirements. To tackle this challenge,
fast computing systems and high-performance computing
(HPC) platforms have been employed to facilitate collaborative
training, where data is partitioned and distributed across mul-
tiple computing nodes, which communicate with each other to
update the model parameters. The scalability offered by HPC
platforms has significantly improved the training speed, but
faces high communication volumes. Several domains benefited
from the aforementioned points, such as natural language
processing, computer vision or speech recognition. In the
following, the opening remarks are introduced for both HPC
and distributed training approaches.

A. Performance Barriers in Distributed Training

HPC provides a structured process for deploying and
managing computing resources, such as graphics processing
units (GPUs) or central processing units (CPUs). Processes

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-1858-9920
https://orcid.org/0000-0003-1030-3729
https://orcid.org/0000-0002-3239-9904
https://orcid.org/0000-0001-6701-961X

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

collaborate to solve the same problem, parallelizing work-
load partitions. In this regard, the most popular distributed
technique is the data parallelism scheme, which allocates a
replica of the model in every process. Each replica takes as
input a portion of the original data, which has been previously
divided into partitions of equal size. Moreover, the data is
shuffled after each training epoch to ensure that all replicas
see the input space, furthering the convergence of the model.
Hence, each replica is trained with the complete dataset after
a certain number of epochs. In contrast, model parallelism
distributes network layers between different processes, thus,
only a single network model is deployed and partitioned. Alter-
natively, hybrid parallelism scheme combines data and model
parallelism. Usually, the communication and synchronization
overhead of model and hybrid schemes is higher than that of
data parallelism, making the latter technique more popular.

Despite the prevailing emphasis on computation phase opti-
mization in numerous initiatives aimed at accelerating DNN,
it is imperative to acknowledge that communication exerts a
significant influence on the overall execution time. In this
regard, replicas must repeatedly exchange information with
each other, using the available communication channels. For
instance, gradients are transmitted at the conclusion of each
training iteration among replicas to facilitate the parameter
updating step locally. Depending on the properties of the
training algorithm, parameter servers (PSs) provide a central-
ized system, whilst collective operations offer a decentralized
alternative [5]. Bottlenecks could appear depending on the
amount of data to be communicated and the number of replicas
competing for communication channels. Moreover, both the
number of training iterations and the model parameters have a
direct impact on the volume of data to be exchanged between
replicas. Reducing these communications is an essential strat-
egy to improve performance and minimize training time, but
must ensure that model reliability is not jeopardized.

Regarding communication bottlenecks, channels such as
InfiniBand, TCP, NVLink, or shared memory exhibit vary-
ing bandwidths, and hence, leveraging faster channels for
data exchange can markedly diminish transfer time. These
differences in communication speed are common in modern
distributed platforms, where multiple communication channels
are available. Moreover, different communication schemes
are used depending on the type of synchronization. For
instance, the synchronous approach introduces barriers, that
is, synchronization points, at gradient exchanges to ensure
the synchronization of all replicas. As a result, a delay
emerges in the execution time caused by replica idle times.
This shortcoming is aggravated in the case of resources with
different computational capabilities, where the slowest replica
will drag down the others by forcing them to wait for it, thus
degrading the run-time. Contrary to the synchronous strategy,
the asynchronous approach does not introduce synchronization
points. This has a drawback, as asynchronous communications
introduces staleness in the replica gradients. Each replica
uses the available gradients to optimize the weights, with-
out knowing whether they have been updated correctly or
not. Thus, stragglers processes negatively affect the model
reliability [6]. The management of stragglers processes is
not common in homogeneous HPC platforms. However, they

encounter communication delays, as the massive transmis-
sion of gradients leads to saturation of the communication
channels. Furthermore, the communication between replicas
inherently entails performance losses for both communication
approaches.

B. Cutting-Edge DNNs: An Overview

The efficient training of DNNs holds great significance in
order to harness the full potential of deep architectures. As the
scale and sophistication of these models increase, the demand
for communication and information processing between dis-
tributed processes intensifies. It is imperative to optimize
the computational and communication facets of distributed
learning [7]. It is noteworthy that the design of complex archi-
tectures does not universally guarantee performance gains.
On the contrary, the performance may be degraded with
deeper networks due to the well-documented challenge of
vanishing gradients. This challenge is further compounded
by the increased communication of gradients in distributed
systems. Some promising DNNs deal with this.

1) Residual Networks (ResNets): ResNets [8] implement
shortcut connections that propagate directly data representa-
tions with different levels of abstraction. These “direct data
paths” improve the reuse of data during the forward step,
whilst alleviating gradient vanishing during backward step.
Nevertheless, these models comprise millions of parameters,
requiring high computation and communications.

Furthermore, ResNet models are frequently employed for
classification tasks, particularly in scenarios requiring fine-
grained analysis. Such tasks are computational demanding due
to the need to detect small interclass variations.

2) Vision Transformers (ViTs): Recently, ViT models have
shown better performance than ResNets in image classifi-
cation [9]. ViT utilizes self-attention layers, which are also
known as heads, providing different and relevant features from
the embedded input [10]. This facilitates the model to selec-
tively attend to discriminative visual features, augmenting its
capacity to comprehend and analyze intricate visual patterns.
Indeed, the computational framework incorporates transformer
blocks, which encompass multihead self-attention (MHSA),
normalization layers, feed-forward networks (FFNs), and skip
connections. The inherent computations entail substantial com-
putational and communication overheads, posing significant
resource demands.

3) Generative Adversarial Networks (GANs): Image gen-
eration models have garnered increasing attention within the
scientific community, particularly, GANs [11], which are com-
posed of two independent networks, that is, a generator (G)

and a discriminator (D). The objective of the former is to learn
the distributions of the input data, with the aim of generating
new samples. Meanwhile, the later determines the data source,
that is, whether the data is real or generated by G. In this
context, GAN represents a min–max optimization problem for
�(D,G), as described in the following equation:

�(D,G) = E(x)

[
logD(x)

]
+ E(z)

[
log(1 −D(G(z)))

]
. (1)

GAN also suffers an intensive computation in the training
phase due to: 1) two networks have to be trained, increasing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MORENO-ÁLVAREZ et al.: ENHANCING DISTRIBUTED NEURAL NETWORK TRAINING 3

the computational load and 2) the increase of the data to be
processed through new false data generated.

4) Recurrent Neural Networks (RNNs): RNNs [12] are
computational demanding due to inherent complexity in
weight initialization, optimization algorithm selection, and
network instability. In this context, the significance of acceler-
ating model convergence or reducing training times becomes
paramount. This is also intensified considering the substan-
tial number of iterations involved in the process. Thus, the
computational and communication complexity in distributed
systems is heightened. The functionality is briefly resumed in
the following equation:

Ht
= f

(
W(X,H) · Xt

+ W(H,H) ·Ht−1
+ bH

)
(2)

where W comprises the weights between input data X and
hidden state vector H and b is the bias, at time step t . During
forward propagation, the output from each time step needs to
be communicated to the next time step, which leads to a large
amount of data being transmitted between processes.

C. Exploring Strategies to Reduce Communication Costs

Reducing communication costs is a challenging task, requir-
ing a combination of algorithmic, architectural, and hardware
optimizations. The aforementioned complexity of DNNs and
the performance challenges associated with distributed training
pose significant obstacles in scaling the training process to
large clusters. Considering the optimization achieved through
data parallelization techniques regarding the computation
aspect, the remaining challenge lies in addressing the commu-
nication aspect. Thus, it is imperative to develop efficient and
scalable communication approaches to minimize data trans-
mission whilst ensuring accuracy and convergence. One of the
most widely adopted approach for efficient communication is
the all-reduce scheme, which offers effective means of data
exchange in distributed systems. Table I provides an overview
of the main implementations of the all-reduce approach.

It must be noted that latency and bandwidth determines
the communication costs in large-scale distributed systems.
In this context, communication strategies should be designed
to be flexible and adaptive, allowing them to work with a wide
range of DNNs architectures, configurations, and applications.
For instance, the ring all-reduce algorithm efficiently performs
parallel reduction of data across multiple devices [13], whilst
dense all-reduce [14] allows gradient accumulation across all
replicas. However, it suffers from large overheads for the
training of deep models with millions of parameters.

Reducing the number of parameters through gradient spar-
sification techniques is an elegant solution to solve this
drawback. This have been implemented in all-reduce imple-
mentations based on top-k selection, where only the largest k
components of the gradients are selected. Nonetheless, sparse
all-reduce suffers from scalability problems. For instance,
TopkA [15] takes advantage of an all-gather approach to
gather sparse gradients, and then perform the sparse all-reduce
locally. Meanwhile, gTopk [16] reduces the communication
volume by using tree-like communications, selecting only the
largest gradient components through tree levels. Lastly, gradi-
ent quantization is a common technique to reduce the number

TABLE I
COMMUNICATION COSTS FOR SPARSE AND NON-SPARSE ALL-REDUCE

STRATEGIES WITH R REPLICAS, k SPARSE GRADIENT COMPONENTS,
LATENCY α, TRANSMISSION TIME β , AND OPERATION TIME γ

of bits that represent the gradient values, such as mixed [17] or
lower F P16 precision values [18]. Furthermore, methods such
as halving–doubling or doubles binary trees (DBTrees) have
been studied. For instance, DBTrees performed better than
ring all-reduce proposal in [23] for specific cases. Specifically,
MultiTree [24] reduces the ring procedure by 2 logt R, where
t represents the tree grade. This enhances the scalability and
reduces the latency.

Overwhelming communication issues are present in dis-
tributed platforms besides HPC, such as cloud computing (CC)
and federated learning (FL). Nevertheless, these approaches
pose distinct challenges in the realm of communication. In the
domain of CC, data is distributed and processed among diverse
nodes within a non-dedicated network, thereby leading to
potential bottlenecks in communication between worker nodes
and master node. Similarly, in FL, communication between
the central server and participating devices can be a limiting
factor, particularly, when the number of devices is large or
when network connections are unreliable. FL allows the train-
ing of a model across multiple decentralized devices. Thus,
as the number of replicas increases, the communication cost
becomes a significant issue. Each device trains its own local
model, where communication is required to exchange model
updates between the devices, resulting in high communication
costs. Additionally, the devices may have different hardware
capabilities and network conditions, further complicating the
communication process. These challenges pose significant
obstacles to achieving efficient and scalable training. Despite
this, FL has been found to be a useful approach for privacy-
preserving applications.

D. Contributions
The huge computations and communications involved in

the training of DNN-based processing methods have moti-
vated this work. As previously stated, the computation has
been addressed usually by distributing the workload using
parallelism schemes. Nevertheless, communication problems
resulting from data parallelization could lead to noticeable
delays that are often not taken into account in the algorithm
design. In this respect, the factors that most influence the com-
munication cost are the frequency of data exchanges between
replicas, synchronization and the amount of data transferred
through the communication channels. Regarding the former,
the number of exchanges increases the total communication

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

time proportionally, whilst synchronization forces the faster
replicas to wait for the slower ones. Regarding the latter,
elements such as input data and model parameters are crucial.
In addition, the memory storage must have capacity for
these large data requirements. Finally, traffic and concurrent
transmissions over the communication channels could lead to
network congestion. In fact, congestion is directly related to
the scaling of the number of replicas. Thus, the higher the
number of replicas, the higher the congestion on the channels.

Existing approaches aim to address the challenge of exces-
sive communication by employing a combination of the afore-
mentioned strategies. Nevertheless, these approaches often
address highly specific scenarios and are challenging to
accommodate in real-world settings. Consequently, there is
a pressing need to develop alternative methods that can be
easily applied across a broad range of situations, encompass-
ing different deep models, diverse hardware configurations
and network topologies. The advancements in communication
management are instrumental in the successful implementation
of distributed training frameworks, facilitating the seamless
execution of intricate models within computing infrastructures.
Against this background, communication-efficient scheme has
to address the above issues in an optimal way for data-parallel
distributed algorithms. Thus, the proposal focuses on optimiz-
ing and reducing communications between resources. In this
context, the contributions of this work are the following.

1) A novel decentralized communication scheme is pro-
posed to reduce the number of message transmissions
through time-consuming communication channels.

2) A scalable implementation is provided to maximize the
performance of computationally expensive algorithms by
reducing unnecessary overhead and hence, optimizing
the utilization of high-speed computational and commu-
nication hardware.

3) The applicability of the proposal over different depth
models, such as classification or image generation mod-
els, is comprehensively explored. Obtained performance
is ensured through a rigorous accuracy evaluation.

4) A versatile communication scheme that is comple-
mentary to additional optimization strategies, cluster
configuration, and network topologies.

In summary, the proposed approach aims to reduce com-
munication costs in distributed training by optimizing the
communication pattern between nodes. Specifically, replicas
of the same node are required to communicate more fre-
quently with each other, which is referred to as intranode
communication. In contrast, communication between replicas
of different nodes, or internode communication, is minimized.
This approach is designed to reduce the overall communication
volume and minimize the impact of internode communication,
which tends to be more expensive due to network overheads.
Considering that each epoch is composed of several iterations,
each model replica optimizes its weights using intranode gradi-
ents in each training iteration, whilst internode communication
is performed in an ad hoc way for parameter sharing. This
significantly minimizes the exchange of gradients as a function
of the number of training iterations, preventing channel con-
gestion. Nonetheless, the proposal entails a limitation. Beyond

a certain point of scalability, the time gain is negligible,
as the reduced number of communications between nodes
does not produce sufficient speedup. This could be due to
different reasons, such as a low amount of data or an excessive
scaling. To overcome this limitation, the batch size should be
adapted considering hardware configuration of the platform
and data amounts. This implies that smaller batch sizes result
in a higher frequency of communication exchanges between
replicas compared to larger batch sizes.

The document is organized into several sections: a review
of related work in Section II; a detailed description of the
proposed decentralized communication scheme in Section III;
an analysis of results from a comprehensive set of experiments
in Section IV; and concluding remarks on the proposal’s
milestones and future work in Section V.

II. RELATED WORK

Communication plays a key role in the total execution time
of deep models that has not been addressed in the literature
with the same seriousness as computation. Indeed, throughout
the last few years, HPC methods have been striving to optimize
both computation and communications jointly. For instance,
Clarke et al. [25] implemented a tool to balance the compu-
tation of matrix multiplications between processes. In hetero-
geneous platforms, the communications have been modeled
considering performance differences between communication
channels [26]. Additionally, in [27] an automatic tool to
manipulate communication cost expressions is implemented.

Classic scientific applications and distributed DNNs are
frequently executed on HPC platforms, giving rise to shared
requirements and challenges in these domains. For instance,
Rico-Gallego et al. [28] proposes a data parallelism approach
for HPC, conducting data partition based on the computa-
tional capacities of the devices to minimize communication
costs in scientific applications. These techniques have been
extrapolated to develop similar versions for distributed neu-
ral networks. In this context, computation awareness has
been improved for data parallelism [4] and model paral-
lelism [29]. As a consequence, partitioning the workload
between resources from different nodes could produce commu-
nication bottlenecks that should be handled. Straightforwardly,
the communication is a blocking or non-blocking gradient
distribution, where the average of the data is calculated across
all contributors and then, spread to the replicas before the
optimization step. As a result, the training performance is
affected by the communications for both blocking and non-
blocking approaches.

In this regard, different communication approaches have
been implemented to optimize the communication step in
distributed DL frameworks. For instance, Coquelin et al. [30]
proposed a distributed asynchronous communication based
on a hierarchical gradient sharing scheme for multiple GPU
nodes. Additionally, some works as [31] set the focus on batch
optimizations for intermittent communications. This process
entails the execution of stochastic gradient descent (SGD)
on local replicas, followed by the subsequent aggregation
of local information from all replicas through averaging.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MORENO-ÁLVAREZ et al.: ENHANCING DISTRIBUTED NEURAL NETWORK TRAINING 5

This mode of communication has been found effective for
replicas with disjoint data, that is, FL [32], and for hetero-
geneous data [33]. In [34], the decoupling of the all-reduce
primitive (DeAR) into two consecutive operations is pro-
posed to enable pipeline strategies. This allows for the
overlap of both back-propagation and feed-forward computa-
tions, thereby avoiding additional communications. However,
this does not account for potential channel contingencies
in internode communications. Alternatively, Zhang et al. [35]
proposed the weighted feedback-based pipelining (WFBP)
mechanism, designed to optimize the performance by effec-
tively overlapping communication overheads with computa-
tional tasks. Despite its near-optimal performance, WFBP has
the drawback of not considering the feed-forward stage in
the training process. BlueConnect [36] minimized commu-
nication overhead by decomposing scatter–gather operations
under a hierarchical communication structure. This is par-
ticularly effective in fat-tree topologies, where each level of
the hierarchy encompasses various communication strategies.
Nevertheless, this poses synchronization challenges, thereby
impacting performance under certain environments. Finally,
Horovod [37] uses an optimal all-reduce ring algorithm for
multiple GPUs. This conducts two communication phases.
In the former, each replica sends and receives gradient chunks
R − 1 times. Next, replicas send the results of adding the
received data to the corresponding stored data chunks R − 1
times. Hence, a replica communicates with two of its peers
2 · (R − 1) times. The obtained bandwidth is calculated as
β = 2(R − 1)/R.

Although decentralized approaches using collectives have
reported a better performance for different topologies [38],
centralized approaches are also used for multiple purposes.
In this term, PS has been implemented for asynchronous
and synchronous approaches. However, it suffers of stale
parameters that negatively affect the convergence of the model
and thus the final accuracy. Some works propose delayed PS
updates and warm-up phases to overcome this problem [39].
As aforementioned, centralized approaches are common in
CC, where the master node is responsible for the execution
of the jobs and the order of computation among the workers.
Meanwhile, workers are in charge of processing parts of the
total computation. Recently, cloud algorithms have evolved
and adapted techniques previously developed for HPC plat-
forms. The popularity of these implementations has grown due
to CC advantages, such as fault tolerance, reduced computation
costs, and scalability. On the other hand, CC faces important
challenges as security or replication management.

Finally, specific methodologies for managing communica-
tions in distributed DL algorithms have been shown to improve
cross-platform training. For instance, Wangni et al. [40]
reduced the communications complexity using a length
reduction of sparse gradients combined with dropout tech-
niques, whilst Ivkin et al. [41] exposed the bandwidth prob-
lem of distributed training and proposed a solution based
on the communication of gradient sketches. Moreover, syn-
chronous and asynchronous techniques were deeply studied by
Tang et al. [42] for multiple system architectures, such as PS
and all-reduce collectives, among with gradient quantization
methods, compression techniques, or sparsification.

III. PROPOSED NODE-BASED
COMMUNICATION ALGORITHM

The proposed methodology is based on the principle of syn-
chronous data parallelism. This section outlines the method-
ology employed for this process, elucidating the intricacies
of forward propagation, gradient calculation, and parameter
updating. Then, the innovative approach is introduced to
minimize the use of costly communication channels.

A. Distributed Data-Parallel Training

Considering N training samples {X ,Y} = {Xn, Yn}
N
n=1

drawn from an unknown distribution, and a DNN comprising
a set of parameters θ = {Wl , bl}

L
l=1 ∈ �, that is, weights and

biases that are hierarchically organized across L operational
layers, the DNN defines a non-linear transformation fθ :

X → Y where θ is adjusted to approximate its response
predictions f (Xn, θ) ∈ Y to the desired output instances
Yn ∈ Y given inputs Xn ∈ X . This follows the empirical risk
minimization principle based on a differentiable loss function
ℓ(Y, f (X, θ)), which measures the difference between the
prediction outputs and the actual problem instances. Then, the
goal is to find the optimal θ∗ that minimizes the loss, that is,
θ∗

= arg minθ ℓ (θ), knowing that θ∗ is a stationary point
over the loss landscape, thus ∇ℓ(θ∗) = 0.

In this context, the DNN training procedure involves a
combination of T finite and predefined forward–backward
propagation steps to update θ toward θ∗, down the loss surface
along the direction of the gradient, where parameters update
follows the delta rule for each time step t :

θ t+1
= θ t

− µt∇ℓ
(
θ t). (3)

Consequently, feature extraction is first performed during
the forward propagation, that is, for the nth training sample, L
intermediate data representations are hierarchically calculated
and propagated across the layers, where the lth layer takes
the features filtered by the previous layer, refines them, and
passes them to the next layer following (4), where X(l−1)

n and
X(l)

n represent the inputs and neural activation responses of the
lth layer, regarding the nth training sample, and θ l comprises
its adjustable parameters. The activation function is denoted
as σ

X(l)
n = σ

(
X(l−1)

n , θ l
)

= σ
(
X(l−1)

n ⋆ Wl + bl
)
. (4)

Equation (4) is applied hierarchically through the L layers,
obtaining a L-layers composition over the input data Xn until
the final abstract representation X(L)

n is obtained. This is finally
processed to obtain the final prediction. Then, parameters
update is conducted during the backward stage by means of (3)
and following the chain rule. At this point, it is noteworthy
that the unbiased gradient estimator g is obtained instead of
the expected ∇ℓ(θ) over training samples with E[g] ≃ ∇ℓ(θ).
In particular, mini-batch approaches consider K batches of
size B = N/K , that is, the i th batch comprises a subset of
the training samples Bi ⊂ {X ,Y} = {Xn, Yn}

n+B−1
n=1+B(i−1), thus∑K

i=1 |Bi | = K B = N . To cover all the data, time steps are
defined in terms of a number of epochs E , and a number of
iterations per epoch K , that is, t = i + K (e − 1), ∀e ∈ [1, E]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

and ∀i ∈ [1, K], thus T = E K . Notations θ t
≡ θ e,i are

equivalent. Consequently, the batch-based estimator of the
gradient is used per time step

gt
≡ gt

Bi
=

1
B

n+B−1∑
n = 1 + B(i − 1)

∇ℓ
(
Yn, f

(
Xn, θ

t)). (5)

Assuming a distributed environment with data-parallel
scheme and comprising R replicas, training samples are
organized on partitions of N/R samples and then assigned
to the replicas, as well as a copy of the untrained model
parameters θ r . Within the r th replica, the data is organized
into batches of size B, which are sequentially processed by the
corresponding model iteration by iteration. After forward pass,
the loss function is applied to obtain the prediction error over
the data batch, and the corresponding gradients are computed
gt

r at step t . Hence, gradients are calculated in each training
iteration for all replicas. To ensure that all replicas perform
the same iterations, the batch size B must be the same for all
replicas. Since gradients are back-propagated along the DNN
architecture to fine-tune θ , a reduction operation is performed
on the local gradients, calculating their mean to obtain the
global gradients Gt

Gt
=

1
R

R∑
r=1

gt
r

=
1
R

R∑
r=1

(
1
B

n+B−1∑
n = 1 + B(i − 1)

∇ℓ
(
Yn, f

(
Xn, θ

t))). (6)

Regarding the exchange of information, this implies an
internode communication frequency of (1 + E K), where the
first part identifies the initial communication of parameters
and the second, exchange of gradients per iteration. Once
Gt is obtained, parameters are updated accordingly to (3) to
minimize the loss. The parameter update or the t th step of (7)
is reformulated in terms of Gt and the current parameters θ t

r
of each replica, where µt is the learning rate

θ t+1
r = θ t

r − µt Gt . (7)

In this way, distributed training is performed to take advan-
tage of the multiple nodes and their resources available in the
distributed environment. Nonetheless, the shortcomings of this
approach are analyzed in the following discussion.

B. Empirical Findings and Limitations in
Distributed Training

The design of a proper communication algorithm could
improve the performance for large communications, reducing
the network contention. The communication overhead can be
mitigated by reducing the number of data exchanges, that is,
communication rounds. The number of rounds depends on sev-
eral factors, including the batch size, communication periods,
number of nodes, and communication strategy [43]. In the
following, the impact of multiple factors on communication
time is comprehensively analyzed to elucidate their impact.

Gradients and parameters are determined solely by the
network architecture, implying that the message size for each

iteration remains constant, that is, |θ |, regardless of the batch
size B. Nonetheless, larger batch sizes reduce the number of
communication rounds, where communications are commonly
performed at the end of each iteration. However, the use of
larger batch sizes may increase the risk of converging to local
minima during training [44]. Furthermore, this practice may
result in significant communication overhead, specially when
dealing with a large number of training iterations, for example,
in mini-batch approaches. One promising approach is one-shot
averaging [45], which conducts communication only at the end
of the entire training process. Thus, communication frequency
can be adjusted to minimize its overhead.

Observed trends lead to a common conclusion: the uti-
lization of traditional communication strategies in distributed
training with an increasing number of replicas results in
linearly escalating communication costs. Consequently, bot-
tlenecks arise during specific communication instances. One
potential avenue is to overlap communication with compu-
tation, which entails optimizing communication operations
and reducing the overall communication time. However, the
implementation of such scheduling approaches is intricate
and may compromise model accuracy. Alternative solutions
such as gradient compression impact the model perfor-
mance in terms of accuracy due to the inherent trade-off
between accuracy and traffic reduction. Similarly, these con-
siderations are applicable to quantization and sparsification
methods.

C. Overview of the Proposed Methodology
The proposed approach leverages the computational

resources available in an HPC platform (GPUs and CPUs),
to address costly computations and execution management,
respectively, considering data parallelism to distribute the
workload among all the computational resources, that is,
to provide a grade of horizontal scalabity. Nevertheless, the
workload distribution entails additional communication times
when sharing information between replicas. In this regard,
two types of communication, that is, intranode communi-
cation and internode communication are used depending on
whether there is only communication between replicas located
on the same node or between replicas hosted on different
nodes of the distributed environment, respectively. Internode
communication channels are slower than intranode paths, such
as shared memory or intraGPU communication channels such
as NVLink.

To reduce communication costs, the proposed method
avoids gradient exchanges through time-consuming commu-
nication channels by promoting intranode communications
instead of internode communications. In this regard, let M
be the number of nodes, where the mth node contains Rm

replicas, thus R =
∑M

m Rm . Furthermore, assuming a batch
size of B samples, let us define each epoch e ∈ [1, E] by its
number of training iterations K = N/(R · B).

At the beginning of every epoch e, the N samples {X ,Y} =

{Xn, Yn}
N
n=1 are shuffled and randomly grouped into R = M ·

Rm data partitions, where partition Pr ⊂ {X ,Y} = {Xr ,Yr } =

{Xr,n, Yr,n}
N/R
n=1 is sent to the r th replica hosted by the mth

node. This ensures the uniform distribution of the data between

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MORENO-ÁLVAREZ et al.: ENHANCING DISTRIBUTED NEURAL NETWORK TRAINING 7

Fig. 1. Graphical overview of the proposal considering two replicas within the mth node, that is, Rm = 2 with r = 1 and r = 2. The nth input sample
of each replica Xr,n is processed by a standard CNN. During the i th iteration in epoch e, fast intranode communication is conducted to collect the local
gradients ge,i

r and compute the corresponding intranode gradients Ge,i
m , which is used to update parameters for the next iteration θ e,i++

r . Furthermore, every
K ′ iterations, replicas are updated with global parameters 2

e,i=K ′

R by internode parameter communication to cover all training data.

the R replicas, which contributes to both the stability of the
consensus among the different replicas and the convergence
of the model. Then, the r th replica sequentially splits its data
partition into K batches, where the i th batch Bi ⊂ {Xr ,Yr } =

{Xr,n, Yr,n}
n+B−1
n=1+B(i−1) is processed at the i th iteration of all

epochs and globally shuffling the content. This ensures that all
data is processed at the end of an epoch, avoiding oscillations
in the optimization process.

Focusing on the i th iteration at epoch e, the Rm replicas
of node m are each trained on their own batch Bi , producing
their corresponding local gradients ge,i

r . These are collected to
calculate the intranode aggregated gradients Ge,i

m

Ge,i
m =

1
Rm

Rm∑
r=1

ge,i
r . (8)

In contrast to other strategies, replicas of the same node
are trained in isolation for about K ′

≤ K iterations,
communicating only the gradients obtained between them to
update their parameters according to Ge,i

m , using fast intranode
communication channels, and thus reducing the communica-
tion load in comparison with the baseline, (6), which conducts
internode all-reduce communications at each iteration, sending
large information across the network as the data grows. Con-
sequently, during K ′ iterations, intranode replicas exclusively
handle information from its node m, disregarding information
from outside nodes. To obtain a global coverage of the training
data, global internode communication is performed at both the
K ′th and the final iterations of each epoch,1 when the proposed
scheme aggregates all local parameters from replicas to obtain

1Knowing that K ′
≤ K , the method is forced to perform the global

exchange of parameters at least once (when K ′
= K) with a maximum of

(1 + ⌊K/K ′
⌋) times when K ′ < K , completing the consensus among all

replicas in the distributed environment.

the global parameters

2
e,i=K ′

R =
1
R

M∑
m=1

Rm∑
r=1

θ e,i=K ′

r (9)

where θ e,i=K ′

r are the r th replica parameters after K ′ iterations
of an epoch, and 2

e,i=K ′

R are the global parameters, shared
with all replicas. This ensures that, at the beginning of each
epoch and after K ′ iterations, all replicas have the same
information ensuring the global consensus. This means an
internode communication frequency of E(1 + ⌊K/K ′

⌋). The
procedure is depicted by Fig. 1.

1) Convergence Proof: Provided that N training samples
are uniformly distributed among the R replicas, the goal is to
find the minimizer 2∗

= arg min2∈� ℓ(2R), where ℓ is the
average of the local objectives computed on the corresponding
data

ℓ(2R) =
1
R

M∑
m=1

Rm∑
r=1

 1
B

n+B−1∑
n=1+B(i−1)

ℓn(2R)

=

1
R

M∑
m=1

Rm∑
r=1

 1
B

n+B−1∑
n=1+B(i−1)

ℓ(Yn, f (Xn, 2R))

.

In this context, the proposed algorithm is indeed a
distributed mini-batch approach with two synchronization
schemes, where the former is conducted during all the E · K
steps regarding the exchange of gradients gr between replicas
hosted in the same node (intranode synchronization), and the
latter is conducted during E(1 + ⌊K/K ′

⌋) steps regarding the
exchange of parameters 2R between all the replicas (internode
synchronization).

Focusing on the intranode synchronization, and assuming
K ′

= K , it must be noted that replicas in a worker node

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

m conduct in an isolated way a distributed mini-batch opti-
mization during K iterations per epoch. Performing over a
finite set of (N/R) · Rm sampled independently and identically
distributed (i.i.d.) data and starting from parameters θm = 2R ,
the convergence of the mth node depends on the convergence
of its replicas. It could be assumed that each ℓn(θ r) has
a Lipschitz continuous gradient with constant C > 0 with
respect to the distance between any two points θ r , θ̃ r ∈

�, such that the norm of the gradient at them is bounded
∥∇ℓ(θ r) − ∇ℓ(θ̃ r)∥2 ≤ C∥θ r − θ̃ r∥2. This ensures that the
objective function has a minimum and the gradients are not
too sensitive. Assuming the complete isolation, that is, without
the aggregation of the other replicas, and due to the distribute
mini-batch inner convergence, after i iterations, the r th replica
converges almost surely to a stationary point of ℓ(θ r) such
that θ∗

r = arg minθ r ℓ(θ r), and thus ∇ℓ(θ∗

r) = 0. In this
context, the consensus mechanism of (8) ensures that a wider
range of the data space is covered, enabling the r th replica to
converge faster and with fewer oscillations. As a consequence,
the procedure converges within the node m.

Regarding the internode synchronization, it is conducted at
least one time per epoch, averaging the parameters by means
of (9). This implies that, after a maximum of K iterations per
epoch, the replicas can provide divergent parameters θ e,i=K

r
depending on the data on which they have been executed.
This may introduce oscillations that hinder the convergence
of the model. To avoid this, there are two factors that reduce
divergence in the global consensus. On the one hand, the
hyperparameter K ′ regulates the number of synchronization
points, acting as a trade-off mechanism between the consensus
and the number of communications, that is, the smaller the
number, the more the replicas are globally synchronized,
so that the oscillations between the parameters of one iter-
ation and another is reduced, but the frequency of internode
communication increases. On the other hand, Rm acts as a
regulator. In fact, the consensus mechanism of (8) reduces
variations, so that nodes with a high Rm tend to provide more
stable results. As a consequence, the control of K ′ and Rm

positively influences the model convergence.

D. Implementation Essentials
The proposed methodology has been integrated over the

ColossalAI framework [38], where the baseline is already
implemented. ColossalAI is an open-source PyTorch-based
system that provides different paradigms of parallelization,
such as data parallelism. It is relatable to its ease of use and
scalable training for distributed platforms.

Two different MPI groups are created for the proposed
method. Firstly, the intranode group g_group will conduct
communications in each training iteration among local repli-
cas. Secondly, the internode group G_group will provide the
average parameters among global replicas.

The baseline method only requires the internode group.
The implementation for an all-reduce communication, shown
in Fig. 2, is described in Algorithm 1 along with a brief
description of the basic steps to perform DL training. These
basic steps include: 1) obtaining the batch data from the
dataset; 2) passing the data through the neural network model;

Fig. 2. Example of a communication scheme using all-reduce. Each color
represents a replica, where different color shades identify replicas within the
same node r ∈ Rm , with m ∈ [1, M] a specific node. All local gradients
are collected at every iteration to compute the global gradient Ge,i .

Fig. 3. Proposed scheme based on all-reduce collectives. Each color identifies
a replica, where different color shades represent replicas within the same node
r ∈ Rm , with m ∈ [1, M] a specific node. Fast intranode gradient calculation
is conducted at every iteration to update replica parameters hosted on the same
node. Internode parameter communication is performed when conducted K ′

number of iterations.

3) calculating the error; and 4) calculating and optimizing
the parameters. On the other hand, the proposed method-
ology shown in Fig. 3 is described by Algorithm 2. Note
that the gradients all-reduce step is performed for intranode
g_group replicas. Meanwhile, the parameters all-reduce step
is conducted for global internode parameter communications
G_group between all the replicas.

IV. EXPERIMENTATION RESULTS

To provide significant and representative evidences of
the efficiency and effectiveness of the proposed scheme,
exhaustive experimentation has been conducted for large mod-
els, analyzing different datasets and discussing a variety of
applications. The experimentation focuses on evaluating the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MORENO-ÁLVAREZ et al.: ENHANCING DISTRIBUTED NEURAL NETWORK TRAINING 9

Algorithm 1 Training Procedure of Distributed Training. The
Algorithm Comprises Forward Propagation, Loss and Gradient
Calculation, and Parameter Update

1: for ∀e ∈ [1, E] do
2: for ∀i ∈ [1, K] do
3: t = i + K (e − 1)

4: ▷ Batch processing:
5: Bi ⊂ {Xr ,Yr } = {Xr,n, Yr,n}

n+B−1
n=1+B(i−1)

6: X(l)
r,n = σ(X(l−1)

r,n , θ t
l), ∀l ∈ L

7: ▷ Gradients calculation:

8: gt
r =

1
B

∑
n

∇ℓ(Yr,n, f (Xr,n, θ
t
r))

9: Gt
=

1
R

R∑
r=1

gt
r ▷ G_group

10: ▷ Parameters update:
11: θ t+1

r = θ t
r − µt Gt

12: end for
13: end for

Algorithm 2 Training Procedure for the Proposed Method-
ology. The Algorithm Comprises Forward Propagation, Loss
and Gradient Calculation, and Parameter Update

1: for ∀e ∈ [1, E] do
2: for ∀i ∈ [1, K] do
3: t = i + K (e − 1)

4: ▷ Batch processing:
5: Bi ⊂ {Xr ,Yr } = {Xr,n, Yr,n}

n+B−1
n=1+B(i−1)

6: X(l)
r,n = σ(X(l−1)

r,n , θ t
l), ∀l ∈ L

7: ▷ Gradients calculation:

8: gt
r =

1
B

∑
n

∇ℓ(Yr,n, f (Xr,n, θ
t
r))

9: Gt
m =

1
Rm

Rm∑
r=1

gt
r ▷ g_group

10: ▷ Inter-node consensus:
11: if i == K ′ then

12: 2t
R =

1
R

M∑
m=1

Rm∑
r=1

θ t
r ▷ G_group

13: θ t
r = 2t

R
14: end if
15: ▷ Parameters update:
16: θ t+1

r = θ t
r − µt Gt

17: end for
18: end for

well-known communication latency problem for data paral-
lelism schemes. The experimental evaluation of the proposal
encompasses a wide range of studies, including speedup
analysis, classification tasks on deep models, ViTs, evaluation
of optimizers, fine-grained classification, and image gener-
ation. Standard all-reduce implementation is considered as
baseline.

A. Experimental Datasets

Next, the description of the studied datasets in the presented
study is provided.

1) The MNIST [46] dataset is composed of a training set
with 60 000 samples and a test set with 10 000 samples.
Images represent a digit from 0 to 9 with size of 30 × 30.
Image colors are black and white.

2) The CIFAR-10 and CIFAR-100 [47] datasets are com-
posed of 60 000 colored images of size 32 × 32 with
6000 and 600 images per class, respectively. Both
datasets are divided in training and test data, using
50 000 for training and 10 000 for evaluation. The main
difference between both datasets is that CIFAR-10 has
10 independent classes assigned for classification. Con-
versely, CIFAR-100 has 100 sub-classes grouped into
20 classes.

3) Four fine-grained datasets are considered. Firstly, Stan-
ford Cars [48] is composed of 16 185 colored images
of size 360 × 240 from the rear of 196 types of cars
and divided in half between training and test. Secondly,
Stanford Dogs [49], contains 20 580 images of 120 dogs
classes, which are divided into 12 000 and 8580 for train-
ing and testing, respectively. Thirdly, CUB-200-2011
[50] contains 11 788 birds images of 200 classes divided
into 5994 for training and 5794 for testing. Each image
is composed of 15 part locations, 312 binary attributes,
and 1 bounding box. Finally, FGVC Aircraft [51] is
composed of 10 200 aircraft images of 102 classes. Each
image has a tight bounding box and a hierarchical model
label.

4) The ImageNet-1K [52] dataset comprises 1000 mutually
exclusive classes and contains around 1 281 167 train-
ing images, 50 000 validation images and 100 000 test
images. Each image is of size 256 × 256 × 3 resized
to 224 × 224 × 3. Images contain animals, landscape,
or fungible objects, among others.

B. Experimental Settings
Experiments have evaluated the behavior of both baseline

and proposed schemes. The training runs averages are calcu-
lated from five Monte Carlo executions for all employed met-
rics, that is, training time, accuracy, and loss. Two platforms
are used in order to test the proposed implementation in differ-
ent architectures. The first platform is the Modular Supercom-
puter Architecture (MSA) developed by the European project
Dynamical Exascale Entry Platform-Extreme Scale Technolo-
gies (DEEP-EST) [53]. This platform is composed of three
main modules: cluster module (CM), data analytics module
(DAM), and extreme scale booster (ESB). These modules are
constituted of 50 CPUs nodes, 16 GPU+CPU nodes, and
74 GPU+CPU nodes, respectively. In the performed exper-
iments, the ESB module is used for a maximum of 20 nodes
due to its suitable design for the training of deep learning
algorithms. Each node is composed of an NVIDIA V100 Tesla
GPU and Intel Xeon “Cascade Lake” Silver 4215 CPU running
at 2.50 GHz. Network between nodes is a 100 Gb/s Infiniband.
The second platform is the Ceta-Ciemat supercomputer, where
four nodes, named Tesla accelerators (TAs), have been selected
for the experimentation with four NVIDIA V100 Tesla GPU
per node and Intel CPU “Cascade Lake” 6240 running at
2.50 GHz. Both modules are shown in Fig. 4.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II
EXPERIMENTAL MODELS DESCRIPTION. IN THE MODELS, MP AND AVG DENOTE A MAXPOOLING OR AVERAGEPOOLING LAYER, RESPECTIVELY. THE

PARAMETERS FOR MP ARE KERNEL SIZE AND STRIDE. PADDING AND STRIDE ARE DEFINED AS 2 AND 2 FOR THE IMAGENET DATASET, AND
1 AND 1 FOR CIFAR. C REFERS TO CIFAR AND I TO IMAGENET. IN VIT MODELS, B AND S REFERS TO BASE AND SMALL MODELS,

RESPECTIVELY. T IS THE ACRONYM USED FOR TRANSFER, LR REFERS TO LEAKYRELU AND UP IS UPSAMPLE WITH A SCALE
FACTOR OF 2. IN GAN MODELS, IMAGE SIZE IS HEIGHT × WIDTH × DEPTH, VALIDITY REFERS TO FALSE OR TRUE (0, 1)

AND LABEL (0, 9) THE CLASS NUMBER. FINALLY, BN DENOTES BATCHNORM LAYER AND DP REFERS DROPOUT

Fig. 4. Cluster configurations used in the experimentation. The data is
provided to the modules using high-performance clustered file system software
(GPFS) for ESB nodes or Lustre TA nodes.

Regarding the neural networks, evaluated models vary in
depth (ResNet18, ResNet50 and ResNet101) to provide differ-
ent levels of feature extraction. These models are trained using
a scheduler of the learning rate 0.1 with SGD momentum of
0.9, weight decay 5e−4 and batch size of 128. The imple-
mented scheduler is CosineAnnealingLR with a maximum
number of iterations K _max equal to the number of epochs
E = 400. On the other hand, transformer models demonstrated
to perform very well on image classification using sequences
of image patches [54]. Indeed, in the experimentation, pre-
trained ViT models [55] (ViT-B and ViT-S) are evaluated using
Adam optimizer [56] with those hyperparameters provided
by Zhu et al. [54] for 200 and 50 epochs, respectively. In
addition, for fine-grained classification, 100 epochs have been
conducted using the MultiStepLR scheduler with milestones
50, 80 and batch size 48. Milestones indicate the epoch
number where the learning rate is decayed. For fine-grained
datasets, the training is performed using the ResNet50 model
with SGD, momentum of 0.9, learning rate of 1e−2 and γ

0.1. Next, GAN is trained with a batch size of 32 for the

MNIST dataset with Adam during 300 epochs, using a value
of learning rate of 2e−4 with betas B1 and B2 decay of 0.5 and
0.999 for both optimizers, generator, and discriminator, respec-
tively. Batch normalization is used for all training models.
Models are described in Table II. The scheduler used for GAN
is CosineAnnealingLR with a total of steps equal to the number
of epochs. Finally, ImageNet is trained with learning rate
2e−3 for the proposed method and 1e−3 for the baseline. This
requirement is set to avoid local minima in complex training
scenarios, where the proposed method requires bigger learning
steps to maintain the convergence. This is also implemented
to train MNIST with RNNs. For these last two experiments,
the batch size is set to 64 per replica and K ′

= 50. Rest
of the hyperparameters are extracted from AdaBelief [57] for
ImageNet. On the contrary, RNNs are trained with Adam.

C. Experimental Discussion
1) First Experiment: This experiment evaluates different

node distributions in order to examine the speedup over the
ResNet models. Also, an accuracy comparison between the
baseline and proposed methodologies is performed using
the CIFAR-10 and CIFAR-100 datasets. Obtained results are
presented in Table III. In the obtained results, it can be
observed how different factors can affect the speedup, such
as the number of iterations performed by each replica, the
number of parameters of the network and the channel con-
gestion. Moreover, the speedup will increase until the point
that intranode communications are significantly reduced. Also,
the acceleration gain is slightly increased depending on the
number of parameters. MA denotes the proposal accuracy
evolution until the baseline maximum accuracy is reached.
Meanwhile, MA-A denotes the acceleration produced by the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MORENO-ÁLVAREZ et al.: ENHANCING DISTRIBUTED NEURAL NETWORK TRAINING 11

Fig. 5. Experiment 1: accuracy evolution for both schemes using ResNet101. Minutes are denoted as min for the y-axis of (c) and (d). MA denotes the
proposal until the baseline maximum accuracy is reached. (a) CIFAR-10. (b) CIFAR-100. (c) CIFAR-10 (time). (d) CIFAR-100 (time).

TABLE III
EXPERIMENT 1: ACCURACY (%) AND SPEEDUP MEASUREMENTS. SPEEDUP IS SHOWN IN PERCENTAGE (%). @ INDICATES A NEARBY VALUE

proposal to reach the maximum accuracy obtained in the
baseline method.

Focusing on the analysis reliability, those implementations
with the proposed communication scheme obtains better accu-
racy results for both datasets. The highest two accuracy values
are obtained using 4 and 12 nodes for all models. As a
summary of CIFAR-10 results, for ResNet18, the proposed
method obtains an accuracy of 94.34% with an improvement
of +0.06% compared with the baseline method for 4 nodes,
whilst for 12 the difference is residual. Keeping constant the
analysis on 4 and 12 nodes for the rest of the models, the
obtained gains are +0.61% for both optimal node distribu-
tions in ResNet50, and +0.02% and +0.88% in ResNet101.
Moreover, for CIFAR-100, notable improvements are shown
for all models. Similar to CIFAR-10, best results are obtained
using 4 and 12 nodes. In this regard, 74.44% and 74.09%
for ResNet18, 76.67% and 76.33% for ResNet50, 77.12%
and 76.92% for ResNet101. In addition, the gains obtained
in comparison with the baseline method are +0.28% and
+0.20% for ResNet18, +1.12% and +1.98% for ResNet50,
+0.86% and +1.81% for ResNet101, respectively, for both
optimal node distributions. The proposed method shows a
clear improvement improving the accuracy for the different
distribution alternatives. According to the number of nodes,
the baseline method obtains accuracy losses as the number
of nodes increases. Meanwhile, the proposal aims to maintain
stable the accuracy for all node distributions. Table III shows

how the proposed method always aims to reach the best
accuracy for all datasets and models.

The graphic representation for the accuracy values from
Table III are shown using its evolution by epoch and time
in Fig. 5(a) and (b) and (c) and (d), respectively. Note that
the 12 distribution is selected as the best trade-off between
speedup and accuracy. Additionally, Fig. 5 also shows the
accuracy evolution until the point where the proposed method
reaches the same accuracy than the baseline. This evolution is
denoted as Proposed (MA) from Table III. Moreover, speedup
from Table III is shown with respect to the Proposed and
Baseline plots. As a consequence, in Fig. 5(c) and (d), the
rest of the time aims to increase the accuracy performance.

Last, the speedup values show that the proposal benefits
from a higher number of nodes until the point that the
number of iterations performed in each of them is significantly
reduced. At that point, the number of intranode communi-
cations still benefit when compared to the baseline. As they
are reduced, their improvement over time is affected. In these
cases, even that the speedup is less, the proposal still obtains
better accuracy for all cases. Indeed, expanding the parameter
count within the model yields a proportionally increased
acceleration.

2) Second Experiment: The objective of the second
experiment is to determine the behavior of the proposal
using different optimization algorithms to demonstrate its
robustness. Therefore, multiple classification algorithms have

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. (a) and (b) Experiment 2: accuracy evolution for different optimization algorithms. P and B denotes the proposed and the baseline methodologies,
respectively. (c) and (d) Experiment 3: obtained results of ViT models. P and B denotes the proposed and the baseline methodologies, respectively.

TABLE IV
EXPERIMENT 2: ACCURACY (%) RESULTS OF RESNET50 USING 12 NODES

CONSIDERING BOTH CIFAR-10 AND CIFAR-100 DATASETS

TABLE V
EXPERIMENT 3: ACCURACY RESULTS OF TRANSFORMER VIT MODELS

USING 12 NODES. ADAM IS USED AS OPTIMIZER. BOTH DATASETS
CIFAR-10 AND CIFAR-100 ARE STUDIED

been evaluated. These algorithms are Adam, AdamW [58],
AdaBelief [57], AngularGrad [59], and SGD [60]. Optimizers
are configured used the optimal hyperparameters provided by
the literature. The experiments have been conducted using the
ResNet50 model with a 12-node distribution. The selection of
the node distribution is determined by the previous experiment,
where the best trade-off of accuracy and speedup has been
demonstrated for 12 nodes. Accuracy results are shown in
Table IV. The proposed method aims to obtain major accuracy
improvements for the evaluated optimizers. As a resume, the
best accuracy for CIFAR-10 is obtained with AdamW with a
value of 94.67% and 93.89% for the proposal and baseline,
respectively. Highlight the difference obtained between both
methodologies with a gain of +0.78% at high-precision levels.
Others optimizers such as AngularGrad also obtain notable
improvements. Meanwhile, for CIFAR-100, the highest accu-
racy is obtained with Adam, with a value of 76.33% and
74.35%, aiming a gain of +1.98%. Note that Adam values
are obtained from the previous Experiment 1. Accuracy results
from Table IV are shown in Fig. 6(a) and (b).

3) Third Experiment: This experiment analyzes both base-
line and proposed schemes for ViT models. Therefore, models
from Table II ViT-B and ViT-S are used. Accuracy results are
included in Table V. Moreover, the results are as positive as
in the previous experiments. Accuracy is improved for both
CIFAR-10 and CIFAR-100 datasets. Specifically, for the base
model ViT-B a gain of +0.37 and +0.59 is obtained for the
evaluated datasets, respectively. For the small model ViT-S, the

Fig. 7. Experiment 4: accuracy evolution for both schemes using ResNet50
for fine-grained datasets. P and B denotes the proposed and the baseline
methodologies, respectively.

gains are +0.13 and +1.07, for both datasets. As can be seen,
the accuracy percentages are very high, all of them exceeding
90%. As a consequence, obtaining accuracy improvements
is difficult. Last, results from Table V are clearly shown in
Fig. 6(c) and (d), where the gains and the positive trend of
the proposed method can be appreciated.

4) Fourth Experiment: The fourth experiment has been
conducted to evaluate the performance of pretrained models
for fine-grained classification. Obtained results from the stud-
ied datasets Stanford Cars, Standford Dogs, CUB-200-2011,
and FGVC Aircraft are shown in Table VI. The proposed
method obtains better classification results for all datasets.
Specially, for Stanford Cars and CUB-200-2011, the accuracy
improvements are +0.84% and +1.17%, respectively. Fig. 7
shows how the proposal starts the training with lower accu-
racy values. Subsequently, as the training is maintained over
time, the proposal manages to overcome the baseline results.
In this way, we can determine that the proposal manages to
improve training for fine-grained classification algorithms with
pretrained values.

5) Fifth Experiment: This experiment performs the training
for GAN to generate MNIST images with good resolution.
Since previous experiments focus on classification, the main
objective of this experiment is to demonstrate the effectiveness
of the proposed method for a different task. The proposal

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MORENO-ÁLVAREZ et al.: ENHANCING DISTRIBUTED NEURAL NETWORK TRAINING 13

TABLE VI
EXPERIMENT 4: OBTAINED ACCURACY (%) FOR FINE-GRAINED CLASSIFICATION TASK USING 12 NODES

TABLE VII
EXPERIMENT 6: RESULTS FOR IMAGENET-1K CLASSIFICATION USING BOTH METHODOLOGIES WITH R = 16 AND M = 4

Fig. 8. Experiment 5: loss evolution of both schemes for GAN networks.
Generator and discriminator are shown for each method. P and B denotes
the proposed and the baseline methodologies, respectively.

Fig. 9. Experiment 5: generated MNIST images for both methodologies.
(a) Baseline. (b) Proposed.

aims to reduce the communication for the discriminator and
generator during training. Networks are described in Table II.

The evolution of the loss functions for both networks,
discriminator and generator, are shown in Fig. 8 for both
baseline and proposed methods. The graphical evolution shows
that the proposed method reaches lower loss values. Hence, the
generation error is less for the proposal. Additionally, in Fig. 9,
the generated images for the baseline and proposed methods
are shown. As demonstrated, the proposal aims to generate
more realistic images, clearly appreciated for the digits 5 and
8. In this context, the detection of digit borders is a crucial
aspect that the proposal focuses on, aiming to improve its
efficiency with an overall acceleration of 10.1%.

Fig. 10. Experiment 6: accuracy evolution of ResNet and ShuffleNet models
for ImageNet-1K using both methodologies. P and B denotes the proposed
and the baseline methodologies, respectively. MA denotes the proposal until
the baseline maximum accuracy is reached.

TABLE VIII
EXPERIMENT 7: ACCURACY RESULTS OF RECURRENT-BASED MODELS

FOR THE MNIST DATASET USING R = 4 AND M = 2

6) Sixth Experiment: This experiment evaluates the accu-
racy and speedup of ResNet18, ResNet34, and ShuffleNet_V2
models on the ImageNet-1K dataset. As in previous experi-
ments, the proposal is compared against the baseline all-reduce
implementation. It is observed in Fig. 10 and Table VII that
the proposal obtains better performance in terms of accuracy
and speedup for all models. As the complexity of the model
increases, the robustness of the proposed approach is demon-
strated by its ability to maintain or even improve the accuracy.
The proposed method achieves the maximum accuracy earlier
than the baseline approach.

7) Seventh Experiment: The last experiment aims to evalu-
ate the behavior of different RNN-based models. Concretely,
these models are long short-term memory (LSTM), gated
recurrent unit (GRU), and classic RNN. Results are shown in
Fig. 11 and Table VIII for both proposed and baseline com-
munication schemes. Obtained speedup is +15.09%, +4.11%,
and +4.34%, respectively. As can be observed, the accuracy
values remain consistently stable for all approaches, with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 11. Experiment 7: accuracy evolution for RNN models using MNIST.
P and B denotes the proposed and the baseline methodologies, respectively.

light improvements observed in the LSTM and GRU models
benefiting the proposal.

V. CONCLUSION

In this work, we proposed a novel node-based communica-
tion scheme, which exploits all-reduce collectives for handling
replica gradients and parameters updating. In particular, two
types of communications named intranode and internode have
been implemented, depending on the location of the replicas
in an HPC platform. Then, the number of global commu-
nications is reduced by discriminating the most expensive
communications. As a result, the proposed method obtains
significant speedups with respect to the baseline method
extracted from the literature. The proposed communication
scheduling outperforms the baseline communications in most
of the experimental cases. The proposed method capitalizes
on the utilization of large-scale datasets and complex neural
architectures, while also extending its applicability beyond
these specific cases. This is attributed to the substantial volume
of data that needs to be exchanged between internode repli-
cas. As a result, the performance achieved by the proposed
method exhibits scalability in such environments. Finally, the
proposed method has been tested for multiple applications,
such as image classification and generation, and obtaining
better overall results. The proposal also demonstrates that
average the combined replica parameters helps to improve the
reliability of the models for the proposed scheme. We can
conclude that the proposed communication scheme is more
effective and successfully manages to improve the applica-
tions performance. With an efficient communication design,
we avoid the detrimental continuous exchange of gradients
between replicas that increase the execution time and slow
down the convergence of the model.

ACKNOWLEDGMENT

This work was supported by the computing facilities of
the Extremadura Research Centre for Advanced Technolo-
gies (CETA-CIEMAT), Trujillo, Spain, funded by the Euro-
pean Regional Development Fund (ERDF). CETA-CIEMAT
belongs to CIEMAT and the Government of Spain.

REFERENCES

[1] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[2] J. M. Haut et al., “Distributed deep learning for remote sensing data
interpretation,” Proc. IEEE, vol. 109, no. 8, pp. 1320–1349, Aug. 2021.

[3] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages
of deep learning for natural language processing,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 2, pp. 604–624, Feb. 2021.

[4] S. Moreno-Álvarez, J. M. Haut, M. E. Paoletti, J. A. Rico-Gallego,
J. C. Díaz-Martín, and J. Plaza, “Training deep neural networks: A
static load balancing approach,” J. Supercomput., vol. 76, no. 12,
pp. 9739–9754, Dec. 2020.

[5] MPI: A Message-passing Interface Standard, Version 3.1; June 4, 2015.
MPI Forum, High-Perform. Comput. Center Stuttgart, Univ. Stuttgart,
Stuttgart, Germany, 2015.

[6] H. Sun, Z. Gui, S. Guo, Q. Qi, J. Wang, and J. Liao, “GSSP: Eliminating
stragglers through grouping synchronous for distributed deep learning
in heterogeneous cluster,” IEEE Trans. Cloud Comput., vol. 10, no. 4,
pp. 2637–2648, Oct. 2022.

[7] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun. 2015,
pp. 1–9, doi: 10.1109/CVPR.2015.7298594.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[9] K. Han et al., “A survey on visual transformer,” 2020, arXiv:2012.12556.
[10] A. Vaswani et al., “Attention is all you need,” in Advances in Neural

Information Processing Systems, vol. 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Red Hook, NY, USA: Curran Associates, 2017.

[11] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[12] L. R. Medsker and L. C. Jain, “Recurrent neural networks,” Design
Appl., vol. 5, pp. 64–67, Dec. 2001.

[13] S. Li et al., “PyTorch distributed: Experiences on accelerating data
parallel training,” 2020, arXiv:2006.15704.

[14] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: Theory, practice, and experience: Research articles,”
Concurr. Comput. Pract. Exper., vol. 19, no. 13, pp. 1749–1783,
Sep. 2007.

[15] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T. Hoefler,
“SparCML: High-performance sparse communication for machine learn-
ing,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.
New York, NY, USA: Association for Computing Machinery, Nov. 2019,
doi: 10.1145/3295500.3356222.

[16] S. Shi et al., “A distributed synchronous SGD algorithm with global
top-k sparsification for low bandwidth networks,” in Proc. IEEE 39th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 2238–2247.

[17] M. E. Paoletti, J. M. Haut, T. Alipour-Fard, S. K. Roy, E. M. T. Hendrix,
and A. Plaza, “Separable attention network in single- and mixed-
precision floating point for land-cover classification of remote sensing
images,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.

[18] M. E. Paoletti, X. Tao, J. M. Haut, S. Moreno-Álvarez, and A. Plaza,
“Deep mixed precision for hyperspectral image classification,” J. Super-
comput., vol. 77, no. 8, pp. 9190–9201, Aug. 2021.

[19] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “Collective
communication: Theory, practice, and experience,” Concurrency Com-
putation: Pract. Exper., vol. 19, no. 13, pp. 1749–1783, 2007.

[20] S. Li and T. Hoefler, “Near-optimal sparse allreduce for distributed deep
learning,” in Proc. 27th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program. New York, NY, USA: Association for Computing Machinery,
Apr. 2022, pp. 135–149, doi: 10.1145/3503221.3508399.

[21] S. Shi, X. Chu, K. Chun Cheung, and S. See, “Understanding top-k
sparsification in distributed deep learning,” 2019, arXiv:1911.08772.

[22] R. Rabenseifner, “Optimization of collective reduction operations,” in
Proc. Int. Conf. Comput. Sci., vol. 3036, 2004, pp. 1–9.

[23] P. Sanders, J. Speck, and J. L. Träff, “Two-tree algorithms for
full bandwidth broadcast, reduction and scan,” Parallel Comput.,
vol. 35, no. 12, pp. 581–594, Dec. 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819109000957

[24] J. Huang, P. Majumder, S. Kim, A. Muzahid, K. H. Yum, and E. J. Kim,
“Communication algorithm-architecture co-design for distributed deep
learning,” in Proc. ACM/IEEE 48th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2021, pp. 181–194.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1145/3295500.3356222
http://dx.doi.org/10.1145/3503221.3508399

MORENO-ÁLVAREZ et al.: ENHANCING DISTRIBUTED NEURAL NETWORK TRAINING 15

[25] D. Clarke, Z. Zhong, V. Rychkov, and A. Lastovetsky, “FuPerMod:
A framework for optimal data partitioning for parallel scientific
applications on dedicated heterogeneous HPC platforms,” in Par-
allel Computing Technologies. Berlin, Germany: Springer, 2013,
pp. 182–196.

[26] A. Lastovetsky, I.-H. Mkwawa, and M. O’Flynn, “An accurate commu-
nication model of a heterogeneous cluster based on a switch-enabled
Ethernet network,” in Proc. 12th Int. Conf. Parallel Distrib. Syst.
(ICPADS), 2006, p. 6.

[27] J. A. Rico-Gallego, S. Moreno-Álvarez, J. C. Díaz-Martín, and
A. L. Lastovetsky, “A tool to assess the communication cost of parallel
kernels on heterogeneous platforms,” J. Supercomput., vol. 76, no. 6,
pp. 4629–4644, Jun. 2020.

[28] J. A. Rico-Gallego, J. C. Díaz-Martín, C. Calvo-Jurado,
S. Moreno-Álvarez, and J. L. García-Zapata, “Analytical communication
performance models as a metric in the partitioning of data-parallel
kernels on heterogeneous platforms,” J. Supercomput., vol. 75, no. 3,
pp. 1654–1669, Mar. 2019, doi: 10.1007/S11227-018-2724-8.

[29] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, and Q. V. Le, “Mesh-
TensorFlow: Deep learning for supercomputers,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 4235–4245.

[30] D. Coquelin et al., “Accelerating neural network training with distributed
asynchronous and selective optimization (DASO),” J. Big Data, vol. 9,
no. 1, p. 14, Dec. 2022.

[31] B. E. Woodworth, K. K. Patel, and N. Srebro, “Minibatch vs local
SGD for heterogeneous distributed learning,” in Advances in Neural
Information Processing Systems, vol. 33, H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, Eds. Red Hook, NY, USA: Curran
Associates, 2020, pp. 6281–6292.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Proc. Artif. Intell. Statist., 2017,
pp. 1273–1282.

[33] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
SGD on identical and heterogeneous data,” in Proc. Int. Conf. Artif.
Intell. Statist., 2020, pp. 4519–4529.

[34] L. Zhang, S. Shi, X. Chu, W. Wang, B. Li, and C. Liu, “Decoupling
the all-reduce primitive for accelerating distributed deep learning,” 2023,
arXiv:2302.12445.

[35] H. Zhang et al., “Poseidon: An efficient communication architecture for
distributed deep learning on GPU clusters,” in Proc. USENIX Annu.
Tech. Conf., vol. 1, 2017, pp. 1–2.

[36] M. Cho, U. Finkler, and D. Kung, “Blueconnect: Novel hierarchical all-
reduce on multi-tired network for deep learning,” in Proc. 2nd SysML
Conf., 2019, pp. 1–5.

[37] A. Sergeev and M. D. Balso, “Horovod: Fast and easy
distributed deep learning in TensorFlow,” 2018, arXiv:1802.
05799.

[38] S. Li et al., “Colossal-AI: A unified deep learning system for large-scale
parallel training,” 2021, arXiv:2110.14883.

[39] N. Bogoychev, K. Heafield, A. F. Aji, and M. Junczys-Dowmunt,
“Accelerating asynchronous stochastic gradient descent for neural
machine translation,” in Proc. Conf. Empirical Methods Natural
Lang. Process. Brussels, Belgium: Association for Computational
Linguistics, Oct.-Nov. 2018, pp. 2991–2996. [Online]. Available:
https://aclanthology.org/D18-1332

[40] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification for
communication-efficient distributed optimization,” in Proc. 32nd Int.
Conf. Neural Inf. Process. Syst. Red Hook, NY, USA: Curran Associates,
2018, pp. 1306–1316.

[41] N. Ivkin et al., “Communication-efficient distributed SGD with sketch-
ing,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–11.

[42] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-
efficient distributed deep learning: A comprehensive survey,” 2020,
arXiv:2003.06307.

[43] S. Ouyang, D. Dong, Y. Xu, and L. Xiao, “Communication optimization
strategies for distributed deep neural network training: A survey,”
J. Parallel Distrib. Comput., vol. 149, pp. 52–65, Mar. 2021.

[44] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and
P. T. P. Tang, “On large-batch training for deep learning: Generalization
gap and sharp minima,” 2016, arXiv:1609.04836.

[45] M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized stochastic
gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., vol. 23, 2010,
pp. 1–9.

[46] L. Deng, “The MNIST database of handwritten digit images for
machine learning research,” IEEE Signal Process. Mag., vol. 29, no. 6,
pp. 141–142, Nov. 2012.

[47] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep. TR-2009,
2009.

[48] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representations
for fine-grained categorization,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops, Dec. 2013, pp. 554–561, doi: 10.1109/ICCVW.2013.77.

[49] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li, “Novel dataset
for fine-grained image categorization: Stanford dogs,” in Proc. CVPR
Workshop Fine-Grained Vis. Categorization (FGVC), vol. 2, no. 1, 2011,
pp. 1–2.

[50] P. Welinder et al., “Caltech-UCSD birds 200,” California Inst. Technol.,
Pasadena, CA, Tech. Rep. CNS-TR-2010-001, 2010.

[51] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-
grained visual classification of aircraft,” 2013, arXiv:1306.5151.

[52] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[53] E. Suarez, N. Eicker, and T. Lippert, “Modular supercomputing archi-
tecture: From idea to production,” in Contemporary High Performance
Computing. Boca Raton, FL, USA: CRC Press, 2019.

[54] M. Zhu, Y. Tang, and K. Han, “Vision transformer pruning,” 2021,
arXiv:2104.08500.

[55] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” 2020, arXiv:2010.11929.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[57] J. Zhuang et al., “AdaBelief optimizer: Adapting stepsizes by the belief
in observed gradients,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
2020, pp. 1–12.

[58] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2017, arXiv:1711.05101.

[59] S. K. Roy et al., “AngularGrad: A new optimization technique
for angular convergence of convolutional neural networks,” 2021,
arXiv:2105.10190.

[60] B. Léon, “Stochastic gradient learning in neural networks,” Proc. Neuro-
Nimes, vol. 91, no. 8, p. 12, Jan. 1991.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1007/S11227-018-2724-8
http://dx.doi.org/10.1109/ICCVW.2013.77

