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A B S T R A C T

The continuous increase in the number of devices connected to the Internet, together with the growth of
applications and services, has made the tasks of network traffic analysis and classification essential in any
environment. The deployment of 5G networks has prompted the research community to establish the pillars
of Next-Generation Networks. These include intelligent systems, providing the network with intelligence in
management and security tasks. In addition, these tasks require mechanisms capable of characterizing traffic
in order to make network decisions. In this context, this paper proposes a novel methodology for processing
network traffic using the L-moments theory and Machine Learning algorithms. This methodology is robust to
outliers, requires few data to characterize the flows and subsequently fit the classification models. The results
show that L-moments are particularly useful for processing network flows, and the classification algorithms
obtain very high-quality results. Moreover, we show that the considered statistical tools also allow for a better
understanding of the attack behaviour, leading the way to the improvement of the feature selection in similar
problems.
. Introduction

The major leap towards intelligent network management is thanks
o 5G, mainly due to the introduction of software-defined, virtual-
zation and slicing, among other techniques. These techniques allow
ervices and applications to be virtualized on the network so that
ntelligent systems can be deployed as applications for both network
anagement and security purposes. Moreover, the massive and contin-
ous increase in network traffic makes the need to analyse and classify
t even more essential. The sixth generation (6G) is not yet completely
efined, but the research community agrees that these technologies
ill remain crucial. Furthermore, as intelligent systems evolve towards
etwork self-management, Artificial Intelligence (AI) becomes much
ore important in Next-Generation Networks (NGNs) being the key

haracteristic of 6G autonomous networks [1].
Network and service management in 5G, Beyond 5G and especially

G networks, including network security, are expected to be completely
utonomous [2]. To achieve this, these networks will be driven on the
ero-touch network and Service Management (ZSM) concept defined
y European Telecommunications Standards Institute [3]. This paradigm
ims to integrate AI into the network as a key technology supported by
oftware-defined and virtualization techniques. In this way, networks
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will be able to manage themselves by taking decisions without the need
for human intervention [4], thereby optimizing capital expenditure and
operating expenses [5]. For achieving this automation, network traffic
analysis and classification techniques are crucial to provide networks
with relevant information to guide them in taking accurate decisions.

In this scenario, network traffic analysis is a hot topic for the
scientific community, specifically from the network security assessment
point of view. In this area, different techniques have been employed
for threat detection by analysing network traffic and flows: (i) port-
based analysis is the simplest and no longer useful technique due to
the large proliferation of new services and applications using non-IANA
well-defined ports [6]; (ii) Deep Packet Inspection (DPI) emerges as
an alternative, but its major limitations are that it is only applicable
to non-encrypted packets and the problems regarding the user’s pri-
vacy, leading the way for the proposal of Machine Learning (ML) or
Deep Learning (DL) techniques to mitigate these drawbacks [7]; (iii)
payload-based technique uses only the information contained in the ap-
plication layer payload and is usually deployed together with DPI [6];
(iv) statistical-based approaches use payload-independent parameters
(e.g., flow duration, inter-arrival time, header length,
etc.), which can be used as input to different statistical, ML or DL
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Fig. 1. Complete framework. The stages of the proposed methodology are represented with rectangles connected with arrows. Blue elements represent the modifiable parameters
in this framework.
models. Finally, in recent years, there has been a growth in DL models
applied to the network traffic classification [8].

L-moments have been widely used in different research fields since
their proposal in 1990 [9], and network security and management
has not been one of the most significant ones. The field with the
most applications is climate analysis, especially regional frequency
analysis [10]. Some specific examples include modelling probability
distributions of wind and precipitation [11]. However, they have also
been used in other fields like bioengineering for target classification
in radar applications [12] and in the context of complex network
theory [13]. Some additional examples include financial data and stock
analysis [14,15], reliability disciplines [16], mathematical modelling
of mechanical processes [17] or medical data [18]. Finally, as far as
authors know, L-moments have only been used in two works related
to network traffic analysis: (i) in [19] L-moments are used to fit the
generalized Pareto distribution to network traffic data, especially to a
heavy-tailed data sample; (ii) in [20] L-moments are used to charac-
terize network flows. The latter is one of the first approaches of the
authors to this methodology and a preliminary work of the present
article.

This article proposes a novel methodology to classify network traffic
data using L-moments and ML algorithms. L-moments allow the use of
higher-order statistical moments avoiding the restrictions regarding the
required amount of data for the estimation procedure. This advantage,
together with the requirement of low computational resources, allows
real-time data processing. Being this the first formal proposal of this
methodology, the ML algorithms considered are k-Nearest Neighbours
(kNN) and Support Vector Machines (SVM). In order to show the
applicability of the proposed methodology, the experimentation has
been performed with the CIC-DDoS2019 dataset [21]. This dataset
contains scenarios with different up-to-date realistic DDoS and DrDoS
attacks.

There are significant differences between [20] and the present work:
(i) in this work, traffic data are analysed in a realistic way, i.e. data
flows are not previously divided into benign/attack flows; (ii) in this
work, we actually analyse and classify the traffic data using different
state-of-the-art algorithms; (iii) in this work we consider a more re-
alistic and state-of-the-art database, focusing on a specific attack. In
short, [20] is just an exploratory work where the authors shown that
network traffic data could be analysed with the L-moment statistical
theory, while this is a complete analysis in a realistic scenario.

The rest of the document is organized as follows. Section 2 focuses
on the theoretical background and technological basis of the pro-
posed methodology; Section 3 details the set-up and the experimental
evaluation conducted to validate our proposal; Section 4 shows and
discusses some results obtained after the application of the proposed
methodology, and also provides future directions for research. Finally,
Section 5 concludes this article.
117
2. Framework and methods

This section describes the complete framework as well as each stage
of the proposed methodology. Fig. 1 shows these stages, indicating in
blue the inputs that can be modified. These inputs are described as
follows:

• Data — input dataset. A cybersecurity-related dataset in this
work, however, this methodology can be applied in other fields.

• 𝒏 — amount of samples used to estimate each L-moment ratio,
i.e., each point of the L-moment ratio diagram (LmomRD).

• 𝒌 — number of folds used in cross-validation.
• Algorithms— network traffic classification algorithm. This meth-

odology allows the usage of multiple algorithms for the classi-
fication task.

• Metrics — evaluation metrics used for results analysis.

The following subsections provide a more in-depth description of
each of the stages of this methodology. First, L-moments and LmomRD
are briefly described. Then, the two ML algorithms used in this article
are defined, although any type of classification or clustering algorithms
can be used in this methodology.

2.1. L-moments

In data analysis, statistical moments are used to characterize the
geometry of distributions and summarize samples. Standard statistical
practise is based on ‘‘classical’’ or ‘‘conventional’’ moments, also known
in the literature as product moments. However, product moments are
just one of the available moment definitions, being the L-moments
theory [9] the selected framework for this work.

In short, the L-moments are calculated by means of a linear com-
bination of the expected values of order statistics. L-moments are
suitable for data with large skew, large or long tails, or outliers [10,
22], characteristics that several variables obtained from network flow
data fulfil [20]. Furthermore, L-moment estimators are unbiased, ro-
bust to outliers and with low sampling variability [9,10], leading to
more accurate and precise estimations than product moments. Also,
the sample size required to accurately estimate L-moments is sig-
nificantly lower than for the product moments [9]. Further details
regarding L-moments, such as their formal definition as well as their
basic properties and estimators, can be found in [9].

Another great benefit of using L-moments is that this theory is
parallel to the product moment theory also in terms of interpretation.
That is, the first L-moment (𝜆1) is defined as L-location and equals the
mean of the distribution or average value of the dataset; this is the
only case where the values are the same for both statistical theories.
The second L-moment (𝜆2) is known as L-scale and gives insight into
the scale of dispersion, the third one (𝜆 ) describes the asymmetry, the
3
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Fig. 2. LmomRD of some common distributions (GLO: Generalized Logistic; GEV:
Generalized Extreme Value; GPA: Generalized Pareto; GNO: Generalized Normal; PE3:
Pearson Type 3 or Gamma; WEI: Weibull; WAK.LB: Lower bound of the Wakeby
distribution; ALL.LB: Lower threshold for any distribution) [9].

fourth L-moment (𝜆4) is related to the tails of a given distribution, and
o on.

The standardized versions of 𝜆3 and 𝜆4 are named as L-skewness (𝜏3)
and L-kurtosis (𝜏4), respectively. They also have the same interpretation
as the skewness and kurtosis in classical statistics, e.g., 𝜏3 > 0 (< 0)
ndicates positive (negative) symmetry and 𝜏4 > 0 (< 0) indicate
ositive (negative) kurtosis. L-skewness and L-kurtosis are both lower
nd upper-bounded by definition for all distributions, a very interest-
ng property that allows, for example, the direct comparison between
istributions with significantly different locations and scales.

In this work, 𝜏3 and 𝜏4 will be estimated for the selected network
raffic parameters and will be the input to the classification algorithms.

.2. LmomRD

The L-moment theory provides also an extremely useful graphical
ool: the L-moments ratio diagram, previously defined as the acronym
momRD. This tool is mainly used for exploratory analysis as well as
or distribution selection tasks, however in this work enables a visual
esult presentation, interpretation and comparison.

The LmomRD plots tuples (usually pairs) of L-moment ratios, each
lement in one axis. The most common pair of L-moment ratios to
e related using this diagram is the {𝜏3, 𝜏4} one. It is also common
o include in the LmomRD the theoretical L-moment ratios for some
ommon distributions (see Fig. 2). In order to facilitate the interpreta-
ion and result comparison, all figures presented in this work will also
nclude these theoretical lines, following the same legend.

.3. Algorithms

As previously mentioned, the proposed methodology can include
ny clustering algorithm, classification technique, and even more com-
lex ML or DL models. Basically, this framework can include any type
f algorithm capable of classifying the points of the LmomRD. Given
ll available algorithms that fulfil the previous requirement, in this
ork two different yet state of the art representative algorithms are

onsidered. In the following, these are briefly described; please refer to
he original publications for further details.

The first considered algorithm is kNN, the non-parametric classifi-
ation method proposed in 1951 [23]. kNN is a method used for both
egression and classification since in both cases the algorithm takes as
nput the k samples closest to the dataset. If used for regression, the
utput of the algorithm is the average of the values of the k nearest
eighbours. If used for classification, the output is a property class of
he object based on its k neighbours.

The second considered algorithm is SVM. These are a set of su-
ervised learning algorithms that analyse data in order to perform
 p
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classification or regression tasks and outliers detection. Proposed in
1992 [24], it has become one of the most robust prediction methods
available currently. An SVM is a model that represents the data samples
in space, separating the classes by a hyperplane or set of hyperplanes.
Each hyperplane is defined as the vector between the points of the two
nearest classes, which is called the support vector.

2.4. Evaluation metrics

In this work, results are quantitatively analysed using the balanced
accuracy metric, which is defined as follows:

Balanced Accuracy = 1
2

( 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+ 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

)

(1)

here 𝑇𝑃 is the number of true positives, 𝐹𝑁 is the number of false
egatives, 𝑇𝑁 is the number of true negatives and 𝐹𝑃 is the number
f false positives. The balanced accuracy is a widely accepted metric in
he scientific literature and it is suitable for unbalanced datasets, like
he one considered in this work (see Section 3.1 for details regarding
he dataset). Recall that the proposed framework allows any evaluation
etric.

. Experimental setting

In order to validate the usefulness of the proposed framework, we
valuate it using a state-of-the-art cybersecurity-related dataset. This
ection describes the experimental setting and the considered dataset.

.1. CIC-DDoS2019 dataset

There are multiple network traffic datasets available for the research
ommunity, each considering specific scenarios and applications, and
ven with a variety of DDoS attacks. As the attacks are continuously
volving and presenting new challenges, new datasets are created that
ontain the latest information about the attacks.

In this work, we use the CIC-DDoS2019 dataset [21], as nowadays
an be considered as the state-of-the-art dataset for any work that
nalyses network threats, specifically DDoS threats. This dataset has
een generated by the Canadian Institute for Cybersecurity (CIC) with
he aim of remedying all current deficiencies related to DDoS attacks.
he dataset contains traffic flows belonging to different types of DDoS
ttacks that resemble actual real-world data.

In addition to the captured traffic, the authors of the dataset
rovide labelled CSV files generated by the CICFlowMeter-V3 tool.
ICFlowMeter-V3 is a tool designed by CIC to perform analysis of the
aptured flows. The flow features obtained by this tool are based on the
ime stamp, source and destination IPs and ports, protocols, packets,
nter-arrival time between packets, etc.

The CIC-DDoS2019 dataset contains an abstract behaviour of 25
sers using the HTTP, HTTPS, FTP, SSH and email protocols. It in-
ludes network flows and CSV files for 10 DrDoS and 12 DDoS attacks
aptured in two days.

.2. Experimental application

The experimental application implements all the stages included in
he considered framework, starting from the initial parameters con-
iguration and ending with the result representation. It automates the
rocess of analysing the network flows of the input dataset. Besides
alculating the L-moments and L-moment ratios to train classification
lgorithms, the application can perform an automatic analysis to es-
ablish which features of the dataset are the most promising to obtain
he best classifications. This approach is very useful before deploying
he trained models in the intelligent network since these models will
e trained with the most promising features and will be as efficient as
ossible.
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Table 1
Balance accuracy scores obtained for all the considered scenarios. Columns indicate the
scenario and rows indicate the classification algorithm. The last row includes accuracy
results from [26] for comparison purposes.

(a) (b) (c) (d) (e) (f)

kNN-unif .9994 .8708 .9991 .9989 .6660 .9370
kNN-dist .9995 .9666 .9991 .9800 .7549 .9545
SVM-lin .9995 .9791 .9991 .8584 .8438 .6125
SVM_RBF .9994 .9791 .9991 .9795 .9556 .9995
SVM-poly .9924 .9916 .9978 .9784 .6660 .9820

DIDDOS [26] .9952 .9997 .9997 .9987 .9996* .9998

First, the CIC-DDoS2019 dataset is loaded and properly organized
sing the Python available variable representation. Following, the L-
oment ratios are calculated using the 𝑛 = 200 value, meaning that

for each point of the LmomRD a total of 200 data packets are used.
The data packets are analysed by means of a non-overlapping sliding
window. The 𝑛 = 200 value was empirically determined during the ini-
tial tests and it is a trade-off between moment estimation accuracy and
delay. Using lower 𝑛 values lead to less accurate moment estimation,
while using larger 𝑛 values imply larger delays in the analysis. Recall
that the considered L-moments are third and fourth-order statistical mo-
ments, therefore using such a low amount of data packets to properly
estimate them is one of the main reasons the L-moment theory was
included in this methodology.

At this point, the LmomRDs are plotted. This step is used mainly
as an auxiliary step to visually observe the input to the classification
algorithms increasing the user-friendliness of the application. After-
wards, the classification task is performed with either kNN and SVM
algorithm, together with the cross-validation technique [25]. In this
work, 5-fold cross-validation is performed (input parameter 𝑘 = 5) and
the folds are made by preserving the percentage of samples for each
class. Finally, the balanced accuracy metric of the classifications for
the trained models is computed with the test subset.

Regarding the algorithm-related parameters, both kNN and SVM are
configured attending their particular features. For kNN, we consider
k =

√

𝑁∕2, being 𝑁 is the size of the training set. The choice of an
djustable value for k is a consequence of the dataset characteristics,
here each scenario has a different amount of data. With this k the kNN
lgorithm is able to properly adapt to each scenario, obtaining better
ccuracy and avoiding both under and over-fitting. We also consider
he following weights functions: uniform and distance. The first one
onsiders the same distance between neighbours, and the second one
akes into account the distance between points in the classification
pace. These two cases will be labelled as ‘‘kNN-unif’’ and ‘‘kNN-dist’’,
espectively, in the rest of this document.

On the other hand, for SVM we consider the following three kernels:
inear, polynomial and Radial Basis Function (RBF). The first one
reates a linear hyperplane; the second one uses a polynomial (degree
) function; the last one uses 𝛾 = 1∕(𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⋅𝜎2

), where 𝛾 is a scalar that
efines how much influence a single training example has, 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
s the number of features and, 𝜎 is the variance. These three cases will
e labelled as ‘‘SVM-lin’’, ‘‘SVM-poly’’ and ‘‘SVM-RBF’’, respectively, in
he rest of this document.

. Results and discussion

This section includes the presentation and discussion of the results,
s well as a brief analysis of the main benefits and drawbacks of the
roposed methodology.

The experimentation has been conducted with the complete CIC-
DoS2019 dataset. In this work, we show the results for a total of six
ifferent scenarios, in order to show the potential of this methodology.
hese scenarios differentiate one from another in terms of the consid-
red attack (either DDoS or DrDoS), the flow feature and/or different
raffic capture of the dataset, i.e., different capture days. The following

ist details the characteristics of each scenario:
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(a) DrDos attack using a Network Time Protocol (NTP) vulnerability
to amplify UDP traffic to the victim and benign traffic; packet
length mean feature; attack captured on the first day of the
dataset.

(b) DrDoS attack amplified by the Trivial File Transfer Protocol
(TFTP) and benign traffic; destination port feature; attack cap-
tured on the first day of the dataset.

(c) Scenario with the same characteristics as scenario (b) except for
the feature; in this case, the feature is maximum packet length.

(d) DrDoS attack amplified by Portmap and benign traffic; packet
length mean feature; attack captured on the second day of the
dataset.

(e) DrDoS, amplified by NetBIOS and by LDAP, and benign traffic;
packet length mean feature; attack captured on the second day of
the dataset. This is a scenario where two different attacks are
considered and multi-class classification is applied.

(f) DDoS attack with TCP SYN flood, where the attackers initi-
ate massive TCP connections to the victim without terminating
the connection consuming the victim’s resources hindering the
ability to not respond to legitimate traffic; minimum forwarding
inter-arrival time feature; attack captured on the second day of
the dataset.

The obtained results are represented in Fig. 3, where each inset
represents an LmomRD (𝜏3 vs. 𝜏4), calculated using 𝑛 data packets,
identifying benign flows and attacks with different colours and markers.
In order to better understand the classification results, each point is
labelled as benign (attack) when the majority of the 𝑛 data packets
used for each L-moment calculation are labelled as benign (attack).
These points are the input to each considered classification algorithm,
and the obtained balanced accuracy scores for all cases are showed in
Table 1. In both figures, each scenario is identified by the label used in
the previous list and, in the following, we discuss the results for each
scenario.

4.1. LmomRD

In most cases, benign and attack markers are blended in the
LmomRD. In particular, these are the points where the proportion of
𝑛 benign and attack data flows used to estimate each L-moment are
similar. This mix will be the source of errors for the classification
algorithms, an expected situation in these kinds of problems.

Starting with the considered features, let us start with scenarios
(a), (d) and (e) where the same feature (packet length mean) is used
to analyse different attacks. This feature selection is not casual and
helps with the method validation. We can observe that, as expected,
clusters corresponding to benign traffic, although with a small number
of points, are concentrated around similar values of 𝜏3 and 𝜏4 across
the three insets.

Regarding the cluster localization and shape in general, they en-
tirely depend on the traffic type (attack or benign) and the selected
feature. In general, benign traffic tends to have positive L-skewness,
indicating that the data distribution follows a probability distribution
where most of the data are concentrated in the lower range. Also,
benign traffic tends to have positive L-kurtosis, indicating that distribu-
tion tails are heavier than for a Normal distribution, therefore outliers
are more likely.

Attack behaviour in terms of the LmomRD shows two quite some
different situations: low and high cluster dispersion. On one hand,
scenarios (c), (d) and DrDoS-NetBIOS from (e) reveal a significantly
high range for L-skewness. This fact indicates that the values of the
measured feature do not necessarily concentrate around a ‘‘gravity
point’’ and can also indicate changes in the data statistics over time. The
dispersed cluster behaviour can be explained by the way DrDoS works
and its impact on the considered features, as through the network travel

both short-length request packets as long-length response packets. The
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Fig. 3. LmomRD for the six considered scenarios. Each inset identifies the corresponding scenario in the left-lower corner. Attack and benign data are identified with different
markers and colours, see legend for each scenario in the right-lower corner.
temporal behaviour would be very interesting to be analysed with more
detail in future work, searching for example if there is some kind of
relation between L-skewness and the duration of the attack and/or the
temporal organization of the attack. In these three cases, the L-kurtosis
is positive in all cases with rather high values, revealing heavy tails and
therefore high outlier probability.

On the other hand, scenarios (a), (b), DrDoS-LDAP from (e) and
(f) show less dispersion in the obtained clusters for attack traffic, but
also with different behaviour. For example, DrDoS-NTP from (a) and
DrDoS-LDAP from (e) show high negative L-skewness, while DDoS-TCP-
SYN from (f) reveal high positive L-skewness, while the tree cases show
slightly high positive L-kurtosis. These facts reveal that these features
for these specific attacks concentrate around a ‘‘gravity point’’ (either
at the lower or the higher side of the range) and have quite some
heavier tails than the Normal distribution, i.e., high probability for
outliers. The extreme values obtained for the L-skewness in the three
cases are also due to the attack/feature combination: (i) attacks from
scenarios (a) and DrDoS-LDAP from (e) do not get any response from
the victim and only long-length packets generated by the amplification
mechanism travel through the network; (ii) attack from scenario (f)
establishes a high amount of connections with the victim that lead to
a significant increase in the packet transmission rate and this fact is
reflected in the considered feature. Finally, DrDoS-TFTP from (b) has
both low L-skewness and low L-kurtosis, meaning that these features
could be easily adjusted to a Uniform distribution. Again, this statistical
behaviour is the expected one for this feature, as the DrDoS attack tries
to collapse a device by flooding a specific port. The variation around
the (0, 0) point is due to the mix of benign and attack in the 𝑛 packets
used to estimate each L-moment.

4.2. Balanced accuracy

Once understood the scenario behaviours, the classification results
are now analysed in terms of the balanced accuracy metric. These re-
sults are shown in Table 1 for all the considered algorithms (with their
120
respective settings) and scenarios. Precision, recall, and 𝐹1-score values
have also been obtained to validate the results of the accuracy and can
be found in the supplementary material. Best scores are marked in bold
font, however, it can be observed that the balanced accuracy is quite
high for the majority of the cases. From all considered scenarios, the
SVM-RBF algorithm is the one that obtains a better-balanced accuracy
score, even for the (e) scenario where other algorithms perform rather
poor.

Table 1 also shows the results obtained for the accuracy score
in a different work from the literature that analyses the same CIC-
DDoS2019 dataset, but with a Gated Recurrent Unit (GRU), a type of
Recurrent Neural Network (RNN) [26]. In order to properly compare
these scores, recall that in [26] the authors balance the dataset by
means of Synthetic Minority Oversampling Technique (SMOTE) and
compute the accuracy, while in this work we analyse the original
dataset and compute the balanced accuracy. Also note that the * in
scenario (e) of Table 1 is due to the fact that DIDDOS classifies the two
attacks involved individually, while our proposal performs a multi-class
classification considering both attacks at the same time.

The approach followed [26] requires significantly higher computa-
tional resources for the RNN model compared with the methodology
proposed in this work. However, it can be observed that their accuracy
results differ quite little from the ones obtained in this work. Therefore,
we can conclude that the methodology proposed in this work obtains
results comparable in quality with more complex solutions published
in the literature, with the clear benefit of requiring less computational
resources for its implementation.

The previous results show a total of six scenarios, although the con-
sidered database includes other attacks and each flow has many other
features. The presented results show some positive cases, where the
combination of attack and feature leads to an adequate classification.
However, there are also cases where the balanced accuracy is not high
enough to properly separate attack from benign traffic. This situation

is common in this type of problem with datasets where the amount
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of available features is high and in an actual implementation, an initial
analysis and feature selection is unavoidable. Nevertheless, we consider
that the present results show a sufficient variety of cases to properly
validate the proposed methodology.

4.3. Drawbacks and benefits

Regarding the main pros and cons of the presented methodology, in
the following, we summarize them and propose several future research
lines.

On the drawback part, one of the most relevant ones is the re-
quirement to perform feature selection in order to obtain high-quality
results, and therefore high attack detection accuracy. However, this
also occurs in most classification problems, and it can be resolved by ei-
ther using information about the attack characteristics, performing ex-
ploratory analysis over the available database or even with automated
procedures. Another drawback of this methodology is that categorical
features would require preprocessing in order to define numerical val-
ues that would allow computing the corresponding L-moments. In any
case, network traffic databases usually include many more numerical
than categorical features and, depending on the scenario, this drawback
could be ignored. Finally, this is a new method that we validated
using a limited amount of scenarios and a specific database. For a
full validation and therefore usefulness, this method should be also
validated in an actual 5G scenario in a real-time operation, being this
one of our main future research and work lines.

On the positive part, this methodology has lower computational
complexity compared to other state-of-the-art procedures, as both the
L-moment estimation and the considered classification algorithms (kNN
and SVM) have low computational requirements [10,23,24]. It is worth
to mention that the total computational complexity depends on the
considered classification algorithm, however, we have shown that even
simple algorithms like kNN lead to high-quality classifications. This
methodology also allows a better understanding of the statistical be-
haviour of the data and even to study the temporal attack behaviour,
thanks to the usage of the LmomRD. This information can be useful
for the proposal of mitigation actions in an actual software-defined
scenario. Another benefit is that this methodology can be easily adapted
to include multi-feature analysis. This can be achieved by either in-
cluding a multivariate classification algorithm or by introducing the
L-comoments [10], e.g., L-correlation, in the framework, being this
idea another of our main future research lines. The last pro that we
would like to mention is the possibility to introduce in the framework
higher-order L-moments. This additional characteristic is straightfor-
ward from a programming point of view, however, it would require
some additional theoretical support for the result interpretation. When
considering higher-order L-moments, also multidimensional classifica-
tion will be enabled and LmomRDs with more than two dimensions
could be considered.

5. Conclusions

In 5G networks, the increase in connected devices and traffic vol-
ume has highlighted the need to analyse network traffic and classify
it for both intelligent management and security purposes. Therefore,
and in order to contribute to the progress towards Zero-touch networks,
this article proposes a novel methodology for analysing and classifying
network traffic. This methodology is based on the use of the L-moment
ratios, a tool that has proven to be very useful for this task and that,
to the best of our knowledge, has not been previously explored for this
application. In order to validate the methodology, experimentation has
been performed with the most up-to-date realistic dataset. The results
allow us to validate the methodology, showing comparative results with
another current proposal in the literature, and to propose various lines

of future research.
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