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Abstract
We study bounded actions of groups and semigroupsG on exact sequences of Banach
spaces from the point of view of (generalized) quasilinear maps, characterize the
actions on the twisted sum space by commutator estimates and introduce the asso-
ciated notions of G-centralizer and G-equivariant map. We will show that when (A)
G is an amenable group and (U) the target space is complemented in its bidual by a
G-equivariant projection, then uniformly bounded compatible families of operators
generate bounded actions on the twisted sum space; that compatible quasilinear maps
are linear perturbations of G-centralizers; and that, under (A) and (U), G-centralizers
are bounded perturbations of G-equivariant maps. The previous results are optimal.
Several examples and counterexamples are presented involving the action of the isom-
etry group of L p(0, 1), p �= 2 on the Kalton–Peck space Z p, certain non-unitarizable
triangular representations of the free group F∞ on the Hilbert space, the compatibility
of complex structures on twisted sums, or bounded actions on the interpolation scale
of L p-spaces. In the penultimate section we consider the category ofG-Banach spaces
and study its exact sequences, showing that, under (A) and (U), G-splitting and usual
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splitting coincide. The purpose of the final section is to present some applications,
showing that several previous result are optimal and to suggest further open lines of
research.

Keywords Semigroup actions · Twisted sums of Banach spaces · Exact sequences ·
Amenable groups · Complex interpolation

Mathematics Subject Classification Primary 46M18; Secondary 46B70 · 22A25

1 Introduction

This paper emerges from the observation of similarities between different problems:

(a) The construction of non-unitarizable, bounded, representations of the free group
F∞ on the Hilbert space.

(b) The construction of operators on the Kalton–Peck space Z2.
(c) The differential process associated to a complex interpolation scheme.
(d) Actions of groups on exact sequences of Banach spaces.
(e) The existence of certain bounded groups of isomorphisms on the space c0.

In all cases, certain non-linear maps (including sometimes linear unbounded maps)
and their compatibility with the action of some groups of operators through commu-
tator estimates are at the core of the problem. In (a), a linear unbounded map used
to define a non-inner derivation and therefore a non-unitarizable representation [43];
in (b) the Kalton–Peck map KP [37] (see also [7, Section 3.2]); in (c) is the “�-
operator" mentioned by several authors Cwikel et al. [23, Section I], Rochberg [44],
Carro [14]... And in (d) we encounter the Banach version of the three-representation
problem (see [38]). Another unexpected example (e) is a linear unbounded map used
in [1] to define a non-trivial derivation in a study of bounded groups acting on c0.
Connections between some of those elements had been observed before: for instance,
Kalton observed [34, 35] that while working on Köthe spaces, �-operators are a spe-
cial type of quasilinear map, that he called L∞-centralizers, intimately connected with
the complex interpolation scale.

To obtain a unified point of viewwe consider a group or semigroupG, two bounded
actions u, v on two Banach spaces X ,Y and introduce the notion of G-centralizer �,
as well as the more general notion of a quasi-linear map � compatible with an u, v:
this allows us to construct an exact sequence 0 −→ X → X ⊕� Y −→ Y −→ 0 of
Banach spaces and connect possible actions of G on the twisted sum space X ⊕� Y
with commutator estimates involving � and derivations of the group.

Our results move at two levels, the theoretical and the examples/counterexamples
level. On the theoretical side, we present the following list of results (to simplify
notation, let (A) be the condition “G is amenable" and let (U ) be the condition “X is
complemented in its bidual by a G-equivariant projection"):

(1) Triangular representations of groups on the Hilbert space H may be interpreted
as diagonal representations on H seen as a twisted Hilbert space.
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(2) Under (A) and (U ), a uniformly bounded family (Tg)g∈G of operators yielding
commutative diagrams

0 −−−−→ X −−−−→ X ⊕� Y −−−−→ Y −−−−→ 0

u(g)

⏐
⏐
� Tg

⏐
⏐
�

⏐
⏐
�v(g)

0 −−−−→ X −−−−→ X ⊕� Y −−−−→ Y −−−−→ 0

provides a compatible action of G on X ⊕� Y .
(3) Every � compatible with an action on X ⊕� Y is a linear perturbation of a G-

centralizer (possibly with values in a larger target space).
(4) Under (A) and (U ), every G-centralizer is a bounded perturbation of a G-

equivariant map.
(5) We introduce the category of G-Banach spaces and show that, under (A) and

(U ), a G-exact sequence of G-spaces G-splits if and only if it splits as an exact
sequence of Banach spaces.

We also present the following counterexamples:

• We will use a construction of Pytlic and Szwarc [43] to show a centralizer (on �2)
that is not a bounded perturbation of an equivariant centralizer when G is non-
amenable. We will provide another counterexample, inspired from [1] and defined
on c0, when X is not complemented in its bidual. These examples show that (4)
above is optimal.

• We will show that the Kalton–Peck map is not a centralizer for the groups of
isometries on L p, p �= 2 or isometries preserving disjointness on L2. It is however
compatible with the actions of those groups.

• In the case of the group of isometries of L2, the Kalton–Peck map is not even
compatible with the action of that group.

There are specific sections devoted to actions of groups on complex interpolation
scales, on Kalton–Peck spaces and on higher order Rochberg spaces, as well as to the
connections between G-centralizers and (almost) transitivity.

2 The Background

Let X ,Y be Banach spaces. In what follows � ⊂ Y represents a dense subspace of Y
(sometimes called the intersection space), while � represents the ambient space. To
work with quasilinear maps it would be enough that � is a vector space containing X .
To work in an interpolation context it is convenient asking� to carry a vectorial topol-
ogy making the containment map continuous; and to work with continuous actions
it is better to ask that the continuous action can be extended to �. When necessary,
we will specify the injective linear map j : X → � and endow the subspace j [X ]
with the norm ‖j (x)‖ = ‖x‖X . Most often than not there is a natural choice of �

that is already a Banach space and making j continuous. The section entitled “The
issue of the ambient space" shows how to make, once these basic premises have been
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established, irrelevant the choice of the ambient space even in the most restrictive
Banach setting. A homogeneous map � : � −→ � is a z-linear map � � X if there
is a constant C such that for all finite sequences of elements y1, . . . , yN ∈ �

(a) �(
∑N

n=1 yn)−
∑N

n=1 �(yn) ∈ j [X ]
(b) ‖�(

∑N
n=1 yn)−

∑N
n=1 �(yn)‖j [X ] ≤ C

∑N
n=1 ‖yn‖Y .

In this paper we mainly use the notation � : � � X , although � : Y � X can
also be appear when the choice of � is clear from the context or irrelevant. When
condition (b) holds only for pairs of points then � is called quasilinear. A quasilinear
map � : � � X with ambient space � is said to be trivial if there is a linear (not
necessarily continuous)map L : � −→ � such that�−L : � → j [X ] is bounded, in
the sense that ‖�(y)− L(y)‖j [X ] ≤ M‖y‖Y for some constant M and all y ∈ �. Two
quasilinear maps �,� : � � X with ambient space � are said to be equivalent, and
denoted � ∼ �, (resp. boundedly equivalent and denoted � ∼	 �) if�−� is trivial
(resp.�−� : � −→ X is bounded). The twisted sum generated by a quasilinear map
� is the completion X⊕�Y of the space X⊕�� := {(ω, y) ∈ �×� : ω−�y ∈ j [X ]}
endowed with the quasi-norm ‖y‖Y + ‖ω −�y‖j [X ]. From now on, except when in
need, we shall omit the embedding j . If � is z-linear then ‖ · ‖� is equivalent to
a norm, and thus X ⊕� Y is a Banach space. Kalton showed [31, Theorem 4.10]
that quasilinear maps on B-convex Banach spaces (e.g. uniformly convex spaces)
are z-linear; therefore, twisted sums in which the quotient space is B-convex are
Banach spaces. The map ı : X −→ X ⊕� Y given by ı(x) = (x, 0) is an into
isomorphism and the map π : X ⊕� Y −→ Y given by π(ω, y) = y (for y ∈ �,
then extended by continuity) is onto. These spaces and operators form a short exact

sequence 0 X
ı

X ⊕� Y
π

Y 0 that shall be referred to as the
sequence generated by�. Two exact sequences of Banach spaces are called equivalent
when there is an operator T making the diagram

Z

T0 X Y 0

Z ′

commute. When Z = X ⊕� Y and Z ′ = X ⊕� Y that happens if and only if � and
� are equivalent maps.

Given twomaps S, T , its commutator is defined as [S, T ] = ST −T S provided this
makes sense. We will need to use a generalized commutator for three maps defined as
[u,�, v] = u�−�v, whenever this makes sense.

3 G-Centralizers

Definition 3.1 Let G be a semigroup. A G-space is a normed space X equipped with
a bounded action G × X → X ; namely, a morphism of semigroups u : G → L(X)

such that γ (u) := sup{‖u(g)‖ : g ∈ G} < ∞.
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Note that we do not require G to carry any topology and therefore there is no
continuity involved with respect to G (alternatively we may think of G as discrete).
Occasionally we will consider unbounded or even nonlinear actions, but that will
be explicitly said. Paramount examples of bounded actions are (see the appropriate
section in the paper for unexplained terms): (a) The action of the group of units U of
L∞(S, μ) on either L∞-Banach modules or Köthe spaces. In particular, the action of
the Cantor group 2ω = {−1,+1}N on spaces with unconditional basis or that of the
group 2<ω of elements of 2ω that are eventually 1 on c. (b) The action of the group
generated by measure preserving rearrangements of the base space and change of
signs on rearrangement invariant Köthe spaces. (c) The action of the group Isom(X)

of isometries of X on X . (d) The action of the group Isomdisj(L2) of isometries that
preserve disjointness on L2. (e) The natural left regular action of the free group F∞
on the Hilbert space seen as �2(F∞). Note that in the above, example (a) satisfies (A)
but, in the case of c, not (U); examples (d) and (e) satisfy (U) and not (A); and the
case for (b)(c) depends on the choice of the space.

Given an exact sequence 0 → X → Z → Y → 0 of G-spaces, we will agree for
the rest of this paper that the action of G on X will be denoted u, that on Y will be
denoted v and that on Z will be denoted λ.

Definition 3.2 Let G be a semigroup.

G-operator: An operator (resp. a linear map) T : X → Y between two G-spaces
X and Y is a G-operator (resp. a G-linear map) if v(g)T = Tu(g) for all g ∈ G.
G-subspace: A G-subspace Y ′ of Y is a subspace of Y such that the canonical
inclusion ı : Y ′ → Y is a G-operator; in which case we shall also occasionally
say that Y is a G-superspace of Y ′.
G-centralizer: Let Y , X beG-spaces, let� ⊂ Y be a denseG-subspace of Y , and
let � ⊃ X be a G-superspace of X . A quasilinear map � : � � X with ambient
space � is said to be a G-centralizer if the family of maps [u(g),�, v(g)] takes
values in X and is uniformly bounded, i.e., there exists a constant G(�) > 0 such
that ‖u(g)�y −�v(g)y‖X ≤ G(�)‖y‖Y for all g ∈ G and y ∈ �.

We shall sometimes say that � is a centralizer compatible with G. To avoid con-
fusion, let us make explicit that in the above we use the same letter for an action on a
G-space and for the action by restriction on aG-subspace; for example for any g ∈ G,
u(g) extends to a map on � still denoted u(g).

It will spare us a few headaches to briefly discuss the roles of the “ambient" and
“intersection" spaces � and �. Observe that � is in principle only defined on �, not
in Y . It is well known [37, Theorem 3.1] that every quasilinear map � : � � X can
be extended to a quasilinear map �̂ : Y −→ X , but replacing � by this “artificial" �̂

may spoil the compatibility conditions with G, so this approach is not recommended
for us.

The Issue of the Ambient Space.We need here the construction of the pushout space
PO of two operators a : X −→ A and b : X −→ B (the reader is referred to [7] for
full details), which is the space PO = (A ⊕1 B)/{(ax,−bx) : x ∈ X} together with
the operators pA : A −→ PO and pB : B −→ PO given by pA(x) = [(x, 0)] (the
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class of (x, 0)) and pB(y) = [(0, y)] so that one gets a commutative diagram

A pA

X

j

ı

PO

B pB

When one of the operators a, b is an isomorphic embedding then PO = (A ⊕1
B)/{(ax,−bx) : x ∈ X}. Assume now that one has two quasilinear maps �,� :
Y � X , one taking values in the ambient space � with embedding j : X → � and
the second in the ambient space � with embedding ı : X → �. Form the pushout
commutative diagram

�
σ

X

j

ı

PO

� ξ

and thus, replacing � by σ� : Y � σj [X ] and � by ξ� : Y � ξ ı[X ], and
calling X = σj [X ] = ξ ı[X ], then σ� and ξ� are quasilinear maps Y � X with
ambient space PO. We can extend the equivalence notion to quasilinear maps with
different ambient spaces, maintaining the notation: � ∼ � means σ� ∼ ξ�. The
modification is acceptable since � ∼ � if and only if σ� and ξ� generate equivalent
exact sequences: if B = σ� − ξ� − L : Y → X is bounded for some linear map
L : Y → PO then the following sequences are equivalent

X ⊕σ� Y

T0 X Y 0

X ⊕ξ� Y

(1)

via the operator T (σj x, y) = (σj x − Ly, y): indeed, (σj x − Ly, y) ∈ X ⊕ξ� Y
because σj x − Ly − ξ�y = σj x − σ�y + By ∈ X since B : Y → X . Since

‖T (σj x, y)‖ξ� = ‖(σj x − Ly, y)‖ξ�

= ‖σj x − Ly − ξ�y)‖ + ‖y‖
= ‖σj x − σ�y + By‖ + ‖y‖
≤ (‖B‖ + 1)(‖σj x − σ�y‖ + ‖y‖)
≤ (‖B‖ + 1)‖(σj x, y‖σ�

T is bounded, hence an isomorphism.When B = 0, as in the situationwewill describe
next, T is an isometry.
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Given � : Y � X with ambient space � we can choose as ambient space X ⊕� Y
and replace � by �0y = (�y, y) to get

Lemma 3.3 � ∼ �0. More precisely, there is a linear map L : � −→ PO such that

ξ�0 = σ�+ L.

Proof We just consider the commutative diagram

X ⊕� Y
ξ

X

ı

j

PO

�
σ

and keep track of what σ, ξ, ı do; namely, ı(x) = (x, 0), σ(ω) = [(0, 0), ω)]
and ξ(ω, y) = [((ω, y), 0)]. Therefore σ�(y) = [((0, 0),�y)] and ξ�0(y) =
[((�y, y), 0)]. A linear selection � → X ⊕� � for the natural quotient map has
the form y → (�y, y) for some linear map � : � → � such that �y − �y ∈ X . If we
define the linear map L : � → PO given by Ly = [(�y, y),−�y)] then we have

ξ�0(y)− σ�(y)− L(y) = [((�y, y), 0)− ((0, 0),�y)− (�y, y),−�y)]
= [((�y − �y, 0),−(�y − �y))]
= [0]

since all elements ((x, 0),−x) with x ∈ X are 0 in PO. �
When the spaces �,� are G-spaces under extensions of the action u that we will

momentarily call u�, u� and both j : X −→ � and ı : X −→ � are bounded
G-linear maps then PO is a G-superspace of X under the action u(g)[(s, r)] =
[u�(g)s, u�(g)r ], which is well defined since

u(g)[(j x,−ı x)] = [u�(g)j x,−u�(g)ı x] = [ju(g)x,−ıu(g)x] = 0.

If, moreover, � (resp. �) is a G-centralizer then so is σ� (resp. ξ�) since

u(g)σ�− σ�v(g) = σu�(g)�− σ�v(g) = σ
(

u�(g)�−�v(g)
)

However, once actions are involved, a situation appears: given an operator u : X →
X and a quasilinear map � : � → � the composition u� seems impossible. A way
to overcome the difficulty is to assume that u : X → X is the (continuous) restriction
of a linear map � → �. This is reasonable and, in most occasions, feasible; therefore
we usually assume that� is a G-superspace of X , as in the definition of G-centralizer.

Thus, when� : Y � X is aG-centralizer with ambient space�, so that X⊕�Y is a

G-space too under the diagonal action g �→ λ(g) =
(

u(g) 0
0 v(g)

)

on X⊕�Y which
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is compatiblewith the exact sequence 0 X
ı

X ⊕� Y
π

Y 0
generated by � (see Proposition 3.6), then �0(y) = (�y, y) with ambient space
�′ := X ⊕� Y is another G-centralizer equivalent to �. Additionally, the G-
centralizer �0 is continuous at 0 as a map from (�, ‖.‖Y ) into (�′, ‖.‖�), since
‖(�y, y)‖� = ‖y‖.

The Issue of the Dense Subspace. In classical interpolation theory one considers
choices of � so that � : � → X . Adapting their terminology, we can define the
dominion of quasilinear map � : Y � X as the space Dom� = {y ∈ Y : �y ∈ X}
endowedwith the quasinorm ‖y‖D = ‖�y‖X+‖y‖Y . In this formDom� is isometric
to the closed subspace {(0, y) ∈ X ⊕� Y } of X ⊕� Y . More often than not, Dom�

is dense in Y , as it is the case in the complex interpolation context (that is one of the
reasons why we impose the assumption on the interpolation couple (X0, X1) of being
regular, which means that X0 ∩ X1 is dense in both X0 and X1) and Dom� = Y
if and only if � : Y → X is bounded. On the other hand, it may well happen
that Dom� = {0}: see [6, Proposition 3.2 plus Remark 5.2], Proposition 8.3 plus
Proposition 3.4, or the example of R after Proposition 3.10, for which DomR = {0}
since R(x) is a bounded, non converging sequence for all non zero x . A simpler
example valid for general G-centralizers acting between G-spaces will be exhibited
now: Let � : Y � X be a G-centralizer with ambient space �. The equivalent G-
centralizer �0 from Lemma 3.3, with ambient space X ⊕� Y has Dom�0 = {y ∈ Y :
(�y, y) ∈ X⊕0} = {0}. The clear conclusion of these two paragraphs and Lemma 3.3
is:

Proposition 3.4 Every G-centralizer � : � → � has a linear perturbation into
a possibly larger ambient normed space �′ that is a G-centralizer, is (�, ‖.‖Y ) to
(�′, ‖.‖�′)-continuous at 0, and has null Domain.

There are natural examples ofG-centralizers continuous at 0 andwith dense domain
such as L0-valued L∞-centralizers acting on Köthe spaces (see [3, Theorem 1] and the
proof of Proposition 8.2), as well as differentials of complex interpolation processes
(see Sect. 4). We will study in Sect. 8 the connections between nontrivial domains and
(almost) transitive actions. To conclude with these remarks, let us observe that when
an action v of G on Y is involved, we need a sound meaning for �v(g), which is
achieved by guaranteeing that v leaves � invariant. Still a problem appears when one
has two quasilinear maps � : � � X and � : �′

� X defined on different dense
subspaces�,�′ ⊂ Y . In this case we cannot consider them defined on the same dense
subspace by making a simple intersection since it could well be that �∩�′ = {0}. In
most cases the choice of a common � is natural, but, in general, one has to be careful
with this point.

Our first objective is the three-representation problem that Kuchment considers in
[38]: given an exact sequence 0 → X → Z → Y → 0 and some group G acting
on Y , Z and X in a compatible way, to what extent the action on Z can be recovered
from the actions on X and Y . Or else: given u, v, how to obtain a compatible action λ

on X ⊕� Y ?
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Definition 3.5 Let 0 → X → Z → Y → 0 be an exact sequence. Assume that
X ,Y are G-spaces. A bounded action λ of G on Z will be called compatible with the
sequence if for each g ∈ G there is a commutative diagram

0 −−−−→ X −−−−→ Z −−−−→ Y −−−−→ 0

u(g)

⏐
⏐
� λ(g)

⏐
⏐
�

⏐
⏐
�v(g)

0 −−−−→ X −−−−→ Z −−−−→ Y −−−−→ 0

Compatibility is a homological notion: G is compatible with a sequence if and only
if its it compatible with any equivalent sequence. The existence of compatible actions
and G-centralizers are connected:

Proposition 3.6 Let 0 → X → Z → Y → 0 be an exact sequence in which X ,Y
are G-spaces. � : � � X is a G-centralizer if and only if the diagonal action

g �→ λ(g) =
(

u(g) 0
0 v(g)

)

on X ⊕� Y is compatible and bounded.

Proof Observe that by λ we mean the action defined first diagonally on X ⊕� � and
then extended by density to X ⊕� Y = X ⊕� �. Now, if � is a G-centralizer and
‖(x, y)‖� ≤ 1, then

‖λ(g)‖ ≤ sup ‖(u(g)x, v(g)y)‖�

= sup ‖u(g)x −�v(g)y‖X + ‖v(g)y‖Y
= sup ‖u(g)x − u(g)�y + u(g)�y −�v(g)y‖X + ‖v(g)y‖Y
≤ sup ‖u(g)‖‖x −�y‖X + ‖u(g)�y −�v(g)y‖X + ‖v(g)‖‖y‖Y
≤ max{γ (u), γ (v)} + sup ‖u(g)�y −�v(g)y‖X
≤ max{γ (u), γ (v)} + G(�).

On the other hand, the best possible value of G(�) is at most γ (λ) since ‖u(g)�y −
�v(g)y‖X = ‖λ(g)(�y, y)‖� ≤ ‖λ(g)‖‖y‖Y . �

Recall that an exact sequence 0→ X → X ⊕� Y → Y → 0 is an exact sequence
in which X ,Y are G-spaces, and � : � � X means for us that the map v(g) leaves
� invariant for all g ∈ G (and X ⊕� Y is defined as the completion of X ⊕� �).

Lemma 3.7 Let 0 → X → X ⊕� Y → Y → 0 be an exact sequence in which
X ,Y are G-spaces, � : � � X with ambient space �, and let λ be compatible and

bounded on X ⊕� Y . If λ(g) =
(

u(g) 0
0 v(g)

)

then TFAE:

(a) The quotient map admits a G-linear section L : � −→ X ⊕� Y .
(b) There is a G-linear map � : � −→ � such that �− � : � −→ X.

If, moreover, � ⊂ Dom � then

(c) y → (0, y) is a G-linear section � −→ X ⊕� Y for the quotient map.
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Proof It is an easy exercise that (a) implies thatL takes values in X⊕��, and therefore
Ly = (�y, y) for some linear �. It is then immediate that � satisfies (b). The converse
is similar and easier, and (c) is immediate. �

We have already shown that “� is a G-centralizer" corresponds to “λ(g) =
(

u(g) 0
0 v(g)

)

is a compatible bounded action on X ⊕� Y ". To describe the gen-

eral situation and to allow triangular actions, we first need to develop a few ideas. The
general version of Proposition 3.6 will be presented in Proposition 3.13 and that of
Lemma 3.7 in Lemma 3.14. The fact that G-centralizers are quasilinear maps having
uniformly bounded commutators [u(g),�, v(g)] suggests to consider with special
attention the case [u,�, v] = 0:

Definition 3.8 A quasilinear map � : � � X will be called G-equivariant if
[u(g),�, v(g)] = 0 for every g ∈ G.

In particular, G-equivariant linear maps (operators) are the G-linear maps (oper-
ators) of Definition 3.2. Since G-equivariant maps, as well as their bounded
perturbations, are G-centralizers, it is natural to ask about the converse: Is a G-
centralizer always a bounded perturbation of a G-equivariant map? And its “linear"
version: is a linear G-centralizer always a bounded perturbation of a G-linear map?
We can provide an optimal answer: yes when G is an amenable group and X is ade-
quately complemented in its bidual. Kalton defines in [33, p. 79] an ultrasummand
as a quasi-Banach space X that is complemented in all its ultrapowers XU . It turns
out that for Banach spaces this is equivalent to being complemented in its bidual (of
course that not true for quasi-Banach spaces since �p, 0 < p < 1 are ultrasummands
[7, 1.4.14]). So the reader will forgive us if we transplant this notion to G-Banach
spaces in the form:

Definition 3.9 AG-Banach space X is aG-ultrasummand if there exists aG-projection
P : X∗∗ → X .

where a G-projection is a G-operator which is a projection. Let us say that a G-
subspace of aG-space isG-complementedwhen it is complemented by aG-projection.
Observe that even if when X is a G-space then also X∗∗ and XU are G-spaces, so that
X is a G-subspace of both X∗∗ and XU , we are not claiming that a G-ultrasummand
is a G-complemented subspace of every ultrapower since one would need to obtain a
“G-Principle of Local Reflexivity" first. One has:

Proposition 3.10 Let G be an amenable group and let X ,Y be G-spaces with X a G-
ultrasummand. (a) Any (linear) G-centralizer � : Y � X is a bounded perturbation
of a G-equivariant (linear) map. (b) A trivial G-centralizer � : Y � X is boundedly
equivalent to a G-linear map.

Proof Proof of (a): since G is amenable, there is a left invariant measure μ on it, and
since X is a G-ultrasummand there is a G-projection P : X∗∗ → X . We define the
bounded map B : Y → X

By = P

(∫

G
(u(g−1)�v(g)y −�y)dμ

)
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where we integrate in the weak* sense. If h ∈ G then

B(v(h)y) = P
∫

G

(

u(g−1)�v(g)(v(h)y)−�(v(h)y)
)

dμ

= P
∫

G
(u(h)u(h−1g−1)�v(gh)y −�(v(h)y))dμ

= P
∫

G
(u(h)u(h−1g−1)�v(gh)y − u(h)�y + u(h)�y −�(v(h)y))dμ

= P

(

u(h)

∫

G
(u(h−1g−1)�v(gh)y −�y)dμ+

∫

G
(u(h)�y −�(v(h)y))dμ

)

= u(h)By + u(h)�y −�v(h)y

and therefore [u(h), B, v(h)] = −[u(h),�, v(h)], fromwhere [u(g), B+�, v(g)] =
0 for all g ∈ G. Namely, B +� is G-equivariant. The second part is clear: when � is
linear, B is also linear. Proof of (b): if � = B + L with B bounded and L linear, L
must also be a G-centralizer. Then apply (a). �

Part (b) complements [10, Lemma 1]: a trivial L∞-centralizer is a bounded pertur-
bation of a linear L∞-centralizer. As announced, the previous solution is optimal since
the amenability condition is necessary. Let us put the counterexample in the proper
context. As was proved by Day [25, Corollary 6 and Corollary 11] and Dixmier [26,
Théorème 6], a bounded representation of a countable amenable group on the Hilbert
space is unitarizable, meaning that it is a unitary representation in some equivalent
Hilbert norm (the word “countable" does not appear in those papers: the authors obtain
the result imposing some conditions to the group, conditions that countable groups sat-
isfy). Ehrenpreis andMautner [27] provide a non-unitarizable bounded representation
of a countable group on the Hilbert space. The nowadays known as the Dixmier prob-
lem asks whether unitarizability of all bounded representations of a countable group
characterizes amenability. Regarding the non-amenable free group F∞ with count-
ably infinitely many generators, Pytlic and Szwarc [43], see also [40, 42], showed the
existence of a bounded, non-unitarizable representation of F∞ on the sum H ⊕ H of
two copies of the Hilbert space. The authors of [28] used this example to investigate
transitivity properties of bounded actions on the Hilbert space, and we now follow
their lines with another perspective in mind. As in [28] we extend the action of F∞
to Aut(T ), where T denotes the Cayley graph of F∞ with respect to its free gen-
erating set. Indeed, Aut(T ) acts in a natural way on �2(T ) as well as on �∞(T ) or
�1(T ), by the left regular unitary representation u: u(g)(xt )t∈T = (x(g−1t))t∈T . Let
R : �∞(T ) → �∞(T ) be

R(et ) =
∑

s∈F∞, t<s, |s|=|t |+1
es .

Note that this sum is infinite, so has to be taken in the weak-star instead as in the
norm sense; alternatively, one can see R(et ) as the element of �∞(T ) with value 1
in all coordinates of index s with t < s and |s| = |t | + 1, and values 0 elsewhere.
Since [u(g), R] : �2(T ) → �2(T ) has norm at most 2 for all g ∈ Aut(T ) ( [28] p
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439), R is an Aut(T )-centralizer �2(T ) � �2(T ), which is moreover trivial since it is
linear (note that we have chosen � = �2(T ) and � = �∞(T ) here). We may obtain
another Aut(T )-centralizer through the predual situation of the “left shift" operator
L : �1(T ) → �1(T ) defined as L(et ) = et̂ where t̂ is the predecessor of t along T ,
and L(e∅) = 0 (here we have chosen � = �1(T ) and � = �2(T )). The operator R is
actually the dual L∗ of the operator L and is studied in [28] under that name, together
with the operator L .

Note that both R and L could also be defined as from �1(T ) to �∞(T ), in which
setting L + R makes sense. Since L + R commutes with every g ∈ Aut(T ), we
have [u(g), L] = −[u(g), R] (see [28] p. 439) and so L is also an Aut(T )-centralizer
L : �2(T ) � �2(T ). One has:

Proposition 3.11 The linear Aut(T )-centralizer R is not boundedly equivalent to
a linear Aut(T )-equivariant map defined on the whole �2(T ). The linear Aut(T)-
centralizer L is not boundedly equivalent to a linearAut(T )-equivariant map defined
on � = �1(T ).

Proof Since R(e∅) belongs to �∞(T ) \ �2(T ), any linear Aut(T )-equivariant map r
boundedly equivalent to R would satisfy that r(e∅) belongs to �∞(T ) \ �2(T ) as well.
On the other hand, since R takes values in �∞(T ), then r would also take values in
�∞(T ). So r would be a linear (unbounded) map Aut(T )-equivariant map from �2(T )

to �∞(T ); by [28] Theorem 4, it would then be homothetic, and in particular it would
take value in �2(T ). This contradicts the fact that r(e∅) /∈ �2(T ), and proves that r
cannot exist.

For the second part, assume a linear Aut(T )-equivariant map � is boundedly equiv-
alent to L . Then � would have to be continuous from �1(T ) to �2(T ). The dual map �∗
would then beAut(T )-equivariant and continuous from �2(T ) to �∞(T ), and therefore
would be homothetic by [28] Theorem 4, so � itself would be homothetic. In particu-
lar �, and therefore L , would be ‖.‖�2(T ) − ‖.‖�2(T ) bounded. This is a contradiction,
since for x = ∑

t∈N et , where N is a family of n elements of F∞ of length 1, we have
‖L(x)‖2 = ‖ne∅‖2 = n while ‖x‖2 = √

n. �
We now study the general case, namely, sequences 0 → X → X ⊕� Y → Y → 0

in which there is a compatible action λ on X ⊕� Y but it is not necessarily “diagonal".
The first observation is that a compatible action λ has necessarily the form

(

u(g) d(g)
0 v(g)

)

with d(g) a linear (not necessarily bounded, even when λ(g) is: the most natural

example to be studied later, that of the action

(

u KPu
0 u

)

on the Kalton–Peck space

Z2 is an example since x → xKPu is unbounded) map from � to �. Observe that a
compatible bounded nonlinear action on X ⊕� Y always exists, and it is given by

(

u(g) −[u(g),�, v(g)]
0 v(g)

)

.
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This sets the key idea of how d could be found: the map g → [u(g),�, v(g)], that
we will denote [u,�, v], is a (nonlinear) derivation of g �→ (u(g), v(g)), in the sense
that it is a map d : G → �� such that d(gh) = u(g)d(h)+ d(g)v(h). Of course that
if L is linear, then [u(g), L, v(g)] is linear for each g ∈ G. It could also occur that �
and the actions u, v are so well coordinated as to make [u(g),�, v(g)] linear for each
g ∈ G: such is the case when � is the Kalton–Peck map, see Sect. 6. Derivations are
of course fundamental for the study of unitarizability of bounded representations on
the Hilbert space, such as the above representation of Aut(T ); we address the reader
to Pisier’s book [42] for additional information. They also have been studied on direct
sums of Banach spaces [28] but, as far as we know, not on twisted sums. To perform
such an study we must begin relaxing the requirement that [u(g),�, v(g)] is linear to
“being at uniform distance to a linear map", in the sense of the next definition:

Definition 3.12 Let X ,Y be G-spaces with respective actions u and v. We say that
g �→ d(g) is a linear derivation of (u, v) if for all g ∈ G, d(g) : � −→ � is a
(possibly unbounded) linear map, and d(gh) = u(g)d(h)+d(g)v(h) for all g, h ∈ G.
If, moreover, supg∈G ‖[u(g),�, v(g)] + d(g)‖ < ∞ then we will say that d is an �-
derivation (of (u, v)) on G –or that it is a derivation (of (u, v)) associated to �.

We are ready to obtain the general version of Proposition 3.6:

Proposition 3.13 Let � : � � X be a quasi-linear map between two G-spaces.
TFAE:

(a) λ(g) =
(

u(g) d(g)
0 v(g)

)

is a compatible bounded action of G on X ⊕� Y .

(b) g → d(g) is a linear �-derivation of (u, v) on G.

Proof The equality λ(gh) = λ(g)λ(h) means

(

u(gh) d(gh)

0 v(gh)

)

=
(

u(g) d(g)
0 v(g)

)(

u(h) d(h)

0 v(h)

)

=
(

u(g)u(h) u(g)d(h)+ d(g)v(h)

0 v(g)v(h)

)

.

The boundedness condition is a straightforward computation. �
And, as promised, the general version of Lemma 3.7.

Lemma 3.14 Let �,�′ : � � X be quasilinear maps between G-spaces Y and X,
with ambient space �, and let L : � −→ � be a linear map. Then

(a) d(g) = −[u(g), L, v(g)] is an L-derivation.
(b) � is a G-centralizer if and only if d = 0 is an �-derivation. In particular, homo-

geneous bounded maps admit associated derivation d = 0.
(c) If d is an �-derivation and d ′ is an �′-derivation then d + d ′ is an (� + �′)-

derivation. In particular, � + L is a G-centralizer if and only if [u, L, v] is an
�-derivation.

If, moreover, � ⊂ Dom(� + L), and 0 → X → X ⊕� Y → Y → 0 is an exact
sequence of G-spaces, then:
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(d) d(g) = [u(g), L, v(g)] for all g ∈ G if and only if L : � −→ X ⊕� Y given by
L(y) = (−Ly, y) is a G-linear section for the quotient map X ⊕� Y → Y .

To avoid confusion let us make clear that all derivations in this lemma are meant to be
derivations of the given pair of representations (u, v).

Proof (a) and (b) are clear. (c) is a simple consequence of the fact that d + d ′ is
linear and [u,� + �′, v] = [u,�, v] + [u,�′, v]. (d) is clearly the general version
of Lemma 3.7 (c) with a couple of delicate points to check: that (−Ly, y) ∈ X ⊕� Y ,
which is true when y ∈ Dom(� + L), and the G-linear condition on L. To this end,
observe simply that

(

u(g) d(g)
0 v(g)

)(−Ly
y

)

=
(−Lv(g)y

v(g)y

)

is equivalent to d(g) = [u(g), L, v(g)]. �
The example around Proposition 3.11 shows two essentially different bounded

actions of Aut(T ) on �2(T ) ⊕ �2(T ): one is the unitary action

(

u(g) 0
0 u(g)

)

and

the other is

(

u(g) [u(g), L]
0 u(g)

)

. By the above discussion, this triangular action on

�2(T )⊕ �2(T ) and the diagonal one on �2(T )⊕L �2(T ) are “the same". Shifting the
classical perspective, we can therefore reformulate this construction as the remarkable
fact that Aut(T ) with its diagonal action, is “centralized" by two essentially different
quasilinear maps: 0 and L .

Thus, all pieces are on the board, except one: how to obtain a linear derivation of a
quasilinear G-compatible map (assuming it exists)? The context of interpolation will
provide some answers, and this is the content of the next section.

4 Actions on Interpolation Scales

Wenow consider exact sequences ofG-spaces generated by complex interpolation of a
scale onwhichG acts, in away to be described.We refer to [2, 13] (see also [36] or [16]
for specific details) for sounder information about the complex interpolation method
for pairs and their associated differentials. An interpolation pair (X0, X1) is a pair of
Banach spaces, both of them linearly and continuously contained in a larger Hausdorff
topological vector space �, which can be assumed to be � = X0+ X1 endowed with
the norm ‖x‖ = inf{‖x0‖0 + ‖x1‖1 : x = x0 + x1 x j ∈ X j for j = 0, 1}. The pair
will be called regular if, additionally, the intersection space X0 ∩ X1 is dense in both
X0 and X1. We denote by S the complex strip defined by 0 < Re(z) < 1. According
to [8, 36], a Kalton space F is a certain Banach space of holomorphic functions
F : S → X0 + X1 for which the evaluation maps δz : F → � are continuous.
This forces the evaluation of the derivatives δ′z : F → � to be continuous too by
the Uniform Boundedness Principle (see [8, Lemma 2.4]). The interpolation spaces
are defined to be Xz = {x ∈ � : x = f (z) for some f ∈ F } endowed with natural
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quotient norm. There are various possible choices for F . Except for what occurs in
Sect. 9 we will consider as F the classical Calderón space (see [2]) C(X0, X1) of
continuous bounded functions f : S −→ � that are holomorphic on S and satisfy
the boundary condition that for k = 0, 1, f (k + i t) ∈ Xk for each t ∈ R and
supt ‖ f (k+ i t)‖Xk < ∞. The Calderón space C(X0, X1) is complete under the norm
‖ f ‖ = sup{‖ f (k+i t)‖Xk : k = 0, 1; t ∈ R}. There are other choices imposinggrowth
conditions on the functions (all of them generating the same interpolation spaces), but
we will stick to the previous one. In Sect. 9 we will however use Daher’s space F2
from [24] as in [16, Section 5]. The choice of F2 generates the same interpolation
spaces, something implicit in [24] and explicit in [30, Propositions 3.2.1 and 3.2.2];
see also [21]. If Bz : Xz → C is a homogeneous bounded selection for the evaluation
map, the differential map of the process is�z = δ′z Bz : Xz → �. This is a quasilinear
map �z : Xz � Xz that therefore defines an exact sequence

0 Xz Xz ⊕�z Xz Xz 0

Since, more often than not, the interpolation spaces Xz are superreflexive, Xz ⊕�z Xz

can be renormed to be a Banach space. The choice of the selection Bz is not relevant
since other choices lead to boundedly equivalent differentials �z .

An operator τ : � → � is said to act on the scale defined by the interpolation
pair (X0, X1) if it is a bounded operator Xi → Xi , i = 0, 1 [16]. Fixing the Calderón
space C(X0, X1), the generalized Riesz-Thorin theorem [2, Theorem 4.1.2] yields
that τ is automatically bounded from Xθ → Xθ for all 0 < θ < 1, with an estimate
‖τ‖L(Xθ ) ≤ ‖τ‖1−θ

L(X0)
‖τ‖θ

L(X1)
.

Definition 4.1 Let (X0, X1) be a complex interpolation pair. A semigroup G acting
on � is said to act on the scale if G acts boundedly on Xi for i = 0, 1.

The actions in this setting will be simply noted g (instead of u(g), v(g),...). The
interpolation estimate above implies that G also acts on Xθ for all 0 < θ < 1 and
that if G acts as an isometry group on the scale then it also acts as an isometry group
on Xθ , 0 < θ < 1, as well as on � and X0 ∩ X1. The same holds for semigroups
of contractions. Moreover, C(X0, X1) is a G-Banach space defined by the action
gC ( f )(z) = g( f (z))with estimate ‖gC ‖ ≤ max{‖g : X0 → X0‖, ‖g : X1 → X1‖}.
The same is true when one interpolates using Daher’s space F2.

Where is our promised derivation? Here: 0. And thus the action of G on the spaces

Xz generates the action λ(g) =
(

g 0
0 g

)

on Xz ⊕�z Xz yielding commutative dia-

grams

0 Xz

g

Xz ⊕�z Xz

λ(g)

Xz

g

0

0 Xz Xz ⊕�z Xz Xz 0

We need the following classical and crucial fact that we prove for the sake of
completeness:
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Proposition 4.2 δ′θ : ker δθ −→ Xθ is bounded and onto for 0 < θ < 1.

Proof Let ϕ : S −→ D be a conformal equivalence vanishing at θ . Every f ∈
C (X0, X1) vanishing at θ has a factorization f = ϕ h, with h ∈ C (X0, X1) and
‖h‖ = ‖ f ‖. If f ∈ ker δθ and we write f = ϕ h then f ′ = ϕ′h + ϕh′ and therefore
δ′θ ( f ) = ϕ′(θ)δθ (h), hence ‖δ′θ : ker δθ −→ Xθ‖ ≤ |ϕ′(θ)|. That δ′θ maps ker δθ onto
Xθ is also clear: if x ∈ Xθ , then x = h(θ) for some f ∈ C (X0, X1) and x is then the
derivative of ϕ′(θ)−1ϕ f at θ . �
Proposition 4.3 If G is a semigroup acting on the scale (X0, X1) then �θ is a G-
centralizer on Xθ .

Proof For x ∈ Xθ one has gC (Bθ x)− Bθ (gx) ∈ ker δθ . Therefore

‖(g�θ −�θg)x‖θ = ‖gδ′θ Bθ x − δ′θ Bθ (gx)‖θ

= ‖δ′θ
(

gC (Bθ x)− Bθ (gx)
)

‖θ

≤ ‖δ′θ : ker δθ → Xθ‖‖gC (Bθ x)− Bθ (gx)‖C
≤ ‖δ′θ : ker δθ → Xθ‖

(

‖gC (Bθ x)‖C + ‖Bθ (gx)‖C
)

≤ ‖δ′θ : ker δθ → Xθ‖2‖Bθ‖‖g‖ ‖x‖θ .

�
Proposition 4.3 admits an isometric version that we formulate now. A regular inter-

polation pair with Kalton spaceF is said to be optimal if for every 0 < θ < 1, every
point in Xθ admits a unique 1-extremal function in F ; i.e., there is just one function
f such that ‖ f ‖ = ‖x‖ and f (θ) = x , see [16, Def. 5.7]. Daher proved in [24, Prop.
3] that a regular pair of reflexive spaces with Kalton space F2 is optimal when X0 is
strictly convex.

Corollary 4.4 Let (X0, X1) be an optimal interpolation pair with Kalton space either
C(X0, X1) orF2. Then�θ is equivariant with respect to the semigroup of contractions
on the scale which act as isometric embeddings on Xθ . In particular,�θ is equivariant
with respect to the group of isometries acting on the scale.

Proof The map �θ is uniquely defined now since (Bθ x)(θ) = x and ‖Bθ x‖ = ‖x‖θ .
If g is a contraction on the scale, then gC also acts as a contraction on the chosen
Kalton space. Since ‖gC Bθ x‖ ≤ ‖Bθ x‖ = ‖x‖θ = ‖gx‖θ if g is also an isometric
embedding on Xθ , and since gC (Bθ x)(θ) = gx , we deduce that gC (Bθ )x = Bθ (gx).
Derivating in θ implies that �θg = g�θ . �

It is a bit disappointing that a zero derivative is all we got. There is a reason for
that: the action of G on the scale (Xz) is constant: uz(g) = g,∀z. To amend this,
consider for each z a bounded action uz : G → L(�) such that uz(g)|Xz : Xz → Xz .
Recall that a function f : S → L(X∗, C) is analytic if for every x ∈ X the function
z → f (z)(y) is analytic; and the same for f : S → X understanding X as a part of
L(X∗, C)).
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Definition 4.5 The family of actions u = (uz) is analytic if for each g ∈ G the function
z → uz(g) ∈ L(�,�) is analytic.

Assume one has a semigroup G and an action u on Xθ . The compatible action

of G on Xθ ⊕�θ Xθ will no longer necessarily be

(

u(g) 0
0 u(g)

)

. But assume that

u = uθ for some analytic family (uz) of actions. Since

(

u(g) −[u(g),�θ ]
0 u(g)

)

is a

compatible, but nonlinear, bounded action, what we need is to find linear bounded
perturbations of [u(g),�θ ]. We use here some ideas of Carro [14]:

Lemma 4.6 Let u = (uz)z∈S be an analytic family of actions of G on the spaces
of the scale (Xz)z∈S generated by a regular pair (X0, X1) and the Calderón space
C (X0, X1). Assume that γ (u) := supg∈G supt∈R{‖uit (g)‖X0 , ‖u1+i t (g)‖X1} < ∞.
Then the map

[uθ (g),�θ ]+ duz(g)

dz
|θ : Xθ −→ Xθ

is bounded.

Proof The key observation is that for x ∈ Xθ the function uz(g) (Bθ x) (z) −
Bθ (uθ (g)x)(z) ∈ ker δθ which implies that its derivative at θ must be in Xθ . It only
remains to compute

(uz(g)Bθ x(z)− Bθ (uθ (g)x)(z))
′ (θ) = uθ (g)�θ (x)+ duz(g)(x)

dz
|θ −�θ(uθ (g)x)

= [uθ (g),�θ ](x)+ duz(g)(x)

dz
|θ .

�

This means that λ(g) =
(

uθ (g)
duz(g)
dz |θ

0 uθ (g)

)

: Xθ ⊕�θ Xθ −→ Xθ ⊕�θ Xθ is a

bounded operator. To obtain a bounded action we need that supg ‖λ(g)‖ < +∞.
Since

∥
∥
∥
∥

(

uθ (g) −[uθ (g),�θ ]
0 uθ (g)

)

−
(

uθ (g)
duz (g)
dz |θ

0 uθ (g)

)∥
∥
∥
∥
=

∥
∥
∥
∥

(

0 [uθ (g),�θ ] + duz (g)
dz |θ

0 0

)∥
∥
∥
∥

= ‖[uθ (g),�θ ] + duz(g)

dz
|θ‖

and

(

uθ (g) −[uθ (g),�θ ]
0 uθ (g)

)

is uniformly bounded, what we need is

sup
g∈G

‖[uθ (g),�θ ] + du(g)

dz
|θ‖ < ∞.

123



135 Page 18 of 47 J.M.F. Castillo, V. Ferenczi

We have:

‖uz(g) (Bθ x)(z)) ‖C = sup
t∈R

{‖uit (g)Bθ x(i t)‖X0 , ‖u1+i t (g)Bθ x(1+ i t)‖X1}
≤ γ (u)‖Bθ‖‖x‖,

and therefore ‖uθ (g)‖ ≤ γ (u) and thus one has

∥
∥
∥
∥

(

[uθ (g),�θ ] + duz(g)

dz

)

(x)|θ
∥
∥
∥
∥

θ

= ‖ (uz(g)Bθ x(z)− Bθ (uθ (g)x)(z))
′ (θ)‖θ

≤ ‖δ′θ : ker δθ → Xθ‖‖uz(g)Bθ x − Bθ (uθ (g)x)‖C
≤ ‖δ′θ : ker δθ → Xθ‖ (‖uz(g)Bθ x‖C + ‖Bθ‖‖uθ (g)‖‖x‖θ )

≤ 2‖δ′θ : ker δθ → Xθ‖γ (u)‖Bθ‖‖x‖θ .

All this yields,

Theorem 4.7 Let u be an analytic family of actions of G on the scale (Xz)z∈S generated
by a regular pair (X0, X1) and the Calderón space C (X0, X1) and such that γ (u) <

∞. Then

(

uθ (g)
duz(g)
dz |θ

0 uθ (g)

)

is a compatible action of G on Xθ ⊕�θ Xθ or, equivalently, g �→ duz(g)
dz |θ is an

�θ -derivation of (uθ , uθ ).

It is certainly satisfying that the term “derivation" agrees here bothwith the classical
meaning and with Definition 3.12! Using another Kalton space instead of C(X0, X1)

may require the corresponding variation of the parameter γ .
The forthcoming Sects. 6 and 7 provide a series of natural applications of these

results. A simple one follows:

Proposition 4.8 Let (X0, X1) be an optimal interpolation pair with Calderón space
C (X0, X1), with X0 and X1 uniformly convex and uniformly smooth. Let 0 < θ < 1.
Then the semigroup of contractions of rank 1 on Xθ = (X0, X1)θ is compatible with
�θ .

Proof Let g = φ ⊗ x be a contraction of rank 1 on Xθ with φ ∈ X∗θ and x ∈ Xθ .
Pick Bθ (x) an optimal element of the Calderón space C (X0, X1) and let �θ(x) =
Bθ (x)′(θ) the associated differential. Since X∗θ = (X∗0, X∗1)θ pick Vθ (φ) an optimal
element of theCalderón spaceC (X∗0, X∗1) and let�θ (φ) = Vθ (φ)′(θ)be the associated
differential. We define an analytic family (gz)z of contractions of rank 1 on the scale
(Xz)z in the form

gz = Vθ (φ)(z)⊗ Bθ (x)(z).
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It is clear that gθ = g and one just needs to apply Lemma 4.6 after calculating

dgz
dz

|θ (y) = 〈Vθ (φ)(θ), y〉Bθ (x)
′(θ)+ 〈Vθ (φ)′(θ), y〉Bθ (x)(θ)

= 〈φ, y〉�θ(x)+ 〈�θ (φ), y〉x

Therefore, if we set d(φ ⊗ x) = φ ⊗�θ(x)+ �θ (φ)⊗ x then

(

g d(g)
0 g

)

defines

a bounded compatible action on Xθ ⊕�θ Xθ . �

5 Actions on Köthe Spaces

Whenworking with Köthe spaces with base measure space S, the ambient� is usually
chosen as the space L0(S) of measurable functions on S, and � as Y itself. A Köthe
space is a vector subspace K of L0(S) endowed with a norm such that if f ∈ K and
|g| ≤ | f | then g ∈ K and ‖g‖ ≤ ‖ f ‖; and containing the characteristic functions of
measurable sets. A r.i. Köthe space over [0, 1] is a Köthe spaceK such that f ∈ K ⇒
f σ ∈ K for every measure preserving map σ : [0, 1] → [0, 1]. Köthe spaces are
usually considered in their L∞-module and L∞-centralizer structures. The notion of
L∞-centralizer can be subsumed in our notion of G-centralizer. Indeed, if U denotes
the group of units of L∞(μ), i.e. of unimodular functions in L0(S) then

Proposition 5.1 Let � : Y � X be a quasilinear map. Then � is an U-centralizer if
and only if it is a L∞-centralizer.

Proof In the complex case, every element of the ball of L∞ is a mean of four unitaries.
Thus U-centralizers and L∞-centralizers coincide. Adapt now the argument for the
real case. �

U-actions on Köthe spaces have a somehow “rigid" nature, whose paradigm is
Kalton’s stability theorem [35, Theorems 7.6 and 7.9]: the “endpoint spaces" of an
interpolation scale of uniformly convexKöthe spaces X0, X1 are uniquely determined,
up to equivalence of norms, by the pair formed by the space Xθ and the differential
�θ , 0 < θ < 1. We additionally have:

Theorem 5.2 Let (X0, X1) be an interpolation pair of superreflexive Köthe spaces
on a measure space S. Let G be a group containing the group of units U(S), acting
boundedly on Xθ and acting on �. TFAE:

(a) �θ is a G-centralizer.
(b) G acts on the scale.

Proof One implication is Proposition 4.3. Assume that �θ is a G-centralizer. For
g ∈ G and i = 0, 1 let g−1Xi ⊂ � be endowed with the complete norm ‖x‖gi =
‖gx‖i . Form the new Calderón space C (g−1X0, g−1X1) and define an isomorphism
gC : C (g−1X0, g−1X1) → C (X0, X1) in the form gC (h)(z) = gh(z). This yields
(g−1X0, g−1X1)θ = g−1Xθ = Xθ , with norm ‖x‖gθ = ‖gx‖Xθ , which is equivalent
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to ‖.‖θ with a uniform constant independent of g. If Bθ is aC-extremal on Xθ then the
map G : (g−1X0, g−1X1)θ −→ C (g−1X0, g−1X1) given by G(x) = g−1Bθ (gx)
is a (C supg∈G ‖g‖2θ )-extremal since ‖Gx‖ = ‖g−1Bθ (gx)‖ ≤ C‖g−1‖‖g‖‖x‖. We
thus get the differential

�θ (x) = d

dz
G(x)|θ = d

dz
g−1(Bθ (gx))|θ = g−1�θ(gx).

Since �θ is a G-centralizer, �θ is boundedly equivalent to �θ , with a constant
uniform on g. Since G contains the group U of units, �θ and �θ are L∞-centralizers.
Kalton’s stability theorem will ensure, as soon as we amend in the next Lemma the
required amalgamation, that the norms ‖.‖i and ‖.‖gi are equivalent, with a constant
independent of g ∈ G, In conclusion, that G acts on the scale. �

We will need to simultaneously consider differentials in various scales, so we will
denote �W the differential generated by W = (W0,W1).

Lemma 5.3 There exists a function K (·) such that whenever (X0, X1) and (Y0,Y1)
are interpolation pairs of superreflexive Köthe spaces on the same measure space,
with respective associated differentials �X

θ and �Y
θ at θ , one has:

• If (Y0,Y1)θ = (X0, X1)θ , with C-equivalence of norms;
• and �X

θ and �Y
θ are C-boundedly equivalent,

then the norms ‖ · ‖Xi and ‖ · ‖Yi are K (C)-equivalent for i = 0, 1.

Proof Otherwise, pick C and couples (Xn
0 ,Y

n
0 ), (Yn

0 ,Yn
1 ) for which the conclusion of

the theorem does not hold for C and K (n) = n. The pairs �2(N, Xn
i ) and �2(N,Yn

i )

generate C-equivalent interpolation spaces with C-boundedly equivalent differentials
while their norms are are not equivalent, in contradiction with Kalton’s theorem [35]
(in the version presented in [16, Thm. 3.4]). �

6 Actions on Kalton–Peck Spaces

Differentials obtained from complex interpolation of pairs (X0, X1) of two Köthe
spaces on the same basemeasure space are L∞-centralizers. The differential generated
by the interpolation pair (L∞(μ), L1(μ)) deserves special attention. As it is well-
known (L∞(μ), L1(μ))1/p = L p(μ); and if one picks positive normalized f then
B( f )(z) = f pz is an extremal and thus for θ = 1/p one gets �θ( f ) = B( f )′(θ) =
p f log( f ). In what follows, the map KP : L p � L p defined by KP( f ) = p f log f

‖ f ‖
will be called the Kalton–Peck map on L p (instead of the former KP( f ) = f log f

‖ f ‖
since that p is important for duality issues). Of course that KP is an L∞-centralizer.
The twisted sum space Z p(μ) = L p(μ) ⊕KP L p(μ) will be called the Kalton–Peck
space. Especially interesting is the case L∞(μ) = �∞ since Banach spaces with
unconditional basis are �∞-modules.

Fix 1 < p < ∞ and let us think now about compatible �∞-actions on the Kalton–
Peck space Z p. Observe that if w = (wn) is an infinite sequence of successive
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normalized blocks in �p then τw : �p → �p given by τw(x) = ∑

xnwn = x · w
is is an operator. If the blocks of w are not normalized then τw : �p → R

N is just a
linear map. The Kalton–Peck map has the peculiarity that the commutator [τw, KP] is
linear:

p−1[τw, KP](x) = (x log x) · w − (x log(x · w)) · w
= (x log x) · w − (x(logw + log x)) · w = −x · w logw

Therefore, if we consider the semigroup BCp of the block contractions above on �p
then we get:

Lemma 6.1 There is a compatible bounded action of BCp on Z p given by

(

τw τKPw
0 τw

)

These operators were introduced by Kalton [32] in the case p = 2 to obtain iso-
metric complemented copies of Z2 inside Z2. In the next section we will generalize
these results.

7 Actions on Rochberg Spaces

We refer to [8, 9] for possible unexplained definitions or facts. Given an interpolation
pair (X0, X1), with Calderón space C (X0, X1) and z ∈ S, the nth Rochberg spaceRn

z
is defined to be the space

Rn
z =

{

(
f (n−1)(z)
(n − 1)! , . . . , f ′(z), f (z)) : f ∈ C (X0, X1)

}

endowed with its natural quotient norm. Fix from now on the value z = θ . It is clear
thatR1

θ = Xθ = (X0, X1)θ andR2
θ is isomorphic to Xθ ⊕�θ Xθ . It was shown in [9]

that Rochberg spaces are connected forming natural exact sequences

0 −−−−→ Rm
θ −−−−→ Rm+n

θ −−−−→ Rn
θ −−−−→ 0 (2)

which are generated by the quasilinearmaps�
n,m
θ : Rn

θ � Rm
θ with ambient space�m

defined as follows: Let �k
θ : C (X0, X1) −→ � be the operator �k

θ ( f ) = 1
k!

dk

dzk
f |θ

for k = 0, 1, 2, . . . so that δkθ = k!�(k)
θ (the evaluation of the kth-derivative at θ ).

Let 〈�n−1
θ , . . . ,�0

θ 〉 : C (X0, X1) −→ �n be the operator 〈�n−1
θ , . . . , �0

θ 〉( f ) =(

�n−1
θ ( f ), . . . ,�0

θ ( f )
)

. One hasRn
θ = 〈�n−1

θ , . . . ,�0
θ 〉[ C (X0, X1)]. We will also

be especially interested in the maps �
(k)
θ = �k

θ Bθ , where Bθ is a homogeneous
bounded selector for �0

θ ; i.e.,
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�
(k)
θ (x) = 1

k!
dk

dzk
Bθ (x)|θ

In [8] it was shown that starting with a regular pair (X0, X1) and the family (Xz)

generated from the Calderón space C(X0, X1), the Rochberg spaces obtained form
themselves interpolation scales, namely (Rm

θ0
,Rm

θ1
)θ = Rm

η for 0 < θ0 < θ1 < 1,

0 < θ < 1 and η−1 = (1 − θ)θ−10 + θθ−11 . However, the associated differential

�m
θ is not, necessarily, �

m,m
θ and the new Rochberg space Rm,2

θ = Rm
θ ⊕�m

θ
Rm

θ is

not necessarily the Rochberg space R2m
θ . Theorem 4.7 applies to the newly obtained

scale of Rochberg spaces as well: let u = (uz)z be an analytic family of actions on
the scale generated by the complex interpolation pair (X0, X1) such that γ (u) < ∞.

Theorem 4.7 shows the existence of an analytic family of actions u2,z =
(

uz u′z
0 uz

)

on R2
z given by u2,z(y, x) = (uzω + u′z x, uzx). Working now on the band {z ∈ C :

θ0 < Rez < θ1} with the corresponding Calderón space C(R2
θ0

,R2
θ1

) we get that
the analytic family of actions u2 = (u2,z){θ0<Rez<θ1} on the newly obtained scale
(R2

z ){θ0<Rez<θ1} satisfies

γ (u2) ≤ 2
2

θ1 − θ0
γ (u)(1+ ε) < ∞

as a combination of the estimate
∥
∥
∥[uθ (g),�θ ] + duz(g)

dz |θ
∥
∥
∥

θ
≤ 2‖δ′θ : ker δθ →

Xθ‖γ (u)‖Bθ‖ in Lemma 4.6 with the estimate ‖δ′θ : ker δθ → Xθ‖ ≤ 1
min{θ,1−θ} in

[16, Lemma 3.5] and the fact that it is always possible to obtain bounded homogeneous
selections Bθ with ‖Bθ‖ ≤ 1+ ε. By iteration, one thus obtains a new analytic family
of actions u3 = (u3,z){θ0<Rez<θ1} on the scale of Rochberg spacesR

2,2
z corresponding

to the family (R2
z ){θ0<Rez<θ1}, which now satisfies

γ (u4) ≤ 2
2

θ1 − θ0
γ (u2)(1+ ε) < ∞

In general, let (R
m1,m2,...,mn
z )z denote the family formed by the mth

n -Rochberg
spaces obtained from the family ofmth

n−1-Rochberg spaces obtained from the family....
of mth

1 -Rochberg spaces obtained from the original scale (Xz).

Theorem 7.1 Let u = (uz) be an analytic family of actions on the scale (Xz){0≤Rez≤1}
such that γ (u) < ∞. Then, given 0 < θ0 < θ1 < 1 and given ε > 0 one has:

• u2,z =
(

uz u′z
0 uz

)

defines an analytic family u2 of actions on the scale

(R2
z ){θ0<Rez<θ1} such that γ (u2) ≤ 22

θ1−θ0
γ (u)(1+ ε).
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• u3,z =

⎛

⎜
⎜
⎝

uz u′z u′z u′′z
0 uz 0 u′z
0 0 uz u′z
0 0 0 uz

⎞

⎟
⎟
⎠

defines an analytic family of actions u3 on the scale

(R2,2
z ){θ0<Rez<θ1} such that γ (u3) ≤ 23

(θ1−θ0)2
γ (u)(1+ ε)2.

• u4,z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uz u′z u′z u′′z u′z u′′z u′′z u′′′z
0 uz 0 u′z 0 u′z 0 u′′z
0 0 uz u′z 0 0 u′z u′′z
. . . 0 0 uz 0 0 0 u′z
0 . . . 0 uz u′z u′z u′′z
0 . . . 0 0 uz 0 u′z
0 . . . 0 0 0 uz u′z
0 . . . 0 0 0 0 uz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

defines an analytic family of

actions u4 on the scale (R2,2,2
z ){θ0<Rez<θ1} such that γ (u4) ≤ 24

(θ1−θ0)3
γ (u)(1+ε)3.

• In general, the 2m × 2m matrix um,z =
(

um−1,z u′m−1,z
0 um−1,z

)

defines an analytic

family of actions um on the scale (R

m times
︷ ︸︸ ︷

2, · · · , 2
z ){θ0<Rez<θ1} such that γ (um) ≤

2m
(

1+ε
θ1−θ0

)m−1
γ (u).

If, however, we want to derive actions on the family of higher order Rochberg
spaces generated by the family (Xz) we need a different approach.

Theorem 7.2 Let u = (uz) be an analytic family of actions on the scale (Xz) such that
γ (u) < ∞. Given 0 < θ0 < θ1 < 1, the upper triangular matrix

Az
n+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uz u′z 1
2!u

′′
z

1
3!u

(3)
z · · · 1

n−1!u
(n−1)
z

1
n!u

(n)
z

0 uz u′z 1
2!u

′′
z · · · 1

n−2!u
(n−2)
z

1
n−1!u

(n−1)
z

0 0 uz u′z · · · 1
n−3!u

(n−3)
z

1
n−2!u

(n−2)
z

. . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · uz u′z 1
2!u

′′
z

0 0 0 · · · 0 uz u′z
0 0 0 0 · · · 0 uz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3)

defines a bounded analytic family un+1 of actions on the scale (Rn+1
z ){θ0<Rez<θ1}.

Proof The Rochberg sequences (2) can be derived [9, Theorem 4] from diagrams

0 −−−−→ ker〈�n−1
θ , . . . ,�0

θ 〉 −−−−→ C (X0, X1)
〈�n−1

θ ,...,�0
θ 〉−−−−−−−−→ Rn

θ −−−−→ 0

〈�m+n−1
θ ,...,�n

θ 〉
⏐
⏐
�

⏐
⏐
�

∥
∥
∥

0 −−−−→ Rm
θ −−−−→ Rm+n

θ −−−−→ Rn
θ −−−−→ 0
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We will focus on the diagram

0 −−−−→ ker�0
θ −−−−→ C (X0, X1)

�0
θ−−−−→ R1

θ −−−−→ 0

〈�n
θ ,...,�1

θ 〉
⏐
⏐
�

⏐
⏐
�

∥
∥
∥

0 −−−−→ Rn
θ −−−−→ Rn+1

θ −−−−→ R1
θ −−−−→ 0

(4)

whose lower sequence is defined by the quasilinear map �
1,n
θ : Rθ � Rn

θ with
ambient space �n defined as

�
1,n
θ =

(

�
(n)
θ , · · · ,�

(1)
θ

)

=
〈

�n
θ Bθ , · · · ,�1

θ Bθ

〉

.

Since the function z → uz(g) (Bθ x) (z)− Bθ (uθ (g)x)(z) is in ker�0
θ diagram (4)

yields

(

�n
θ , · · · ,�1

θ

)

(uz(g) (Bθ x) (z)− Bθ (uθ (g)x)(z)) ∈ R
(n)
θ . (5)

Observe moreover that
∥
∥
(

�n
θ , · · · ,�1

θ

)

(uz(g) (Bθ x) (z)− Bθ (uθ (g)x)(z))
∥
∥ can

be bounded by ‖ (

�n
θ , · · · ,�1

θ

) : ker�0
θ −→ Rn

θ‖2‖Bθ‖‖x‖γ (u). Let u denote the
action u(g)( f )(z) = uz(g)( f (z)) on the Calderón space. One has

�n
θ (uz(g)Bθ x − Bθuθ (g)x)

= 1

n!
k=n
∑

k=0

(

n
k

)
dkuz(g)

dzk
|θ B(n−k)

θ x(θ)−�n
θ (Bθuθ (g)x)

=
k=n
∑

k=0

1

k!
dkuz(g)

dzk
|θ�(n−k)

θ Bθ x −�n
θ (Bθuθ (g)x)

=
k=n
∑

k=0

1

k!
dkuz(g)

dzk
|θ�(n−k)

θ x −�
(n)
θ (uθ (g)x)

=
k=n−1
∑

k=0

1

k!
dkuz(g)

dzk
|θ�(n−k)

θ x −�
(n)
θ (uθ (g)x)+ 1

n!
dnuz(g)

dzn
|θ x

and therefore (5) implies that the linear map Lθ (g) =
(

1
n!

dnuz(g)
dzn |θ , · · · , 1

1!
duz(g)
dz |θ

)

is such that

Aθ
n(g)�

1,n
θ −�

1,n
θ uθ (g)+ Lθ (g) : Xθ −→ Rn

θ
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is a bounded map. One therefore has a commutative diagram

0 Rn
θ

Aθ
n(g)

Rn+1
θ

Aθ
n+1(g)

R1
θ

�
1,n
θ

u(g)

0

0 Rn
θ Rn+1

θ R1
θ

�
1,n
θ

0

And this means that Aθ
n+1(g) : Rn+1

θ −→ Rn+1
θ is bounded. Actually, observe

that

Aθ
n+1(g) =

(

Aθ
n(g) Lθ (g)
0 uθ (g)

)

with the meaning Aθ
n+1(g)(ω, x) = (Aθ

n(g)(ω)+ Lθ (g)(x), uθ (g)(x)) so that

‖Aθ
n+1(g)(ω, x)‖ = ‖(Aθ

n(g)(ω)+ Lθ (g)(x), uθ (g)(x))‖
= ‖(Aθ

n(g)
(

ω −�
1,n
θ x +�

1,n
θ x

)

+ Lθ (g)(x)−�
1,n
θ uθ (g)(x))‖ + ‖uθ (g)(x))‖

≤ ‖(Aθ
n(g)�

1,n
θ x + Lθ (g)(x)−�

1,n
θ uθ (g)(x))‖

+‖(Aθ
n(g)

(

ω −�
1,n
θ x

)

‖ + γ (u)‖x‖
≤ max{‖Aθ

n(g)‖, ‖(Aθ
n(g)�

1,n
θ −�

1,n
θ uθ (g)+ Lθ (g)‖ + γ (u)}‖(ω, x)‖

Hence

‖Aθ
n+1(g)‖ ≤ max{‖Aθ

n(g)‖, ‖(Aθ
n(g)�

1,n
θ −�

1,n
θ uθ (g)+ Lθ (g)‖ + γ (u)}

≤ ‖
(

�n
θ , · · · ,�1

θ

)

: ker�0
θ −→ Rn

θ‖3(1+ ε)γ (u)‖Aθ
n(g)‖. (6)

To say that it is an action is equivalent to saying that Lθ is a derivation, i.e.
Aθ
n(g)Lθ (h)+Lθ (g)uθ (h) = Lθ (gh); for this we compare the k-th element of Lθ (gh)

with the k-th element of Aθ
n(g)Lθ (h)+ Lθ (g)uθ (h) for k = 1, . . . , n, i.e.

1

(n − k + 1)!u
(n−k+1)
θ (gh) = 1

(n − k + 1)! (uθ (g)uθ (h))(n−k+1)

with

∑n
i=k 1

(i−k)!uθ (g)(i−k) 1
(n+1−i)!uθ (h)(n+1−i) + 1

(n−k+1)!uθ (g)(n−k+1)uθ (h)
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= ∑n+1
i=k 1

(i−k)!(n+1−i)!uθ (g)(i−k)uθ (h)(n+1−i).

The two terms coincide by the Leibniz rule applied to the n − k + 1-th derivative of
uθ (g)uθ (h), so Lθ is indeed a derivation. �

Observe that we could be content just knowing that Aθ
n(g) is an operator on Rn

θ ,
and for most Banach space applications this is enough. We have moreover shown that
(Aθ

n(g))g∈G is a bounded action and then that Un = (Az
n(g))g∈G,z defines an analytic

action on the scale (Rn
z ){θ0<Rez<θ1}. Moreover, γ (An) < ∞ for all n: the case n = 2

is the first point in Theorem 7.1 and the rest follow from the estimate (6). This would
allow us to iterate the process starting at any “point" Rn and obtaining this way new
actions on the corresponding scale of derived spaces. These actions are not necessarily
those appearing in Theorem 7.1, though (see [8] for additional information): pick, say,
n = 4; the derived scale R4,2

z of the scale R4
z , which is certainly not necessarily R8

z ,

could also be well different from the second derived scale R2,2,2
z of R2

z .
What follows is a specially interesting case because it covers the situation for

the scale of �p-spaces. Let us focus on an interpolation pair X0, X1 having a common
unconditional basis (en) (whichwe can assume to be 1-unconditional after renorming),
plus an additional property. For X with basis (en) we will call property (W ) the fact
that for each normalized block sequence w = (wn) of X , the map τw : x −→
w · x is an operator of norm at most 1 (equivalently, ‖∑

λnwn‖ ≤ ‖∑

λnen‖);
and that the maps τw form a semigroup for composition. Identifying w with τw,
this allows us to see the set of normalized block sequences w = (wn) on X as a
semigroup BlockX acting on X . Assume that the spaces of the scale have property
(W). For given θ , an analytic family of actions of BlockXθ can be defined as follows:
let Bθ be a homogeneous 1-extremal for the evaluation map δθ : F → Xθ with
the property that supp Bθ (x)(z) ⊂ supp x for each finitely supported x . It follows
that for w ∈ BlockXθ and all z one has Bθ (w)(z) ∈ BlockXz . We define the
following analytic family of actions: u = (wz)z with wz(x) = x · Bθ (w)(z) so that
wθ(x) = x · w as before. Therefore dwz(x)

dz |θ = d
dz (x · Bθ (w)(z))|θ = x · �θ(w)

and thus, by Theorem 4.7, there is an action w2,θ =
(

w �θ(w)

0 w

)

on R2
θ given by

w2,θ (ω, x) =
(

w �θ(w)

0 w

)(

ω

x

)

= (ω ·w+ x ·�θ(w), x ·w) in accordance with

Lemma 6.1. In this case γ (u) ≤ 1 because Bθ (w)( j + i t) ∈ BlockX j for j = 0, 1.
Therefore, Theorem 7.2 yields:

Theorem 7.3 Let (X0, X1) be an optimal interpolation pair of spaces such that Xz

has property (W) for each z. For fixed θ there is a bounded action of the semigroup
BlockXθ of normalized block sequences of Xθ on Rn

z given by

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u �
(1)
θ (u) �

(2)
θ (u) . . . �

(n−1)
θ (u)

0 u �
(1)
θ (u) �

(2)
θ (u) . . .

0 0 u �
(1)
θ (u) �

(2)
θ (u)

. . . 0 0 u �
(1)
θ (u)

0 . . . 0 0 u

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(7)
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In the particular case of the scale (�∞, �1) of �p spaces with first associated differ-
ential the Kalton–Peck map KP the action is

⎛

⎜
⎜
⎜
⎜
⎝

u 2u log u 2u log2 u · · · 2n−1
(n−1)!u log

n−1 u
0 u 2u log u 2u log2 u · · ·
0 0 u 2u log u 2u log2 u
0 0 0 u 2u log u
0 0 0 0 u

⎞

⎟
⎟
⎟
⎟
⎠

8 Actions and (Almost) Transitivity

An isometric action u of a group G on a space X is said to be (almost) transitive if the
orbit u(G) ·x is (dense in) SX for some (and therefore for all) x ∈ SX , [41]. A bounded
action u of G on X is said to be (almost) transitive if there is some u(G)-invariant
renorming of X for which the isometric action u is (almost) transitive. The definition
is independent of the choice of the u(G)-invariant renorming—such renormings exist,
and |x | = supg∈G ‖u(g)x‖ is the typical example–. All u(G)-invariant renormings
are multiple one of each other by [22].

Proposition 8.1 Assume � : Y � X is a G-centralizer. If y ∈ Dom�, then � is
bounded on the G-orbit of y. In particular, if Dom� �= 0 and G acts transitively on
Y then � is bounded.

Proof Since ‖�(v(g)y) − u(g)�y‖X = ‖[u(g),�, v(g)]y‖X ≤ C , it follows that
‖�v(g)y‖X ≤ C + ‖u(g)(�y)‖X ≤ C + K‖�y‖X . So � is bounded on the G-orbit
{v(g)y, g ∈ G}. �

Köthe spaces over a measure space (S, μ) admit a L∞(μ)-module structure and
one can set L0(μ) as the ambient space. In these conditions one has:

Proposition 8.2 Let (X0, X1) be an interpolation pair with a common Köthe space
structure and let 0 < θ < 1. If �θ is unbounded then no group G acting boundedly
on the scale can act transitively on Xθ .

Proof Since the characteristic functions of measurable subsets do always belong to
Köthe spaces and the Domain is an L∞-submodule [3, p.67 before Proposition 1],
Dom� is not empty. Thus, if a group G acts boundedly and transitively on the scale
then �θ would be a G-centralizer by Proposition 4.3 and thus �θ should be bounded
by Proposition 8.1. �

Recall from [45] (see also [19, Propositions 6.1 and 6.2]) that if X is a space
with a shrinking basis then (X , X

∗
)1/2 is a Hilbert space. Thus, if X is either (a) a

supereflexive Köthe space on a measure space S (in which case (X , X
∗
)1/2 is also a

Hilbert space, by standard factorization) different from L2(S), or (b) a space with a
shrinking basis such that the differential �1/2 generated at (X , X

∗
)1/2 is unbounded

then no bounded group of automorphisms on the Hilbert space H can act transitively
on the scale, i.e. it cannot induce a bounded transitive action on both X and X

∗
.
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The connection between nontrivial domain and transitive action has been observed
in noncommutative contexts by Cabello in [6, 5.2]). We quote [6, p.140]: “One may
wonder if [...] there is a “real" obstruction to have bicentralizers with nontrivial
domain". Cabello yields then Example 5.2, in which the transitivity of the action
implies that centralizers with nonzero domain are bounded.

Transitivity also explainswhy singular centralizers on L p do not exist, aswe explain
next. Recall that a singular quasilinear map is one whose restrictions to infinite dimen-
sional subspaces are never trivial. The paramount example is the Kalton–Peck map
on �p spaces (but not the Kalton–Peck map on L p spaces). The key result [5] is
that no singular L∞-centralizer exists on L p, a result generalized in [18, Proposition
2.3] to superreflexive Köthe space over a non-atomic base and the proof consists in
showing that there is a copy of �2 contained in the domain of the centralizer: the one
generated by the standard Gaussian variables, which are all in the domain of KP [7,
Proposition 9.3.12]. Now, since all Gaussian variables have the same distribution and
L p is rearrangement invariant, there is an isometry induced by a measure preserving
Borel isomorphism of [0, 1] sending one to another so that the action of the group is
transitive on the subspace generated by the Gaussians and Proposition 8.1 yields that
KP is not singular on L p.

8.1 The Case of the Group Isom(Lp) of Isometries of Lp(0, 1), p �= 2

Proposition 8.3

• KP is compatible with the natural action of Isom(L p) on L p.
• KP is not an Isom(L p)-centralizer.

Proof To show that KP is compatible with the action of Isom(L p), observe that the
elements of Isom(L p) have the form T ( f )(s) = ε(s)w(s)1/p( f ◦ φ)(s), where ε

is a unimodular map, φ a Borel isomorphism of [0, 1] and w the Radon-Nikodym
derivative of φ (by the Banach-Lamperti’s formula [29, Chapter 3]). It follows in
particular that T (h f ) = (h ◦ φ) · T f whenever h ∈ L∞(0, 1). We show that, once
again, [KP, T ] is linear: if f is a simple function of norm 1, we have

1

p
[KP, T ] f = (T f ) log |T f | − T ( f log f ) = (T f ) log |T f | − (T f ) log(| f ◦ φ|)

= (T f ) log
|T f |
| f ◦ φ| =

1

p
log(w)(T f ).

An alternative form of finding this compatible action is considering the analytic

family of actions Tz( f )(t) = ε(t)w(t)z( f ◦ φ)(t) to get

(

Tθ
dTz
dz (θ)

0 Tθ

)

.

To prove the second part, one can note that the group Isom(L p) contains the units of
L∞ and acts, linearly, on L0. Thus, we get from Theorem 5.2 that KP is an Isom(L p)-
centralizer if and only if Isom(L p) acts boundedly on the scale of L p-spaces. The
dependence on p in the Banach-Lamperti’s formula easily shows this last assertion
to be false. We can also obtain the same result as a consequence of Proposition 8.1:
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The group Isom(L p) acts almost transitively on L p, and actually admits two orbits,
generated for example by 1[0,1] and 1[0, 12 ], see [11] first point of Example 1.5.2.

Both these functions belong to DomKP, therefore from Proposition 8.1, KP would be
bounded on each of these two orbits. Then KP must be bounded on L p, something it
is not. �

Of course (Proposition 3.4) that KP is a linear perturbation of an Isom(L p) cen-
tralizer with trivial domain. We can provide additional information about this strange
phenomenon; to ease notation we will call G = Isom(L p).

Lemma 8.4 Let L : � −→ � be a linear map such that KP+ L is a G-centralizer. If
� is a dense G-invariant subspace of Dom(KP) then � ∩ Dom(L) = {0}.
Proof If y ∈ � ∩ Dom(L) is a normalized element then (KP + L)y ∈ L p. Since
g(KP + L) − (KP + L)g is bounded, then (KP + L)z belongs to L p for all z in the
G-orbit of y; and since KPz ∈ L p because � is G-invariant, we deduce that Lz ∈ L p

on the G-orbit of y. Let �′ = span(Gy) ⊂ DomKP ∩ DomL . One has:

• Isom(L p) acts almost transitively on L p,
• Gy is dense on the unit sphere;
• z → (−Lz, z) is a G-linear lifting for the quotient map L p ⊕KP L p on �′ as
a consequence of Lemma 3.14 (d), for which we just need to check that d(g) =
[g, L, g], namely, that λ(g) =

(

g gL − Lg
0 g

)

is a bounded action on L p⊕KP L p

(use that KP+ L is a G-centralizer).

We obtain, for every z ∈ Gy that ‖(−Lz, z)‖ = ‖(−Lgy, gy)‖ = ‖λ(g)(−Ly, y)‖ ≤
C‖y‖ since y ∈ Dom(KP+ L). It follows that ‖(Lz, z)‖ ≤ C‖g−1gy‖ ≤ C ′‖z‖, and
we actually obtain a linear bounded lifting on a dense subspace, so that KP should be
trivial, which it is not. �
In the particular case above, the result follows fromDom(KP)∩Dom(L) ⊂ Dom(KP+
L) = {0}.

8.2 The Case of the Group Isomdisj(L2) of Isometries of L2 Preserving Disjointness

This is quite analogous: KP is compatible with the action of Isomdisj(L2), it is not an
Isomdisj(L2)-centralizer but it is a linear perturbation of an Isomdisj(L2)-centralizer.

8.3 The Case of the Unitary Group Isom(L2)

This case yields a stunning situation.

Proposition 8.5 KP is not compatible with the natural action of Isom(L2) on L2.

Proof Our starting point is the fact proved in [17, Lemma 3] that some complex struc-
ture (i.e. an operator σ such that σ 2 = −I d) on �2 does not extend to a complex
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structure on Z2. Everything consists in proving that such pathological complex struc-
ture may be chosen to be a unitary map. Let � be a quasilinear map on �2 and let [xi ]
be a finite sequence of n normalized vectors. Following [17] we set

∇[xi ]� = Ave±

∥
∥
∥
∥
∥
�

(
n

∑

k=1
±xi

)

−
n

∑

k=1
±�(xi )

∥
∥
∥
∥
∥

,

where the average is taken over all the signs±1. Assume that Isom(L2) is compatible
with KP and let g �→ d(g) be the associated derivation. The linearity of d(g) plus the
triangle inequality for ∇[b]� [17, p.795] yield that if D(g) = [g, KP, g] + d(g) then
gKP = KPg + D(g)− d(g) and thus

∇[xi ]gKP ≤ ∇[xi ]KPg +∇[xi ]D(g) = ∇[gxi ]KP+ ∇[xi ]D(g).

The quantity ∇[xi ]D(g) is bounded by C
√
n since Hilbert spaces have Rademacher

type 2 [7, Definition 1.4.3]. It is proved in [17, Subsection 3.2 page 800] that there
exist two orthonormal sequences of n vectors [xi ], [yi ] such that∇[xi ]KP = 1

2

√
n log n

and ∇[yi ]KP ≤ M
√
n for some uniform constant M . Let g be some unitary operator

such that g(xi ) = yi , i = 1, . . . , n, we get a contradiction for large n. The result
translates to any infinite dimensional L2 through the fact that the restriction of KP to
an �2-subspace generated by disjoint characteristic functions of intervals coincides,
up to a linear term, with the own KP map on �2 [7, Lemma 9.3.10]. �

9 G-Equivariant Maps

As we warned in Sect. 4, we will use here Daher’s space F2 as Kalton or “Calderón"
space to obtain (the same) interpolation spaces. Recall, as we have already mentioned,
that in this context, a regular pair of reflexive spaces is optimal when X0 is strictly
convex. The purpose of this section is showing that if G-centralizers are connected
with interpolation scales of G-spaces, G-equivariant maps are connected with rigid
interpolation scales. Let us give a precise meaning to that word:

Definition 9.1 A regular interpolation pair (X0, X1)will be called θ -rigid if whenever
Y0,Y1 ⊂ X0 + X1 defines another regular pair of interpolation such that Xθ = Yθ

isometrically and �X
θ = �Y

θ , it follows that Xt = Yt isometrically, for all 0 < t < 1.
The pair is said to be rigid, if it is θ -rigid for all 0 < θ < 1.

Typical examples of rigid scales are provided by p-convexifications of r.i. Köthe
spaces, which is a corollary of our next proposition. A rigid pair is such that Xi = Yi
isometrically, i = 0, 1, as soon as ‖x‖i = limt→i ‖x‖t , i = 0, 1 for x ∈ X0 ∩ X1, a
condition satisfied for most examples (see [39]). It is an open question of [16] whether
optimal pairs of interpolation are rigid, even in the special case inwhich�X

θ is bounded.
A positive answer was presented in [16, Proposition 5.10 and Theorem 5.11] under
the assumption �X

θ = 0, or even when �X
θ is linear (under technical restrictions). We

present a few additional partial answers:
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Proposition 9.2 Assume (X0, X1) is a regular pair of reflexive spaces with X0 or X1
uniformly convex and such that either

(a) X0 and X1 have a common monotone basis (en). In this case we set En =
[e1, . . . , en]; or

(b) X0 and X1 are r.i. Köthe spaces on [0, 1]. In this case we let En be the subspace
generated by the characteristic functions of the intervals

[

(k − 1)/2n, k/2n
]

, k =
1, . . . , 2n .

Assume that for each n ∈ N the restriction of �θ to SXθ ∩ En is locally Lipschitz on
a dense open subset Dn. Then the pair (X0, X1) is rigid.

Proof Pick anormalized x ∈ X0∩X1.By [16, Proposition5.3.],�θ [En] ⊂ En for each
n. According to [16, Theorem 5.11], the 1-extremal analytic function Bθ (x)(θ + i t)
satisfies the differential equation F ′(t) = i�θ(F(t)) with initial condition F(0) = x .
Moreover, Bθ (x)(θ + i t) ∈ SXθ .

Claim The equation has a unique holomorphic solution with values in SXθ in each of
the cases (a) and (b) for x in the corresponding dense open subset.

Proof of the Claim Since �θ is locally Lipschitz, if F and G satisfy the differential
equation for x in the dense open subset of SXθ ∩ En , then

‖F(t)− G(t)‖ = ‖
∫ t

0
F ′(s)− G ′(s)ds‖

= ‖i
∫ t

0
�θ(F(s))−�θ(G(s))ds‖

≤ K
∫ t

0
‖F(s)− G(s)‖ds

for some K and t close enough to 0. So max0≤s≤t ‖F(s) − G(s)‖ ≤
Kt max0≤s≤t ‖F(s) − G(s)‖ and thus F(s) = G(s) on some small enough inter-
val [0, t]. By analyticity, F = G. �

Thismeans that if we have another regular pairY0,Y1 ⊂ X0+X1 such that Xθ = Yθ

isometrically and �X
θ = �Y

θ then the optimal selectors BX
θ (x) = BY

θ (x) coincide and
therefore, using [16, Proposition 5.10],

‖BX
θ (x)(t)‖Xt = ‖x‖Xθ = ‖x‖Yθ = ‖BY

θ (x)(t)‖Yt = ‖BX
θ (x)(t)‖Yt

for 0 < t < 1 and x ∈ Dn . This yields the equality of the norms of Xt and Yt for
y ∈ BX

θ (·)(t)[Dn]. Since x → BX
θ (x)(t) is a uniform homeomorphism between the

unit spheres of Xθ and Xt , we obtain the previous equality on dense parts of the unit
spheres of Xt and Yt , hence Xt = Yt . �
Corollary 9.3 When X is an r.i. Köthe space the pair (X , L∞) is rigid.
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Proof In the case of discrete spaces we apply the previous proposition to the open set
U = {x = (xi )i ∈ C

n : xi �= 0 ∀i = 1, . . . , n}. It is clear that x �→ x log |x | is of
class C1 on some neighborhood of any y ∈ U , so the local Lipschitz property will be
satisfied. The same idea applies to the case of r.i. spaces on [0, 1]. �

Theorem 5.2 admits a version for rigid pairs:

Theorem 9.4 Let (X0, X1) be a rigid interpolation pair, and let G be a group of
isometries on Xθ (that we assume also acting on�). Then the following are equivalent:

(a) �θ defined on Xθ is G-equivariant.
(b) G acts as an isometry group on the interior of the scale.

Proof (b) ⇒ (a) is Proposition 4.4. The prof of (a) ⇒ (b) goes as that of Theorem 5.2
until getting �θ (x) = �θ(x), where the rigidity hypothesis applies to conclude that
‖gx‖t = ‖x‖gt = ‖x‖t for 0 < t < 1 and all g ∈ G. �

Let us give some example: the Kalton–Peck map KP defined on a p-convex Köthe
space is U-equivariant (U being as always the group of units of L∞(S, μ)) even if it
is not equivariant in the associated L∞-structure. Equivariant quasi-linear maps with
respect the the module structure seem only to be possible in trivial cases, but things are
different for linear maps: an U- linear map L : Y → X on a space with unconditional
basis is obviously diagonal since gen = ±en are the only options; if the bases are
symmetric and G is the group of operators acting by change of signs and permutations
of the vectors of a symmetric basis, G-linear maps are homotheties. A combination
of Proposition 3.10 and Proposition 4.3 however yields:

Proposition 9.5 Let (X0, X1) be an interpolation pair. Assume Xθ is reflexive and that
G is an amenable group acting on the scale. Then

(a) �θ is boundedly equivalent to a G-equivariant map.
(b) If �θ is trivial then it is boundedly equivalent to a G-linear map.

10 The Category of G-Banach Spaces and Its Exact Sequences

We shift now our point of view from “compatibility of group actions on twisted sums"
to “equivalence of exact sequences of G-spaces". We thus introduce the category
GBan whose objects are Banach G-spaces, and whose arrows are G-operators. An
exact sequence in GBan is obviously an exact sequence formed by G-Banach spaces
and G-operators. An exact sequence of G-Banach spaces can be described by a pair
(�, d), where � : Y � X is quasi-linear and d is an associated derivation that

determines the bounded action λ(g) =
(

u(g) d(g)
0 v(g)

)

on the twisted sum space

X ⊕� Y . Let us transplant Lemma 3.14 to this language: The following elements
define exact sequences in GBan:

• (L,−[u, L, v]) when L is linear.
• (B, 0) when B is bounded.
• (�, 0) if and only if � is a G-centralizer.
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In order to consider maps � defined on a fixed dense G-subspace � ⊂ Y (in
particular, � must be G-invariant), the role of this � must be remembered, since an
exact sequence of G-spaces does not in general depend on � while the representation
(�, d) does. On the other hand, we can assume that all the maps involved have a
common ambient space� by the observations wemade in ‘The ambient issue’ section.
Observe the following definitions:

Definition 10.1

Equivalence of maps: Consider (�1, d1) and (�2, d2) with �1,�2 : � � X
quasi-linear and d1, d2 their associated derivations. They are G-equivalent, some-
thing we write (�1, d1) � (�2, d2) if there is a linear map L : � � X such that
�1 −�2 − L is bounded and d1 − d2 = −[u, L, v].
Equivalence of sequences: The sequences generated by �1 : � � X and �2 :
� � X are said to beG-equivalent if there is aG-operator T making the following
diagram commute

X ⊕�1 Y

T0 X Y 0

X ⊕�2 Y

Let us check that the two definitions are equivalent.

The operator τ =
(

I d −L
0 I d

)

makes the diagram

X ⊕�1 �

τ0 X � 0

X ⊕�2 �

commute and is a G-operator since

(

u(g) d2(g)
0 v(g)

)(

I d −L
0 I d

)

=
(

I d −L
0 I d

)(

u(g) d1(g)
0 v(g)

)

because d2 − d1 = [u, L, v]. Finally, τ can be extended to a G-operator T :
X ⊕�1 Y −→ X ⊕�2 Y by density: set (ω, y) = lim(ωn, δn) and define T (ω, y) =
lim τ(ωn, δn). Since both actions are continuous, λ2T (ω, y) = λ2 lim τ(ωn, δn) =
lim λ2τ(ωn, δn) = lim τλ1(ωn, δn) = Tλ1 lim(ωn, δn) = Tλ1(ω, y). The other
implication is easy: the existence of T implies the equivalence of the exact sequences
in the category of Banach spaces, so that �1 − �2 is boundedly equivalent to some
L . Furthermore T (X ⊕�1 �) ⊆ X ⊕�2 �, defining by restriction a G-operator τ as
above, which is equivalent to saying that d2 − d1 = [u, L, v].
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Thus, there is a vector space structure on the set of pairs (�, d) (defined on the same
�) given by (�1, d1) + (�2, d2) = (�1 + �2, d1 + d2) and λ(�, d) = (λ�, λd1).
The zero element is the class of trivial sequences:

Definition 10.2 We will say that (�, d) is G-trivial, or that it G-splits, if (�, d) �
(0, 0). This occurs if and only if there is a linear map L such that � − L is bounded
and d = −[u, L, v].

Proposition 10.3 Every quasilinear map � : � � X defining a G-sequence 0 →
X → X ⊕� Y → Y → 0 of G-spaces, is a linear perturbation of a G-centralizer
(possibly with a larger target space). Furthermore the G-centralizer may be chosen
so that its associated G-sequence with diagonal action is G-equivalent to the original
G-sequence associated to �.

Proof Let 0 → X → Z → Y → 0 be an exact sequence of G-spaces. Set � = Z
as the ambient space equipped with λ(g) as the extension of u(g). Any homogeneous
bounded selection B for the quotientmap: B : Y → Z is aG-centralizer generating the

same sequence; in particular, writing Z = X ⊕� Y so that λ(g) =
(

u(g) d(g)
0 v(g)

)

and then setting �0y = (�y, y), then �0 is a G-centralizer, since the associated

bounded action given by the diagonal maps λ0(g) =
(

λ(g) 0
0 v(g)

)

are uniformly

bounded on X ⊕�0 Y : observe that ((ω, y), y′) ∈ X ⊕�0 Y exactly occurs when
(ω, y)−�0y′ = (ω −�y′, y − y′) ∈ X , which yields y = y′. Now:

‖λ0(g)((ω, y), y)‖�0 = ‖(λ(g)(ω, y), v(g)y)‖�0

= ‖(u(g)ω + d(g)y, v(g)y)− (�v(g)y, v(g)y)‖� + ‖v(g)y‖Y
= ‖(u(g)ω + d(g)y −�v(g)y, 0)‖� + ‖v(g)y‖Y
= ‖u(g)ω + d(g)y −�v(g)y‖X + ‖v(g)y‖Y
= ‖λ(g)(ω, y)‖�

≤ ‖λ(g)‖‖(ω, y)‖�

= ‖λ(g)‖‖((ω, y), y)‖�0 .

We perform the standard pushout from Lemma 3.3 to get ξ�0 = σ�+L. Note that by
the comments after Lemma 3.3, ξ�0 is also aG-centralizer, with values in Z , defining
the same exact sequence, and therefore σ� is a linear perturbation of a G-centralizer
possibly with a larger target space. Finally, we note that σ� defines the same exact
sequence of G-spaces as � (although formally one would have to replace d(g) by
σd(g) to take values in the larger target space).

Now we show G-equivalence. Just to avoid misunderstandings: observe that when
we combine the equality ξ�0 = σ�+L of Lemma 3.3 with Definition 10.1, one has

to set L = −L to get T =
(

I d −L
0 I d

)

as in the commuting diagram appearing in
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the description of Definition 10.1:

X ⊕σ� Y

T0 X Y 0

X ⊕ξ�0 Y

.

It only remains to see that T is aG-operator, i.e. to show that in X⊕ξ�0 Y the following
holds:

(u(g)ω − u(g)Ly, v(g)y) =
(

u(g) 0
0 v(g)

)(

I d −L
0 I d

)(

ω

y

)

=
(

I d −L
0 I d

)(

u(g) σd(g)
0 v(g)

)(

ω

y

)

= (u(g)ω + σd(g)y − Lv(g)y, v(g)y)

namely, u(g)Ly = −σd(g)y + Lv(g)y or, which is the same, σd(g) =
−[u(g), L, v(g)].

To prove this equality, recall from the proof of Lemma 3.3 that L(y) = −L(y) =
[−(�y, y), �y], where � is linear so that �− � takes values in X . Therefore, and using
the notation of Lemma 3.3,

[u(g), L, v(g)]y = u(g)
(− (�y, y), �y

)− (− (�v(g)y, v(g)y), �v(g)y
)

= (− λ(g)(�y, y), u(g)�y
)− (− (�v(g)y, v(g)y), �v(g)y

)

= (− (u(g)�y + d(g)y, v(g)y), u(g)�y
)

+(

(�v(g)y, v(g)y),−�v(g)y
)

= (

(−[u(g), �, v(g)] − d(g))(y), 0), [u(g), �, v(g)](y))
= (

0,−d(g)y
)

The last line is due to the definition of the pushout PO (where the computation takes
place) as a quotient by a diagonal subspace of the form {([x, 0],−x), x ∈ X}, together
with the fact that the quantity ([u(g), �, v(g)] + d(g))y belongs to X (because both
� − � and [u(g),�, v(g)] + d(g) take values in X ). To conclude it is enough to
remember from the definition of the embedding of� in PO that σd(g)y = (0, d(g)y).

�
We now give two easy lemmas that will help us simplify some proofs later on.

Lemma 10.4 Let 0 → X → X ⊕� Y → Y → 0 be a trivial exact sequence (�, d)

of G-spaces. If L : � � X is any linear map for which �− L : � → X is bounded,
then d(g)+ [u(g), L, v(g)] is a uniformly bounded family of operators.

Proof d(g)+ [u(g), L, v(g)] = (d(g)+ [u(g),�, v(g)])+ [u(g), L −�, v(g)] and
both terms of the sum are uniformly bounded. �
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Lemma 10.5 If B : Y → X is a bounded map with associated derivation d then
(B, d) � (0, d)

Proof It is clear that the formal identity map X ⊕B Y → X ⊕ Y is a G-operator. �

A warning is perhaps judicious here: sometimes, quasilinear maps � : Y � X are
bounded maps Y → � but that does not imply that � is equivalent to 0, let alone
(�, d) � (0, d): beware that if � is not bounded with respect to the ‖.‖X -norm, no
identity map X ⊕� Y → X ⊕ Y exists. G-splitting admits natural characterizations,
similar to those in the Banach space category.

Proposition 10.6 Consider an exact sequence (�, d) of G-spaces 0 → X → Z →
Y → 0. The following assertions are equivalent:

(i) The sequence G-splits.
(ii) The quotient map admits a linear continuous G-lifting.
(iii) X admits a G-invariant complement.
(iv) X is G-complemented in Z.

Proof A few hints will suffice: If L is a G-lifting then L[Y ] is a G-complement of X ;
L(y) = (�y, y) with �−� bounded and d = −[u, �, v] is a derivation. �

In complete analogy with classical Banach space homology, we can define now the
vector space ExtG(Y , X) of G-equivalence classes of pairs (�, d). Our next result
presents “group" versions of two theorems of Cabello: the first one [3, Cor. 2] asserts
that an exact sequence of L∞-modules that algebraically splits also splits topologi-
cally; the second and [4, Theorem 1] says that when p �= q the only exact sequence
of quasi-Banach L∞-modules 0 → Lq → Z → L p → 0 is the trivial one while, as
it is well known [7, Proposition 5.2.20], Ext(L p, Lq) �= 0 as Banach spaces.

Theorem 10.7 Let G be a group and let 0 → X → X ⊕� Y → Y → 0 be a trivial
exact sequence of G-spaces. If G is amenable and X is a G-ultrasummand then the
sequence G-splits.

Proof Let (�, d) describe the exact sequence above and assume that � is trivial. We
use Proposition 10.3 to obtain a G-centralizer �0 so that (�, d) � (�0, 0). Since we
are told that (�0, 0) splits, Lemma 10.4 yields a linear map τ : � → � for which
�0 − τ : � → X is bounded and (�0, 0) � (�0 − τ, [u, τ, v]) � (0, [u, τ, v]) by
Lemma 10.5. Thus, the proof can be reduced to proving that, under the hypothesis of
the theorem, if B : � → X is a bounded map then (B, d) � (B, 0) for whatever d.
Let us call X ⊕d

B Y and X ⊕0
B Y the spaces endowed with the actions induced by,

respectively, the derivations d and 0. Recall from Lemma 10.4 that {d(g)}g∈G is a
uniformly bounded family of operators, and therefore we can form the operator

My = P

(∫

g∈G
u(g−1)d(g)y dμ(g)

)
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where P : X∗∗ → X is a G-projection. Let us show that the map R =
(

I d M
0 I d

)

is

a G-operator making the diagram

X ⊕d
B Y

R0 X Y 0

X ⊕0
B Y

commute. The only part that is not evident, that R is a G-operator, means

(

u 0
0 v

)

R = R

(

u d
0 v

)

namely u(g)M = d(g)+ Mv(g), i.e., d = [u, M, v]. We show this:

u(g′)My = u(g′)P
(∫

g∈G
u(g−1)d(g)y dμ(g)

)

= P

(∫

g∈G
u(g′g−1)d(g)y dμ(g)

)

Call g′g−1 = h−1 so that g = hg′ and thus

= P

(∫

h∈G
u(h−1)d(hg′)y dμ(h)

)

= P

(∫

h∈G
u(h−1)(u(h)d(g′)+ d(h)v(g′))y dμ(h)

)

= d(g′)y + P

(∫

h∈G
u(h−1)d(h)v(g′))y dμ(h)

)

= d(g′)y + Mv(g′)y.

�
Corollary 10.8 Let G be a group. Let 0 → X → X ⊕� Y → Y → 0 and 0 → X →
X ⊕� Y → Y → 0 be exact sequences (�, d), (�, d ′) of G-spaces. If G is amenable
and X is a G-ultrasummand then

(�, d) � (�, d ′) ⇐⇒ � ∼ �.

It will help us at this point to use the classical terminology, and call inner a derivation
for which there exists a bounded linear map A : Y → X such that d = [u, A, v].
Remark 10.9 Note that (�, d1) � (�, d2) if and only if d1 − d2 is inner.
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To see this, just apply Definition 10.1 with �1 = �2 = � to obtain a linear map
A : � � X such that d1(g) − d2(g) = [u(g), A, v(g)], and � − � + A bounded,
i.e. A is a bounded operator, which by extension may be assumed to be defined on the
whole of Y .

Both hypotheses in Corollary 10.8 are necessary. (a) The amenability ofG is neces-
sary, because while Ext(�2(T ), �2(T )) = 0, we have that ExtAut(T )(�2(T ), �2(T )) �=
0. Indeed, see the end of Section 3: the sequence

0→ �2(T ) → �2(T )⊕L �2(T ) → �2(T ) → 0,

where �2(T ) is equipped with the action u and �2(T )⊕L �2(T ) is equipped with the
diagonal action, does not Aut(T )-splits. Otherwise we would have (L, 0) � (0, 0),
which means by definition that L−� is bounded and [u, �, u] = 0 for some linear map
�. In other words, L would be boundedly equivalent to an Aut(T )-equivariant map
�, a contradiction with the second part of Proposition 3.11. (b) The G-ultrasummand
character of X is necessary, because Ext(R, c0) = 0 but we will show in Sect. 11.3
that Ext2<ω(R, c0) �= 0.

If we put together Theorem 10.7 and the result of Cabello mentioned before it we
almost get a contradiction: after all, the group U of units of the L∞-module structure
is Abelian (hence amenable) and (for 1 < p < ∞) L p spaces are reflexive. Let us
however carefully spell what these two results together actually imply: no non-trivial
element of Ext(L p, Lq) can be compatible with the canonical actions of U on these
two spaces.

A significant consequence of Theorem 10.7 is the following kind of uniqueness
result for the possible derivation associated to fixed actions u and v.

Corollary 10.10 Assume that G is an amenable group, Y and X are G-spaces with X
a G-ultrasummand and � : Y � X is a quasilinear map. All compatible actions of G
on X⊕�Y are conjugate; namely, given two such actions λ1, λ2 there is A ∈ L(Y , X)

such that for all g ∈ G,

λ2(g) =
(

I d A
0 I d

)

λ1(g)

(

I d −A
0 I d

)

.

Proof Since the two exact sequences of Banach spaces are equivalent, Theorem 10.7
implies that they are equivalent in the G-space setting, i.e. (�, d1) � (�, d2). By
Remark 10.9, d1 − d2 is therefore inner, so pick A such that d1(g) − d2(g) =
[u(g), A, v(g)]. �

In the particular case of a direct sum of two copies of a Hilbert space H on which
u = v is a unitary representation, note that compatible actions of G are represented

by triangular matrices of the form λ(g) =
(

u(g) d(g)
0 u(g)

)

, where d(g) is uniformly

bounded. IfG is amenable thenCorollary 10.10 implies that such an action is conjugate
to the diagonal action associated to u, i.e.

λ(g) =
(

u(g) d(g)
0 u(g)

)

=
(

I d A
0 I d

)(

u(g) 0
0 u(g)

)(

I d −A
0 I d

)

.
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Unravelling this expression, we obtain that d(g) = [A, u(g)] is inner.
It is a well known fact that a bounded triangular representation is unitarizable (i.e.

similar to a unitary representation) if and only if the corresponding derivation is inner
(see the beginning of [28] Section 3 for a full statement and a proof). We previously
recalled that bounded representations of amenable groups are unitarizable [25, 26].
So, under amenability of G, Corollary 10.10 may be seen as a generalization, to the
context of general twisted sums of G-spaces, of the characterization of unitarizability
by inner derivations in the context of direct sums of two Hilbert spaces.

11 Variations and Comments

This final section contains a miscellanea of results and problems connected with the
ideas in this paper.

11.1 FromUniformly Bounded Extensions to Actions

The following situation was mentioned in the abstract: to which extent the existence
of a uniformly bounded family of operators on a twisted sum space compatible with
a couple of actions on the subspace and the quotient space induces an action on the
twisted sum. We have:

Proposition 11.1 Let � : Y � X be quasi-linear between two G-spaces. Assume
that there is a uniformly bounded family of operators (Tg)g∈G such that each Tg :
X ⊕� Y → X ⊕� Y forms a commutative diagram

0 −−−−→ X −−−−→ X ⊕� Y −−−−→ Y −−−−→ 0

u(g)

⏐
⏐
� Tg

⏐
⏐
�

⏐
⏐
�v(g)

0 −−−−→ X −−−−→ X ⊕� Y −−−−→ Y −−−−→ 0

If G is an amenable group and X is a G-ultrasummand then there is a compatible
action of G on X ⊕� Y .

Proof Each operator Tg has the form Tg =
(

u(g) τg
0 v(g)

)

.Wemay assumewlog that

τe = 0 by simply replacing the family (Tg)g by (Sg)g with Sg = Tg + I d − Te. Since

T−1g has to have the form

(

u(g)−1 b(g)
0 v(g)−1

)

, from T−1g Tg = I d and τe = 0 we

obtain b(g) = −u(g−1)τgv(g−1), so that T−1g =
(

u(g−1) −u(g−1)τgv(g−1)
0 v(g−1)

)

.

Now, it may well happen that T−1g is not Tg−1 . To amend this, what we claim is that
supg ‖(Tg)−1‖ < ∞: this is consequence of ‖(Tg)−1(x, 0)‖ ≤ ‖u(g−1)x‖ and
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sup
‖x‖≤1

‖(Tg)−1(�x, x)‖

= sup
‖x‖≤1

‖u(g−1)�x − u(g−1)τgv(g−1)x −�v(g−1)x‖ + ‖v(g−1)x‖

≤ ‖u(g−1)‖ sup
‖x‖≤1

‖�x − τgv(g−1)x − u(g)�v(g−1)x‖ + ‖v(g−1)

≤ ‖u(g−1)‖ sup
‖y‖≤‖v(g−1)‖

‖�v(g)y − τg y − u(g)�y‖ + ‖v(g−1)‖

≤ ‖u(g−1)‖ sup
‖y‖≤‖v(g−1)‖

‖Tg(�y, y))‖ + ‖v(g−1)‖

≤ ‖u(g−1)‖(‖Tg‖ + 1)‖v(g−1)‖

This is enough: for any pair g, g−1 ∈ G, pick one of them to remain Tg and replace
Tg−1 by T−1g . Thus, from now on we assume that (Tg)−1 = Tg−1 and thus, what is
more important to us, that

τg−1 = −u(g−1)τgv(g−1).

The family {[u(g),�, v(g)] + τg}g∈G is uniformly bounded since

(

u(g) τg
0 v(g)

)(

�y
y

)

= (u(g)�y + τg y, v(g))

is a uniformly bounded family and ‖(u(g)�y + τg y, v(g))‖ = ‖u(g)�y + τg y −
�v(g)‖ + ‖v(g)‖. Thus, both

•
(

u(gh) τgh
0 v(gh)

)

g,h

•
(

u(g) τg
0 v(g)

)

g

(

u(h) τh
0 v(h)

)

h
=

(

u(gh) u(g)τh + τgv(h)

0 v(gh)

)

g,h

defineuniformlybounded families of operators, hence

(

0 u(g)τh + τgv(h)− τgh
0 0

)

g,h
is also a uniformly bounded family. Since

(

0 u(g)τh + τgv(h)− τgh
0 0

)(

�y
y

)

= ((u(g)τh + τgv(h)− τgh)y, 0)

and ‖(u(g)τh + τgv(h) − τgh)y, 0)‖X⊕�Y = ‖(u(g)τh + τgv(h) − τgh)y‖X it turns
out that the family {u(g)τh+τgv(h)−τgh}g,h∈G is uniformly bounded. Set gh instead
of g and h−1 instead of h and get that also {u(gh)τh−1 + τghv(h−1) − τg}g,h∈G is
uniformly bounded. Hence,

{u(gh)τh−1 + τghv(h−1)}h∈G
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is a uniformly bounded family and we can therefore define

d(g) = P

(∫

h∈G
(u(gh)τh−1 + τghv(h−1))dμ

)

,

where P is a G-operator X∗∗ → X . Let us check that d is a derivation: given g, k in
G, since

u(gkh)τh−1k−1v(k)+ u(g)τkhv(h−1) = u(g)
(

u(kh)τh−1k−1 + τkhv(h−1k−1)
)

v(k)

= 0

we have

d(gk) = P

(∫

h∈G
u(gkh)τh−1 + τgkhv(h−1)dμ

)

= P

(∫

h∈G
u(gkh)τh−1 + τgkhv(h−1)+ u(gkh)τh−1k−1v(k)+ u(g)τkhv(h−1)dμ

)

= P

(∫

h∈G
u(gkh)τh−1 + u(g)τkhv(h−1)dμ+

∫

h∈G
τgkhv(h−1)

+ u(gkh)τh−1k−1v(k)dμ
)

= u(g)P

(∫

h∈G
u(kh)τh−1 + τkhv(h−1)dμ

)

+
(∫

h∈G
u(gkh)τh−1k−1 + τgkhv(h−1k−1)dμ

)

v(k)

= u(g)d(k)+
(∫

h∈G
u(gh)τh−1 + τghv(h−1)dμ

)

v(k)

= u(g)d(k)+ d(g)v(k).

Finally, d is an �-derivation, i.e., {[u(g),�, v(g)]+d(g)}g is uniformly bounded:
on one hand, the family [u(g),�, v(g)] + τg is uniformly bounded and on the other
(d(g)−τg) too because {u(gh)τh−1+τghv(h−1)−τg}g,h∈G is uniformly bounded and
P is a G-operator. Thus [u(g),�, v(g)] + d(g) = [u(g),�, v(g)] + τg − τg + d(g)
defines a uniformly bounded family. �

Let us conclude with a comment about the hypothesis of Proposition 11.1. Observe
that the existence of an operator T making a commutative diagram

0 −−−−→ X −−−−→ X ⊕� Y −−−−→ Y −−−−→ 0

u

⏐
⏐
� T

⏐
⏐
�

⏐
⏐
�v

0 −−−−→ X −−−−→ X ⊕� Y −−−−→ Y −−−−→ 0

is equivalent to the existence of a linear map L : � → � such that u� − �v − L :
� −→ X and ‖u�−�v−L‖ < ∞. In this way, if we denote Lin(�,�) the space of
all linearmaps (continuous or not) between� and�, the hypothesis of Proposition11.1
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can be reformulated as supg∈G dist (u(g)�−�v(g),Lin(�,�)) < ∞. The proof
could have been plotted this way showing how to replace the original family (Tg)g
by a new family (sg)g such that supg∈G ‖sg‖ ∼ supg∈G ‖u(g)‖, ‖v(g)‖. A simple
example in [15] shows that in a general commutative diagram formed by two exact
sequences and three operators u, T , v the norm of T is not necessarily bounded by
those of u and v.

11.2 Complex Structures

We now answer a question about complex structures on real twisted sum spaces posed
in [17, around Corollary 2.2].

Proposition 11.2 Let X ,Y be Banach spaces admitting complex structures u, v and
let � : Y � X be a quasilinear map. If there exists a bounded operator T on X ⊕� Y
yielding a commutative diagram

0 −−−−→ X −−−−→ X ⊕� Y −−−−→ Y −−−−→ 0

u

⏐
⏐
� T

⏐
⏐
�

⏐
⏐
�v

0 −−−−→ X −−−−→ X ⊕� Y −−−−→ Y −−−−→ 0

then X ⊕� Y admits a complex structure.

Proof We use the abelian, hence amenable, group G = {i,−1,−i, 1} through the
action i → u, 1 → id,−i → −u,−1 → −id on X and i → v, 1 → id,−i →
−v,−1 → −id on Y . With this we may apply a simple version of Proposition 11.1,
for which no G-complementation is required since one performs just a finite average

(i.e. P is removed in the definition of d(g)). Then J =
(

u d(i)
0 v

)

is a complex

structure. The value of d(i), which is 1
2 (τ + uτv), may be computed unravelling the

formula in Proposition 11.1. More directly: it is an immediate computation that the

associated J =
(

u 1
2 (τ + uτv)

0 v

)

has square−I d, and the boundedness of J may be

checked as follows. By boundedness of T , [u,�, v] + τ = u�−�v+ τ is bounded.
Composing on the left by u and on the right by v, we obtain that−�v+ u�+ uτv =
[u,�, v] + uτv is bounded, which means that R :=

(

u uτv

0 v

)

is bounded as well.

Finally J = 1
2 (T + R) is bounded. �

This proof shows that complex structures exist in X ⊕� Y as long as [u,�, v] is the
sum of a bounded and of a linear map. The result had been proved in [17, Corollary
2.2] assuming that [u,�, v] was either bounded or linear.
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11.3 Actions of the Cantor Group 2! and of 2<!

The goal of this Section is to provide new natural examples and showing that the
G-ultrasummand character of X is necessary in Theorem 10.7. The Cantor group is
the group of units of �∞ and thus 2ω-centralizers are just �∞-centralizers. Its diagonal
action on �∞ restricted to c0 is again the diagonal action, and thus it generates an
action on �∞/c0. We do not have any reasonable idea about a linear derivation d :
�∞/c0 → c0 of the Cantor group. The subgroup 2<ω of elements of 2ω that are
eventually 1 is much more manageable. The space c is the living example that 2<ω-
groups are not 2ω-groups. The natural diagonal action of 2<ω on c and c0, who is
therefore a 2<ω-subspace, induces the identity action on the quotient R. This implies
that the exact sequence 0 → c0 → c → R → 0 of 2<ω-spaces, which splits as a
Banach space sequence, does not split as a 2<ω-sequence since no 2<ω-liftingR → c is
possible. Thus, Ext2<ω(R, c0) �= 0,which shows thatG-complementation is necessary
in Theorem 10.7. Observe that Corollary 10.10 does not apply and therefore we do not
know the general form of an action of 2<ω on c. The map d(g) : R → c0 is d(g)(r) =
−2r ∑

gi=−1 ei is a linear derivation on 2
<ω and the triangular action on c has the form

λ(g) =
(

u(g) d(g)
0 I dR

)

with u the diagonal. In the spirit of Definition 10.1, note that d

can also be written as d = [u, L, v]where L : R → c is defined by L(r) = (r , r , . . .),
so we can also write equivalently that c0 ⊕L R equipped with the diagonal action is
not 2<ω-trivial. Each element x of L(R, c) = c defines an 2<ω-centralizer in the form
�(1) = x but none defines an equivariant 2<ω-centralizer since u(g)x− x = 0 for all
g ∈ G is impossible. All this was based on some ideas of [1], where an example of an
SOT-discrete bounded group of operators on c0 without discrete orbits was provided;
the relation with twisted sums was not observed there.

There is a general formulation for this situation: let X be a separable Banach space
that we write as X = ⋃

n Fn for an increasing sequence of finite dimensional spaces
Fn . The space c0(N, Fn) admits a natural “diagonal" action g( fn) = (g(n) fn) that
naturally extends to the space cX (Fn) = {( fn) : ∃ lim fn}. What is interesting here

is that the exact sequence 0 → c0(N, Fn) → cX (N, Fn)
lim→ X → 0 splits if and

only if X has the Bounded Approximation Property [7, Chapter 5] although it never
2<ω-splits since the action induced on X is the identity.

The difficulty of obtaining derivations �∞/c0 → c0 for 2ω can be confronted
with how easily one obtains derivations for 2<ω on the subspace c0(c) of �∞/c0
(here c is the cardinal of the continuum). Consider to this end that the Nakamura-
Kakutani (see [7, 2.2.10]) sequences 0 −→ c0 −→ C(�A) −→ c0(|A|) −→ 0
also provide natural examples of 2<ω-centralizers: pick A an almost disjoint family
of subsets of N (i.e., |A ∩ B| < ∞ for all A, B ∈ A) containing the singletons. The
cardinal of the family must be ℵ1 ≤ |A| ≤ c since when |A| = ℵ0 the sequence
splits by Sobczyk’s theorem. We will assume without loss of generality that it is the
continuum. Let �A be the one-point compactification of the locally compact space
having N as isolated points and A ∈ A as the only accumulation point of {n : n ∈ A}.
There is a natural action of 2<ω on C(�A): (g f )(n) = g(n) f (n) that yields the
diagonal action on c0 and induces the identity action on c0(c). Let c00(c) be the dense
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subspace of all finitely supported sequences. A quasilinear map � : c00(c) � c0
corresponding to this sequence can be easily described: fix a well-order on c and
then for x ∈ c00(c) write it as x = ∑

λi ei with the ei well ordered and define
�(

∑

λi ei ) = λ11A1 + λ21A2\A1 + · · · + λn1An\(A1∪...An−1). This is a bounded map
c00(c) → �∞ and therefore a 2<ω-centralizer (with derivation 0). On the other hand,
C(�A) is a subspace of �∞ but the natural action of 2ω does not respect C(�A).

11.4 Groups and Symmetries

To fix ideas, let us focus onN and �∞-centralizers (namely, 2ω-centralizers) onBanach
spaceswith symmetric basis. A centralizer is symmetric if ‖(�x)σ−�(xσ)‖ ≤ C‖x‖
for every permutation σ ofN. For instance KPmaps are symmetric. Symmetric central-
izers live their own lives (see [4, 35]) and there is a great difference between working
with symmetric and non-symmetric centralizers. But the ideas in the present paper
allow us to explore the intermediate terrain between “centralizer" and “symmetric
centralizer". Let Sym(N) be the group of permutations of N and let � be a subgroup.
Consider the set 2ω

� = 2ω × � with the group structure corresponding to the action
(g, θ)(x) = g(xθ) where (xθ)(n) = x(θ(n)). Symmetric centralizers correspond
to 2ω

Sym(N)
-centralizers. Let now (An) be a partition N = ∪An of N into finite sets,

An < An+1, and let � be the group of permutations σ of N such that σ An = An

for all n. It turns out that 2ω
�-centralizers can be useful too: as the authors of [12]

dismayingly recall, the first author has frequently asked about “how many different"
exact sequences 0 → �1 → Z → c0 → 0 exist. The same problem is addressed in
[7]. Let us lodge the problem in the theory developed in this paper.

Proposition 11.3 Every non 2ω
�-trivial 2

ω
�-centralizer �2 � �2 generates a nontrivial

exact sequence 0→ �1 → X → c0 → 0.

Proof Let � : �2 � �2 be a 2ω
�-centralizer. This means that for the partition (An)

of N and every permutation σ of N such that σ An = An one has for every x ∈ �2
that (�x)σ −�(xσ) ∈ �2 and this family is uniformly bounded. In particular, if we
decompose �2 = �2(N, �2(An)) then �|�2(An) ⊂ �2(An). Being 2ω

�-trivial means that
there is a linear map L : �2(N, �2(An)) → � such that � − L : �2(N, �2(An)) −→
�2(N, �2(An)) and (�− L)|�2(An) is uniformly bounded. Thus, if � is not 2ω

�-trivial,
the sequence

0 −−−−→ �2(An) −−−−→ �2(An)⊕�|�2(An )
�2(An) −−−−→ �2(An) −−−−→ 0

splits, but if σ−1n denotes its splitting constant (namely, the infimum of those constants
C for which there is a linear map �n : �2(An) → �2(An) such that ‖�|�2(An) −
�n‖ ≤ C) then lim σn = 0 since otherwise � would be 2ω

�-trivial. Some subsequence
(σk(n))n ∈ �1/2, and wewill shamelessly assume that it is σ . Let D : c0(N, �2(An)) →
�2(N, �2(An)) be the “diagonal" map D((xn)) = (σ

1/4
n xn). Form the commutative

diagram
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0 −−−−−−→ �2(N, �2(An )) −−−−−−→ �2(N, �2(An ))⊕� �2(N, �2(An )) −−−−−−→ �2(N, �2(An )) −−−−−−→ 0

D
⏐
⏐
�

"
⏐
⏐D

0 −−−−−−→ �1(N, �2(An )) −−−−−−→ X −−−−−−→ c0(N, �2(An )) −−−−−−→ 0

The lower sequence has D�D as associated quasilinear map and this it can-
not split since otherwise the upper sequence would be 2ω

�-trivial: after all, since

(D�D)|�2(An)(x) = σ
1/2
n �x and thus if there is a sequence of linear maps �n :

�2(An) → �2(An) such that ‖D�D|�2(An) − �n‖ ≤ M then the splitting constant

of of �|�2(An) would be at most Mσ
−1/2
n . To conclude, if jn : �2(An) → �2

n

1 is a
sequence of C-isomorphic embeddings then (jn)D�D(j∗n ) is nontrivial by the local
version of [7, Claim p.268]), and this produces a nontrivial sequence

0 −−−−→ �1 = �1(N, �2
n

1 ) −−−−→ X −−−−→ c0(N, �2
n

∞) = c0 −−−−→ 0

�
Even if D�D is a 2ω-centralizer, (jn)D�D(j∗n ) is not, and can never be, a 2ω-

centralizer: otherwise there would be a compatible action of 2ω on X and picking any
extension T : X → R of the sum functional �1 → R we can form the 2ω-invariant
functional �(x) = ∫

2ω ε−1T (εx)dμ. The road is now paved to define Q : X → �∗∗1
in the form Q(x)(ε) = �(εx) for ε an unit of �∞ and extend it linearly to a functional
on �∞. Finally, compose with a 2ω-projection �∗∗1 → �1. It is however perfectly
reasonable to have a G-centralizer � and two operators α, γ so that α�γ is a G ′-
centralizer for two different groups G,G ′. Researchers willing to travel this road are
advised to do so crossing through the horn gate of [12].

11.5 Additional Structures

Additional structures other than group structuresmay be considered onBanach spaces.
See for example the work of Corrêa [20] on exact sequences of operator spaces and
a solution to 3-space problem for OH spaces. It seems to be unknown whether a
relevant theory of groups acting completely boundedly on extension sequences of
operator spaces may be developed.
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