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Abstract
We recall and delve into the different characterizations of the depth of an affine semigroup 
ring, providing an original characterization of depth two in three and four dimensional 
cases which are closely related to the existence of a maximal element in certain Apéry sets.
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1 Introduction

In this paper we are concerned with studying the depth of affine semigroup rings �[S] , with 
S a simplicial affine semigroup fully embedded in ℕd , i.e. subalgebras of the polynomial 
ring �[t1,… , td] generated by the monomials with exponents in S , where � is a field. The 
semigroup ring �[S] is a d-dimensional ring with a unique monomial maximal ideal � . 
Affine semigroup rings behave as local rings whose maximal ideal is the irrelevant ideal 
� . Thus, we may define the depth of an affine semigroup ring as the maximum length of a
regular sequence in the maximal ideal.

Thanks to the Auslander–Buchsbaum formula (see (1)), it is possible to relate depth to the 
projective dimension, producing an alternative definition of depth that we can say is the most 
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widespread in the world of affine semigroups; and what is more important, giving rise to the 
study of the depth in terms of the last nonzero Betti numbers.

It is known that the last nonzero Betti numbers of affine semigroup rings have a strong rela-
tionship with certain Apéry sets (see, e.g. [8, 10]). Furthermore, it is also known that maximal 
depth, i.e. Cohen–Macaulyness, has a characterization in terms of Apéry sets when the affine 
semigroup giving rise to the semigroup ring structure is simplicial (see Proposition 3.5 due to 
Rosales and García-Sánchez [15, Proposition 1.6]). Finally, although not explicitly, connec-
tions between Betti numbers, Apéry sets and depth are also established in [3].

For convenience, we will assume that each affine semigroup considered is simplicial. In 
this framework, we provide a new characterization of simplicial affine semigroups with depth 
two, and dimension three or four, in terms of Apéry sets (see Theorems 5.2 and 6.4).

The paper is organized as follows: after a preliminary section in which we lay the ground-
work for most of the notations and the basic results of the entire article, in Sect. 3 we recall the 
notion of Apéry sets of an affine semigroup with respect to a subset of elements of the semi-
group and we show that these sets may be effectively computed using Gröbner bases. Next, we 
establish a couple of well-known results relating depth and the Apéry sets (Propositions 3.4 
and 3.5), that characterize cases of extreme depth. In Proposition 3.8, we give a necessary and 
sufficient condition for the Apéry set of a simplicial affine semigroup with respect to a subset 
of extremal rays to have a maximal element with respect to the partial order determined by the 
semigroup (Proposition 3.8).

In Sect. 4 we show the combinatorial characterization of the Betti numbers graded by an 
affine semigroup (Lemma 4.3 and Proposition 4.4) that will be fundamental in Sect. 5 and to 
a lesser extent in Sect. 6. Now, in Sect. 5, we give a necessary and sufficient condition for a 
simplicial affine subsemigroup of ℕ3 to have depth two (Theorem 5.2). Notice that this com-
pletes all possible depth cases for dimension three, since depth one and depth three are already 
characterized. In Sect. 6, we use Koszul’s complexes to characterize depth two in dimension 
four (Theorem 6.4) and we provide a combinatorial interpretation of our result in terms of the 
simplicial complexes introduced in Sect. 4 (Proposition 6.6).

We end the paper with Conjecture 6.7 which claims that if the depth of a simplicial affine 
semigroup is two, then there exists a subset of extremal rays of cardinality two with respect to 
which the corresponding Apéry set has a maximal element. Our conjecture is optimistically 
motivated by the cases of extreme depth (Proposition 3.4 and Proposition 3.5) and the results 
obtained in Sects. 5 and 6 where it is shown to be true for d ≤ 4 . We end the paper by discuss-
ing why the conjecture cannot be extended to higher depths, in general.

2  Generalities and notation

Throughout this paper S denotes a simplicial affine semigroup with (fixed) minimal generat-
ing set A ∶= {a1,… , ae} ⊂ ℕd . Without loss of generality, we suppose that rankℤA = d , 
where ℤA =

∑e

i=1
ℤai is the subgroup of ℤd generated by A.

Recall that the fact S is simplicial means that the rational cone

has d minimal generators also called extremal rays. Without loss of generality, from now 
on we suppose that E ∶= {a1,… , ad} is ℚ-linearly independent, generates pos(A) and 

pos(A) ∶=

{
e∑

i=1

qiai ∣ qi ∈ ℚ≥0, i = 1,… , e

}
⊂ ℚ

d
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ai, i = 1,… , d , is the component-wise smallest vector of A in the corresponding extremal 
ray.

Let �[x] = �[x1,… , xe] be the polynomial ring in e indeterminates over an arbitrary 
field � and let

be the affine semigroup ring of S.
The ring �[x] has a natural S-graded structure given by assigning degree ai to 

xi, i = 1,… , e ; indeed,

where �[x]a denotes the �-vector space generated by the monomials xu ∶= x
u1
1
⋯ x

ue
e  

such that 
∑e

i=1
uiai = a , and �[x]a ⋅ �[x]a� = �[x]a+a� . The surjective S-graded ring 

homomorphism

endows �[S] with a structure of S-graded �[x]-module. The kernel of �0 , denoted IA , is the 
toric ideal of S ; clearly �[S] ≅ �[x]∕IA . Thus, minimal generating systems of IA gives rise 
to minimal representations of �[S] as �[x]-module. Indeed, if MA ∶= {f1,… , f�1} is a mini-
mal system of generators of IA , then

is an exact sequence, where �1 is the homomorphism of �[x]-modules whose matrix with 
respect to the corresponding standard bases is (f1,… , f�1 ) . Since IA is S-homogeneous 
(equivalently, a binomial ideal, see e.g. [12, Theorem 1]), then �1 is also S-graded.

Now, if ker�1 ≠ 0 , we can consider a minimal system of S-graded generators of ker�1 , 
proceed as above defining a S-graded homomorphism of �[x]-modules �2 and so on. By 
the Hilbert Syzygy Theorem, this process cannot continue indefinitely, giving rise to the S
-graded minimal free resolution of �[S]:

For b ∈ S, we write �i,b for the number of minimal generators of ker�i of S-degree b . Of 
course, �i,b may be 0. Here it is convenient to recall that �i,b = dim� Tor

�[x]

i
(�, �[S])b (see, 

e.g. [13, Lemma 1.32]) is an invariant of �[S] for every i > 0 and b ∈ S . The integer num-
ber �i,b is called the i-th Betti number of �[S] in degree b and �i =

∑
b∈S �i,b is called the 

i-th (total) Betti number of �[S] . Clearly, �[x]�i =
⨁

b∈S �[x]
�i,b , for every i = 1,… , p.

Notice that there are finitely many nonzero Betti numbers. The elements b ∈ S such that 
�1,b ≠ 0 are called in literature Betti elements and the set of Betti elements of S is usually 
denoted by Betti(S) (see, [9] for more details).

The maximum i such that �i ≠ 0 is called the projective dimension of �[S] , denoted 
pd�[x](�[S]) . By the Auslander–Buchsbaum formula (see, e.g. [2, Theorem 1.3.3]), one has

�[S] =
⨁
a∈S

�{ta}

�[x] =
⨁
a∈S

�[x]a,

�0 ∶ �[x] ⟶ �[S];xi ↦ tai

�[x]�1
�1

⟶�[x]
�0

⟶�[S] → 0

0 → �[x]�p
�p

⟶⋯
�2

⟶�[x]�1
�1

⟶�[x]
�0

⟶�[S] → 0.

(1)depth(�[S]) = e − pd�[x](�[S]).
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Recall that when depth(�[S]) = d (equivalently, pd�[x](�[S]) = codim(�[S]) = e − d ), 
then �[S] is Cohen–Macaulay. We extend this terminology to S , by saying that S is 
Cohen–Macaulay when �[S] is.

3  Apéry sets and depth

The Apéry set of an element b ∈ S is defined as

Since S ⊂ ℕd , for b ≠ 0 we have 0 ∈ Ap(S, b) . For a finite subset B of S , we define

It is known that Ap(S,B) is finite if and only if pos(A) = pos(B) (see, e.g. [1, Theo-
rem 2.6]). In particular, Ap(S,E) = ∩d

i=1
Ap(S, ai) is a finite set.

Given 𝛿 ⊆ {1,… , d} and a monomial order ≺ on �[x] , set

The following result is a generalization of [14, Theorem 3.3], which can also be deduced 
from [1, Theorem 2.1].

Proposition 3.1 With the above notation, the map

is a bijection.

Proof Let us prove that the map is a well-defined bijection. If xu ∈ Q , then 
q =

∑
i∉� uiai ∈

⋂
i∈� Ap(S, ai) ; otherwise, there exists j ∈ � such that 

q − aj =
∑e

i=1
viai ∈ S . So, xu − xjx

v ∈ IA and, consequently, xu ∈ in≺(IA + ⟨{xi}i∈𝛿⟩) , a 
contradiction. Moreover, if there exists xw ∈ Q with q =

∑
i∉� wiai , then xu − xw ∈ IA . So, 

either xu or xw lie in in≺(IA + ⟨{xi}i∈𝛿⟩) which is not possible by hypothesis. Thus, the 
map is injective. Finally, if q ∈

⋂
i∈� Ap(S, ai) , then q =

∑
i∉� viai for some vi ∈ ℕ, i ∉ � . 

Now, if xu is the remainder of the division of xv by IA + ⟨{xi}i∈�⟩ , then xu ∈ Q with ∑
i∉� uiai = q .   ◻

Notation 3.2 Let ⪯S be the partial order on S given by a ⪯S a� if and only if a� − a ∈ S . 
Notice that 0 ∈ ℕd is the only minimal element of S for ⪯S . Moreover, if a� ∈ Ap(S,B) and 
a ∈ S is such that a ⪯S a� , then a ∈ Ap(S,B).

Corollary 3.3 With the above notation, xu ∈ Q divides xv ∈ Q if and only 
if 

∑
i∉� viai ∈

⋂
i∈� Ap(S, ai) and 

∑
i∉� uiai ⪯S

∑
i∉� viai ; in particular, ∑

i∉� uiai ∈
⋂

i∈� Ap(S, ai).

Proof If xu ∈ Q divides xv ∈ Q , then xv = xwxu for some xw ∈ �[{xi}i∉�] . 
If xw ∈ in≺(IA + ⟨{xi}i∈𝛿⟩) then xv ∉ Q , in contradiction to the 

Ap(S, b) ∶= {a ∈ S ∣ a − b ∉ S}.

Ap(S,B) ∶= {a ∈ S a − b ∉ S, for all b ∈ B} =
⋂
b∈B

Ap(S, b).

Q ∶=
�
xu ∈ �[{xi}i∉𝛿]

�
⧵ in≺(IA + ⟨{xi}i∈𝛿⟩).

Q ⟶

⋂
i∈�

Ap(S, ai); xu ⟼

∑
i∉�

uiai
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hypothesis. So xw ∈ Q and, by Proposition 3.1, we have that 
∑

i∉� viai ∈
⋂

i∈� Ap(S, ai) 
and ∑

i∉𝛿 viai −
∑

i∉𝛿 uiai =
∑

i∉𝛿 wi
a
i
∈
⋂

i∈𝛿 Ap(S, ai) ⊂ S , that is, 
∑

i∉� uiai ⪯S

∑
i∉� viai.

Conversely, if 
∑

i∉� viai ∈
⋂

i∈� Ap(S, ai) and 
∑

i∉� uiai ⪯S

∑
i∉� viai , 

then 
∑

i∉� viai −
∑

i∉� uiai =
∑e

i=1
wiai ∈ S . If 

∑e

i=1
wiai ∉

⋂
i∈� Ap(S, ai), 

then there exists j ∈ � such that 
∑e

i=1
wiai − aj ∈ S and consequently, ∑

i∉� viai − aj =
∑

i∉� uiai +
∑e

i=1
wiai − aj ∈ S , that is, 

∑
i∉� viai ∉

⋂
i∈� Ap(S, ai), in con-

tradiction to the hypothesis. Arguing analogously, we have that 
∑

i∉� uiai ∈
⋂

i∈� Ap(S, ai) . 
Therefore, by Proposition 3.1, xu ∈ Q divides xv ∈ Q .   ◻

The following characterization of �[S] to have depth one is a consequence of [8, The-
orem 6 and Proposition 16].

Proposition 3.4 The ring �[S] has depth one if and only if Ap(S, b) has a maximal element 
with respect to ⪯S for some (equivalently all) b ∈ S.

Note that, by Corollary 3.3 and Proposition 3.4, depth(�[S]) = 1 if and only if the 
corresponding set Q has a maximal element for the partial order given by divisibility of 
monomials of �[x].

The case of �[S] having (maximal) depth d, that is, S is Cohen–Macaulay, is also 
characterized in terms of the Apéry sets.

Proposition 3.5 [15, Corollary 1.6]. The semigroup S is Cohen–Macaulay if and only if for 
all a, b ∈ Ap(S,E) such that b − a ∈

∑d

i=1
ℤai we have a = b.

Let us show other connections of Apéry sets with the depth of the semigroup ring 
that are valid beyond extreme cases of depth.

Proposition 3.6 Let e ≥ 3 and i ≠ j , the monomial xj is a zero-divisor of �[x]∕(IA + ⟨xi⟩) 
if and only if there exists b ∈ Ap(S, ai) such that aj + b ∉ Ap(S, ai) . In this case, 
depth(�[S]) > 1.

Proof By [6, Proposition 1.10], the indeterminate xj is a zero-divisor of �[x]∕(IA + ⟨xi⟩) 
if and only if there exists xu ∉ IA + ⟨xi⟩ such that xjxu ∈ IA + ⟨xi⟩ . Clearly, xu ∉ IA + ⟨xi⟩ 
if and only if b =

∑e

k=1
ukak ∈ Ap(S, ai) . Moreover, b + aj ∉ Ap(S, ai) if and only if there 

exists b� ∈ S such that b + aj = b� + ai . Equivalently, xjxu ∈ IA + ⟨xi⟩ ; that is, xj is a zero-
divisor of �[x]∕(IA + ⟨xi⟩) and we are done.   ◻

Observe that if (xi, xj) is a regular sequence on �[x]∕IA then aj + b ∉ Ap(S, ai) for 
every b ∈ Ap(S, ai) ; in particular, Ap(S, ai) does not have a maximal element with 
respect to ⪯S , as expected by Proposition 3.4.

Corollary 3.7 Let d ≥ 2 and 1 ≤ i < j ≤ d . The following statements are equivalent. 

(1) (xi, xj) is a regular sequence on �[x]∕IA.
(2) For b1, b2 ∈ Ap(S, ai) ∩ Ap(S, aj) , if b1 − b2 ∈ ℤai + ℤaj , then b1 = b2.
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Proof Suppose that (xi, xj) is a regular sequence on �[x]∕IA and let 
b1, b2 ∈ Ap(S, ai) ∩ Ap(S, aj) such that b1 = b2 + z1ai + z2aj, for some z1, z2 ∈ ℤ . 
Clearly, z1z2 ≤ 0 ; so, without loss of generality, suppose z1 ≤ 0 and z2 ≥ 0 , so that 
b1 + (−z1)ai = b2 + z2aj . Now, since, by Proposition 3.6, b1 + uai ∈ Ap(S, aj) and 
b2 + vaj ∈ Ap(S, ai) for every u, v ∈ ℕ , we conclude that z1 = z2 = 0.

Conversely, suppose that (2) holds and let us see that (xi, xj) is a regular sequence on 
�[x]∕IA . Since xi is a nonzero-divisor of �[x]∕IA , it suffices to prove that xj is is a nonzero-
divisor of �[x]∕(IA + ⟨xi⟩) . Let b ∈ Ap(S, ai) , if b + aj ∉ Ap(S, ai) , then there exists 
b� ∈ S such that b + aj = b� + ai . Let u, v,w ∈ ℕ be the smallest non-negative integers 
such that c = b − uaj ∈ Ap(S, aj) and c� = b� − vai − waj ∈ Ap(S, ai) ∩ Ap(S, aj) . Clearly, 
c ∈ Ap(S, ai) ∩ Ap(S, aj) and c − c� = (v + 1)ai + (w − (u + 1))aj . So, by hypothesis, c = c� 
and consequently (v + 1)ai = ((u + 1) − w)aj which is not possible because ai, aj ∈ E and 
elements of E are supposed to be ℚ-linearly independent.   ◻

Notice that for d = 2 the above result is nothing but Proposition 3.5.
We end this section with a characterization of the existence of a maximal element in certain 

Apéry sets that will be very useful later on.

Proposition 3.8 Let E′ ⊂ E . The following statements are equivalent. 

(1) Ap(S,E�) has a maximal element with respect to ⪯S.
(2) There exists b ∈ Ap(S,E�) such that b + ai ∉ Ap(S,E�) for every i ∈ E⧵E�.

Proof The statement (1) clearly implies (2). Conversely, let b ∈ Ap(S,E�) such that 
b + a ∉ Ap(S,E�) for every a ∈ E⧵E� . In particular, b + c ∉ Ap(S,E�) for every 
c ∈ S⧵Ap(S,E) . Indeed, if c ∈ S ⧵ Ap(S,E) , then c − a ∈ S for some a ∈ E , that 
is, c = a + c� for some a ∈ E and c� ∈ S . Now, on the one hand, if a ∈ E⧵E� , then 
b + c = b + a + c� ∉ Ap(S,E�) , otherwise, b + a ∈ Ap(S,E�) by Corollary 3.3; and, on the 
other hand, if a ∈ E� , then b + c − a = b + c� ∈ S and, consequently, b + c ∉ Ap(S,E�).

So, if b + c ∉ Ap(S,E�) for all c ∈ Ap(S,E) , we are done. Otherwise, b + c1 ∈ Ap(S,E�) 
for some c1 ∈ Ap(S,E) . Since b + c1 + a ∉ Ap(S,E�) for every a ∈ E⧵E� , we may repeat 
the same argument with b + c1 instead of b . So either b + c1 is maximal or there exists 
c2 ∈ Ap(S,E) such that c1 ⪯S c2 , b + c2 ∈ Ap(S,E�) and b + a + c2 ∉ Ap(S,E�) for every 
a ∈ E⧵E� . Since pos(A) = pos(E) , then Ap(S,E) is finite (see, e.g., [1, Theorem 2.6]) and 
this process necessarily stops. Hence Ap(S,E�) has a maximal element with respect to ⪯S .  
 ◻

4  Beti numbers and depth

Let us start by recalling the combinatorial characterization of the Betti numbers of �[S] , which 
will be very useful later on. For b ∈ S consider the simplicial complex

Δb =

{
F ⊆ A ∣ b −

∑
a∈F

a ∈ S

}
.
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The following result is [13, Theorem 9.2].

Proposition 4.1 The Betti number �i+1,b of �[S] equals the dimension over � of the i-th 
reduced homology group H̃i(Δb;�) , for every i ≥ 0 and b ∈ S.

Thus,

Consider now the simplicial complex

Let D(j) = {b ∈ S ∣ H̃j(Tb) ≠ 0} and

The following result is a reformulation of [3, Proposition 3.3] and provides a sufficient con-
dition for �[S] to have a nonzero (i + 1)-th Betti number in degree b.

Proposition 4.2 If �i+1,b ≠ 0 , then b ∈ Ci.

Notice that, if Ck = ∅ , then pd�[x](�[S]) ≤ k and, consequently, depth(�[S]) ≥ e − k.
Let us now characterize the elements in D(0) in terms of Apéry sets.

Lemma 4.3 Let b ∈ S . Then b ∈ D(0) if and only if there exists E′ ⊂ E such that 
b ∉ Ap(S,E�) and b −

∑
a∈E⧵E� a ∈ Ap(S,E�).

Proof Since D(0) = {b ∈ S ∣ H̃0(Tb) ≠ 0} and the dimension of H̃0(Tb) as a �-vector 
space is one less than the number of connected components of Tb , we have that D(0) ≠ 0 
precisely when Tb is not connected. Let E1,… ,Ek be the set of vertices of the connected 
components of Tb . Then k ≥ 2 and

with bj ∈ Ap(S,Ei) for each j ≠ i and i = 1,… , k . Thus, taking E� = E⧵Ei for some 
i ∈ {1,… , k} we get the direct implication.

Conversely, if there exists a subset E′ ⊂ E such that b ∉ Ap(S,E�) and 
b −

∑
a∈E⧵E� a ∈ Ap(S,E�) , then Tb has at least two connected components and we are 

done.   ◻

The Betti degrees appearing in the leftmost syzygy module of the S-graded minimal 
free resolution of �[S] (that is, the integers �e−depth(�[S]),b ≠ 0, for some b ∈ S) are combi-
natorially described in the following result.

depth(�[S]) = e −max{i ∣ �i,b ≠ 0, for some b ∈ S}

= e −max{i ∣ dim(H̃i−1(Δb;�)) ≠ 0, for some b ∈ S}.

Tb =

{
F ⊆ E ∣ b −

∑
a∈F

a ∈ S

}
.

Ci =

{
b ∈ S ∣ b −

∑
a∈F

a ∈ D(j), for some j ≥ −1 and F ⊆ A ⧵ E with #F = i − j

}
.

b = b1 +
∑
a∈E1

a = ⋯ = bk +
∑
a∈Ek

a,
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Proposition 4.4 Let q = depth(�[S]) . If �e−q,b ≠ 0 , then b −
∑

a∈A⧵E a ∈ D(d − q − 1) . 
Moreover, if depth(�[S]) = d − 1 , then there exists a subset E′ ⊂ E such that

Proof By Proposition 4.2, b = b� +
∑

a∈F a , where b� ∈ D(j) for some j ≥ −1 and 
F ⊆ {d + 1,… , e} with e − q − 1 − j#F ≤ e − d ; in particular, d − q − 1 ≤ j . Since 
depth(�[S]) = q , by [3, Theorem 4.1], D(j) = ∅ for j ≥ e − q . Therefore, j = d − q − 1 and 
F = A⧵E.

Finally, if depth(�[S]) = d − 1 , by Lemma  4.3, there exists E′ ⊂ E such that 
b� ∉ Ap(S,E�) and b� −

∑
a∈E⧵E� a ∈ Ap(S,E�) .   ◻

The following result follows easily from the definition of D(j).

Corollary 4.5 Let q = depth(�[S]) . If �e−q,b ≠ 0 , then H̃d−q−1(Tb−
∑

a∈A⧵E
) ≠ 0 . In particular, 

D(d − q − 1) ≠ ∅.

As the following example shows, the converse of the above results is not true.

Example 4.6 Let A = {a1, a2, a3, a4, a5, a6} ⊂ ℕ3 be such that ai is the i-th column of the 
following matrix:

Using Singular [4], one can compute a minimal system of generators of IA,

and easily check both that depth(�[S]) = 2 and that �e−2 = �4 = 6 . Moreover, one can com-
pute the set B of elements b ∈ S , such that �4,b ≠ 0 , namely,

Let I13 = ⟨x1, x3, x2x5x56, x35x56, x34x25, x2x24x66, x22x116 , x5
4
x6, x

16
6
, x2

4
x11
6
, x8

5
, x2x

7
5
x4
6
, x11

4
⟩ be the ini-

tial ideal of IA + ⟨x1, x3⟩ with respect to the A-graded reverse lexicographical ordering ≺ 
such that x3 ≺ x2 ≺ x1 ≺ x6 ≺ x5 ≺ x4.

Observe that x2
4
x7
5
x4
6
∉ I13 and x2

4
x7
5
x4
6
xi ∈ I13 for every i ∈ {1,… , 6} , so Corollary 3.3 

implies that c = 2a4 + 7a5 + 4a6 = (77, 54, 55) ∈ max⪯S Ap(S, {a1, a3}) ; in particu-
lar, c + a2 ∉ Ap(S, a1) ∩ Ap(S, a3) . Moreover, using the GAP ( [7]) package numer-
icalsgps ( [5]), one can check that c + a2 has two factorizations, (0,  0,  1,  10,  0,  0) 
and (0,  1,  0,  2,  7,  4), so c + a2 ∈ D(0) , as expected by Lemma 4.3. However, 
b = c + a2 +

∑6

i=4
ai = (99, 68, 75) ∉ B , that is, �4,b = 0.

b −
∑

a∈A⧵E�

a ∈ Ap(S,E�) and b −
∑

a∈A⧵E

a ∉ Ap(S,E�).

⎛⎜⎜⎝

5 4 1 8 7 3

3 1 5 5 4 4

1 7 2 6 5 2

⎞⎟⎟⎠
.

{
x2x5x

5
6
− x2

3
x3
4
, x3x

6
5
− x5

4
x6, x2x

2
4
x6
6
− x3

3
x5
5
, x5

1
x3
2
x3 − x3

4
x2
5
,

x5
1
x2
2
x3
3
− x3

5
x5
6
, x5

1
x3
2
x2
4
x6 − x8

5
, x2x

7
5
x4
6
− x3x

8
4
, x2

2
x11
6
− x5

3
x4x

4
5
,

x5
1
x4
2
x5
6
− x3x

6
4
x5, x

5
1
x2x

6
3
x2
5
− x2

4
x11
6
, x16

6
− x5

1
x8
3
x4x5, x

5
1
x4
2
x5
5
x4
6
− x11

4

}
,

B = {b1 = (79, 80, 63),b2 = (89, 87, 66),b3 = (82, 72, 62),

b4 = (91, 78, 69),b5 = (97, 77, 72),b6 = (106, 72, 80)}.
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In spite of this, one can check that there exists ci ∈ max⪯S
Ap(S, {a1, a2}) 

such that bi = ci + a3 +
∑6

j=4
aj, for each i ∈ {1,… , 6} . Concretely, in this case, 

c1 = (60, 62, 48), c2 = (70, 69, 51), c3 = (63, 54, 47), c4 = (72, 60, 54), c5 = (78, 59, 57) and 
c6 = (87, 54, 65).

5  Depth two in three‑dimensional case

Let d = 3 . As before A = {a1,… , ae} and now E = {a1, a2, a3} . In this case, the semigroup 
ring of S generated by A, �[S] , has positive depth less than or equal to three. As mentioned 
in Sect.  3, the extreme cases, namely depth(�[S]) = 1 and depth(�[S]) = 3 , are already 
characterized in terms of Apéry sets. Thus, in this section, we focus our attention on the 
case of depth two.

The following is Lemma 4.3 for d = 3.

Lemma 5.1 One has that b ∈ D(0) if and only if b ∉ Ap(S, ai) ∩ Ap(S, aj) and 
b − ak ∈ Ap(S, ai) ∩ Ap(S, aj) , for some {i, j, k} = {1, 2, 3}.

The following is a necessary and sufficient condition for �[S] to have depth two, when 
d = 3.

Theorem 5.2 The ring �[S] has depth two if and only if Ap(S, b) does not have a maximal 
element for some (equivalently all) b ∈ S , and Ap(S, ai) ∩ Ap(S, aj) has a maximal ele-
ment with respect to ⪯S , for some 1 ≤ i < j ≤ 3.

Proof If depth(�[S]) = 2 , then, by Proposition 3.4, Ap(S, b) does not have a maximal 
element for some (equivalently all) b ∈ S . Moreover, by [3, Theorem  4.1], there exists 
b ∈ D(0) . So, by Lemma  5.1, there exists a permutation {i, j, k} = {1, 2, 3} such that 
b ∉ Ap(S, ai) ∩ Ap(S, aj) and b − ak ∈ Ap(S, ai) ∩ Ap(S, aj) . Now, Proposition 3.8 implies 
that Ap(S, ai) ∩ Ap(S, aj) has a maximal element with respect to ⪯S.

Conversely, if c ∈ max⪯S
Ap(S, ai) ∩ Ap(S, aj) , then b = c + ak ∉ Ap(S, ai) ∩ Ap(S, aj) . 

By Lemma 5.1, b ∈ D(0) . Thus, depth(�[S]) ≤ 2 , by [3, Theorem 4.1]. Since, by Proposi-
tion 3.4, depth(�[x]) > 1 , we conclude that depth(�[S]) = 2 .   ◻

The above result is not true for every choice 1 ≤ i < j ≤ 3.

Example 5.3 Let A = {a1, a2, a3, a4, a5, a6} ⊂ ℕ3 be such that ai is the i-th column of the 
following matrix:

Using Singular [4], one can compute a minimal system of generators of IA , {
x1x

2

2
x6 − x3x4, x

3

2
x3x6 − x

2

1
x5, x

7

1
x
3

2
x
5

3
− x

2

6
, x5

1
x
6

2
x
6

3
− x5x6, x

8

1
x
5

2
x
4

3
− x4x6, x

3

1
x
9

2
x
7

3
− x

2

5
, x6

1
x
8

2
x
5

3

−x4x5, x
9

1
x
7

2
x
3

3
− x

2

4

}
, and then easily check that depth(�[S]) = 2 . Let 1 ≤ i < j ≤ 3 , 

⎛⎜⎜⎝

2 0 0 9 3 7

0 2 0 7 9 3

0 0 2 3 7 5

⎞⎟⎟⎠
.
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considering Proposition 3.1, let us denote by Iij the initial ideal of IA + ⟨xi, xj⟩ with respect 
to the A-graded reverse lexicographical ordering ≺ such that x3 ≺ x2 ≺ x1 ≺ x6 ≺ x5 ≺ x4 . 
In this case, we have

and

Observe that x4 ∉ I12 and x4xi ∈ I12 for every i ∈ {1,… , 6} , so, by Corollary 3.3, we 
obtain a4 ∈ max⪯S Ap(S, {a1, a2}) . Analogously, x1x5 ∉ I23 and x1x5xi ∈ I13 for every 
i ∈ {1,… , 6} , implies that a1 + a5 = (5, 9, 7) ∈ max⪯S Ap(S, {a2, a3} . However, since 
x2 does not belong to the support of any of the generators of I13 , by Corollary 3.3, 
Ap(S, a1) ∩ Ap(S, a3) does not have any maximal element.

The following result is Proposition 4.4 for d = 3.

Proposition 5.4 Let depth(�[S]) = 2 . If �e−2,b ≠ 0 , then there exist a permutation 
{i, j, k} = {1, 2, 3} and c ∈ Ap(S, ai) ∩ Ap(S, aj) such that c + ak ∉ Ap(S, ai) ∩ Ap(S, aj) 
and

The following example shows that the subscripts i, j are not fixed for all Betti degrees in 
Proposition 5.4, in general.

Example 5.5 Let A = {a1, a2, a3, a4, a5, a6} ⊂ ℕ3 be such that ai is the i-th column of the 
following matrix:

Using Singular [4], one can compute a minimal system of generators of IA and then 
easily check that depth(�[S]) = 2 and that �4 = 2 . In this case, �4,b ≠ 0 if and only if 
b ∈ {b1 = (34, 32, 36),b2 = (36, 32, 34)} . Let c1 = b1 − a2 −

∑6

�=4
a
�
= a2 + a6 = (9, 7, 11) 

and c2 = b2 − a1 −
∑6

�=4
a
�
= 2a1 + a5 = (9, 9, 9) . Observe that c1 ∈ Ap(S, ai) ∩ Ap(S, aj) 

if and only if {i, j} = {1, 3} and that c2 ∈ Ap(S, ai) ∩ Ap(S, aj) if and only if {i, j} = {2, 3}.
Observe that c1 and c2 are maximal elements of Ap(S, {a1, a3}) and Ap(S, {a2, a3}) , 

respectively. For this reason, we wonder if c in Proposition 5.4 can always be selected from 
a maximal element.

The last result of this section complements the Corollary 3.7, in such a way that we can 
conclude that (xi, xj), (xi, xk) or (xi, xj − xk), {i, j, k} = {1, 2, 3} , is a regular sequence in �[S] 
when d = 3 and depth(�[S])) = 2.

Proposition 5.6 Let depth(�[S]) = 2 and {i, j, k} = {1, 2, 3} . If xj and xk are zero-divisors of 
�[x]∕(I + ⟨xi⟩) , then xj − xk is a nonzero-divisor of �[x]∕(I + ⟨xi⟩).

I12 = ⟨x1, x2, x3x4⟩ + ⟨x4, x5, x6⟩2, I13 = ⟨x1, x3⟩ + ⟨x4, x5, x6⟩2

I23 = ⟨x2, x3, x21x5⟩ + ⟨x4, x5, x6⟩2.

b = c + ak +

e∑
�=4

a
�
.

⎛⎜⎜⎝

2 0 0 11 5 9

0 2 0 9 9 5

0 0 2 5 9 11

⎞⎟⎟⎠
.
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Proof Assume contrary that xj − xk is a zero-divisor of �[x]∕(IA + ⟨xi⟩) . Equivalently, 
since IA is a prime ideal, by [6, Proposition 1.10], there exists xu ∉ IA + ⟨xi⟩ such that 
xjx

u ∈ IA + ⟨xi⟩ and xkxu ∈ IA + ⟨xi⟩ . So, if b =
∑e

l=1
ulal ∈ Ap(S, ai), we have that 

b + aj ∉ Ap(S, ai) and b + ak ∉ Ap(S, ai) . Thus, b + c ∉ Ap(S, ai) for c ∈ S⧵Ap(S,E).
If b + c ∉ Ap(S, ai) for all c ∈ Ap(S,E) , then b is a a maximal element for Ap(S, ai) . 

Otherwise, b + c1 ∈ Ap(S, ai) for some c1 ∈ Ap(S,E) . Since b + c1 ∉ Ap(S, ai) , we 
may repeat the same argument with b + c1 instead of b . So, either b + c1 is maximal or 
there exists c2 ∈ Ap(S,E) such that c1 ⪯S c2 , b + c2 ∈ Ap(S, ai) and b + c2 ∉ Ap(S, ai) . 
As Ap(S,E) is finite, this process stops. Therefore, Ap(S, ai) has a maximal element with 
respect to ⪯S , so from Proposition 3.4 depth(�[S]) = 1 , a contradiction to the fact that 
depth(�[S]) > 1 by Proposition 3.6.   ◻

6  Depth two in four‑dimensional case

Let d = 4 and, according to our notation, E = {a1, a2, a3, a4} . Let us characterize the 
property that �[S] has depth two in this case. To do this, we resort directly to the Koszul 
homology techniques on which the combinatorial constructions used in the previous 
sections are based.

We begin by establishing the notation and briefly recalling the notion of Koszul 
complex.

Let t be the sequence (ta1 ,… , tad ) of elements of �[S] . Let K0 = �[S] and 

Kp =
⨁

�[S]ei1…id
 be the free �[S]-module of rank 

(
d

p

)
 with basis 

{ei1…ip
1 ≤ i1 < ⋯ < ip ≤ d} for each 1 ≤ p ≤ d. Set

where the notation îj denotes omission of ij , and 
�1 ∶ K1 =

⨁d

i=1
�[S]ei → K0 = �[S];ei ↦ tai . One can check that �p◦�p−1 = 0, for every 

p ∈ {1,… , d} . Thus, we have that

is a chain complex of �[S]-modules. This complex is called the Koszul complex associated 
to t.

The Koszul complex has homology groups

and Hp(x, �[S]) = 0 for every p > d.
The following result is an immediate consequence of [11, 16.8 and 16.6].

Proposition 6.1 With the above notation, depth(�[S]) = d −max{p ∣ Hp(K∙(t), �[S]) ≠ 0}.

�p ∶ Kp ⟶ Kp−1; ei1…ip
↦

p∑
j=1

(−1)j−1t
aij e

i1…îj…ip
, p = 2,… , d,

K∙(t) ∶ 0 → Kd

�p

⟶Kd−1 ⟶ ⋯ ⟶ K1

�1

⟶K0 → 0

Hp(K∙(t), �[S]) ∶=
ker�p

Im�p+1

, p = 0,… , d,
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Before characterizing the case where the depth of �[S] is two for d = 4 , we need to 
prove a couple of technical lemmas valid for all d ≥ 4.

Lemma 6.2 Let d ≥ 4 and {i < j < k} ⊆ {1,… , d} . There exists 
f = fijeij − fikeik + fjkejk ∈ ker�2⧵Im�3, for some fij, fik, fjk ∈ �[S] if and only if for 
every i4 ∈ {1,… , d} ⧵ {i, j, k} there exist a permutation {i1, i2, i3} = {i, j, k} and 
a ∈ Ap(S, ai3 ) ∩ Ap(S, ai4 ) such that ta appears with nonzero coefficient in fi1i2 and both 
a + ai1 − ai3 and a + ai2 − ai3 belong to S.

Proof Let fjk =
∑

a∈S �
jk
a t

a . If fjk = 0 , then

implies, f = 0 , a contradiction. Hence, for each a ∈ S such that �jka ≠ 0 , there exist 
ca, c

�
a
∈ S such that a + aj = ca + ai and a + ak = c�

a
+ ai ; in particular, both a + aj − ai and 

a + ak − ai belong to S . Now, if a ∉ Ap(S, ai), then ca − aj = c�
a
− ak = a − ai ∈ S and, 

consequently,

Therefore, if a ∉ Ap(S, ai), for every a ∈ S with �jka ≠ 0 , then

However, �2(g) = 0 implies g = 0, that is, f =
∑

a∈S �
jk
a ga ∈ Im�3 which is a contradiction. 

So, there exists b ∈ Ap(S, ai), for some b ∈ S with �jk
b
≠ 0.

Let h = f −
∑

a∉Ap(S,ai)
�
jk
a ga . By the previous arguments, 

h = hijeij − hikeik + hjkejk ∈ ker�2⧵Im�3, with hjk =
∑

a∈Ap(S,ai)
�
jk
a t

a ≠ 0 . Let 

l ∈ {1,… , d}⧵{i, j, k} . If a ∉ Ap(S, al) for every a ∈ Ap(S, ai) with �jk ≠ 0 , then 

hjk = tal h̃jk and both hij and hik are divisible by tal , then we may replace h by h∕tal . Thus, 
without loss of generality, we suppose that there exists b ∈ Ap(S, ai) with �jk

b
≠ 0 such that, 

at least, one of b, cb or c′
b
 belongs to Ap(S, al) . So, we distinguish three cases:

• If b ∈ Ap(S, al) , then b ∈ Ap(S, ai) ∩ Ap(S, al) . We already know that b + ak − ai and 
b + aj − ai belong to S.

• If cb ∈ Ap(S, al), then cb − aj = a − ai ∉ S . Thus, cb ∈ Ap(S, aj) ∩ Ap(S, al) . Moreo-
ver, cb + ai − aj = a ∈ S and, since �2(h) = 0 there exists a monomial td of fik such 
that cb + ak = d + aj , that is, cb + ak − aj ∈ S.

• If c�
b
∈ Ap(S, al), then c�

b
− ak = a − ai ∉ S . Thus, c�

b
∈ Ap(S, ak) ∩ Ap(S, al) . Moreo-

ver, c�
b
+ ai − ak = a ∈ S and, since �2(h) = 0 there exists a monomial td of fjk such 

that c�
b
+ ai = d + aj , that is, c�

b
+ ai − aj ∈ S.

Conversely, let f = ta+ak−aieij + ta+aj−aieik − taejk . Clearly, f ∈ ker�2 , and f ∉ Im�3 because 
a − ai ∉ S .   ◻

0 = �2(f) = fij(t
ajei − taiej) − fik(t

akei − taiek) + fjk(t
ajek − takej)

= (fijt
aj − fikt

ak )ei − (fjkt
ak + fijt

ai )ej + (fikt
ai + fjkt

aj )ek

ga ∶= tc
�
a eij + tcaeik − taejk = 𝜙3(t

a−aieijk) ∈ Im𝜙3 ⊂ ker𝜙2

g ∶= f −
∑
a∈S

�jk
a
ga =

(
fij −

∑
a∈S

�jk
a
tc

�
a

)
eij −

(
fik −

∑
a∈S

�jk
a
tca

)
eik ∈ ker�2.
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Lemma 6.3 Let d ≥ 4 and {i < j < k < l} ⊆ {1,… , d} . There exists 
f = fikeik + fileil + fjkejk + fjlejl ∈ ker�2⧵Im�3 for some fik, fil, fjk, fjl ∈ �[S] if and only if 
one of the following conditions holds: 

(1) There exists a permutation {i1, i2, i3, i4} = {i, j, k, l} and b ∈ Ap(S, ai1 ) ∩ Ap(S, ai4 ) such 
that b + ai2 − ai1 , b + ai3 − ai4 and b + ai2 + ai3 − (ai1 + ai4 ) belong to S.

(2) T h e re  e x i s t s  a  p e r m u t a t i o n  {i1 < i2 < i3} ⊂ {i, j, k, l} s u ch  t h a t 
g = −tai4 gi1i2ei1i2 + gi1i3ei1i3 + gi2i3ei2i3 ∈ ker�2⧵Im�3, for some gi1i2 , gi1i3 , gi2i3 ∈ �[S] 
and i4 ∈ {i, j, k, l} ⧵ {i1, i2, i3}.

Proof Let fjk =
∑

a∈S �
jk
a t

a . If fjk = 0 , then

implies, f = 0 , a contradiction. Hence, for each a ∈ S such that �jka ≠ 0 , there exist 
ca, c

�
a
∈ S such that a + aj = ca + ai and a + ak = c�

a
+ al ; in particular, both a + aj − ai 

and a + ak − al belong to S . Moreover, there exists c��
a
∈ S such that ca + ak = c��

a
+ al . So, 

a + aj + ak = ca + ai + ak = c��
a
+ ai + al , that is, a + aj + ak − (ai + al) belongs to S . Now, 

if a ∈ Ap(S, ai) ∩ Ap(S, al) , then we get (1). Otherwise, without loss of generality, we sup-
pose a ∉ Ap(S, ai) . Then

Therefore, if a ∉ Ap(S, ai), for every a ∈ S with �jka ≠ 0 , then

Finally, since �2(g) = 0 , we conclude that the coefficient of eik is zero and, consequently, 
that (2) holds.

Conversely, we treat the two cases separately. On the one hand, if (1) holds, then

moreover, f ∉ Im�3 because b − ai1 ∉ S and b − ai2 ∉ S , and therefore the third addend 
cannot come from any generator of Im�3 . On the other hand, if (2) holds, then arranging 
indexes if necessary, we have that

with i4 ∈ {i, j, k, l}⧵{i1, i2, i3}   ◻

We are now in a position to state and prove our characterization of depth two for d = 4.

0 = �2(f) = fik(t
akei − taiek) + fil(t

alei − taiel) + fjk(t
akej − tajek) + fjl(t

alej − tajel)

= (fikt
ak + filt

al )ei + (fjkt
ak + fjlt

al )ej − (fikt
ai + fjkt

aj )ek

− (fjlt
aj + filt

ai )el

ga ∶= ta−ai+akeij − tcaeik + taejk = 𝜙3(t
a−aieijk) ∈ Im𝜙3 ⊂ ker𝜙2

g ∶= f −
∑
a∈S

�jk
a
ga = −

(∑
a∈S

�jk
a
ta−ai+ak

)
eij +

(
fik +

∑
a∈S

�jk
a
tca

)
eik

+ fileil + fjlejl ∈ ker�
2
⧵ Im�

3
.

f = tb+ai2−ai1 ei1i3 + t
b+ai3

−ai4 ei2i4 − tbei2i3 − t
b+ai2

+ai3
−(ai1

+ai4
)
ei1i4 ∈ ker�2;

f = g + �3(gi1i2ei1i2i4 ) = gi1i3ei1i3 + gi2i3ei2i3 + tai1 gi1i2ei2i4 − tai2 gi1i2ei1i4 ∈ ker�2 ⧵ Im�3,
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Theorem 6.4 If d = 4 then depth(�[S]) = 2 if and only if Ap(S, a) does not have a maximal 
element for some (every) a ∈ S and there exists a permutation {i, j, k, l} = {1, 2, 3, 4} and 
b ∈ S such that one of the following conditions holds: 

(1) b ∈ Ap(S, ai) ∩ Ap(S, aj) such that b + ak − ai and b + al − ai belong to S.
(2) b ∈ Ap(S, ai) ∩ Ap(S, aj) such that b + ak − ai, b + al − aj and b + ak + al − (ai + aj) 

belong to S.

In both cases, Ap(S, ai) ∩ Ap(S, aj) has a maximal element with respect to ⪯S.
Proof If depth(�[S]) = 2 , by Proposition 3.4, Ap(S, a) does not have a maximal ele-
ment for some (every) a ∈ S . Moreover, by Proposition  6.1, H2(K∙(x), �[S]) ≠ 0 . Let 
f =

∑
1≤i<j≤4 fijeij ∈ ker𝜙2⧵Im𝜙3 , where fij ∈ �[S], 1 ≤ i < j ≤ 4 . we distinguish two 

cases: 

(1) If there exists hk
ij
∈ �[S], 1 ≤ i < j ≤ 4 and k ∈ {1, 2} , such that f can written in the 

form 

 then 

 and, by Lemmas 6.3 and 6.2, we are done.
(2) If there exists a permutation {i, j, k, l} = {1, 2, 3, 4} such that ±fkl =

∑
b∈S �

kl
b
tb cannot 

be written in the form tai gj ± taj gi , then there exists b ∈ Ap(S, ai) ∩ Ap(S, aj) with 
�kl
b
≠ 0 . For simplicity, rearranging indices if necessary, we suppose i = 1, j = 2, k = 3 

and l = 4 . Therefore, f =
∑

1≤i<j≤4 fijeij and there exists a monomial tb of f34 such that 
b ∈ Ap(S, a1) ∩ Ap(S, a2) . Now, since 

 in particular the coefficients −f13ta1 − f23t
a2 + f34t

a4 and −f14ta1 − f24t
a2 − f34t

a3 of e3 
and e4 , respectively, are zero. Therefore, there exist c, c� ∈ S such that b + a4 = c + ai 
and b + a3 = c� + aj with i, j ∈ {1, 2}. If i = j , then b − ai = c� − a3 = c − a4 , so 
f − �3(t

b−aiei34) = f − tbe34 + tc
�

ei4 − tcei3 ∈ ker�2⧵Im�3 . Thus, we may sup-
pose i ≠ j, say i = 1 and j = 2 , so that b + a4 = c + a1 and b + a3 = c� + a2 , that is, 
b + a4 − a1 and b + a3 − a2 . Finally, since the coefficient f12ta2 + f13t

a3 + f14t
a4 of e1 

in �2(f) must be zero, there exists c�� ∈ S such that 

(a) c + a3 = c�� + a2  .  S o ,  b + a3 + a4 = c�� + a1 + a2  w h i c h  i m p l i e s 
b + a3 + a4 − (a1 + a2) ∈ S or

(b) c + a3 = c�� + a4  .  S o ,  b + a3 + a4 = c�� + a4 + a1  w h i c h  i m p l i e s 
c� + a2 = b + a3 = c�� + a1  .  M o r e o v e r ,  s i n c e  t h e  c o e f f i c i e n t 

(ta3h1
12
+ ta4h2

12
)e12 + (ta4h1

13
− ta2h2

13
)e13 − (ta2h1

14
+ ta3h2

14
)e14

+ (ta1h1
23
+ ta4h2

23
)e23 + (ta1h1

24
− ta3h2

24
)e24 + (ta1h1

34
+ ta2h2

34
)e34,

g =f − �3(h
1
12
e123 + h2

12
e124 + h1

34
e134 + h2

34
e234)

=(ta4h1
13
− ta2h2

13
)e13 − (ta2h1

14
+ ta3h2

14
)e14

+ (ta1h1
23
+ ta4h2

23
)e23 + (ta1h1

24
− ta3h2

24
)e24 ∈ ker�2 ⧵ Im�3

0 = �2(f) = f12(t
a2e1 − ta1e2) + f13(t

a3e1 − ta1e3) + f14(t
a4e1 − ta1e4)

+ f23(t
a3e2 − ta2e3) + f24(t

a4e2 − ta2e4) + f34(t
a4e3 − ta3e4),
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f24t
a4 − f12t

a1 + f23t
a3 of e2 in �2(f) must be zero, there exists c��� ∈ S 

such that c + a3 = c��� + a4 . So b + a3 + a4 = c��� + a4 + a1 which implies 
c� + a2 = b + a3 = c��� + a1 . Therefore, b − a1 = c��� − a3 = c − a4 , that is 
f − �3(t

b−a1e134) = f − tbe34 + tc
���

e14 − tcei3 ∈ ker�2⧵Im�3 . Thus, we may sup-
pose that c + a3 = c��� + a2 and, consequently, b + a3 + a4 = c��� + a1 + a2 which 
implies b + a3 + a4 − (a1 + a2) ∈ S.

Conversely, by Lemmas 6.3 and 6.2, ker�2⧵Im�3 ≠ ∅ . So, 1 ≤ depth(�[S]) ≤ 2 , and 
since, by Proposition 3.4depth(�[S]) ≠ 1 , we are done.

Finally, by Proposition 3.8 we conclude that Ap(S, ai) ∩ Ap(S, aj) has a maximal ele-
ment with respect to ⪯S .   ◻

Unlike the case d = 3 , the existence of a maximal element is not sufficient to guarantee 
depth two as the following example shows.

Example 6.5 Let S ⊂ ℕ4 be the affine semigroup generated by the columns a1,… , a7 of the 
following matrix

Since a5 + a1 = a3 + a6 and a5 + a2 = a4 + a7 , Ap(S, a3) ∩ Ap(S, a4) has a maximal ele-
ment by Proposition  3.8. Moreover �[S] is not Cohen–Macaulay, by Proposition  3.5. 
One can easily check that x3, x4, x1 + x2 is a regular sequence on �[S] , which implies 
depth(�[S]) = 3 . This shows that the last condition on b in the second statement of Theo-
rem 6.4 is necessary.

Conditions (1) and (2) in Theorem 6.4 have a clear combinatorial meaning; For a better 
understanding of the following result, it is convenient to take into account the notation and 
the results established at the beginning of Sect. 4.

Proposition 6.6 If d = 4 , then there exist {i, j, k, l} = {1, 2, 3, 4} and 
b ∈ Ap(S, ai) ∩ Ap(S, aj) satisfying conditions (1) or (2) in Theorem 6.4 if and only if there 
exist c and {i, j, k, l} = {1, 2, 3, 4} such that Tc is one of the following: 

(a) The hollow triangle with vertices i, k and l.
(b) The hollow triangle with vertices i, k and l and the edge {i, j}.
(c) A hollow tetrahedron i, j, k and l without, at least, the faces {i, k, l} and {j, k, l}.
(d) The square with edges {i, j}, {j, k}, {k, l} and {i, l} , and the edge (diagonal) {i, k}.
(e) The square with edges {i, j}, {j, k}, {k, l} and {i, l}.

Proof Suppose that there exists a permutation {i, j, k, l} = {1, 2, 3, 4} and 
b ∈ Ap(S, ai) ∩ Ap(S, aj) such that b + ak − ai and b + al − ai belong to S . In this case, 
if b + ak + al ∈ Ap(S, aj) , then Tb+ak+al is the hollow triangle with vertices i, k and l; oth-
erwise either Tb+ak+al is the hollow triangle without vertices i, k and l and the edge {i, j} or 
Tb+ak+al contains two hollow triangles; namely, the one with vertices i, k and l and the one 

A =

⎛⎜⎜⎜⎝

2 0 0 0 5 7 5

0 2 0 0 5 5 7

0 0 2 0 7 5 7

0 0 0 2 7 7 5

⎞⎟⎟⎟⎠
.
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with vertices j, k and l. Suppose now that there exists a permutation {i, j, k, l} = {1, 2, 3, 4} 
and b ∈ Ap(S, ai) ∩ Ap(S, aj) such that b + ak − ai, b + al − aj and b + ak + al − (ai + aj) 
belong to S . In this case, if b + al ∈ Ap(S, ai) and b + ak ∈ Ap(S, aj) , then Tb+ak+al is a 
square without interior; otherwise, we arrive at one of the configurations of the previous 
cases.

In cases (a)–(d), we have, among other conditions, that b = c − ak − al ∈ S and 
that both b + ak − ai = c − ai − al = and b + al − ai = c − ai − ak belongs to S , 
and that b − ai = c − ai − ak − al ∉ S and b − aj = c − aj − ak − al =∉ S , that is, 
b ∈ Ap(S, ai) ∩ Ap(S, aj) ; so, condition (1) in Theorem  6.4 holds. And, in case (e), we 
have the previous conditions plus b + ak + al − ai − aj = c − ai − aj ∈ S ; so, condition (2) 
in Theorem 6.4 holds.   ◻

Observe that cases (a)–(b) implies that there exists c ∈ S such that H̃1(Tc) ≠ 0 , that 
is, c ∈ D(1) . However, conditions (a)–(e) in Proposition  6.6 may be not replaced by 
D(1) ≠ ∅ because the following configuration for Tc such that c ∈ D(1) does not appear 
in Proposition 6.6 (Fig. 1).

Taking into account the  results about depth two, we dare to propose the following 
optimistic conjecture.

Conjecture 6.7 If depth(�[S]) = 2, then there exists E′ ⊆ E of cardinality 2 such that 
Ap(S,E�) has a maximal element with respect to ⪯S.

The conjecture holds for d ≤ 4 . Indeed, for d ≤ 2 , because Ap(S,E) is a finite set 
(see, e.g. [14, Proposition 3.2.] or [1, Theorem 2.6]), for d = 3 by Theorem 5.2 and for 
d = 4 by Theorem 6.4.

We emphasize that we cannot replace 2 by 3 in Conjecture 6.7 as the following exam-
ple shows.

Example 6.8 Let S ⊂ ℕ4 be the affine semigroup generated by the columns a1,… , a6 of the 
following matrix

Using Singular [4], one can compute a minimal system of generators of IA and then easily 
check that depth(�[S]) = 3 and, with the help of Proposition 3.1, that Ap(S, {i, j, k}) does 
not have maximal elements for every 1 ≤ i < j < k ≤ 4.

A =

⎛⎜⎜⎜⎝

2 0 0 0 5 7

0 2 0 0 5 7

0 0 2 0 7 5

0 0 0 2 7 5

⎞⎟⎟⎟⎠
.

Fig. 1  Simplicial complex with 
four vertices consisting of one 
triangle and one hollow triangle

k

l i

j
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In spite of the above example, it may happen that �[S] have depth three and Ap(S,E�) 
has a maximal element for some E′ ⊂ E of cardinality three.

Example 6.9 Let S ⊂ ℕ4 be the affine semigroup generated by the columns a1,… , a8 of the 
following matrix

Using Singular [4], one can compute a minimal system of generators of IA and then easily 
check that depth(�[S]) = 3.

Let b = 2a6 + a7 + 5a8 , using the GAP ( [7]) package numericalsgps ( [5]), 
one can check that b − ai ∉ S for i ∈ {1, 3, 4} , that is, b ∈ Ap(S, {1, 3, 4}) , and that 
b + ai ∉ Ap(S, {1, 3, 4}) for every i ∈ {1,… , 8} . So, b is a maximal element of 
Ap(S, {1, 3, 4}) with respect to ⪯S.

This last result gives a necessary and sufficient condition for what illustrated in the 
above example occur.

Proposition 6.10 Let d = 4 . If depth(�[S]) = 3 , then Ap(S,E�) has a maximal element with 
respect to ⪯S for some E′ ⊂ E of cardinality three if and only if there exists b ∈ S such that 
Tb is not connected and has, at least, an isolated vertex.

Proof If depth(�[S]) = 3 , then, by [3, Theorem 4.1], there exists b ∈ D(0) , that is, there 
exists b ∈ S such that Tb is disconnected.

Suppose that the simplicial complex Tb does not have isolated vertices for every 
b ∈ D(0) . We claim that c + ual ∈ Ap(S,E⧵{al}) for every u ∈ ℕ, c ∈ Ap(S,E) and 
1 ≤ l ≤ 4 . Contrary, let us suppose that there exist u ∈ ℕ, b ∈ Ap(S,E) and 1 ≤ l ≤ 4 such 
that b + u al ∉ Ap(S,E⧵{al}) ; without loss of generality, we also assume that u is the 
smallest with this property. Since b + u al ∉ Ap(S,E⧵{al}) , there exists 1 ≤ i ≤ 4 , such that 
b + u al − ai ∈ S and, by the minimality of u, b + ual − aj − al ∉ S for every 1 ≤ j ≤ 4 . 
So, if c = b + ual , we have that ai and al are vertices of Tc and that al is isolated. Therefore 
c ∈ D(0) and Tc has at least one isolated vertex in contradiction to the hypothesis. Now, 
given E� = E⧵{al} and b ∈ Ap(S,E�) , let v ∈ ℕ be the smallest such that c = b − val ∈ S . 
Since c ∈ Ap(S,E) , by our previous claim, we have that c + ual ∈ Ap(S,E�) for every 
u ∈ ℕ . In particular, if u > v, then b ⪯S b + (u − v)al ∈ Ap(S,E�) . Thus, Ap(S,E�) does 
not have maximal elements.

Conversely, if there exists b ∈ D(0) such that Tb has, at least, an isolated vertex, say al , 
then we have that b ∉ Ap(S, {ai, aj, ak}) and b − al ∈ Ap(S, {ai, aj, ak}) for some permuta-
tion {i, j, k, l} = {1, 2, 3, 4} ; thus, by Proposition 3.8, we conclude that Ap(S, {ai, aj, ak}) 
has a maximal element, for some 1 ≤ i < j < k ≤ 4 .   ◻
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⎛
⎜⎜⎜⎝

2 0 0 0 3 4 2 5

0 3 0 0 3 1 3 0

0 0 2 0 3 2 1 7

0 0 0 3 3 5 7 1

⎞
⎟⎟⎟⎠
.
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