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Abstract 9 

Olive orchard is one of the main crops in the Mediterranean basin and, particularly, in 10 

Spain, with 56% of European production. In semi-arid regions, nitrogen (N) is the main 11 

limiting factor of olive trees after water and its quantification is essential to carry out 12 

accurate fertilization planning. In the present study, N status of an olive orchard located 13 

in Carmonita (southwest Spain) was analysed using hyperspectral data. Reflectance data 14 

were recorded with a high precision spectro-radiometer through the full spectrum (350–15 

2500 nm). Different vegetation indices (VI), combining two or three wavelengths, and 16 

partial least squares regression (PLSR) models were developed, and the prediction 17 

capabilities were compared. Different pre-processing (smoothing, SM; standard normal 18 

variate, SNV; first and second derivative) were applied to analyse the influence of the 19 

noise generated by the spectro-radiometer measurements when computing the 20 

determination coefficient between leaf N content (LNC) and spectra data. Results 21 

showed that second derivative combined with SNV pre-processing produced the best 22 

determination coefficients. The wavelengths most sensitive to N variation used to 23 

perform VI were selected from the visible and the short-wave infrared spectrum regions, 24 
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which relate to chlorophyll a+b and N absorption features. DCNI and TCARI showed 25 

the best fittings for the LNC prediction (R2=0.72, R2
cv=0.71; and R2=0.64, R2

cv=0.63, 26 

respectively). PLSR models yielded higher accuracy than the models based on VI 27 

(R2=0.98, R2
cv=0.56), although the large difference between calibration and cross-28 

validation showed more uncertainty in the PLSR models. 29 

 30 

Keywords: Leaf nutritional status, Linear regression, Nitrogen indices, Olive orchards, 31 

Partial Least Squares Regression, SWIR spectral region. 32 

 33 

Introduction 34 

Olive (Olea europaea L.) is one of the main crops in the Mediterranean basin. In 2016, 35 

the area under olive trees accounted for about 5 Mha in the European Union, with a 36 

production of 11.8 Mt of olives (61% of the worldwide yield; FAOSTAT 2017). 51% of 37 

the total European olive orchard surface is concentrated in Spain, 23% in Italy, 17% in 38 

Greece, 7% in Portugal and the 2% remaining in other countries (EUROSTAT 2017). In 39 

Spain, in recent years, the oleic sector contributed between 8% and 13% of annual 40 

agricultural production (FAOSTAT 2017). 41 

Traditionally, the yield of most Spanish olive orchards was limited by water supply, and 42 

soil management was mainly based on plough, disk and harrow tillage operations 43 

(López-Granados et al. 2004). Currently, precision agriculture techniques are being 44 

introduced in the sector and are targeted to reduce economic costs and adverse 45 

environmental effects of agricultural inputs (Akdemir et al. 2018). 46 

Nitrogen (N) is an essential element for plant growth and is the mineral nutrient most 47 

commonly applied in agriculture and in olive orchards fertilization. Between 2002 and 48 
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2014, more than 1,200 Mt of N were consumed in agriculture worldwide, compared to 49 

the 500 and 400 Mt of potassium (K) and phosphorus (P), respectively. During this 50 

period, N consumption increased by 32% (FAOSTAT 2017). Over-fertilization has 51 

negative economic and environmental effects. N loss by leaching and ground water can 52 

result in ground and aquifer contamination (Puckett et al. 2011). This affects carbon 53 

storage (Schulze et al. 1989) and produces a N deficiency that results in a reduction in 54 

yields and, therefore, economic losses to the farmers (Haboudane et al. 2002). This 55 

situation motivates the need to carry out efficient and sustainable management 56 

programmes of agricultural fertilization. 57 

Traditional techniques to estimate crop nutrient status are based on leaf sampling and 58 

foliar analysis. However, these methods are destructive, time-consuming and expensive. 59 

Moreover, traditional N estimates provide limited information, as sampling is based on 60 

only a limited number of sites in a given field (Camino et al. 2018). Therefore, it is 61 

necessary to consider efficient alternatives. 62 

In recent years, remote sensing for characterizing biophysical parameters of vegetation 63 

has had important potential implications for predicting chlorophyll (Chl) content as a 64 

proxy of the plant N status (Clevers et al. 2017). Several studies have demonstrated 65 

strong correlations between N content and Chl in crops, because of the large amount of 66 

protein that complexes the photosynthetic pigment (Cilia et al. 2014; Clevers et al. 67 

2017; Singh et al. 2017; Miphokasap and Wannasiri 2018). 68 

Spectral sensing is a spectroscopic method commonly used for assessing N content 69 

(Alchanatis et al. 2009). Hyperspectral data contain large amounts of redundant 70 

information due to the relatively few parameters that really and effectively control the 71 

spectral signatures of vegetation (Im and Jensen 2008). This relatively low number of 72 

variables contrasts with the often more than 100 wavelengths available through imaging 73 
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spectroscopy and from commercially available spectro-radiometers (Atzberger et al. 74 

2010). Therefore, in order to develop suitable indices, it is necessary to determine those 75 

wavelengths that presented a better correlation with the measured biophysical 76 

parameters. 77 

Reflectance spectra in the short-wave infrared (SWIR) spectrum region (1100–2500 78 

nm) have been found to be highly correlated with N content. Reflectance in this region 79 

is directly related to N-hydrogen (H) stretch, first overtone and absorption features of 80 

protein (Curran 1989). Several authors have shown improvements in N content 81 

estimations using SWIR spectral region to determine vegetation indices (VI), sometimes 82 

in combination with the visible and near-infrared (VNIR) region (350–1100 nm) (Cohen 83 

and Alchanatis 2018). Serrano et al. (2002) showed that NDNI1510_1680 (Normalized 84 

Difference Nitrogen Index), using log10 transformed reflectance, was sensitive to N 85 

concentration in chaparral vegetation. Ferwerda (2005) recommended NRI (Normalized 86 

Ratio Index) using the combination of reflectance at 1770 nm and 693 nm for the best 87 

correlation with N content of different species: olive, willow, mopane, grass and shrubs. 88 

Herrmann et al. (2010) obtained the best estimated N content in potatoes plants using 89 

the NRI1510 and MCARI1510 indices, which combined information from the 1510 nm and 90 

660 nm wavelengths. Camino et al. (2018) reported that the use of the SWIR spectral 91 

range to determine VI provided better quantification of N concentration in wheat plants 92 

than when only the VNIR region was used. They found the highest agreement with N 93 

concentration using MCARI1510 and NDI850,1510 (vegetation index estimated in a similar 94 

way to NDVI) indices. Table 1 summarizes the VIs used by other authors to determine 95 

the N status of several crops using wavelengths within the range 400-1800 nm. 96 

 97 
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Table 1. Vegetation indices (VI) used by other authors to determine the N status of 98 

crops, using wavelengths within the range 400–1800 nm (SR, Simple Ratio; NDI, 99 

Normalized Difference Index; MCARI, Modified Chlorophyll Absorption in 100 

Reflectance Index/ Optimized Soil Adjusted Vegetation Index; TCARI, Transformed 101 

Chlorophyll Absorption Ratio Index/ Optimized Soil Adjusted Vegetation Index; DCNI, 102 

Double-Peak Canopy Nitrogen Index). 103 

VI Equation Reference 

SR550,670 R550/R670 Gómez-Casero et al. (2007) 

SR780,550 R780/R550 Gómez-Casero et al. (2007) 

SR780,670 R780/R670 Gómez-Casero et al. (2007) 

NDI780,670 (R780 - R670)/(R780 + R670) Gómez-Casero et al. (2007) 

DCNI [(R720 – R700)/(R700 – R670)]/(R720 – R670 + 0.03) Chen et al. (2010) 

MCARI1510 [(R700 – R1510) - 0.2(R700 – R550)](R700/R1510) Herrmann et al. (2010) 

TCARI1510 3[(R700 – R1510) - 0.2(R700 – R550)(R700/R1510)] Herrmann et al. (2010) 

NDI1645,1715 (R1645 – R1715)/(R1645 + R1715) Pimstein et al. (2011) 

NDI870,1450 (R870 – R1450)/(R870 + R1450) Pimstein et al. (2011) 

NDI850,1450 (R850 – R1450)/(R850 + R1450) Camino et al. (2018) 

 104 

The use of spectroscopy technology applied to olive yield has been mainly focused on 105 

the determination and identification of adulterants in olive oils (Muik et al. 2004). Few 106 

studies have been found about N content estimation and other nutrient deficiencies in 107 

olive orchards. Zarco-Tejada et al. (2004) used spectral data within the range 500–800 108 

nm to study the effects of scene components (soil, shadow and crown reflectance) on 109 

the estimation of canopy Chl content in olive orchards, using a digital airborne imaging 110 

spectrometer and reflective optics system imaging spectrometer images at 1 m spatial 111 

resolution. Ferwerda and Skidmore (2007) estimated the chemical composition (N, F, 112 

K, Ca, Na and Mg) of three tree species (willow, mopane and olive) and one shrub 113 

species (heather) using hyperspectral data (300–2500 nm) and different spectral pre-114 

processing (reflectance spectral, derivative spectral data and band depth). Gómez-115 
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Casero et al. (2007) used the VNIR spectral region (in this case, 400–900 nm) to 116 

determine the hyperspectral reflectance curves of olive trees with different N or K leaf 117 

content and to select the best estimating VI for N and K content. Rotbart et al. (2013) 118 

analyzed the feasibility of determining N concentration in olive leaves using spectra 119 

reflectance in the VNIR-SWIR (in this case, 450–1700 nm) range under laboratory 120 

conditions and evaluated different types of spectrometers, different levels of sample 121 

preparation and different types of mathematical pre-processing to generate spectral 122 

models.  123 

In conclusion, despite the wide literature on N estimation by spectral measurements, 124 

very few studies are related to the approach of this work. Ferwerda and Skidmore 125 

(2007) selected the bands with optimal fits to estimate leaf N content through a stepwise 126 

regression routine, without taking into account the formulation of any VI, and requiring 127 

four predictors. With respect to the study by Rotbart et al. (2013), its objective was not 128 

to determine suitable bands to estimate leaf N content (LNC). They have showed the 129 

power of using the whole spectra to estimate LNC in olive trees and five pre-processing 130 

methods to develop PLRS models. Additionally, they have done that under laboratory 131 

and not under field conditions. 132 

Taking into account the importance of olive crop expansion, the yield in the 133 

Mediterranean region and the few available studies about estimating N content in olive 134 

trees using hyperspectral data, the present paper contributes to assess the usefulness of 135 

olive leaf spectral features for the objective of estimating the nutritional status of this 136 

crop. In this sense, the main aim of this study was to optimize the estimation of leaf N 137 

content in olive trees. To do this the following sub-objectives have been addressed: 138 

i) Analysing the potentiality of the entire spectral region (350–2500 nm) dataset to 139 

estimate LNC in olive trees under field conditions. 140 
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ii) Testing eight different pre-processing methods (smoothing, standard normal 141 

variate, first and second derivative, and different combinations among them) to 142 

reduce the noise of the reflectance curves. 143 

iii) Developing, implementing and applying a wavelength combination-based 144 

method (using three predictors) to consider band combinations that produce the 145 

optimal fit to the LNC. 146 

iv) Comparing the predictive power of partial least squares regression (PLSR) and 147 

VI estimations. 148 

 149 

Material and methods 150 

Study area and field data collection 151 

The fieldwork was conducted during two consecutive days in July 2018 in an organic 152 

olive orchard located in Carmonita (Badajoz) (39°09'04" N, 6°19'17" W), in southern 153 

Spain. 154 

The climate of the study area is semi-arid Mediterranean, with an average annual 155 

temperature of 16 ºC and mean annual rainfall amounts to 550 mm. The summers are 156 

hot (24.5 ºC) and dry (12.3 mm rainfall). Winters are warm (8.5 ºC) and humid (79.1 157 

mm rainfall) (Ninyerola et al. 2005). The study site has an area of 1.22 ha and a soil 158 

depth about 0.60 m, with an average elevation of 400 m.a.s.l. (meters above sea level), a 159 

medium slope gradient of 2.3º, and a predominantly south aspect (Figure 1). The olive 160 

tree density is 150 trees/ha. The olive orchard is organic, and no fertilization treatments 161 

were applied. 162 
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 163 

Fig. 1 Topographic digital models (pixel size of 25 m2) of the study area: A) elevation, 164 

B) slope and C) aspect, generated using the cartography available at 165 

http://centrodedescargas.cnig.es (Centro Nacional de Información Geográfica, Spain). 166 

 167 

To determine the real nutritional status of olive trees, a leaf analysis was carried out, 168 

collecting samples from 42 olive trees. To ensure that samples represent properly the 169 

study area, each sample was composed of 100 g of healthy leaves that were collected 170 

http://centrodedescargas.cnig.es/
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from the middle portion of current-season shoots, about 1.5 m above the soil surface, at 171 

the four cardinal points for every olive tree. Leaves from each sample were placed in a 172 

pile on the soil, with direct incidence of sunlight (Ferwerda and Skidmore 2007) and 173 

reflectance spectra were recorded using an Analytical Spectral Device (ASD) 174 

FieldSpec® 4 spectro-radiometer (Malvern, United Kingdom). This instrument records 175 

reflectance in the spectral range between 350 and 1000 nm, with a sampling interval of 176 

1.4 nm, and between 1000 and 2500 nm, with a sampling interval of 1.1 nm. Spectral 177 

data were interpolated to a spectral band width of 1 nm using the ASD software. In 178 

order to calculate absolute reflectance, a reference spectrum was measured from a 179 

Spectralon reference target between readings, at 15-minutes time intervals. For each 180 

sample, 20 reflectance spectra were recorded and averaged, obtaining a single spectral 181 

curve per olive tree. The spectral measurements were collected ±2 h around solar noon, 182 

under clear-sky conditions and in nadir orientation. Finally, leaves were placed in paper 183 

bags and were taken to the laboratory following the protocol established by the 184 

Agrifood Laboratory of the Junta de Extremadura (Cáceres, Spain). 185 

The critical and sufficiency threshold of LNC of each olive tree were estimated at 1.4% 186 

and 1.5%, respectively (Barranco et al. 1997; Fernández-Escobar et al. 1999). 187 

 188 

Spectral data pre-processing 189 

Spectral datasets were considered to predict N status of olive orchards and to identify 190 

wavelengths directly related to LNC in olive trees. Spectra are often disturbed by 191 

different interferences in the signal acquisition process due to the structure and physical 192 

properties of the samples. Frequently, derivative transformations of the reflectance data 193 

provide the best explanation of the variation, removing part of the noise (Hruschka 194 

1987). Therefore, to minimize the undesired influence of physical attributes of samples 195 
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on measured spectra, mathematical pre-processing has become an important issue in 196 

NIR spectral modelling (Bi et al. 2016). 197 

In the present study, raw data were pre-processed using the following empirical 198 

methods and mathematical operators: Savitzky-Golay Smoothing, which applies a 199 

convolution method (SM; Savitzky and Golay 1964), Standard Normal Variate (SNV; 200 

Barnes et al. 1989,1993), first derivative of the reflectance (D1R), and second derivative 201 

of the reflectance (D2R) (Moros et al. 2010). In addition, the different methods and 202 

operators were combined, obtaining a total of 8 spectral datasets: SM, SNV, D1R, 203 

D1R+SNV, D1R+SNV+SM, D2R, D2R+SNV, D2R+SNV+SM. Data processing was 204 

carried out using Unscrambler
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indices, different numbers of wavelengths (with a limit of three predictors) were 220 

systematically combined, following the formulations presented in Table 2, and the 221 

different pre-processing methods were tested. 222 

 223 

Table 2. Formulations used to calculate systematic combinations of wavelengths, with a 224 

limit of three bands. 225 

VI Equation 

SR W1/W2 

NDI (W1 – W2)/(W1 + W2) 

DCNI [(W1 – W2)/(W2 – W3)]/(W1 – W3+ 0.03) 

MCARI [(W1 – W2) - 0.2(W1 – W3)](W1/W2) 

TCARI 3[(W1 – W2) - 0.2(W1 – W3)(W1/W2)] 

 226 

All individual wavelengths were considered first, i.e. a total of 1,721 per each pre-227 

processed dataset. Then, a total of 5,920,240 combinations using two wavelengths were 228 

computed for each pre-processed dataset. Finally, the same was performed with 3 229 

wavelengths and a total of 15,265,338,840 combinations were evaluated per each pre-230 

processed dataset. Therefore, an exhaustive computation of all possible wavelength 231 

combinations for the considered indices and pre-processed datasets has been carried out. 232 

Third, wavelengths associated with known absorption features by the N and providing 233 

the largest determination coefficients (R2) when correlating with LNC were selected to 234 

optimize the VI and considered for deeper analysis. 235 

The simple linear regression model (between predicted and measured LNC) and the 236 

paired t-test were used. Results were considered statistically significant when p-values 237 

were lower than 0.05. Software R (Version 3.5.1) was used for calculations (R 238 

Development Core Team, 2008). 239 
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 240 

Partial Least Squares Regression (PLSR) 241 

PLS is a bilinear calibration method using data compression by reducing the large 242 

number of measured collinear spectral variables to non-correlated principal components 243 

(PCs), which represent the relevant structural information that can be used to predict the 244 

dependent variable. In this way, PLSR is a method often used for the retrieval of 245 

vegetation biophysical parameters using spectral data because it is an efficient method 246 

when predictors present multi-collinearity and when the number of wavelengths is 247 

larger than the number of observations (Wold et al. 2001).  248 

Spectral prediction models were constructed based on PLSR using Unscrambler
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validation data for the considered model. This process is repeated 5 times, with each one 264 

of the 5 subsets used exactly once as the validation data. Finally, the 5 measures are 265 

averaged to produce an overall measure. 266 

 267 

Results 268 

Nutritional status of sampled and spectral data 269 

The foliar analyses (n=42) indicated that LNC varied between 1.01 and 1.74%, with an 270 

average concentration of 1.3±0.2%. Figure 2 represents the LNC in each sampled olive 271 

tree and the levels of nutritional status. Most of the sampled olive trees (88.1%) 272 

presented LNC below the sufficiency threshold of 1.5%, and only 11.9% of the olive 273 

trees presented an appropriate LNC, within the range 1.5 – 2.0%. In addition, from the 274 

olive trees with LNC below sufficiency threshold, 92% presented values below the 275 

critical level of 1.4%. The spatial distribution of the sampled olive trees and nutritional 276 

levels are presented in Figure 3. 277 

 278 
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 279 

Fig. 2 Leaf N content (LNC %) of sampled olive trees (n=42) and nutritional levels. 280 
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Fig. 3 Spatial distribution of the leaf N content (LNC %) of sampled olive trees (n=42). 282 

 283 

Reflectance curves of the sampled olive trees leaves are plotted in Figure 4. Overall 284 

shapes were similar throughout the wavelengths measured, although the magnitude and 285 

amplitude varied, specially in the NIR plateau (750–1100 nm). Reflectance curves 286 

showed different reflectance peaks and absorption pits. In the VIS region, a reflectance 287 

peak was centered at 554 nm (green region) and two absorption pits were centered at 288 

390 nm and 680 nm (blue and red region, respectively). The NIR plateau presented a 289 

higher reflectance than the VIS region, corresponding with a typical spectral signature 290 

of green leaves (Liang 2005). In the SWIR region, three absorption pits, centered at 291 

1200 nm, 1450 nm and 1720 nm, and three reflectance peaks, centered at 1280 nm, 292 

1650 nm and 2200 nm were identified. 293 

 294 

Fig. 4 Reflectance curves of olive leaves within the ranges 350–1350 nm, 1421–1800 295 

nm and 1961–2300 nm. Each colour line represents an olive tree reflectance curve. 296 

 297 
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Nitrogen indices 298 

Predicted LNC using VI formulated by other authors (see Table 1) presented very low 299 

determination coefficients (R2<0.21) with measured values. No index presented 300 

statistically significant correlations with LNC (that is, all of them obtained p-301 

values>0.05), except for the indices that used reflectance at 1450 nm: NDI870,1450 (p-302 

value<0.05, R2=0.21) and NDI850,1450 (p-value<0.05, R2=0.12), matching one of the 303 

absorption pits in the SWIR domain (see Figure 4). In spite of the significance, the 304 

determination coefficients were very low, and LNC variation was poorly explained by 305 

NDI870,1450 and NDI850,1450. 306 

Results obtained from the systematic combinations of wavelengths, using the VIs in 307 

Table 2, indicated an increase of the determination coefficients as the number of 308 

combined wavelengths increased. For example, with raw data, R2=0.10 for one 309 

wavelength, R2=0.36 for two-wavelength VIs and R2=0.55 for three-wavelength VIs 310 

(Table 3). In the same way, the application of pre-processing resulted in an 311 

improvement of the determination coefficients. Specifically, from R2=0.10 to R2=0.46 312 

for one wavelength, from R2=0.36 to R2=0.56 for two-wavelength VIs and from 313 

R2=0.55 to R2=0.72 for three-wavelength VIs (Table 3). Additionally, considering 314 

D1R+SNV or D2R+SNV, determination coefficients improved in almost all cases. 315 

Table 3. Maximum determination coefficients (R2) for leaf N content and individual 316 

wavelengths (1W), VIs based on combinations of two wavelengths (2W, i.e. SR and 317 

NDI) and on combinations of three wavelengths (3W, i.e. DCNI, MCARI and TCARI) 318 

by considering several pre-processed datasets. 319 

Pre-processing 1W 2W 3W 

Raw data 0.10 0.36 0.55 

SM 0.27 0.54 0.68 
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SNV 0.30 0.37 0.59 

D1R 0.27 0.54 0.67 

D1R+SNV 0.40 0.54 0.66 

D1R+SNV+SM 0.40 0.54 0.69 

D2R 0.31 0.56 0.69 

D2R+SNV 0.46 0.56 0.72 

D2R+SNV+SM 0.39 0.44 0.69 

 320 

Table 4 summarizes the results obtained from the wavelength combination process to 321 

determine the most suitable index to estimate the LNC in olive trees, considering 322 

biophysical properties of the N reflectance curve. As can be observed, the best results 323 

were obtained by using the second derivative as pre-processing and, mainly, when the 324 

second derivative was combined with SNV. 325 

 326 

Table 4. Maximum determination coefficients (R2) between leaf N content and 327 

vegetation indices (VI). W considers only a wavelength and no index is defined. Pp 328 

indicates the pre-processing applied to spectra data, where A is D1R, B is D2R, and C is 329 

D2R+SNV. Selected W are the wavelength combinations that presented maximum R2 to 330 

each VI, considering biophysical properties of the nitrogen reflectance curve. Index is 331 

the formula of the specific VI in the present paper. The letters of the Selected W 332 

columns indicate the region of the spectrum where the wavelengths are located: b = 333 

blue, r = red and sw = SWIR region. * indicates repeated wavelengths in different 334 

indices.  335 

VI R2 R2
cv Pp Selected W (nm) Index 

W 0.46 - C 646r R646 

MCARI 0.53 0.50 A 1659sw, 1749sw, 1128sw ((R1659-R1749)-0.2(R1659-R1128))(R1659/R1749) 

SR 0.56 0.53 B 1615sw, 648r* R1615/R648 

NDI 0.56 0.55 C 397b, 648r* (R397-R648)/(R397+R648) 
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TCARI 0.64 0.63 C 1685sw, 412b, 2209sw 3((R1685-R412)-0.2(R1685-R2209)(R1685/R412)) 

DCNI 0.72 0.71 C 395b, 652r, 1275sw ((R395-R652)/(R652-R1275))/(R395-R1275+0.03) 

 336 

In Figure 5, scatterplots for VI values and measured LNC with maximum determination 337 

coefficients were plotted together with the regression line. DCNI yielded the best 338 

goodness-of-fit with LNC (R2=0.72; R2
cv=0.71), combining the following wavelengths: 339 

395 nm, matching with the absorption pit in the blue region; 652 nm, corresponding to 340 

the absorption pit in the red region; and 1275 nm, matching with one of the reflectance 341 

peaks in the SWIR region. The second best result was obtained with TCARI. It 342 

predicted LNC with R2=0.64 (R2
cv=0.63), combining the wavelengths: 412 nm, the 343 

absorption pit in the blue region; with reflectance peaks at 1685 nm and 2209 nm in the 344 

SWIR region. 345 

Determination coefficients obtained using MCARI, SR, and NDI indices were lower 346 

than the ones obtained with TCARI and DCNI. SR predicted LNC with R2=0.56 347 

(R2
cv=0.53) and the selected wavelengths were: 648 nm, the absorption pit in the red 348 

region; and 1615 nm, a wavelength close to the reflectance peak at 1650 nm in the 349 

SWIR domain. NDI estimated LNC with a similar determination coefficient (R2=0.56) 350 

but with a slightly greater R2
cv=0.55. The combined wavelengths were: 397 nm, the 351 

absorption pit in the blue region; and 648 nm, the absorption pit in the red domain. 352 

MCARI predicted LNC with R2=0.53 (R2
cv=0.50), combining three bands in the SWIR 353 

region: an absorbance band at 1749 nm with two reflectance bands at 1128 nm and 1659 354 

nm. 355 

The lowest coefficient was obtained from the relationship between LNC and the 646 nm 356 

wavelength, close to the absorption pit in the red region, with an R2=0.46. This case 357 

considers only a wavelength and no index is defined. 358 
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Only the 648 nm (red region) wavelength correlated with LNC in two indices. The 395 359 

nm, 397 nm and 412 nm wavelengths selected in DCNI, NDI and TCARI indices, 360 

respectively, are located around of the chlorophylla absorption pit at 395 nm (Curran et 361 

al. 2001). The wavelengths 646 nm (W) and 652 nm (DCNI) are very close to 648 nm 362 

chlorophyllb absorbance pit. Wavelengths from the SWIR region were selected to 363 

calculate the SR, TCARI, MCARI and DCNI indices. No index combining wavelengths 364 

from the NIR region presented a high determination coefficient. These results point to 365 

combinations using blue, red and SWIR wavelengths as the most suitable to estimate 366 

LNC in the studied olive trees using hyperspectral data. 367 
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368 
Fig. 5 Scatterplots and regression line for the selected VI and measured leaf N content 369 

(%). 370 

 371 
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Estimated N values obtained by using calibration and 5-fold cross-validation methods 372 

were considered to analyze the closeness of the estimations provided with those 373 

methods. The linear relationships between N predictions obtained with both methods 374 

are analyzed for all cases in Table 5, providing similar R2 and R2
cv in all these cases. 375 

The determination coefficients (R2
c-cv) were close to 1.0 and the differences between 376 

LNC estimated with calibration and 5-fold cross-validation linear regressions were not 377 

statistically significant (p-values>0.05). RMSE and RMSEcv were similar for each VI 378 

and the lowest value was produced by DCNI (Table 5). 379 

 380 

Table 5. Comparison between calibration (R2) and validation results (R2
cv). R2

c-cv is the 381 

determination coefficient between predicted LNC with calibration and predicted LNC 382 

with 5-fold cross-validation; RMSE is the root mean square error of calibration; RMSEcv 383 

is the root mean square error of validation. 384 

VI R2
 R2

cv R2
c-cv RMSE RMSEcv T-test (p-value) 

MCARI 0.53 0.50 0.994 0.10 0.10 0.73 

SR 0.56 0.53 0.995 0.10 0.10 0.81 

NDI 0.56 0.55 0.997 0.10 0.10 0.74 

TCARI 0.64 0.63 0.997 0.09 0.09 0.39 

DCNI 0.72 0.71 0.997 0.08 0.08 0.44 

 385 

Multi-dimensional approach based on PLSR 386 

PLSR searches the sensitive information from spectra data and then uses the 5-fold 387 

cross-validation procedure to calculate the calibration PLSR model. Different PLSR 388 

models were developed using raw and pre-processed data (Table 6). 389 

 390 
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Table 6. PLSR results for each pre-processed dataset. CV and CVcv are the variation 391 

coefficients of calibration and cross-validation models, respectively. 392 

Model/Pre-

processing 
R2

 R2
cv LV RMSE RMSEcv CV 

 
CVcv 

 T-test 

(p-value) 

Raw data 0.35 0.23 3 0.12 0.14 0.07  0.07  0.35 

SM 0.35 0.23 3 0.12 0.14 0.07  0.07  0.35 

SNV 0.38 0.23 3 0.12 0.14 0.07  0.08  0.49 

D1R 0.79 0.33 6 0.07 0.13 0.11  0.10  0.55 

D1R+SNV 0.83 0.52 5 0.06 0.11 0.11  0.10  0.72 

D1R+SNV+SM 0.82 0.52 5 0.07 0.11 0.11  0.11  0.41 

D2R 0.98 0.56 7 0.02 0.10 0.12  0.09  0.60 

D2R+SNV 0.95 0.58 5 0.03 0.10 0.12  0.09  0.87 

D2R+SNV+SM 0.93 0.57 5 0.04 0.10 0.12  0.09  0.99 

 393 

Analysing the results presented in Table 6, determination coefficients ranged between 394 

0.35 and 0.98 for the calibration models and between 0.23 and 0.58 for the cross-395 

validation models. D2R model presented the largest R2=0.98, followed by D2R+SNV 396 

model (R2=0.95) and by D2R+SNV+SM model (R2=0.93) (see Figure 6). The 397 

calibration and validation RMSE were relatively small in those cases (≤0.04 N% in the 398 

calibration and 0.10 N% in the validation) and the differences between both were lower 399 

than 20% (0.20), indicating that the number of LV selected for each pre-processing was 400 

suitable, without overfitting the models (Shao et al. 2007). The difference between R2 401 

and R2
cv was large: 0.42, 0.37 and 0.36, respectively. However, the differences between 402 

average LNC estimated with calibration and average LNC estimated with 5-fold cross-403 

validation obtained with PLSR were not statistically significant (p-values>0.05) and the 404 

differences between the variation coefficients (CV) were ≤0.03 in all cases. These 405 

results indicated that, despite the difference between the determination coefficients of 406 

the calibrated and validated models, the LNC estimates were similar. 407 
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Predicted LNC using the calibrated and validated PLSR models are plotted in Figure 6 408 

for each dataset, raw and pre-processed data. It can be observed that second derivative 409 

pre-processing presented better fitting between measured and predicted LNC than the 410 

other pre-processing. 411 

 412 

Fig. 6 Measured vs. predicted leaf N content (LNC %) using PLSR and different pre-413 

processing methods. 414 

 415 

 416 
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Discussion 417 

VI and PLSR models were used to relate LNC and reflectance data over the full 418 

spectrum (350–2500 nm) using a high precision spectro-radiometer. It has been shown 419 

that these methods produced high coefficients of determination, particularly when the 420 

reflectance spectra were expressed as the second derivative and combined with SNV or 421 

SM pre-processing. The wavelengths most sensitive to N variation used to calculate VI 422 

were selected from the VIS and SWIR spectral regions, which relate to Chl and N 423 

features. PLSR models yielded a higher accuracy (R2) than VI, although the 424 

uncertainties associated with the noise of the hyperspectral data were higher. 425 

Ferwerda and Skidmore (2007) and Rotbart et al. (2013) focused on a similar topic. The 426 

novelty of this paper with respect to these studies is the method used to determine the 427 

band combinations more suitable to estimate LNC in olive trees. Ferwerda and 428 

Skidmore (2007) selected the bands with optimal fits to the N content through a 429 

stepwise regression routine, without taking into account the formulation of any VI, and 430 

requiring four predictors. Besides, they only analyzed two pre-processing methods 431 

(Savitzky–Golay smoothing and continuum-removed spectra). In the present paper, the 432 

wavelengths of all the spectral regions are combined, taking into account their 433 

biophysical basis and the formulation of the VIs more suitable to estimate LNC 434 

according to other authors: SR, NDI, DCNI, MCARI and TCARI (see Tables 1 and 2). 435 

The number of predictors is set to three, simplifying the model respect to the one 436 

developed by Ferwerda and Skidmore (2007), that used four, at the same time that 437 

better results are obtained in this work. Moreover, this paper analyzes eight pre-438 

processing methods, instead of only two. Furthermore, in this paper, the results are 439 

compared with those obtained by other authors and those obtained with the PLSR 440 

method. 441 
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With respect to the study by Rotbart et al. (2013), its objective was not to determine 442 

suitable bands to estimate LNC. Besides, Rotbart et al. (2013) only used five pre-443 

processing methods to develop the PLSR models, instead of the eight analyzed in this 444 

paper. Even more, Rotbart et al. (2013) used a lower spectral range (450 nm–1000 nm 445 

and 1100–1700 nm) due to the use of three different spectrometers (USB-2000, LIGA 446 

and Luminar-5030), whereas in this paper all the spectral range (350 nm–2500 nm) has 447 

been used. Finally, Rotbart et al. (2013) determined N concentration in olive leaves by 448 

using spectral reflectance of the VIS-NIR range under laboratory conditions and not in 449 

the field such as is the case of this paper. 450 

 451 

Nutritional status of olive trees and spectral data 452 

N status of sampled olive trees was deficient considering a critical and sufficiency 453 

threshold of LNC of 1.4% and 1.5%, respectively (Barranco et al. 1997; Fernández-454 

Escobar et al. 1999). Fernández-Escobar et al. (2009) studied the long-term effect of N 455 

fertilization on olive trees. The results indicated that yield and growth were maintained 456 

in trees non-fertilized and with LNC within the range 1.4% and 2.0% during several 457 

consecutive years. In this sense, Fernández-Escobar et al. (2009) recommended that the 458 

leaf critical threshold of LNC in olive trees must be revised and is likely to lie between 459 

1.2% and 1.3%. Regarding results presented in the current study, if 1.3 % or 1.2% are 460 

considered as critical limits of LNC, then, 59.5% or 21.4%, respectively, of the sampled 461 

trees had a deficient N status, instead of the 81.0% obtained with a threshold of 1.4%. 462 

All these reports suggest that fertilization management depends on the LNC critical 463 

limit established and, therefore, spatial and temporal analyses are necessary to carry out 464 

appropriate fertilization planning to improve olive orchards production. According to 465 

López-Granados et al. (2004), Gómez-Casero et al. (2007) and Fernández-Escobar et al. 466 
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(2009), N fertilization should be applied only to olive trees with an N value that does 467 

not exceed the considered threshold, because they reported that, in the case of olive 468 

orchards, annual maintenance application of N is not necessary to improve yield and 469 

tree growth. 470 

Reflectance curves of the leaves of the sampled olive trees presented a similar shape 471 

throughout the spectral range. The reflectance curves obtained within the range 400 472 

nm–900 nm were similar to that obtained by Zarco-Tejada et al. (2004) and Gómez-473 

Casero et al. (2007) for olive orchards without fertilization treatments, presenting 474 

absorption pits and reflectance peaks at the same wavelength ranges. Absorption pits 475 

were identified at 500±10 nm and 680±10 nm, whereas reflectance peaks were 476 

identified at 550±10 nm and 760±20 nm. Wavelength absorption at 680 nm could be 477 

related to the absorption feature of Chla at 660 nm (Curran 1989). Chl is the main 478 

pigment responsible for the properties of the reflectance and transmittance of radiation 479 

in the VIS region and has a close correlation with the N content in the leaves of plants 480 

(Haboudane et al. 2002). N shortage will reduce leaf Chl content and consequently the 481 

reflectance in the VIS region will increase (Daughtry et al. 2000). Therefore, the 482 

reflectance peak at 550 nm could indicate a low Chl content and consequently a low 483 

LNC, matching the results obtained considering 1.4% as a critical threshold. 484 

 485 

Systematic wavelength combinations and pre-processing 486 

The systematic combination of wavelengths from all spectral ranges showed that the 487 

determination coefficients increased as the number of combined wavelengths increased. 488 

The application of pre-processing decreased considerably the noise generated by the 489 

measurements obtained from the spectro-radiometer, also improving the results. As in 490 

the case of the PLSR models, second derivative combined with SNV and/or SM 491 
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produced the best determination coefficients. These results agree with the ones from 492 

other publications which demonstrated the significant and positive effects of using the 493 

whole spectral range and pre-processing to estimate LNC in olive trees. Ferwerda and 494 

Skidmore (2007) carried out a stepwise regression, with a limit of four predictors, 495 

between leaf chemical composition (N, K, Na, P, Ca and Mg) of four woody plant 496 

species (olive tree, mopane, heather and willow) using different datasets: raw 497 

reflectance spectra, derivative spectra and band depth. The model based on derivative 498 

spectra offered the highest prediction accuracy. Rotbart et al. (2013) obtained the most 499 

robust prediction models applying the first derivative to the logarithm of the reflectance 500 

reciprocal [D1(log(1/R))] with the PLSR method. 501 

 502 

VI to estimate LNC 503 

Reflectance-based indices formulated using wavelengths associated with known 504 

absorption features showed lower determination coefficients with LNC than indices 505 

derived from the systematic wavelength combinations carried out in this study. The 506 

wavelengths combined in the VIs with higher determination coefficients were located 507 

mainly in the VIS region (350 nm–750 nm) and in the SWIR region (1100 nm–2500 508 

nm). 509 

In the present study, wavelengths located in the blue range (395 nm, 397 nm and 412 510 

nm) were selected. They could be directly related to the absorption pits of the Chla at 511 

430 nm (Curran 1989) and indirectly related to the N content (Haboudane et al. 2002). 512 

Organic components (e.g., cellulose, lignin, proteins, oil, sugar or starch) absorb 513 

radiation strongly in the blue spectral domain as a result of stretching and bending 514 

vibrations of the strong molecular bonds between hydrogen atoms and the atoms of 515 

carbon, nitrogen and oxygen (Osborne 2000). Other studies showed that blue bands 516 



28 
 

were sensitive to estimate LNC at later growing stage of the plant (Cohen and 517 

Alchanatis 2018). Therefore, 395 nm, 397 nm and 412 nm wavelengths also could be 518 

related to the absorption region of these organic components in the blue region and their 519 

reactions with the N content. This could justify bio-physically why these wavelengths 520 

were selected to optimize the VIs. 521 

Wavelengths at the red domain of the VIS region (e.g., 646 nm, 648 nm and 652 nm) 522 

appeared in several of the proposed VIs. These wavelenghs could be related to the 523 

absorption pits of the Chlb and Chla at 640 nm and 660 nm (Curran 1989). This link is 524 

related to the strong influence of N on Chl production and functioning. Therefore, N 525 

could be indirectly estimated using wavelengths within the red domain (Haboudane et 526 

al. 2002). The 750 nm wavelength is in the limit between red (VIS) and red edge (NIR) 527 

domain. Several authors selected this wavelength to estimate Chlab content from 528 

hyperspectral reflectance (Zarco-Tejada et al. 2001; Wu et al. 2008). Therefore, it also 529 

could be related to N content. 530 

The 1128 nm, 1275 nm, 1615 nm, 1659 nm, 1685 nm, 1749 nm and 2209 nm 531 

wavelengths centered at SWIR region and selected to optimize VIs could be related to 532 

N, protein, oil, lignin, sugar, cellulose, starch and water content (Curran 1989). The 533 

spectral range 1500 nm–1600 nm is a region dominated by absorption features due to 534 

N-H bond stretching located at 1510 nm (Curran 1989) and this bond is related to the 535 

amount of N present in the protein (Ferwerda 2005). However, the reflectance within 536 

the SWIR region is sensitive to foliar water content. Ceccato et al. (2002) and Ferwerda 537 

(2005) identified that the indices which included the 1770 nm absorption feature were 538 

least affected by foliar water content. 539 

Authors like Zarco-Tejada et al. (2004), Ferwerda (2005), Ferwerda and Skidmore 540 

(2007) or Gómez-Casero et al. (2007) selected similar wavelengths to the ones 541 
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considered in the present study to estimate N content in olive trees. Zarco-Tejada et al. 542 

(2004) combined 750 nm and 710 nm wavelengths in a simple ratio formulation and 543 

used the 550 nm, 670 nm and 700 nm wavelengths to calculate MCARI (Daughtry et al. 544 

2000) and TCARI (Haboudane et al. 2002) indices. Ferwerda (2005) obtained their best 545 

determination coefficients combining wavelengths from the VIS (627 nm - 640 nm and 546 

690 nm - 700 nm) and from the SWIR (1516 nm - 1580 nm, 1770 nm, 1803 nm and 547 

2196 nm) regions in the NDI formulation. Ferwerda and Skidmore (2007) obtained their 548 

best determination coefficients combining the 733 nm, 1203 nm, 1792 nm and 955 nm 549 

wavelengths through a stepwise regression routine and limiting the number of predictors 550 

to four. Gómez-Casero et al. (2007) selected different wavelengths within the VIS-NIR 551 

region depending on the type of fertilization applied. For soil application, selected 552 

wavelengths were within the blue (400 nm, 420 nm and 470 nm), red (610 nm, 630 nm 553 

and 720 nm) and NIR domain (750 nm–900 nm). For soil and foliar application, 554 

selected wavelengths were within the blue (420 nm and 490 nm), green (510 nm), red 555 

(690 nm and 710 nm) and NIR domain (890 nm). 556 

In the present study, the best determination coefficient and the lowest RMSE/RMSEcv 557 

were obtained by using the DCNI index formulation (R2=0.72). Camino et al. (2018) 558 

estimated LNC for durum and bread wheat using this index with the formulation 559 

developed by Chen et al. (2010), and reported a determination coefficient of R2=0.56, 560 

with wavelengths within the red domain (670 nm, 700 nm and 720 nm). In this work, 561 

TCARI and MCARI indices reported R2=0.64 and R2=0.53, respectively. Zarco-Tejada 562 

et al. (2004) applied these indices to estimate LNC in olive trees using wavelengths 563 

within the VIS region (550 nm, 670 nm and 700 nm), according to the formulation of 564 

Daughtry et al. (2000) and Haboudane et al. (2002). The determination coefficients 565 

were lower in the case of the TCARI index (R2= 0.60) and higher in the case of MCARI 566 
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index (R2=0.64). SR and NDI indices also presented similar determination coefficients 567 

(R2=0.56 in both cases), although the selected wavelengths were different. SR index 568 

combined VIS and SWIR regions (648 nm and 1615 nm) and NDI combined 569 

wavelengths at the blue and red domain (397 nm and 648 nm). Therefore, based on the 570 

whole previous discussion and indices, and in agreement with Herrmann et al. (2010), 571 

the SWIR region is more sensitive to N content than the VNIR region. Additionally, 572 

indices based on combination between SWIR and VIS wavelengths are better predictors 573 

of LNC in olive trees than the ones that only use the VIS region. 574 

 575 

PLSR models 576 

The largest determination coefficient was obtained with D2R dataset and 7 LV 577 

(R2=0.98). D2R+SNV+SM produced lower determination coefficient (R2=0.93), but the 578 

difference between calibration and validation coefficients, as well as the number of LV, 579 

was lower. These results indicated that this model is more robust, which presented a 580 

RMSE of 0.04% and a RMSEcv of 0.10%. Rotbart et al. (2013) estimated LNC in olive 581 

trees using the whole spectral range and PLSR models, applying different pre-582 

processing. The results were similar to those reported in this paper, i.e. the largest 583 

determination coefficient was obtained with pre-processing data (R2=0.91), with a 584 

number of 7 LV, and RMSE and RMSEcv of 0.05% and 0.07%, respectively. 585 

In agreement with other authors that reported that PLSR methods have greater potential 586 

than spectral indices for deriving N content in crops such as winter wheat (Hansen and 587 

Schjoerring 2003; Li et al. 2014) or maize (Quemada et al. 2014), in this study PLSR 588 

models (D1R, D1R+SNV, D1R+SNV+SM, D2R, D2R+SNV and D2R+SNV+SM) 589 

produced higher determination coefficients (R2) than VI. However, the results obtained 590 

with the PLSR method show higher difference between R2 and R2
cv than the VI method, 591 
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indicating a possible overfitting of the models. But the differences between RMSE and 592 

RMSEcv were lower than 20% (0.20) in all cases. Therefore, according to Shao et al. 593 

(2007), this result indicates a suitable number of LV selected for each pre-processing 594 

and, accordingly, the models did not present overfitting. 595 

Taking into account the uncertainties presented by both methods, it is difficult to 596 

determine which method yielded better fits between the estimation and the LNC 597 

measured. R2
cv is an indicator of the prediction capacity of the model. Therefore, since 598 

DCNI and TCARI vegetation indices presented higher R2
cv and lower RMSEcv than 599 

PLSR models in all pre-processed datasets, in the case of this study, VI are more 600 

suitable than PLSR models to estimate LNC in olive trees without fertilization 601 

treatments. 602 

 603 

Conclusions 604 

The present study demonstrated that hyperspectral data are useful to estimate leaf N 605 

content in olive trees without fertilization treatments. The VI and PLSR models 606 

considered by using the full spectrum (350–2500 nm) produced larger determination 607 

coefficients than the ones from spectral indices formulated using wavelengths 608 

associated with known absorption features. Applying pre-processing to the spectral 609 

data, the noise generated by the measurement of the spectro-radiometer was reduced 610 

and the correlations between leaf N content and reflectance data were improved, 611 

particularly when the reflectance spectra were expressed as the second derivative and 612 

combined with SM and/or SNV pre-processing. VIs that produced the largest 613 

determination coefficients were DCNI and TCARI. The wavelengths most sensitive to 614 

N variation used to define VIs were selected from the VIS and SWIR spectral regions, 615 
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which relate to chlorophyll a+b and N absorption features. Therefore, implementing the 616 

SWIR region to estimate leaf N content in olive trees improved predictions. PLSR 617 

models yielded higher accuracy than VI, although the uncertainties associated with the 618 

noise of the hyperspectral data were higher. These methods would allow accurate 619 

fertilization plans depending on the olive tree requirements. Further research is 620 

necessary to gain knowledge about the temporal variation of the leaf N content in olive 621 

trees to offer to the farmers accurate information about the nutritional status of the 622 

plants at each phenological stage. 623 
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