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a b s t r a c t

Systems based on the Internet of Things (IoT) are continuously growing in many areas
such as smart cities, home environments, buildings, agriculture, industry, etc. Device
mobility is one of the key aspects of these IoT systems, but managing it could be a
challenge. Mobility exposes the IoT environment or Industrial IoT (IIoT) to situations
such as packet loss, increased delay or jitter, dynamism in the network topology, new
security threats, etc. In addition, there is no standard for mobility management for the
most commonly used IoT protocols, such as MQTT or CoAP. Consequently, managing IoT
mobility is a hard, error-prone and tedious task. However, increasing the abstraction
level from which the IoT systems are designed helps to tackle the underlying technology
complexity. In this regard, Model-driven development approaches can help to both
reduce the IoT application time to market and tackle the technological complexity to
develop IoT applications. In this paper, a Domain-Specific Language based on SimulateIoT
is proposed for the design, code generation and simulation of IoT systems with mobility
management for the MQTT protocol. The IoT systems generated integrate the sensors,
actuators, fog nodes, cloud nodes and the architecture that supports mobility, which are
deployed as microservices on Docker containers and composed suitability. Finally, two
case studies focused on animal tracking and a Personal mobility device (PMD) based on
bicycles IoT systems are presented to show the IoT solutions deployed.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Internet of Things (IoT) and Industrial Internet of Things (IIoT) are being exploited in several areas such as smart-
ities, home environments, agriculture, industry, intelligent buildings, etc. [1]. As can be seen, IoT applications can be
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very different from each other and therefore have different requirements and needs. Thus, one of the more interesting
requirements of an IoT environment is the mobility of its devices [2,3]. This is because in certain environments some
devices need to be mobile to perform their tasks, e.g. personal mobility devices such as bicycles, scooters, etc. that can be
rented in any city, or GPS sensors that may be placed on animals in extensive farms [4,5]. In the same way, manufacture
and industrial processes could demand the deployment IoT mobile devices throughout on industrial factory [6].

However, managing the mobility of a device through an IoT environment can be challenging. In this sense, according to
he design of the environment, mobility can lead to periods of disconnection, resulting in packet loss [7]. Besides, mobility
an also lead to increased delay or, in distributed systems, increased jitter [8], e.g. when a device is far away from its
ateway or migrates to another gateway. Mobility also means, at the network level, dealing with network dynamism [9].
s for the most commonly used communication protocols in IoT, such as MQTT [10] or CoaP [11], they do not offer
echanisms for mobility management. In addition to these issues, there are also some concerns such as security [12],
fficient battery management of the devices [13], etc.
Approaches to managing all these problems need to be measured and tested in order to handle mobility in an efficient

ay. For example, in order to avoid packet loss during a disconnection period, the Intermediate Buffering technique [14]
an be applied, however several tests are necessary to choose the optimal buffer size for each device. Another example is
he need to measure jitter [8], as for some critical devices this parameter should not exceed certain limits. On the other
and, it is necessary to measure and efficiently use the energy of each device to guarantee the correct functioning of the
evice until the next load. It may also be interesting to test the behaviour of the environment if one of the mechanisms
upporting mobility goes down (e.g. the neighbour discovery service to deal with the dynamism of the network topology).
Taken into account the aforementioned problems, several research questions could be defined:

RQ1. How could mobility be managed in IoT systems where the MQTT protocol is used?
RQ2. How might model-driven techniques be applied to model IoT systems with mobile nodes?
RQ3. To what extent is it possible to generate the code needed to simulate an IoT system with mobile nodes from a

model of the system?
RQ4. To what extent could simulations of mobile IoT systems be useful for optimising the real system?

Taken into account the aforementioned problems and limitations, in this paper, we propose the use of a Model-Driven
evelopment (MDD) [15,16] approach to design, simulate and generate the IoT mobility systems. In this context, MDD
elps domain experts to model the system using high level tools based on models which can be modelled, validated and
sed to generate the IoT code. Using MDD for developing IoT environment with mobility support helps users reason about
he IoT system focusing on the specific domain more than the specific code or framework to use.

SimulateIoT [17] is an MDD approach that makes it possible to design and simulate IoT systems. The IoT systems
esigned with SimulateIoT can include different IoT nodes such as Cloud, Fog, or Edge nodes and multiple computing
ervices such as Complex Event Processing service, Publish/Subscribe service or Storage service.
However, it cannot model mobile devices or nodes. Mobility could be an interesting extension in order to facilitate the

escription and simulation of complex IoT environments where IoT mobility represents a key factor. In this way, solutions
o device mobility can be measured and tested by means of simulations, thus helping IoT developers to handle mobility
fficiently within an IoT system.
In this work, SimulateIoT-Mobile, an extension of SimulateIoT that includes support for simulating IoT systems with

obile nodes, is presented. In this regard, note that the content described in this communication only focuses on
escribing new contributions or features added as part of the SimulateIoT-Mobile extension.
Thus, the main work contributions are the following:

• This work shows that the use of Model-Driven Development techniques is suitable for developing tools and
languages to tackle successfully the complexity of IoT environments where devices mobility is a key factor.

• This work includes a metamodel to model IoT environments with mobile nodes. It includes model restrictions and
a Graphical Concrete Syntax.

• A Model-to-text transformation to code generate for specific IoT platform.
• Two case studies have been designed and evaluated in order to validate the proposal.

The rest of the paper is structured as follows. In Section 2, we give an overview of existing IoT simulation approaches
entred on both low-level and high-level IoT simulation environments. Next, Section 3 introduces SimulateIoT-Mobile.
n Section 4 the MQTT Mobility Management Model is defined. Next, Section 5 presents the SimulateIoT-Mobile taken
nto account design and implementation phases including the SimulateIoT-Mobile metamodel and the graphical editor. In
ection 6 the model-to-text transformation from SimulateIoT-Mobile models to code is explained. Section 7 shows the
oT environment simulation outputs and how they could be analysed. In Section 8 two case studies are presented. Finally,
ection 9 elaborates on the discussion of the presented approach before Section 10 concludes the paper.

. Related works

Mobility devices in IoT environment has been addressed for multiple points of view: (1) including extending commu-
ication protocols, (2) including communication protocols with additional devices characteristics such as the battery, QoS,
atency, etc. or (3) using high-level proposals for managing IoT mobility devices.
2
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On the one hand, several protocols allow mobility in IoT environments as reflected in [18]. This article discusses and
ompares various communication protocols for Wireless Sensor Networks based on 6LoWPAN technology. Some of these
rotocols are MIPv6, HMIPv6, ZoroMSN or LoWMob among others. All of them try to achieve optimal performance in
erms of QoS, Resource Management, Security, Topology control and Routing protocol. However, the work [18] concludes
hat there is no efficient solution to meet all requirements and constraints of WSN with 6LoWPAN technology.

Similar studies such as [19] communicates that due to resource constraints in IoT or WSNs, the design of new
ommunication protocols is required. Furthermore, studies such as [20,21] come to the same conclusions and present
heir own proposals to solve this issue. However, IoT is a heterogeneous area, where systems have different requirements
nd where technologies such as 6LoWPAN are still being studied and applied in IoT systems nowadays [22–24].
An example of such studies is [25], that conducts a comparative study between classical and bio-inspired mobility.

his study addresses different schemes of mobility within a WSN, however, a greater effort is made to optimise the so-
alled sink node. The sink nodes are nodes that move through the WSN collecting data sensed by different devices on the
etwork. In this way, the use of energy of the other devices is harvested by avoiding the use of multi-hop communication.
esides, mobile sink nodes offer other features such as load balancing of the network, in the sense that they can transfer
he data collected anywhere in the WSN. Therefore, by optimising the sink nodes, the entire WSN is optimised. To this
nd, the authors compare the different classical mobility protocols with the bio-inspired ones, concluding that the latter
urpasses the classics in several aspects such as network congestion, computational complexity or latency among others.
owever, although these types of protocols are promising, major research efforts are still needed to effectively implement
hem in a real WSN.

With the aim of addressing the resource constraints of some IoT systems or WSNs, protocols such as MQTT, Coap or
DS have been developed, becoming in the most widely used in the IoT due to their high performance [26]. However,
his protocols lack mechanisms for the use of mobile nodes. In this regard, several works [8,27,28] focus on addressing
he challenges of mobility management of these protocols.

In [27] the authors propose a solution to avoid the loss of information when mobile devices are not connected to any
QTT Broker, such as when devices are migrating from one Broker to another. This proposal is based on a technique
alled intermediate buffering. This technique decouples the production of messages from their publication, establishing
etween these two phases an intermediate buffer where the messages are stored in an ordered manner with the aim of
ublishing them in the first instance when the mobile device in question recovers the connection. This technique avoids
he loss of information, however, it has not been tested in large scale IoT environments, and it only partially solves one
f the problems associated with mobility in IoT when MQTT protocol is being used.
In [28] a protocol is proposed to allow mobility nodes in CoAP IoT environments. For this, an architecture based on

hree elements is used, these elements are: (1) CoAP Node (Server), (2) CoAP Node (Client), (3) Mobility Management Table
MMT). Thus, the CoAP Node Client can request data from some CoAP Node Server through the Mobility Management
able. The Mobility Management Table stores relevant information about CoAP nodes such as their IP address, temporal
P address, state of the nodes (handover data or not), etc. making possible the communication between nodes whether
hey are moving or not. Besides, mechanisms to avoid packet loss have been included in this protocol, this mechanism
ut in ‘‘hold’’ mode the CoAP nodes to avoid wrong publications, for instance, when a node is changing its IP. However,
s not taken into consideration the loss of connection with the Mobility Management Table, the connection to another
obility Management Table, the new data that a node could retrieve during the ‘‘hold’’ mode and its storage (intermediate
uffer), etc. which can result in packet loss and also reduced scalability in the sense that devices can only use one Mobility
anagement Table.
The authors of [8] define a proposal for mobility handling in IoT applications using the MQTT protocol. Since MQTT

s not a protocol adapted to handle mobility issues, the authors rely on Intermediate Buffering to guarantee that there
s no packet loss in hand-off periods due to mobility nodes. Thus, several experiments were carried out to study the
ehaviour of intermediate buffers. These experiments include parameters such as access point migration, no available
ccess point periods, the size of the messages published, the number of publisher devices, the inter-message delay, etc.
he results of these experiments indicate the optimal buffer size to avoid packet loss depending on the situation to which
he mobile environment is subjected. However, Although the experiments carried out deal with a wide range of situations,
o mechanism is provided for the user to determine the size of the intermediate buffers in their specific situation.
SimulateIoT-Mobile, the proposal that will be described in this communication, has the aim of helping to develop

his kind of IoT systems, i.e. the development of IoT systems with mobile nodes that use publish/subscribe protocols.
n this sense, a literature review has been carried out to identify key concepts for managing mobility in IoT systems.
pecifically, for those that use the MQTT protocol. So, SimulateIoT-Mobile includes in its implementation an MQTT mobility
anagement model (Section 4). Thus, being able of simulate this kind of IoT systems. Developers can therefore use
imulateIoT-Mobile to model, validate, generate and simulate their IoT systems with mobility characteristics, and use
he simulation results to optimise them, identifying weaknesses or errors in their designs (Sections 5–7).

. Introduction to SimulateIoT-Mobile

SimulateIoT-Mobile is an extension of SimulateIoT [17]. For the sake of clarity, the aim of this Section is to outline the
ew features added as part of this extension. Thus, differentiating between what was the previous work (SimulateIoT)
nd what is new (SimulateIoT-Mobile).
3
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Fig. 1. The four layers of metamodeling. In SimulateIoT [17]: (a) M3 is Ecore, (b) M2 is SimulateIoT Metamodel (c) M1 is a model conform to
imulateIoT Metamodel and (d) Code is generated using the model-to-text transformations defined in SimulateIoT approach.

In this regard, SimulateIoT and therefore SimulateIoT-Mobile are based on the MDD, which is an emerging software
ngineering research area that aims to develop software guided by models based on Metamodeling technique. Meta-
odeling is defined by four model layers (see Fig. 1). Thus, a Model (M1) is conform to a MetaModel (M2). Moreover, a
etamodel conforms to a MetaMetaModel (M3) which is reflexive [29]. So, a MetaModel defines the domain concepts
nd relationships in a specific domain in order to model partial reality. A Model (M1) defines a concrete system conform
o a Metamodel. Then, from these models it is possible to generate totally or partially the application code (M0 - code) by
odel-to-text transformations [30]. Thus, high level definition (models) can be mapped by model-to-text transformations

o specific technologies (target technology). Consequently, the software code can be generated for a specific technological
latform, improving the technological independence and decreasing error proneness.
Therefore, in order to extend SimulateIoT towards SimulateIoT-Mobile, it is required to work in these metamodelling

ayers. Specifically, it is required to extend: (1) The Metamodel or Abstract Syntax (M2), (2) The Graphical Concrete
yntax or the element that allows to graphically design models (M1) from the Metamodel (M2) and (3) Model-to-Text
ransformations (M2T), the element that carry out the code generation (M0) from models (M1).
In this regard, as indicated in Section 1, SimulateIoT does not support mobile devices. Therefore, all the new features

dded to SimulateIoT (above mentioned metamodelling layers) are focused on allowing it to integrate mobile devices in
ts simulations (Sections 5 and 6). In addition, SimulateIoT uses the MQTT protocol and this protocol does not natively
upport device mobility. So, firstly, it is necessary to define, develop and integrate a MQTT mobility model (Section 4) to
imulateIoT to allow it to support mobile devices.
This mobility model aims to manage mobile devices, i.e. this model assumes that mobile devices exist. However, as

forementioned, SimulateIoT, the previous version of this work, is not able to generate or simulate IoT environments with
obile devices. Therefore, additional mobility-related concepts such as the mobile devices itself, their movement logic,

he route that each mobile device will follow, or the battery consumption of these devices also have to be part of the
imulateIoT-Mobile metamodel.
Fig. 2 shows, from a high level of abstraction, the deployment of a generic simulation generated by using model-to-text

ransformation from a SimulateIoT-Mobile model. In Fig. 2 is possible to differentiate the main components included as
xtensions in this communication of the components belonging to the previous version of the simulator.
In this regard, the Edge/Mist, Fog and Cloud layers have been extended. On the one hand, the Mist/Edge layer has

een extended with mobile devices. These devices can follow a (user-defined) route, connect to different fog nodes (to
heir brokers) during their route, so publishing their data to different brokers, receive coverage signals from different fog
4
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Fig. 2. A generic model of an IoT system conforms SimulateIoT-Mobile metamodel.

nodes, carry out the simulation of battery consumption due to these new mobility-related concepts, etc. On the other
hand, the Fog/Cloud layer has been extended by a set of components that aim to support mobile devices when using the
MQTT protocol. These components represent the integration the mobility model (Section 4) in the IoT simulator.

All these extensions are described in detail as follows. First, the MQTT mobility model is presented in Section 4. The
extension made to the Metamodel and to the Concrete Syntax is presented in Section 5. The extension made to the M2T
is presented in Section 6. The new knowledge that can be obtained to optimise the real system from this extension, is
described in Section 7. Besides, Section 8 presents two case of study focused on show the simulations that can be carried
out with the extension presented. Finally, note that everything described in these sections is focused on showing the
new contributions carried out on SimulateIoT-Mobile and it was not part of SimulateIoT.

4. MQTT mobility management model

In this section, the envisioned model to support mobility in protocols that follow the publish/subscribe paradigm is
described. Specifically, the model has been designed for the MQTT protocol, one of the most widely used publish/subscribe
protocols in the IoT [26].

First, in Section 4.1 a set of preliminary considerations are made based on the analysis of the protocols that traditionally
support mobility and publish/subscribe protocols. Second, in Section 4.2, the necessary entities proposed to provide mobile
support for the MQTT protocol are identified and described. In Section 4.3, a solution to mitigate packet loss in the mobility
model is proposed. Section 4.4 describes a basic security mechanism to address the vulnerabilities of the model. Next,
in Section 4.5 the deployment of the main elements required and their interactions are described. Finally, Section 4.6
presents a review of envisioned scenarios where the MQTT mobility model could be applied.

Note that this model is not intended to be a standard for mobility in publish/subscribe protocols. The MQTT mobility
management model proposed is claimed to simulate IoT environments using the MQTT protocol and mobile nodes.
5
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4.1. Preliminary considerations

When traditional protocols address mobility in the literature, they generally address issues such as the entities that
arry out the support of mobility, e.g., the Home Agent in the Mobile IP protocol [31], or the Mobility Anchor Point in the
MIP protocol [32]. Also, they address the required data that needs to be shared by the nodes to support mobility, such
s the Identifier (Home Address) or the Locator (Care of Address) of mobile nodes in the Mobile IP protocol [31].
On the other hand, interactions between entities are also addressed, such as the interactions needed to start direct

ommunication with a mobile node in the Host Identity Protocol. The Correspondent Node (CN) needs to send the Host
dentity Tag to the DNS to get the IP address of the Rendezvous Server. Later, after sending the first packet, the CN and
he mobile node can start communication on the direct path [33].

In short, it addresses those issues that allow managing the IPs of the mobile nodes in an efficient and effective way so
hat changes in the IP by the mobile nodes do not affect the communication between the nodes of the network, and that
his management affects as less as possible the parameters involved in the QoS (delay, etc.).

However, the main protocols used in IoT includes publish/subscribe protocols such as MQTT, AMQP or JMS [26]. In
he publish/subscribe paradigm, there is no CN to start communication and no mobile node to start communication with.
n publish/subscribe protocols there are Brokers that provides Topics, where devices can publish/subscribe to data. For
xample, in a hypothetical scenario of ‘‘intelligent temperature management’’ of a room, the devices that measure the
emperature of the room would publish their measurements in a Topic ‘‘Temperature’’, to which the devices that control
he temperature would subscribe.

In our proposal the Brokers are kept static (located on Fog nodes and Cloud nodes), being the devices publishing
r subscribing to Topics the mobile nodes. In this regard, the mobile nodes will always be able to communicate with
he Broker (static IP) and the Broker will be responsible for redirecting the data. Therefore, mobility management in
ublish/subscribe protocols (where the Broker remains static) differs from traditional mobility management proposals
no identifiers, locators, mappings, etc.).

.2. Entities to support mobility in the MQTT protocol: The Broker Discovery Service and the Topic Discovery Service

Thus, focusing on a publish/subscribe protocol such as MQTT for IoT environments there are several key elements:
ublishers, subscribers, topics and brokers. Data are organised on Topics that are deployed by a Broker and where several
lements (IoT nodes) are subscribed and where other elements (IoT nodes) have the role of data publishers. In this context,
f a device needs to move through an IoT environment to carry out its own behaviour then it will be needed to connect to
ifferent Brokers in order to publish and receive data. Thus, specific entities or services to manage this issue are required.
or this regard, a Broker Discovery Service (BDS) will be necessary.
On the other hand, publications and subscriptions are addressed to Topics. Since each Topic can be used very differently,

a service is needed to analyse the Topics offered by a Broker. Thus, a mobile node can determine whether or not it
is feasible to publish/subscribe to a particular Topic. Consequently, an additional service named Topic Discovery Service
TDS) is also needed.

Using the Broker and Topic discovery services, a device will be able to: (a) Connect to different Brokers in case it needs
t; and (b) Publish/subscribe to compatible Topics that allows it to continue performing their tasks.

In this sense, the BDS allows devices to know the Brokers with which they can establish a connection (Ip). For this,
ach BDS is deployed together with the rest of the services on a Fog node (one BDS node per Fog/Cloud node). So, the BDS
ubscribes to the Topic ‘‘BDS’’ where it will receive requests from the mobile nodes. Later, it will publish the responses
o each request on a specific Topic for each mobile node (‘‘BDS+DeviceId’’). Note that the data shared by the BDS include
aluable information such as the distance measure between the device and each Broker.
However, in order to establish a suitable connection with the Fog node, not only should be reachable a Fog node (data

btained from BDS), but also the Topics of the Broker’s Fog node should be compatible with the Topics required to publish
n. To fulfil this requirement, the TDS is used.
Like the BDS, the TDS is a Fog/Cloud node service (one TDS node per Fog/Cloud node). This service allows IoT devices

to know which Topics of a Broker are compatible with the requesting device. To carry out the above, the TDS connects to
the Fog node’s Broker, subscribing to a Topic (‘‘TDS’’) reserved for listening to requests from the devices and publishing
the responses in Topics generated dynamically for this purpose (‘‘TDS+DeviceId’’). To determine which Topics of a Broker
are compatible with a device, the TDS analyses the information provided by the IoT device in its request (the Topics that
the device uses and their characteristics) and compares this information with the information it has about each Broker’s
Topic.

4.3. Disconnection periods and packet loss

Due to the movement of devices and the topology of the designed IoT environment, periods of disconnection may
occur, leading to the loss of packets. In order to handle this issue, the Intermediate Buffering technique is applied. The
Intermediate Buffering consists of adding a buffer in each mobile device capable of storing the packets that should have
been delivered during the disconnection periods. In this way, once the connection is reached, all buffered packets are
delivered.
6
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Fig. 3. Topic negotiation protocol to re-connect mobile devices with Fog nodes.

4.4. Security issues

Security is a critical issue in an IoT environment and the mobility of devices leads to the need for additional security
services [34]. In this sense, token-based security is usually mandatory, as mobile devices move through the environment
making different connections to different nodes and consuming different services in the environment along their way [34].
Thus, a token-based security environment, with the same philosophy as Fiware’s token-based security environment [35],
has been included in the proposal. Thus, this token-based security environment limits and controls the device connection
and access to nodes and services in the IoT environment.

4.5. Model deployment and interactions between entities

A sequence diagram that illustrates the necessary interaction of a device with the mobility architecture (TSS, BDS and
TDS) is shown in Fig. 3. It shows four key interactions: Fig. 3-(1) The Device interacts with the Fog node’s Token Security
System (TSS). In this first interaction, the Device sends its token to the TSS, then the TSS verifies that the token is valid and
gives the device the approval to continue with its tasks; Fig. 3-(2). Once the TSS approval is received, the Device requests
the BDS to obtain Broker information. The BDS then gathers Broker information and sends it to the Device; Fig. 3-(3). The
third interaction is with the TDS, as the device now needs information about the Topics offered in each Broker. Thus, the
Device request the TDS, the TDS then gathers information about Topics and sends it to the Device.; Fig. 3-(4). Finally, with
all the Brokers and Topics information, the Device can choose the best Broker to connect and establish a connection with it.

4.6. Envisioned scenarios

This section describes several envisioned scenarios or IoT systems for which this MQTT mobility management model
has been designed. Thus, being able to be simulated with SimulateIoT-Mobile, taking into account the limitations of the
7
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mobility model and the modelling expressiveness of SimulateIoT-Mobile (Section 5). Multiple scenarios could be modelled
by using SimulateIoT-Mobile such as Data muling, Animal movement or Smart Cities.

Data muling and ferrying approaches have been vastly investigated. Such proposals focus on managing IoT systems
here mobile devices collect data in a specific area, transporting it to a specific nodes of the system [36–39].
Animal movement can be the answer to many biological phenomena, whose understanding could be critical to

uccessfully address challenges such as climate change, species conservation, health and food [40]. Therefore, many IoT-
elated studies focus their efforts on animal tracking [41–44]. In this regard, Section 8.1 describes a use case where
imulateIoT-Mobile is applied such a system.
Smart cities are IoT systems that can also include mobile nodes. In this sense, mobile nodes can be used for different

urposes. The authors of [45] describe an IoT system that tracks vehicles in order to facilitate vehicle parking. The authors
f [46] present results from an study where 80 riders of e-bikes discuss their experience with smart mobility. Other studies
uch as [47] makes a proposal to enable green mobility in cities. This work presents a device that can be integrated into
itizens’ personal mobility devices, such as segways or electric scooters. This device gathers environmental information
o provide personal mobility devices with eco-efficiency services, integrating them in the smart city environment. A use
ase based on the latter study is carried out in Section 8.2.
In short, SimulateIoT-Mobile is designed to simulate several kinds of IoT systems with mobile nodes, taking into account

he limitations outlined in the introduction of this subsection.
To sum up, several of the main characteristics taken into account in IoT environments with mobile devices have been

dentified. They, together the envisioned scenarios described in Section 4.6, facilitate describing suitably the context
here IoT devices should be defined and deployed. In this sense, the next section presents the SimulateIoT-Mobile
omain-specific language in order to define IoT environments with mobile devices.

. Extensions of metamodel and concrete syntax

SimulateIoT-Mobile, as a MDD approach, is composed of three main elements: (1) Metamodel or Abstract Syntax, (2)
raphical Concrete Syntax and (3) Model-to-Text Transformations (M2T). This Section describes the SimulateIoT-Mobile
etamodel and Concrete Syntax.

.1. Metamodel extensions

A Metamodel captures the concepts and relationships in a specific domain in order to model partially reality [15].
hen, it is possible to design models from this Metamodel. These models can be used to generate total or partially
he application code. Thus, the software code could be generated for a specific technological platform, improving its
echnological independence and decreasing the error proneness.

SimulateIoT metamodel [17] defines in deep the core concepts and relationships related to the IoT domain, including
lements such as sensors, actuators, edge node, fog node, cloud node, database, complex-event processing services, data
efinition, topics, message broker, etc. However, it has not enough expressiveness to simulate IoT systems with mobile
odes. Therefore, SimulateIoT-Mobile metamodel, an extension of SimulateIoT metamodel with enough expressiveness to
efine IoT systems with mobile nodes, has been developed.
For a sake of clarity, Fig. 4 shows an excerpt of the SimulateIoT-Mobile metamodel, concretely the elements required

or modelling IoT mobile devices (elements which are numbered and highlighted in Fig. 4 on blue colour). Note that Fig. 14
Appendix A) shows the complete metamodel, with the elements relating to the extension carried out highlighted in blue.

This extension includes the classes and relationships needed to model the mobility entities and services described in
ection 4. Besides, some concepts necessary to capture the specific mobility domain, such as the routes that mobile nodes
ill follow, are also included. Finally, some concepts useful for the end-user in terms of simulation analysis (Jitter, Battery
tc.) are also included.
Thus, in order to describe the SimulateIoT-Mobile metamodel, this section is divided into the domain-specific IoT

obility concepts identified: Device movement, Disconnection periods and packet loss, Jitter, Battery management, the
roker Discovery Service and the Topic Discovery Service and security issues. In this way, each of these subsections include
he contributions that make it possible to model the aspects of these mobility concepts (classes and relations shown in
ig. 4).

.1.1. Device movement
In order to model device mobility for simulation purposes, the Route concept is introduced. A Route is a set of

coordinates that specifies the movement of one or more mobile devices. Thus, each mobile device is linked to a Route
that specifies its movement through the IoT environment.

In this way, SimulateIoT-Mobile metamodel proposes defining several kinds of synthetic routes: FogCloudRoute,
inearRoute, RandomRoute, and CSV_Route. These Routes have been included as classes in the metamodel and are identified
n Fig. 4 with numbers two, five, three and four respectively. Note that the class Route identified with the number one is
n abstract class and superclass of the Route hierarchy.
8
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Fig. 4. Except of SimulateIoT-Mobile metamodel focusing on the mobile concepts. The complete SimulateIoT-Mobile could be found in Appendix A
at Fig. 14.

• FogCloudRoute class allows users to define a sequence of Cloud and Fog nodes (related to ProccessNode class). These
nodes are fixed nodes in the IoT environment that has a coordinate (position in the environment). Thus, the sequence
of node coordinates defines the Route that will be followed by the device linked to it during the whole simulation.
This FogCloudRoute will be followed by the device linked to it during the whole simulation, from beginning to end
and backward.

• LinearRoute class allows the user to define routes as a sequence of x/y coordinates (related to Coordinates class). So,
the mobile device will move throughout this sequence of coordinates indefinitely. Note that once the end of the
route is reached, it follows the route in reverse.

• Random_Route class makes it possible to generate random routes. These routes start in a specific coordinate and
are ad-hoc generated up to the end of the simulation. Note that, from each coordinate is generated the next step
direction, avoiding jumps in the route.

• CSV_Route class allows the user to load routes defined in a CSV file. The CSV files must include an x/y coordinate
in each row. In this way, the device interprets the route and follows it throughout the simulation. As with all other
routes, once the end is reached, it retraces the route in reverse.

5.1.2. Disconnection periods and packet loss
As described in Section 4, in order to avoid packet loss, the possibility of using the Intermediate Buffering technique

is introduced. Thus, each EdgeNode has been extended with the IntermediateBuffersize attribute (Fig. 4-(8)). In this way,
the end-user is able to specify the amount of memory in terms of Kb that the Intermediate Buffer of a mobile device will
have.

5.1.3. Jitter
Currently, a critical aspect in IoT is the delay between the communication of two or more components. In this sense,

there are many studies that address this issue which often use simulators to corroborate their hypotheses [48–50].
Therefore, it has been considered appropriate to provide SimulateIoT-Mobile with mechanisms able to model and to
measure the delay between components. In particular, when it comes to the delay caused by the mobility of devices
(e.g. in a handover period).

Jitter is the variation in the delay of two messages received consecutively by a subscriber from a publisher. This way of
measuring delay has been chosen because of the asynchrony of the internal clocks of the devices in a distributed system.
When measuring jitter, only the subscriber clock is used. Thus, a possible asynchrony among the internal clocks of the
publisher, broker or the subscriber does not affect the measurement [8].

In order to add the concept of jitter in the metamodel, a Boolean attribute called jitter Controller (Fig. 4-(9)) has been

added to the ProcessNode element (nodes where the control services will be deployed). Whether it is specified as True, all

9
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the services required to measure jitter will be generated in the model-to-text transformations; if it is set to False, these
ervices will not be generated.

.1.4. Battery management
As well as jitter, the battery management is also currently a critical aspect in IoT. An efficient battery consumption in IoT

nvironments is one of the challenges that researchers are currently facing [51,52]. Concerns about energy consumption
re even more pronounced in mobile environments, where devices must also expend energy on the movements. Therefore,
t has been considered to add the possibility to model the battery of each device so that users can analyse the behaviour
f the battery after the simulation.
In this sense, note that there are a large number of IoT devices with different features, so there could be a big

ifference in consumption from one device to another. Therefore, in order to simulate energy consumption, a count of
he tasks that consume energy is carried out. These tasks include: (a) data publishing; (b) data receiving; (c) movement;
d) data processing and storage; and (d) other interactions (e.g. neighbour discovery or security). Thus, the aforementioned
arameters are used at simulation run-time to simulate battery consumption.
To model the concept of the battery usage of devices to the metamodel. To do so, an Integer attribute named

atteryManagement (Fig. 4-(8)) has been added to the EdgeNode element (nodes that will be able to simulate their energy
onsumption). Thus, the user is able to specify the battery milliampere capacity in each device. If it is specified with a value
0, all the services required to simulate the battery consumption will be generated in the model-to-text transformations;

f it is set to 0, these services will not be generated.

.1.5. The Broker Discovery Service and the Topic Discovery Service
The BDS and TDS are two entities introduced in Section 4, designed to manage mobility in the MQTT protocol. These

ntities are static and their properties are not needed to be modelled by the user. Therefore, the domain-specific features
f these entities have not been added to the metamodel. However, there are some concepts related to the execution of
hese two entities that the user should be able to model, such as the coverage of the access points to these entities and
he gain of the devices to sense this coverage.

In order to extend the metamodel in this way, an attribute named coveragesignalPower (Fig. 4-(9)) has been added to
ogNode and CloudNode elements. Thus, the end-user is able to define the signal strength of the gateways (included on
he FogNode and CloudNode elements).

During a simulation, this signal strength limits the perimeter within which a mobile node may or may not connect to
gateway. It therefore plays a key role in the design of the architecture of the IoT simulation environment. Thus, users
an model the IoT simulation environment and identify areas where there will be no connection, and whether in these
reas there are communication problems taken into account properties such as packet loss, size of intermediate buffers,
ignal strength, etc.
On the other hand, to allow users to model the communications capabilities of a mobile device to detect the gateway

overage signal, an attribute named coverageSignalGain has been added to the EdgeNode element (Fig. 4-(8)). In this way,
he aforementioned coverage perimeters will be variable for each mobile device, thus having different needs (e.g. the size
f the intermediate buffer), bringing the simulation closer to reality.

.1.6. Security issues
Section 4 describes a token-based security system to address vulnerabilities arising from the proposed mobility

anagement model.
In this regard, the metamodel is extended to provide the user the possibility to choose whether or not to add this

ecurity system to the IoT environment. For this purpose, a hierarchy of elements has been added to the metamodel. The
uperclass of this hierarchy is named SecuritySystem(Fig. 4-6 SimulateIoT-Mobile metamodel). This class can contain a
ecurity service called TokenSecuritySystem(Fig. 4-7 SimulateIoT-Mobile metamodel). If, when modelling an IoT environ-
ent, an instance of the TokenSecuritySystem class is created, the model-to-text transformations will generate the security
rchitecture necessary to implement the token-based security services discussed in Section 6.6. If it is not instantiated,
hese services shall not be generated.

.2. Graphical concrete syntax and validator extensions

Model-Driven Development allows creating models conforming to a metamodel. So, in order to do this, the Eugenia
ool [53] makes it possible to generate a Graphical Concrete Syntax (Graphical editor). The Graphical Concrete Syntax
enerated for SimulateIoT-Mobile metamodel is an extension of the Graphical Concrete Syntax defined in SimulateIoT,
hich is based on Eclipse GMF (Graphical Modeling Framework) and EMF (Eclipse Modeling Tools). Consequently, models
EMF and OCL (Object Constraint Language) [54] based) can be validated against the defined metamodel (EMF and OCL
ased). Note that OCL is a standard to define model constraints. Fig. 5 shows an excerpt from this graphical editor. It helps
sers to improve their productivity allowing not only defining models conforming to the SimulateIoT-Mobile metamodel
ut also their validation using this metamodel and OCL constraints [54].
The graphical concrete syntax (based on an Eclipse plugin) developed offers a suitable way to model the IoT

nvironment by using the high-level concepts defined in the SimulateIoTModel metamodel (Fig. 4). Later on, the graphical
oncrete syntax will be used to model and validate several case studies.
10
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Fig. 5. Graphical editor based on the Eclipse to model conforming to the SimulateIoT-Mobile metamodel.

. Extensions of model-to-text transformations

As aforementioned, SimulateIoT-Mobile, as a MDD approach, is composed of three main elements: (1) Metamodel or
bstract Syntax, (2) Graphical Concrete Syntax and (3) Model-to-Text Transformations (M2T). In Section 5, the extensions
arried out in (1) Metamodel or Abstract Syntax (Section 5.1) and (2) Graphical Concrete Syntax (Section 5.2) were
escribed. Thus, in this section, the extensions for SimulateIoT-Mobile carried out in (3) Model-to-Text Transformations
M2T) are described.

Once the models have been defined and validated conforming to the SimulateIoT-Mobile metamodel (examples of
odels in the Figs. 8 and 11), a model-to-text transformation defined using Acceleo [55] can generate the IoT environment
odelled.
Thus, this section describes the main features of the Model-To-Text transformation carried out in order to generate the

oT environment, focusing in the transformations which allow mobile support (the target of this work). For the sake of
larity, this section is divided into the domain-specific IoT mobility concepts identified (as in Section 5). In this way, each
ubsection contains the contributions that make it possible to generate the code of each component (M2T transformations)
elated to these mobility concepts. Finally, a section describing the overall generation and integration of the artefacts is
ncluded.

.1. Device movement

Section 5.1.1 describes the extensions carried out to make it possible to model the movement of mobile devices. In this
ense, Route is an abstract class that can be specified by different elements: (a) CSV file (CSV_Route class), (b) Fog/Cloud
odes (FogCloudRoute class), (c) Predefined Coordinates (LinearRoute class), and (d) Random Coordinates (Random_Route
lass). In order to manage the Route elements and their specifications, the following services are required:

• Mapping services, to map the routes defined in a CSV file, list of Fog/Cloud nodes or Coordinates to a suitable format
for the devices.

• A coordinate generation service, to generate realistic random routes in real-time (this service takes care that the
direction of the route is consistent, that there are no incoherent movements from one position to another, etc.).

• A route management service, in order to make the mobile devices capable of interpret the routes and move along
them during the simulation.

Therefore, Simulate-IoT model-to-text transformations have been extended to generate and integrate these three

ervices on every mobile device in the environment (i.e. on every mobile device modelled by the user in a model).

11
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6.2. Disconnection periods and packet loss

Section 5.1.2 describes the extensions carried out to make it possible to model the application of the Intermediate
uffering technique for mobile devices. Thus, in order to implement and apply the Intermediate Buffering technique, it is
ecessary to include two new services to the mobile devices, a buffer storage service and a buffer publish service.

• Buffer storage service: This service have the capacity (Kb) modelled through the EdgeNode element Intermediate-
Buffersize attribute (Fig. 4-8). Thus, this service controls the size of the messages that are stored in the buffer and
that the memory does not overflow. Whether the buffer is full and the device is still offline, this service acts as a
queue, eliminating the oldest messages (packet loss) so that the new ones can be stored, always taking into account
the size of each message.

• Buffer publish service: Once the device decides to connect to a gateway, the buffer publish service (integrated with
the device’s publishing logic) reads and empties the buffer, subsequently publishing all this data.

Therefore, Simulate-IoT M2T transformations have been extended to generate and integrate these two services on
very mobile device in the environment (i.e. on every mobile device modelled by the user in a hypothetical model).

.3. Jitter

Section 5.1.3 describes the extensions needed to make it possible to model whether to deploy the Jitter analysis service
r not. Thus, in order to generate and deploy the Jitter analysis service, it is necessary to include this service in the Cloud
nd Fog nodes.
At simulation start, the jitter analysis service is deployed to monitor jitter next to each Broker (deployed at each

og/Cloud node). Thus, the jitter analysis service subscribes to all Topics, receiving all the messages published in them
nd registering the reception timestamp of each message. At the end of the simulation, this service calculates the jitter
f the messages received by the devices. It should be noted that the data published by each device is structured in JSON
ormat and contains a field reserved for identifying the publisher and the timestamp of each published message [17].

At simulation ends, the jitter control service generates an output with the jitter experienced during the whole
imulation so, the average jitter, the maximum jitter and the minimum jitter.
Note that the following expression is used to determine the jitter:

Jitter = m′

n − m′

n−1 − T

This expression considers the reception of two messages. The arrival time for message n is defined as m′
n. Note that T

s a fixed parameter representing the publishing period of the publisher.
As an instance of the above, consider a situation where a hypothetical sensor has a period T equal to 500 ms, assuming

that a message m′
n − 1 from the sensor is received by an actuator at instant 0 and the next message m′

n from this sensor
s received 621 ms later, the Jitter between these two messages is: 621 − 0 − 500 = 121 ms.

Thus, Simulate-IoT M2T transformations have been extended in this sense to generate and integrate this service on
very Fog or Cloud node modelled in the environment (i.e. on every Fog or Cloud node modelled by the user in a model,
hose attribute jitter_Controller is setted as True).

.4. Battery management

Section 5.1.4 describes the extensions carried out to make it possible to model whether to include the Battery
onsumption simulation or not. Thus, in order to generate and deploy the Battery consumption simulation, it is necessary
o include this simulation module in the Cloud and Fog nodes.

Therefore, the battery simulation is based on the integration of several counters throughout the devices code generated,
hus counting each of the tasks carried out by a device. These tasks include: (a) Data publishing, (b) Data receiving,
c) Movement, (d) Data processing and storage, (d) Other interactions (e.g. neighbour discovery or security interactions).

All these parameters are used at simulation run-time to simulate the battery consumption of each device. In addition,
nce the simulation is finished, the battery simulation service of each device outputs a log with the results of these
ounters. Thus, the user can then use these parameters to predict more accurately the battery consumption of a specific
eal device.

Therefore, Simulate-IoT M2T transformations have been extended in this sense to generate and integrate all the
forementioned counters in the device code, thus simulating the battery consumption of each modelled device (i.e. on
very device modelled by the user in a hypothetical model).
12
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6.5. Broker Discovery Service and Topic Discovery Service

The BDS and TDS are nodes deployed on each Fog/Cloud node of the system. These nodes are designed to support
obility in IoT environments where the MQTT protocol is used. The behaviour of the BDS nodes and TDS nodes is also
escribed in Section 4.2. However, this section aims to identify and describe individually each of the services generated
rom the model-to-text transformation for the BDS nodes and the TDS nodes.

The BDS nodes are entities that communicate to mobile devices useful information about the Brokers deployed in the
ystem. In this way, mobile devices can use this information to make an appropriate selection of which Broker to publish
o or subscribe to.

In this sense, the device communicates to the BDS (to those within their reach) information about its geographical
ocation. Using this data, the BDS nodes reply to the device with a list of Brokers and details about each one of them, such
s their geographical location, IP address or the distance to them in a straight line. Therefore, three services are identified:

• MQTT client: The first service identified is the MQTT client that uses the BDS and the underlying logic to communicate
with the target device.

• DataBase client: Secondly, it is identified the client of the database where the BDS queries all the data related to the
Brokers.

• To Measure of distance between device and Brokers: Thirdly, it is identified the component that applies the logic
necessary to interpret the coordinates of the mobile devices and calculate the distance between it and the Brokers
deployed in the system.

On the other hand, the TDS nodes are entities that communicates to mobile devices useful information about the Topics
eployed in the system’s Brokers. In this regard, the device requests from the TDS nodes data about the Topics deployed
n one or several Brokers. Using this list of Brokers, the TDS nodes reply to the device with a list of Topics for each Broker,
ncluding information about each of the Topics such as a set of Tags (describing the Topic), its name, etc. For this, two
ervices are identified:

• MQTT client: The first service identified is the MQTT client that uses the TDS and the underlying logic to communicate
with the device in question.

• DataBase client: Secondly, the client of the database where the TDS consults all the data related to the Topics of
each Broker is identified.

In addition to BDS, TDS code generated, the compilation of its code, the wrapping of it in a Docker, and its deployment
nd integration with the rest of the system, must also be generated. In this sense, SimulateIoT-Mobile takes these issues
nto account in the deployment script of the system.

To summarise, Simulate IoT model-to-text transformations have been extended to generate and integrate the BDS and
he TDS and each of their services in each Fog or Cloud node of the environment (i.e. on every Fog or Cloud node modelled
y the user in a model).

.6. Security issues

Section 5.1.6 describes the extensions carried out to make possible the modelling of the Security services. Thus, in order
to secure mobile IoT environments and simulate the impact on the overall performance of the environment, a token-based
security system is included in SimulateIoT-Mobile, the TokenSecuritySystem (TSS). When the simulation starts, all devices
generated from the metamodel share a security token. This token is used by devices when they publish or subscribe to a
Topic, so if the Topic is named temperature, the device publishes or subscribes to /{token}/temperature. In this way, if an
external device tries to connect to the IoT environment, as it is not in possession of the security token, it will not be able
to obtain the data published in any Topic, and will not be able to publish false information in any Topic.

As for the TSS, it is a Fog node’s service and it is responsible for managing the tokens. In this way it gives them a
random lifespan, generates new tokens when they expire, communicates the new token to the devices, etc.

Therefore, SimulateIoT model-to-text transformations have been extended in this sense to generate and integrate this
TSS in all Fog or Cloud nodes of the environment (i.e. on every Fog or Cloud nodes modelled by the user in a model).

6.7. IoT environment generated from M2T transformations

For a better understanding of the extensions carried out in this work and their relationships or interactions, this
section describes the overall architecture generated from the M2T transformations from SimulateIoT-Mobile models. To
explain the generated architecture, it is divided into the three layers that can constitute an IoT environment defined with
SimulateIoT-Mobile: (A) Edge Layer; (B) Fog Layer; (C) Cloud Layer.
(A) Edge Layer

The Edge layer is composed of the set of sensors and actuators of the IoT environment. The architecture of an Edge
node is illustrated in Fig. 6. In terms of the main elements of the architecture (numbered with the numbers used in
Fig. 6):
13
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Fig. 6. Software architecture of a Edge node generated.

1. Topic Discovery Service Client: Embedded client in the Edge nodes that allows Edge nodes to interact with the Topic
Discovery Service offered by the Cloud or Fog nodes. The communication is done through the MQTT protocol (MQTT
client relationship) and, once the response is received from the Fog/Cloud node, it is transferred to the Connection
Manager component.

2. Broker Discovery Service Client: Embedded client in the Edge nodes to interact with the Broker Discovery Service of-
fered by the Cloud or Fog nodes. The communication is done through the MQTT protocol (MQTT client relationship)
and, once the response is received from the Fog/Cloud node, it is transferred to the Connection Manager component.

3. Token Security System Client: Embedded client in the Edge nodes that allows Edge nodes to interact with the Token
Security System offered by the Cloud or Fog nodes. The communication is done through the MQTT protocol (MQTT
client relationship) and, once the response is received from the Fog/Cloud node, it is transferred to the Connection
Manager component.

4. Intermediate Buffering Manager: Intermediate Buffer included in Edge nodes to avoid packet loss. This element is
related to: (a) The Connections Manager which informs when the connection is on or off, in order to start or stop
storing data. (b) The Synthetic Data Generation element, in order to know which data to store; (c) The MQTT client,
to publish the stored data when the connection is on.

5. Battery Simulation Module: Battery simulation module embedded in the Edge nodes to simulate the energy
consumption.

6. Synthetic Route Manager: It manages, generates or loads routes that Edge devices should follow. This component is
linked to the Connections Manager module by sending it the device location. Thus, the Connection Manager module
can use the device location to optimise the establishment of new connections.

7. Synthetic Data Generation: It manages, generates or uploads the publication of data made by an Edge device. It is
linked to the MQTT client, thus being able to publish the generated data. It is also related to the Intermediate Buffer
so that, in case of disconnection, it stores the generated data.

8. MQTT Client: It allows an Edge device to publish or subscribe to Topics on an MQTT. As can be observed in Fig. 6,
several components on the Edge node require to publish or subscribe to Topics by using the MQTT Client.

9. Connections Manager: It manages the connections among an Edge node with the rest of the nodes in the IoT
environment. It is related to the Topic Discovery Service, Broker Discovery Service, Token Security System and
the Synthetic Route Generation element with the aim of coordinating them when making requests, thus being able
to use the responses obtained from each of them to establish optimal connections.

10. Statistical Information Manager: It collects data from the device during the simulation in order to integrate them
and to produce statistics to be analysed at the end of the simulation for the analysis of the simulation.

B) Fog Layer
The Fog layer is composed of the set of Fog nodes of the IoT environment. The architecture of a Fog Node is illustrated

n Fig. 7. In terms of the main elements of the architecture (numbered with the numbers used in Fig. 7):

1. Topic Discovery Service: Component that implements the Topic Discovery Service explained in Section 6.2. This
service is linked to the MQTT client in order to receive requests. In addition, it relates to the MongoDB Client to
obtain information about the Fog node Topics (response to requests from devices).

2. Broker Discovery Service: Component that implements the Broker Discovery Service explained in Section 6.2. This
service is linked to the MQTT client in order to receive requests from the Edge nodes.
14
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Fig. 7. Software architecture of a Fog node generated.

3. Token Security System: Component that implements the Topic Discovery Service explained in Section 6.2. This
service is linked to the MQTT client in order to receive requests from the Edge nodes. In addition, it relates to
the MongoDB Client to manage Tokens.

4. Complex Event Processing Engine: CEP engine that analyses and applies user-defined rules (modelled previously) to
data published in the Topics (it is related to MQTT Client). Besides is linked to the Notification Manager element to
which it sends its output.

5. Notification Manager: Component that collects the analyses carried out by the CEP engine (related to CEP Engine)
and publishes them in the Topics that the user has defined for this purpose during modelling phase (relation with
MQTT client).

6. MQTT Broker Mosquitto: MQTT Broker that supports communication by the MQTT protocol. It is related to the MQTT
client of the Fog node to allow it to communicate by using the MQTT protocol.

7. MQTT Client: It allows the Fog node to connect to its MQTT Broker and publish or subscribe to its Topics.
8. MongoDB: No-Sql database used for data storage on a Fog node. It is related to the MongoDB client as it is the client

that performs the queries.
9. MongoDB Client: MongoDB client that allows the Fog node to interact with the MongoDB database (related to

MongoDB).
10. Redirection Manager: Component that allows redirecting data (related to MongoDB Client) among Fog nodes and

Cloud nodes.
11. MongoDB Manager: Component that includes the necessary interactions with MongoDB (relation with MongoDB

Client) in order to ensure the correct performance of the Fog node.
12. Connections Manager: Module that manages the connections of a Fog node with the rest of the nodes in the IoT

environment.
13. REST API: REST API that provides information about the Fog node to external components. So, internal aspects of

the Fog node could be requested, for instance, data stored on MongoDB.
14. JitterController: Component that measures the jitter produced in the exchange of messages between the different

devices in the IoT environment. It has a relationship with the MQTTClient as it needs to subscribe to all Topics in
the environment in order to receive the messages published and thus measure the jitter of them.

To sum up, each Fog node exposes several interfaces based on different protocols: (a) REST API publish a REST API on
ort 4000 based on request–response communication schema; and (b) MQTT Broker Mosquito exposes port 18XX that
ould be used to interchange messages using MQTT protocol based on the well-know publish–subscribe communication
chema; (c) The MongoDB database which listens for requests on port 27017 from which queries can be made.
C) Cloud Layer

The Cloud layer is composed of the set of Cloud nodes of the IoT environment. The architecture of a Cloud node is
he same as that of a Fog node, differing from it only in computational performance, where Cloud performance and store
apabilities are greater than Fog capabilities. This architecture is illustrated in Fig. 7.

. Simulation outputs and analysis that can be obtained from the extensions

The main motivation for simulating an IoT system is to gain knowledge to optimise it. Therefore, the benefit that can
e derived from an IoT simulator is determined by its outputs. In this regard, SimulateIoT-Mobile provides several outputs
hat allow to perform several analyses from which to gain knowledge. The main analyses that can be carried out with

imulateIoT-Mobile are the following:
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• Whether all messages have been successfully sent from sensors to gateways (ProcessNode elements). Data obtained
comparing sensors logs and MongoDB storage.

• How many mobile devices have reached the maximum local storage (Intermediate Buffer) due to they do not found
a gateway to send data during their routes. Data obtained from each IoT mobile device log.

• Check packet loss rate. Data obtained from each IoT mobile device log.
• Check the jitter produced in the environment during the exchange of messages. Data obtained from the jitter

controller component.
• To check the state of the battery of the IoT mobile devices simulated. Data obtained from each IoT mobile device

log.
• To check if the gateways deployed (FogNode elements) have been enough to attend the IoT mobile devices. Data

obtained from each IoT mobile device log and the FogNode elements database and logs.
• To check if the complex event processing rules defined have been executed suitable and the Actuator elements have

executed their actions. Data obtained from each complex event processing event engine log and the message sent
to Actuator elements.

• Visualise the data interchanged among the IoT mobile devices and the FogNode or CloudNode elements. Data can be
visualised using the view tool Compass associated with each FogNode or CloudNode element.

• To check if there are message bottlenecks on specific ProcessNode. It implies that a specific IoT node is a sink of
messages which is a potential system risk and a situation that should be avoided. This situation requires to analyse
what has been the percentage of messages that cross each ProcessNode identifying those which they have a high
message rate. Data obtained from different sources, such as the jitter produced at certain times, packet loss rate,
node downtime, etc.

• To check if the resources available on the EdgeNode, FogNode or CloudNode are enough to deploy suitable the IoT
system modelled. Data obtained from different sources, such as the jitter produced at certain times, packet loss rate,
node downtime, etc.

• To obtain several statistics related with the number of connections carried out by IoT mobile devices with the
gateways deployed (FogNode elements). Data obtained from each IoT mobile device log.

. Case studies

Next, two case studies have been developed using the SimulateIoT-Mobile metamodel and M2T transformations
reviously presented. The first one defines an IoT simulation of Animals tracking while the second one defines an IoT
imulation of Personal mobility devices (PMD) based on public bicycles .
Below is defined a synthesis of the methodology required to use SimulateIoT-Mobile and the processes carried out by

his tool to simulate these use cases in order to illustrate them more effectively.

1. Model definition: This step refers to the modelling of the IoT Environment that the user wants to deploy and simulate.
This model corresponds to the DSL and therefore can contain all the elements defined in it.

2. M2T transformations and deployment: Once the model has been defined, the source code of all the elements involved
can be generated from it. Sensors, Actuators, FogNodes, CloudNodes and all their sub-components and configuration
files will be ready for the deployment phase.

.1. Case 1: Animal tracking

Animal movement can be the answer to many biological phenomena, whose understanding could be critical to
uccessfully address challenges such as climate change, species conservation, health and food [40]. Therefore, many IoT-
elated studies focus their efforts on optimising the application of these systems in such environments. Moreover, many
f these studies corroborate and justify their results through the use of simulations [41–44].
For all these reasons, this first use case is focused on the simulation of an IoT system based on animal movement

racking. So, modelling the behaviour of a system based on GPS devices on animals with MQTT communications
rocessNode elements facilitates the animal tracking making it possible to analyse data.
In order to model this IoT system the following aspects are taken into account:

• Each animal has its own GPS devices which communicate with the gateways deployed on the area. So, several Sensor
elements with mobility capabilities should be included in the model.

• Each Sensor element has defined the route that they should follow, this route is a FogCloudRoute (Section 5.1.1) that
is shared, simulating a flock.

• There are defined several ProcessNode, specifically three FogNode elements which could be deployed on strategic
locations on the area, such as the lagoons where periodically animals should access to drink water.

• Each Sensor element (GPS devices) send storage data to the gateway represented by the FogNode elements deployed.

• Each FogNode element defined, that is the gateways deployed, notifies to a central CloudNode.
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Fig. 8. Case 1. Model simplified conforms to SimulateIoT-Mobile metamodel for animals tracking. Complete version in Fig. 15.

8.1.1. Model definition
Fig. 8 shows an excerpt from the animals tracking model. It also includes numerical references for each node which are

hen used to describe the use case. Note that, for the sake of clarity this extract is simplified, including only one instance
f each possible type of relationship between components. The complete version of this model is shown in Fig. 15.
For the purpose of explaining the model, it is divided into three parts: (1) Edge Layer (Red nodes), (2) Fog Layer (Blue

odes), (3) Cloud Layer (Green nodes).
1) Edge Layer

The Edge layer contains the definition of the sensors (Fig. 8 label 3.1) and actuators (Fig. 8 label 3.2) of the simulation.
his sensor represents the GPS that has been incorporated into each animal. This GPS sensor monitors the different
ocations of a animal throughout the day. On the other hand, the PDA actuator (Personal Digital Assistant) has been
odelled bearing in mind that there may be use cases where workers are in charge of keeping the integrity of the animals
afe, being the PDA the device where they receive notifications of danger. For instance, receiving notifications when an
nimal is not in the area where it should be, such as outside of a hypothetical protected area where it might be at risk.
n addition to this PDA, notification could be also defined to send a message to user applications such as email.

GPS data is assigned by a synthetic data generation (Fig. 8 label 4) and a Route (Fig. 8 label 8). Regarding the publication
f the data, GPS could publish data in the Topic called GPS (Fig. 8 labels 5.1, 5.2, 5.3) located in the Fog nodes. On the

other hand, the PDA actuator (Fig. 8 label 3.2) subscribes to the Topic Notifications (Fig. 8 label 5.4) located in the Cloud
node (Fig. 8 label 2).

Note that for simulation purposes it is not necessary to re-model all elements of the above for each animal. Since
each GPS has a quantity attribute to specify how many times it should be generated in the M2T transformation phase.
Nevertheless, Route and the synthetic generation of data should be defined for each animal, otherwise, it will be the same
for each of them.
17



J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

i
a

Fig. 9. Case01. Simulation analysis: Intermediate buffer size and Packet loss rate.

Fig. 10. Case 1. Simulation analysis: Jitter variation during simulation according to the selected QoS (MQTT protocol).

(2) Fog Layer
Fog nodes ((Fig. 8 labels 1.1, 1.2, 1.3) are those that integrate the necessary services for the Edge nodes to carry out

their duties. Taking into account the example modelled, each Fog node could be located near watering places where the
animals live. For this case study, three Fog nodes have been defined.

The modelling of the Fog nodes is divided into Topics (Fig. 8 labels 5.1, 5.2, 5.3) and the CEP engine (Fig. 8 labels 7.1,
7.2, 7.3). In this use case study, each Fog node offers one Topic, GPS, where the GPS incorporated in each animal publishes
ts location during the day. On the other hand, the CEP engine analyses the data published in these Topics and applies
set of rules to detect anomalies. Specifically, the CEP engine defines two rules: a) AnomalyCoords rule, which analyses

the data published in the Topic GPS and identifies if the location of an animal is inappropriate; (b) Control rule, which
analyses the data published in the Topic GPS and identifies if an animal does not publish its location for too long a period
of time. If one of these rules is met, the CEP engine publishes a notification in the Topic Notifications (Fig. 8 label 5.4),
located in the Cloud node (Fig. 8 label 2), where the PDA actuator (Fig. 8 label 3.2) is subscribed.

Finally, the Fog nodes are related to the Cloud node. This relationship allows Fog nodes to forward all the data received
by their Topics to the Cloud node for storage and future analysis. Note that Fog nodes can also store data if they include
a database (Fig. 8 labels 6.1, 6.2, 6.3)
(3) Cloud Layer

As for the Cloud node (Fig. 8 label 2), in this use case it is necessary to model the relationship with the Fog nodes
(Fig. 8 labels 1.1, 1.2, 1.3). Thus, it is specified that the Cloud node will receive all the data published in their Topics.

On the other hand, the notifications of the CEP engines incorporated in each Fog node (Fig. 8 labels 7.1, 7.2, 7.3) are
sent directly to the Cloud node via MQTT, therefore, it is necessary to define a Topic in the Cloud node. This Topic is
Notifications (Fig. 8 label 5.4) and is where the PDA actuator is subscribed (Fig. 8 label 3.2), thus receiving any anomaly
regarding the animals.

Finally, it is also necessary to model a database to store the received data (Fig. 8 label 6.4).

8.1.2. Model-to-text transformation and deployment
Once the model has been defined, the model-to-text transformation is applied with the following goals: (i) to generate

Java, Python, NodeJs, etc. code that wraps each device behaviour; (ii) to generate configuration code to deploy all the
generated services, such as the message brokers necessary, including the topic configurations defined, the gateway
configurations, etc. (iii) to generate the code and deployment configuration files of the architecture that supports mobility
(Broker Discovery Service, Topic Discovery Service, Token Security System, etc.). (iv) to generate the configuration files and
scripts necessary to deploy the databases and stream processors defined; and finally, to generate the code necessary to
query the databases where the data will be stored; (v) to generate for each ProcessNode and EdgeNode a Docker container
which can be deployed throughout a network of nodes using Docker Swarm.

Consequently, each Edge node, Fog node and Cloud node is generated following the software architecture defined in
Section 6 where model-to-text transformation has been defined.
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8.1.3. Simulation analysis
SimulateIoT-Mobile allows users to iteratively model, simulate (execute) and analyse their environment as many times

s necessary until the final version is achieved. So, having executed a simulation the users can analyse several data
Section 7).

To exemplify the above mentioned, some experiments and analysis have been applied below on Case 01, Animals
racking. In this sense, the optimal size of the Intermediate Buffer in different situations, the battery behaviour of the
evices and the jitter produced in the message exchange are studied.
First, the packet loss rate is analysed. To carry out this analysis, in a first approximation of the model, it is specified that

he GPS incorporated in each animal publishes its data every three minutes. In addition, no Intermediate Buffer has been
ncluded. The results after one day simulation (2 min real time - simulation accelerated) are 45.82% packet loss on average
er animal (Fig. 9-A). In order to reduce this packet loss rate, an Intermediate Buffer of 5 Kb (250 publications) is added
o the GPS of each animal. The results of this second approach are 0% packet loss rate (Fig. 9-B). Finally, a series of tests
re carried out to optimise the buffer size and keep the packet loss rate below 20% (hypothetical acceptable threshold).
he test results indicate that a buffer size of 1.2 Kb would be necessary to keep the packet loss rate below 20% (Fig. 9-C).
As for the battery, different valuable data can be extracted about its consumption. For example, in this use case when

he buffer size is set to 1.2 Kb, (around 20% packet loss) during one day each GPS was connected to the internet for an
verage of 10.88 h, published a total of 340 messages on average, made 3 connections and disconnections of gateways,
tc.
On the other hand, it is also possible to analyse the jitter that occurs during the exchange of messages between devices.

itter can be measured from different perspectives, in this case, the jitter is measured during a normal exchange, ignoring
he increase produced by a handover period (gateway switch) or a disconnection period. In this sense, the results obtained
re an average jitter of 100.859 ms, a maximum of 102.831 ms and a minimum of 100.116 ms. Fig. 10-A shows the average
itter of each simulated hour when QoS is set to 0 (this case).

One of the factors involved in the Jitter results is the quality of service offered. In this sense, MQTT has three QoS
evels. The above tests have been carried out with a QoS of 0 (minimum QoS allowed by MQTT). When using a QoS of
(intermediate QoS level in MQTT) the results are an average jitter of 105.280 ms, a maximum of 109.611 ms and a
inimum of 104.259 ms. Fig. 10-B shows the average jitter of each simulated hour when QoS is set to 1. Finally, if the
oS is raised to its maximum level (QoS = 2), the results obtained are an average jitter of 109.614 ms, a maximum of

113.459 ms and a minimum of 105.981 ms. Fig. 10-C shows the average jitter of each simulated hour when QoS is set
to 2.

In short, with SimulateIoT-Mobile the users can analyse different aspects of the IoT environment in order to optimise
or adapt it to their requirements.

8.2. Case 2: Personal mobility device (PMD) based on public bicycles

In recent years, the presence of PMD’s such as bicycles or electric scooters has grown significantly in cities. In order
to manage these PMD’s and ensure the safety of their users, they can be equipped with several sensors that monitor the
status of the PMD in real-time [46,47]. Thus, our second case study presents the simulation of a city with a smart PMD
system.

In order to model this case study several assumptions should be taken into account:

• Each PMD includes the following sensors: (a) A GPS that publishes data related to its geolocation; (b) A Wheels
pressure sensor, that monitors wheels pressure; (c) A Timer, that monitors the time the PMD is used by a user. On
the other hand, the PMD incorporates an Actuator that notifies the user of anomalies, e.g. inadequate wheel pressure.

• The PMD route could be defined as CSV_Route based on specific routes defined on the map where the PMD and
gateways are deployed.

• Each gateway can be defined as a FogNode element that is able to manage the data available on each PMD that
reaches a gateway. Note that, from our point of view a FogNode element can act as gateway gathering data from
sensors or sending data to other FogNode, CloudNode or Actuator elements.

• Each FogNode element re-send data to a CloudNode element which is able to store and analyse all the data available.
• Each FogNode element deployed is able to analyse the data send from the PMD in order to automatically notify

the device if it has reached the lease term, the battery is low or the pressure of the wheel is not appropriate.
Consequently, PMD incorporates an Actuator element that is able to notify the user.

.2.1. Model definition
Fig. 11 shows an excerpt from the PMD based on the public bicycles model. It also includes numerical references for

ach node which are then used to describe the use case. Note that, for the sake of clarity, this model is simplified, including
nly one instance of each possible type of relationship between components. The complete version of this model is shown
n Fig. 16 (Appendix B).

For the purpose of explaining the model, it is divided into three parts: (1) Edge Layer (Red nodes), (2) Fog Layer (Blue
odes), (3) Cloud Layer (Green nodes).
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Fig. 11. Case 2. Model conforms to SimulateIoT-Mobile metamodel for Personal mobility device (PMD) based on public bicycles (Simplified version).
omplete version in Fig. 16 (Appendix B).

1) Edge Layer
The Edge layer contains the sensors (Fig. 11 labels 3.1, 3.2, 3.3) and actuators (Fig. 11 label 3.4) of the simulation. This

et of devices is the one that has been incorporated into each PMD, thus representing a PMD.
These devices are three sensors and one actuator for each PDM: (a) A GPS (Fig. 11 label 3.1), which monitors the position

f the PMD; (b) A pressure sensor (Fig. 11 label 3.2), which monitors the pressure of the wheels; (c) A timer (Fig. 11 label
.3), which monitors the time the user uses a PMD; (d) An anomaly notifier (Fig. 11 label 3.4), which notifies the user
hen an anomaly occurs.
For simulation purposes each sensor has assigned a synthetic data generation (Fig. 11 labels 4.1, 4.2, 4.3) and a Route

Fig. 11 label 8). Note that, all devices have assigned the same Route (Fig. 11 label 8), consequently, this is the PMD Route.
Finally, the sensors and the actuator are linked to several Topics (Fig. 11 label 5.1), where they will publish their data

r from where they will receive them respectively.
2) Fog Layer

Fog nodes (Fig. 11 labels 1.1, 1.2, 1.3) are those that integrate the services necessary for the Edge nodes to carry out
heir functions. For this case study, three Fog nodes have been defined although other numbers of Fog nodes could be
efined if needed.
Modelling of the Fog nodes is divided into Topics (Fig. 11 labels 5.1, 5.2, 5.3) and the CEP engine (Fig. 11 labels 7.1,

.2, 7.3). In this use case, each Fog node offers five Topics: (a) GPS, where the GPS publishes the location of the PMD;
b) WheelsPressure, where the Pressure sensor publishes the pressure of the wheels; (c) Battery, where the different Edge
odes publish their remaining battery life; (d) AnomalyNotifications, where the actuator is subscribed for anomalies and
he CEP engine publishes the anomalies identified; (e) Timer, where the Timer publishes the remaining leasing time.
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Fig. 12. Case 2. Simulation analysis: Intermediate buffer size required to avoid Packet loss.

On the other hand, the CEP engine analyses the data published in the Topics and applies a set of rules to detect
anomalies. Specifically, the CEP engine defines three rules: (a) AnomalousWheelPressure, which analyses the data published
in the Topic WheelsPressure and identifies if the wheel pressure is not adequate; (b) LowBattery, which analyses the data
published in the Topic Battery and identifies if any device has a low battery; (c) ExceedTime, which analyses the data
published in the Topic Timer and identifies if the elapsed lease time has expired. If one of the rules is met, the CEP engine
publishes a notification in the Topic AnomalyNotifications.

Finally, the Fog nodes are related to the Cloud node. This relationship allows Fog nodes to forward all the data received
by their Topics to the Cloud node for storage and future analysis. Note that Fog nodes can also store data if they include
a database (Fig. 11 labels 6.1, 6.2, 6.3).
(3) Cloud Layer

Cloud node (Fig. 11 label 2) makes it possible to model a node with high capabilities to store and process data. In
this case study, the Cloud node (Figure) 11 label 2 stores all data produced in the IoT environment during the simulation
process. So, it is needed to model a database to store the received data (Fig. 11 label 6.4). Additionally, it is related to the
Fog nodes defined on the model which redirect their data to the cloud node. The Cloud node has defined a Topic named
Notification which receives all messages thrown several CEP rules defined at the Fog layer.

8.2.2. Model-to-text transformation and deployment
Once the model has been defined, the model-to-text transformation is applied with the same goals as in Case 01

(Section 8.1.2).
Consequently, each Edge node, Fog node and Cloud node is generated following the software architecture defined in

Section 6 where model-to-text transformation has been defined.

8.2.3. Simulation analysis
Section 8.1.3 describes and exemplifies some of the experiments and analyses that can be carried out with SimulateIoT-

Mobile. This subsection illustrates some additional experiments and analyses that the user could carry out in Case02, a
Personal mobility device (PMD). In particular, the impact of a Fog node downtime in terms of packet loss is studied.
Besides, the impact of switching brokers on jitter is analysed.

In this use case, the gateways are strategically distributed so that the devices in the environment do not suffer periods
of disconnection. Therefore, the use of the Intermediate Buffer is not necessary. However, it is interesting to study the
case where one of the Fog nodes goes down (including its gateway) and analyse the number of packets that could be lost
in this case.

For this experiment, a device that follows a route that frequents the area with no coverage due to the Fog node
downtime has been selected. This device publishes one publication per minute. The output logs of this device show a
result of 43.54% of packets lost (Fig. 12-A).

In a hypothetical IoT environment where this Fog node could be down on a regular basis, the user could choose to add
an Intermediate Buffer to the devices to avoid packet loss. In this use case, after several tests with SimulteIoTMobile, it
is concluded that a 9.84 Kb (492 publications) buffer is needed to avoid packet loss (Fig. 12-B).

On the other hand, this use case studies the impact of switching brokers on jitter. Thus, the jitter of the messages
published by a random device has been analysed during simulation execution. This device has switched Brokers
approximately 100 times. Each switch involves interacting with the TSS, TDS and BDS, as well as coordinating the requests
and responses of these components. The results of this study are an average jitter of 115.668 ms, a maximum of 824.735
ms and a minimum of 100.014 ms. Looking at the maximum jitter it is possible to state that during a Broker switch there
is an additional jitter of about 724 ms (worst case). These results may indicate to the user the need to re-model their
environment with a view to reducing the impact of jitter in their environment, e.g. critical section that requires a jitter
of fewer than 820 ms. Fig. 13 shows an extract of 140 delay measurements where three periods of handover or gateway
switching occur.
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Fig. 13. Case 2. Simulation analysis: Extract of 140 delay measurements where three periods of handover occur.

Fig. 14. Complete SimulateIoT-Mobile metamodel.

. Discussion

In order to discuss the main facts reached by the proposal, the research questions previously defined will be answered.
In relation to RQ1, ‘‘How could mobility be managed in IoT systems where the MQTT protocol is used?’’, in order to

anage mobility in IoT systems based on MQTT protocol, several artefacts should be suitably generated (TSS, BDS, TDS)
o manage the data among IoT devices and the additional application layer interactions needed to manage IoT mobility
hould be implemented. Consequently, as has been shown previously it is possible to manage mobility in IoT systems by
sing MQTT protocol.
Regarding RQ2, ‘‘How might model-driven techniques be applied to model IoT systems with mobile nodes?’’, using

model-driven development helps to manage the complexity of heterogeneous technology as a success during an IoT
environment development. In this work the IoT systems with mobile nodes are modelled at high abstraction level by using
metamodeling techniques. In addition, models obtained could be validated by using OCL (Objects Constrain Language)
which guarantees that models are conformed to the metamodel proposed. The metamodel proposed makes it possible to
model the target IoT systems using common domain elements.

Concerning RQ3, ‘‘To what extent is it possible to generate the code needed to simulate an IoT system with mobile nodes from
a model of the system?’’, modelling IoT environments is a key activity for any IoT project making it possible to focus on the
22
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Fig. 15. Case 01. Model conforms to SimulateIoT-Mobile metamodel for animals tracking (complete version).

IoT domain in order to later on generate final code from the models defined. Additionally, modelling and simulating the
behaviour of the IoT environments including mobile devices facilitates analysing of several system complex aspects such
as battery behaviour, jitter, Intermediate Buffer, storage data, mobile communication protocols and so on. Code generate
from the models defined includes multiple artefacts (described in Section 6) which are suitably orchestrated to simulate
the IoT environment defined.

Finally, in relation to RQ4, ‘‘To what extent could simulations of mobile IoT systems be useful for optimising the real
system?’’, users are able to evaluate the system modifying their characteristics in order to find the better trade-off among
the devices and nodes deployed. Specifically, users can use DSL tools such as the Graphical Editor to model the system and
the model-to-text transformation to generate the code for deploying the simulation and checking the statistics generated
during the simulation.

On the other hand, although there are interesting advantages to using SimulateIoT-Mobile DSL, there are some issues
related to the mobility proposal presented.

Firstly, the publish/subscribe communication protocol used is based on MQTT protocol [10], although other pub-
lish/subscribe protocols can be used adding it to the model-to-text transformation. Secondly, model-to-text transforma-
tion, it has been defined for a concrete target based on microservices deployed on Docker containers which represent the
concrete IoT nodes defined on the model. Other technological targets could be defined which implies re-code the model-
to-text transformation. Thirdly, the routes of the IoT devices have been defined using common IoT mobility patterns, but
additional IoT mobility patterns could be defined. Consequently, it would imply including additional modelling elements
and including the new behaviours on the model-to-text transformation. Finally, current version of SimulateIoT-Mobile,
for the sake of simplicity, allows defining connected nodes by TCP/IP, and we assume that connectivity is guaranteed.
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Fig. 16. Case02. Model conforms to SimulateIoT-Mobile metamodel for Personal mobility device (PMD) based on public bicycles (complete version).

0. Conclusions

Model-driven development techniques are a suitable way to tackle the complexity of domains where heterogeneous
echnologies are integrated. Initially, they focus on modelling the domain by using the well-known four-layer metamodel
rchitecture. Then, by using model-to-text transformations the code for specific technology could be generated.
The IoT simulation methodology and tools proposed in this work help users to think about the IoT system in general

nd IIoT in particular, to propose several IoT alternatives and policies in order to achieve a suitable IoT architecture,
ncluding modelling IoT mobile nodes. In this sense, several kinds of mobile devices and routes can be defined, allowing
efining realistic IoT environments. Finally, the IoT environments modelled can be deployed, simulated and analysed.
Future works include extending the metamodel and model-to-text transformation to model additional publish–

ubscribe communication protocols such as JMS or AMQP; or request–response protocols such as REST. Both extensions
acilitate modelling IoT environments taking into account additional heterogeneity technology. Additionally, additional IoT
obile behaviours and routes could be identified and modelled. Finally, the model-to-text transformation could make it
ossible to generate Cloud support based on well-known Cloud providers such as AWS or Azure. It could open interesting
esearch areas for IoT simulation purposes.
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Appendix A

This Section shows in Fig. 14 the complete metamodel of SimulateIoT-Mobile. This metamodel is composed of the
imulateIoT metamodel and the extension carried out (highlighted in blue). The description of the classes and relationships
hat are not part of the extension (and that have not been addressed in this article), can be found in the article [17] Section
V, subsection A.

ppendix B

This Section shows the complete version of the models shown in Figs. 8 (Case 01. Animal tracking) and 11 (Case02.
ersonal mobility device (PMD) based on public bicycles) respectively in Figs. 15 and 16.

eferences

[1] E. Siow, T. Tiropanis, W. Hall, Analytics for the internet of things: A survey, ACM Comput. Surv. 51 (4) (2018) 74.
[2] S.M. Ghaleb, S. Subramaniam, Z.A. Zukarnain, A. Muhammed, Mobility management for IoT: a survey, EURASIP J. Wireless Commun. Networking

2016 (1) (2016) 1–25.
[3] K. Nahrstedt, H. Li, P. Nguyen, S. Chang, L. Vu, Internet of mobile things: Mobility-driven challenges, designs and implementations, in: 2016

IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), IEEE, 2016, pp. 25–36.
[4] H. Teng, Y. Liu, A. Liu, N.N. Xiong, Z. Cai, T. Wang, X. Liu, A novel code data dissemination scheme for internet of things through mobile vehicle

of smart cities, Future Gener. Comput. Syst. 94 (2019) 351–367.
[5] L. Nóbrega, A. Tavares, A. Cardoso, P. Gonçalves, Animal monitoring based on IoT technologies, in: 2018 IoT Vertical and Topical Summit on

Agriculture - Tuscany (IOT Tuscany), 2018, pp. 1–5.
[6] F. Almada-Lobo, The industry 4.0 revolution and the future of manufacturing execution systems (MES), J. Prod. Innov. Manage. 3 (4) (2015)

16–21.
[7] M.B. Yassein, S. Aljawarneh, W. Al-Sarayrah, Mobility management of internet of things: Protocols, challenges and open issues, in: 2017

International Conference on Engineering & MIS, ICEMIS, IEEE, 2017, pp. 1–8.
[8] J.E. Luzuriaga, J.C. Cano, C. Calafate, P. Manzoni, M. Perez, P. Boronat, Handling mobility in IoT applications using the MQTT protocol, in: 2015

Internet Technologies and Applications, ITA, IEEE, 2015, pp. 245–250.
[9] L. Farhan, S.T. Shukur, A.E. Alissa, M. Alrweg, U. Raza, R. Kharel, A survey on the challenges and opportunities of the internet of things (IoT),

in: 2017 Eleventh International Conference on Sensing Technology, ICST, IEEE, 2017, pp. 1–5.
[10] Oasis, Message queuing telemetry transport (MQTT) v5.0 oasis standard, 2019, URL https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.
[11] CoAP, The constrained application protocol (CoAP) - RFC 7252, 2014, https://datatracker.ietf.org/doc/html/rfc7252.
[12] S.-M. Cheng, P.-Y. Chen, C.-C. Lin, H.-C. Hsiao, Traffic-aware patching for cyber security in mobile IoT, IEEE Commun. Mag. 55 (7) (2017) 29–35.
[13] X. Liu, N. Ansari, Toward green IoT: Energy solutions and key challenges, IEEE Commun. Mag. 57 (3) (2019) 104–110.
[14] J.E. Luzuriaga, M. Perez, P. Boronat, J.C. Cano, C. Calafate, P. Manzoni, Improving mqtt data delivery in mobile scenarios: Results from a realistic

testbed, Mob. Inf. Syst. 2016 (2016).
[15] B. Selic, The pragmatics of model-driven development, IEEE Softw. 20 (5) (2003) 19–25.
[16] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling languages in industry 4.0: An extended systematic mapping study, Softw. Syst.

Model. 19 (1) (2020) 67–94.
[17] J.A. Barriga, P.J. Clemente, E. Sosa-Sánchez, A.E. Prieto, SimulateIoT: Domain specific language to design, code generation and execute IoT

simulation environments, IEEE Access 9 (2021) 92531–92552.
[18] M. Bouaziz, A. Rachedi, A survey on mobility management protocols in wireless sensor networks based on 6LoWPAN technology, Comput.

Commun. 74 (2016) 3–15.
[19] C.C. Sobin, A survey on architecture, protocols and challenges in IoT, Wirel. Pers. Commun. (ISSN: 1572-834X) 112 (3) (2020) 1383–1429, URL

https://doi.org/10.1007/s11277-020-07108-5.
[20] R. Silva, J.S. Silva, F. Boavida, A proposal for proxy-based mobility in WSNs, Comput. Commun. 35 (10) (2012) 1200–1216.
[21] R. Silva, J. Sa Silva, F. Boavida, Mobility in wireless sensor networks – Survey and proposal, Comput. Commun. (ISSN: 0140-3664) 52 (2014)

1–20, URL https://www.sciencedirect.com/science/article/pii/S0140366414001911.
[22] B. Bettoumi, R. Bouallegue, LC-DEX: Lightweight and efficient compressed authentication based elliptic curve cryptography in multi-hop

6LoWPAN wireless sensor networks in HIP-based internet of things, Sensors (ISSN: 1424-8220) 21 (21) (2021) URL https://www.mdpi.com/1424-
8220/21/21/7348.

[23] H.A. Al-Kashoash, H. Kharrufa, Y. Al-Nidawi, A.H. Kemp, Congestion control in wireless sensor and 6LoWPAN networks: toward the internet of
things, Wirel. Netw. 25 (8) (2019) 4493–4522.

[24] M.L. Miguel, E. Jamhour, M.E. Pellenz, M.C. Penna, SDN architecture for 6LoWPAN wireless sensor networks, Sensors 18 (11) (2018) 3738.
[25] R. Hamidouche, Z. Aliouat, A.M. Gueroui, A.A.A. Ari, L. Louail, Classical and bio-inspired mobility in sensor networks for IoT applications, J.

Netw. Comput. Appl. 121 (2018) 70–88.
25

http://refhub.elsevier.com/S1574-1192(23)00009-3/sb1
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb2
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb2
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb2
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb3
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb3
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb3
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb4
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb4
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb4
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb5
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb5
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb5
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb6
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb6
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb6
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb7
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb7
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb7
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb8
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb8
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb8
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb9
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb9
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb9
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://datatracker.ietf.org/doc/html/rfc7252
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb12
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb13
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb14
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb14
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb14
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb15
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb16
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb16
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb16
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb17
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb17
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb17
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb18
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb18
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb18
https://doi.org/10.1007/s11277-020-07108-5
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb20
https://www.sciencedirect.com/science/article/pii/S0140366414001911
https://www.mdpi.com/1424-8220/21/21/7348
https://www.mdpi.com/1424-8220/21/21/7348
https://www.mdpi.com/1424-8220/21/21/7348
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb23
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb23
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb23
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb24
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb25
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb25
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb25


J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751
[26] Y. Chen, T. Kunz, Performance evaluation of IoT protocols under a constrained wireless access network, in: 2016 International Conference on
Selected Topics in Mobile Wireless Networking (MoWNeT), 2016, pp. 1–7.

[27] J.E. Luzuriaga, J.C. Cano, C. Calafate, P. Manzoni, M. Perez, P. Boronat, Handling mobility in IoT applications using the MQTT protocol, in: 2015
Internet Technologies and Applications, ITA, 2015, pp. 245–250.

[28] S. Chun, J. Park, Mobile CoAP for IoT mobility management, in: 2015 12th Annual IEEE Consumer Communications and Networking Conference,
CCNC, 2015, pp. 283–289.

[29] C. Atkinson, T. Kuhne, Model-driven development: a metamodeling foundation, IEEE Softw. 20 (5) (2003) 36–41.
[30] S. Sendall, W. Kozaczynski, Model transformation: The heart and soul of model-driven software development, IEEE Softw. 20 (5) (2003) 42–45.
[31] C. Perkins, Mobile IP, IEEE Commun. Mag. 35 (5) (1997) 84–99.
[32] R. Wakikawa, Z. Zhu, L. Zhang, A survey of mobility support in the internet. RFC 6301, 2011, URL https://www.rfc-editor.org/info/rfc6301.
[33] R. Moskowitz, P. Nikander, P. Jokela, T. Henderson, Host Identity Protocol, Tech. rep., 2008.
[34] A.R. Sfar, E. Natalizio, Y. Challal, Z. Chtourou, A roadmap for security challenges in the internet of things, Digit. Commun. Netw. 4 (2) (2018)

118–137.
[35] C. Thomás Oliveira, R. Moreira, F. de Oliveira Silva, R. Sanches Miani, P. Frosi Rosa, Improving security on IoT applications based on the FIWARE

platform, in: 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications, AINA, 2018, pp. 686–693.
[36] E. Tuyishimire, A. Bagula, A. Ismail, Clustered data muling in the internet of things in motion, Sensors (ISSN: 1424-8220) 19 (3) (2019) URL

https://www.mdpi.com/1424-8220/19/3/484.
[37] A. Bagula, E. Tuyishimire, J. Wadepoel, N. Boudriga, S. Rekhis, Internet-of-things in motion: A cooperative data muling model for public

safety, in: 2016 Intl IEEE Conferences on Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
2016, pp. 17–24.

[38] O. Tsilomitrou, N. Evangeliou, A. Tzes, Mobile robot tour scheduling acting as data mule in a wireless sensor network, in: 2018 5th International
Conference on Control, Decision and Information Technologies (CoDIT), 2018, pp. 327–332.

[39] A. Ismail, E. Tuyishimire, A. Bagula, Generating dubins path for fixed wing uavs in search missions, in: International Symposium on Ubiquitous
Networking, Springer, 2018, pp. 347–358.

[40] R. Kays, M.C. Crofoot, W. Jetz, M. Wikelski, Terrestrial animal tracking as an eye on life and planet, Science 348 (6240) (2015) aaa2478, URL
https://www.science.org/doi/abs/10.1126/science.aaa2478.

[41] T.M. Behera, S.K. Mohapatra, U.C. Samal, M.S. Khan, Hybrid heterogeneous routing scheme for improved network performance in WSNs for
animal tracking, Internet Things (ISSN: 2542-6605) 6 (2019) 100047, URL https://www.sciencedirect.com/science/article/pii/S2542660518301914.

[42] F. Maroto-Molina, J. Navarro-García, K. Prí ncipe Aguirre, I. Gómez-Maqueda, J.E. Guerrero-Ginel, A. Garrido-Varo, D.C. Pérez-Marín, A low-
cost IoT-based system to monitor the location of a whole herd, Sensors (ISSN: 1424-8220) 19 (10) (2019) URL https://www.mdpi.com/1424-
8220/19/10/2298.

[43] Q.M. Ilyas, M. Ahmad, Smart farming: An enhanced pursuit of sustainable remote livestock tracking and geofencing using IoT and GPRS, Wirel.
Commun. Mob. Comput. (ISSN: 1530-8669) 2020 (2020) 6660733, URL https://doi.org/10.1155/2020/6660733.

[44] J.G. Panicker, M. Azman, R. Kashyap, A LoRa wireless mesh network for wide-area animal tracking, in: 2019 IEEE International Conference on
Electrical, Computer and Communication Technologies, ICECCT, 2019, pp. 1–5.

[45] P. Sadhukhan, An IoT-based E-parking system for smart cities, in: 2017 International Conference on Advances in Computing, Communications
and Informatics, ICACCI, 2017, pp. 1062–1066.

[46] F. Behrendt, Why cycling matters for smart cities. Internet of bicycles for intelligent transport, J. Transp. Geogr. (ISSN: 0966-6923) 56 (2016)
157–164, URL https://www.sciencedirect.com/science/article/pii/S0966692316300746.

[47] R. Sanchez-Iborra, L. Bernal-Escobedo, J. Santa, Eco-efficient mobility in smart city scenarios, Sustainability (ISSN: 2071-1050) 12 (20) (2020)
URL https://www.mdpi.com/2071-1050/12/20/8443.

[48] A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, Blockchain for IoT security and privacy: The case study of a smart home, in: 2017 IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2017, pp. 618–623.

[49] Z. Ning, P. Dong, X. Kong, F. Xia, A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things,
IEEE Internet Things J. 6 (3) (2019) 4804–4814.

[50] Q. Fan, N. Ansari, Application aware workload allocation for edge computing-based IoT, IEEE Internet Things J. 5 (3) (2018) 2146–2153.
[51] H. Jayakumar, A. Raha, Y. Kim, S. Sutar, W.S. Lee, V. Raghunathan, Energy-efficient system design for IoT devices, in: 2016 21st Asia and South

Pacific Design Automation Conference (ASP-DAC), IEEE, 2016, pp. 298–301.
[52] N. Kaur, S.K. Sood, An energy-efficient architecture for the internet of things (IoT), IEEE Syst. J. 11 (2) (2015) 796–805.
[53] D.S. Kolovos, A. García-Domínguez, L.M. Rose, R.F. Paige, Eugenia: towards disciplined and automated development of GMF-based graphical

model editors, Softw. Syst. Model. (2015) 1–27.
[54] OMG, OMG Object Constraint Language (OCL), Version 2.3.1, 2012, URL http://www.omg.org/spec/OCL/2.3.1/.
[55] Obeo, Acceleo project , 2012,.
26

http://refhub.elsevier.com/S1574-1192(23)00009-3/sb26
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb26
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb26
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb27
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb27
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb27
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb28
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb28
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb28
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb29
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb30
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb31
https://www.rfc-editor.org/info/rfc6301
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb33
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb34
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb34
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb34
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb35
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb35
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb35
https://www.mdpi.com/1424-8220/19/3/484
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb37
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb37
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb37
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb37
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb37
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb37
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb37
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb38
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb38
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb38
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb39
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb39
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb39
https://www.science.org/doi/abs/10.1126/science.aaa2478
https://www.sciencedirect.com/science/article/pii/S2542660518301914
https://www.mdpi.com/1424-8220/19/10/2298
https://www.mdpi.com/1424-8220/19/10/2298
https://www.mdpi.com/1424-8220/19/10/2298
https://doi.org/10.1155/2020/6660733
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb44
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb44
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb44
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb45
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb45
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb45
https://www.sciencedirect.com/science/article/pii/S0966692316300746
https://www.mdpi.com/2071-1050/12/20/8443
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb48
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb48
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb48
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb49
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb49
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb49
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb50
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb51
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb51
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb51
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb52
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb53
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb53
http://refhub.elsevier.com/S1574-1192(23)00009-3/sb53
http://www.omg.org/spec/OCL/2.3.1/

	Design, code generation and simulation of IoT environments with mobility devices by using model-driven development: SimulateIoT-Mobile
	Introduction
	Related works
	Introduction to SimulateIoT-Mobile 
	MQTT Mobility Management Model
	Preliminary considerations
	Entities to support mobility in the MQTT protocol: The Broker Discovery Service and the Topic Discovery Service 
	Disconnection periods and packet loss
	Security issues
	Model deployment and interactions between entities
	Envisioned scenarios 

	 Extensions of Metamodel and Concrete Syntax
	 Metamodel extensions 
	 Device movement
	 Disconnection periods and packet loss
	 Jitter
	 Battery Management
	  The Broker Discovery Service and the Topic Discovery Service
	 Security issues

	 Graphical Concrete Syntax and validator extensions

	 Extensions of Model-to-text transformations
	 Device Movement
	 Disconnection periods and packet loss
	 Jitter
	 Battery Management
	 Broker Discovery Service and Topic Discovery Service
	 Security issues
	 IoT environment generated from M2T transformations

	Simulation outputs and analysis that can be obtained from the extensions
	Case Studies
	Case 1: Animal tracking 
	Model definition 
	Model-to-text transformation and deployment 
	Simulation analysis 

	Case 2: Personal mobility device (PMD) based on public bicycles
	Model definition 
	Model-to-text transformation and deployment 
	Simulation analysis 


	Discussion
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A
	Appendix B
	References


