
This is the accepted version of the article:  

 

 
 

Miguel A. Vega-Rodríguez, Carlos J. Pérez, Klara Reder, Martina Flörke, A stage-based approach to 
allocating water quality monitoring stations based on the WorldQual model: The Jubba River as a 
case study, Science of The Total Environment, 762, 144162, 2021 
https://doi.org/10.1016/j.scitotenv.2020.144162  

https://doi.org/10.1016/j.scitotenv.2020.144162


A Stage-Based Approach to Allocating Water Quality

Monitoring Stations Based on the WorldQual Model:

The Jubba River as a Case Study
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Abstract

Ensuring adequate freshwater quality is an important aspect of integrated
environmental management and sustainable development. One contribution
towards this end is to monitor the water quality of river basins. An important
issue in constructing a water quality monitoring network is how to allocate
the stations. This is usually done by using in situ measurements of pollutants
together with other information. A stage-based optimization approach has
been developed to find the optimal sites to allocate the monitoring stations.
The proposed approach constructs a network in a sequence of stages without
the need for in situ pollution measurements. Instead, it uses pollutant esti-
mates from the WorldQual model together with other social and hydrological
criteria. The approach is computationally efficient and provides an ordered
list of stations that can be used to initialize or augment a water quality net-
work. This is especially relevant for consideration by developing countries
since, with this approach, they can get an overview of their river basins, and

∗Corresponding author
Email addresses: mavega@unex.es (Miguel A. Vega-Rodŕıguez), carper@unex.es
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then prioritize the initial distributions of the networks. The approach was
applied successfully to the 741 751 km2 of the Jubba River basin, but it is
applicable to river basins of any size.

Keywords: Monitoring network; Multi-objective optimization; River basin;
Stage-based approach; Water quality; WorldQual model.

1. Introduction1

While water covers more than two-thirds of the Earth’s surface, only 2.5%2

of it is fresh. In developing countries, 80% of people have no access to potable3

water, and cholera is still present in more than 50 countries (Adu-Manu et al.,4

2017). Fresh water is therefore an invaluable resource which needs to be first5

monitored, and then properly maintained.6

According to the United Nations Environment Programme (UNEP) re-7

port (UNEP, 2016), water pollution has worsened since the 1990s in many8

rivers in Latin America, Africa, and Asia. However, it is still possible to cut9

short further pollution and restore the quality of polluted rivers. In this con-10

text, there is a need to design and implement effective intervention programs11

to control pollution in river basins, and, when necessary, to restore them.12

Water quality control is a complex issue that requires the use of support13

techniques to provide relevant information on water resource management.14

The need to monitor the water quality and budgetary constraints make it15

necessary to develop assessment tools that can allow efficient control of water16

quality. Adu-Manu et al. (2017) reviewed methods for water quality monitor-17

ing which ranged from traditional manual methods to more technologically18

advanced ones. More recently, Nguyen et al. (2019) presented a review of19

design methods for river water quality monitoring networks.20

A relevant part of the design of water quality monitoring networks is to21

establish the location of the stations. A well-designed network is one that22

provides the greatest possible amount of information from the fewest number23

of stations, so that the overall cost of monitoring is less. Several authors24

have addressed this issue from different viewpoints and based on different25

information.26

Park et al. (2006) considered a genetic algorithm in a geographic infor-27

mation system framework to allocate monitoring stations in river basins. An28

optimization problem was formulated by considering different planning ob-29

jectives such as compliance with water quality standards through biochemical30
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oxygen demand measurements in the dry season, observation of water use,31

tracking of sources of pollution, and examination of water quality changes.32

A different approach, also based on a genetic algorithm, allowed Telci et al.33

(2009) to address this allocation problem based on the minimization of the34

average detection time of contamination events and the maximization of the35

reliability of the monitoring system at the same time as keeping the num-36

ber of stations to a minimum. Remote sensing images were used by Chang37

& Makkeasorn (2010) who proposed an approach based on “grey integer38

programming” to select the locations considering a number of biophysical39

parameters and a budgetary constraint. Liyanage et al. (2016) considered a40

genetic algorithm to optimize avoidance of water quality standards violations,41

the population affected, distance of the site from the nearest downstream wa-42

ter intake, and coverage of upstream area. A fitness function was defined as43

the weighted sum (with weights defined by experts) of the partial objective44

functions with the number of stations included. Puri et al. (2017) proposed45

a genetic algorithm to select monitoring stations using mean annual E. coli46

flux data from the Spatially Referenced Regression Model on Watershed At-47

tributes. The objectives were to minimize the number of monitoring stations,48

to cover large mean annual E. coli fluxes, and to minimize the uncertainty49

in the flux estimates. Constraints related to monitoring critical locations50

were also included in a multi-objective optimization problem. Zhu et al.51

(2019) implemented a discrete particle swarm optimization procedure for the52

allocation of water quality monitoring stations based on minimum pollution53

detection time, maximum pollution detection probability, and maximum cen-54

trality of monitoring locations while allowing reservation of some particular55

locations. This was done by considering the reduction of redundant moni-56

toring locations.57

The water quality parameters most commonly monitored correspond to58

general physicochemical characteristics (Nguyen et al., 2019). Villas-Boas59

et al. (2017) considered thirteen water quality parameters based on in situ60

measurements that were analysed in the laboratory. They identified the61

most relevant parameters, and showed how some of them were redundant62

and could be removed without significant information loss. However, obtain-63

ing many in situ measurements is both very costly and difficult to implement64

in many river basins, so some approaches have been developed based on pol-65

lutant simulations given by hydrological models. Al-Khafaji & Abdulraheem66

(2017) proposed a deterministic algorithm for the determination of optimal67

water quality monitoring stations based on two-dimensional hydrodynamic68
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and water quality simulation models that had been used to estimate the dis-69

tribution of total dissolved solids. Pérez et al. (2017) considered estimates70

of pollutant parameters such as biochemical oxygen demand, faecal coliform71

bacteria, and total dissolved solids from the WorldQual model (Voß et al.,72

2012) to feed a multi-objective evolutionary algorithm implemented in the73

framework of a geographic information system.74

Assessing global water quality issues requires a multi-pollutant modelling75

approach. Strokal et al. (2019) focused on the need to integrate informa-76

tion on sources of pollutants such as plastic debris, nutrients, chemicals,77

and pathogens, among others. Vital signs for water quality usually cover78

some water quality parameters such as dissolved oxygen, temperature, salin-79

ity (total dissolved solids or electric conductivity), pH, turbidity, and faecal80

coliforms, among others. Impairments of these can produce an impact to81

the flora and/or fauna for a given water body. McCaffrey (2012) described82

some water quality parameters and provided their acceptable ranges. They83

also focused on their effects, for example, the temperature of the water is84

relevant because the amount of oxygen that will dissolve in water increases85

as the temperature decreases. Strokal et al. (2019) illustrated the potential86

of multi-pollutant modelling for hotspot analyses, and discussed scientific87

challenges and future directions for multi-pollutant modelling.88

Sparse-data scenarios are especially interesting, and some approaches89

have been developed for such situations. Bastidas et al. (2017) designed90

water quality monitoring networks via optimization techniques, geographic91

information system technology, and a “matter-element” analysis of 5-day92

biological oxygen demand and total suspended solids. Scenarios with and93

without historical water quality data were addressed. Alilou et al. (2019)94

proposed a multi-criteria evaluation method including the analytic network95

process and fuzzy logic to identify locations of sampling points based on a96

“total potential pollution score” calculated without water quality data as in-97

put. This approach prioritizes the best candidate sampling points, and can98

be applied in settings where water quality data are scarce.99

Redesigning water quality monitoring networks has also been addressed100

in the scientific literature. Sabzipour et al. (2019) applied two geostatistical101

methods, ordinary kriging and sequential Gaussian simulation, to electrical102

conductivity and dissolved oxygen concentration data, showing that the sta-103

tions involved could be relocated to achieve an optimized network. Bastidas104

et al. (2017) also proposed a methodological approach which they used to105

redesign water quality networks.106
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In the present paper, a stage-based approach to allocating water qual-107

ity monitoring stations is described and applied. This approach is based on108

the WorldQual model, a continental-scale water quality model that has been109

developed to obtain simulations of some pollutant loadings and in-stream110

concentrations in river basins. With the WorldQual model, such pollutants111

as biochemical oxygen demand, faecal coliform bacteria, and total dissolved112

solids can be estimated for any river worldwide. Besides detecting areas113

with pollutants, other planning objectives can be optimized, such as popula-114

tion, hydrological categorization, and the number of stations. The algorithm115

was developed to allow progressive selection of the stations, and is based on116

multi-objective artificial bee colony (MOABC) optimization. It is able to117

find optimal solutions from a very large number of alternatives in a com-118

putationally efficient way. It can be used to establish an initial network for119

river basins with no pre-existing network or in situ measurements, and then120

also to subsequently increase the number of stations in the network. The121

proposed approach was applied to the Jubba River basin (eastern Africa)122

whose drainage area is 741 751 km2.123

The main advantages of this proposal are:124

• It uses pollutant estimates from the WorldQual model to detect non-125

compliance areas.126

• Its approach is one of stage-based multi-objective optimization (MOABC).127

• It is able to efficiently reduce the number of possible solutions to allow128

just one optimal solution to be chosen.129

• It can be used both to establish a new network and then to progressively130

augment it.131

• It is valid for river basins worldwide of any size.132

The remainder of this paper is organized as follows. Section 2 presents the133

motivation for the proposed approach. Section 3 describes the study area,134

the WorldQual model, the planning objectives, and the optimization method.135

Section 4 presents and discusses the experimental results, and finally, Section136

5 presents the conclusions.137
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2. The Motivating Problem138

The decision of where to allocate the monitoring stations is an important139

part of the process of designing a water quality network. Many river basins140

around the world have no water quality monitoring networks, and the water141

quality data available in many parts of the world is inadequate.142

The Global Environment Monitoring System for freshwater (GEMS/ Wa-143

ter) programme1 was established more than 40 years ago to collect global144

water quality data to assess the status and trends of global inland water145

quality. Under the auspices of the UNEP, the GEMS/Water programme146

involves the World Health Organization (WHO), the World Meteorologi-147

cal Organization (WMO), and the United Nations Educational, Scientific148

and Cultural Organization (UNESCO). This programme uses GEMStat as a149

database of surface and ground water quality data. According to this GEM-150

Stat database, 71 of the 110 river basins with data have a density of at most151

0.5 stations/10 000 km2. The average densities for Latin America, Asia, and152

Africa are, respectively, 0.3, 0.08, and 0.02 stations/10 000 km2 for the time153

period 1990 to 2010. Therefore, the GEMStat database station density is far154

below the typical minimum densities of around 1.5 to 4 stations/10 000 km2
155

of the river basins of Europe and the USA (UNEP, 2016).156

There is no internationally accepted scientific standardized process for157

the design of water monitoring networks. WMO (1994) provided a recom-158

mended minimum network density for different physiographic units (coastal,159

mountains, interior plains, hilly, small islands, and polar/arid). Borden &160

Roy (2015), through the International Institute for Sustainable Development161

(IISD), summarized the WMO recommendations for the minimum number of162

stations in three physiographic units: flat (1 station/1000-2000 km2), moun-163

tainous (1 station/300-1000 km2), and arid (1 station/5000-20 000 km2).164

However, it was made clear that the recommendations are general and the165

final network density should be based on particular criteria such as network166

objectives or availability of finance and other resources.167

To analyse the impact of the size of rivers on how best to locate the168

stations, it would be useful to have a categorization of their basins in terms169

of size. Again, there is no consensus on a standard categorization in this170

sense. Nguyen et al. (2019) presented a categorization by river basin area171

with the following classes: small (<100 km2), medium (100-1000 km2), large172

1http://www.unep.org/gemswater/
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(1000-10 000 km2), and very large (>10 000 km2), with reference to Higgins173

et al. (2005), Noble & Cowx (2002), and European Parliament and Council174

(2000). Those authors (Nguyen et al., 2019) reported that most studies in175

the literature concerned very large rivers in high- to middle-income countries.176

In Africa, Asia, and South America there are, respectively, 8104, 45 804,177

and 9926 river basins, with mean areas in km2 (± standard deviation) of178

3712 ± 64 044, 1025 ± 28 178, and 1815 ± 66 295, respectively. Figure179

1 displays the comparative box plots for the area distributions of the river180

basins. All three distributions are strongly positively skewed, with many181

small river basins and few large ones.182

Figure 1: Box plots for the size distribution of the river basin areas in Africa, Asia, and
South America.

According to UNEP (2016), in Africa, the average density of stations per183

10 000 km2 is 0.02. The Jubba River basin comprises parts of Somalia, Kenya,184

and Ethiopia, covering an area of 741 751 km2. This value corresponds to185

the 99th percentile, which means that it is one of the largest rivers in Africa.186

The water of the Jubba River basin is very important for food production in187

this area. Water resources are strongly influenced by seasonal floods. A hy-188

drometric network was operating in southern Somalia before the civil war in189

1991, when data collection was abandoned until 2001 with the rebuilding of190
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a much reduced network (Houghton-Carr et al., 2011). The objective of this191

rebuilt network was to measure rainfall, river flow, groundwater resources,192

land characteristics, degradation, and land suitability as well as to improve193

flood warning and flood management. To the best of the authors’ knowledge,194

the network’s stations do not provide accessible regular water quality infor-195

mation. Indeed, the GEMStat database does not report any water quality196

monitoring network in the Jubba River basin.197

As an example, this situation motivates the need to develop tools that198

can help the authorities allocate water quality monitoring stations based on199

objective criteria that can be easily obtained without requiring actual in situ200

pollutant measurements. Using low-cost criteria such as pollutant estimates201

given by the WorldQual model to detect non-compliance areas may help202

in this task, and are applicable to river basins of any size anywhere in the203

world. If this is done in a progressive way, the approach could be useful204

both for constructing a new water quality network and for augmenting an205

existing network. While this is especially relevant for rivers where no water206

quality networks have been established, it can also be applied to progressively207

reconstruct old ones. Such progressive increase of a network also facilitates208

accommodation to different budgets.209

3. Methods210

3.1. Study area211

The Jubba River is an important east African river located in southern212

Somalia. Its source is at the border with Ethiopia, and it flows directly south213

to empty into the Indian Ocean at Goobweyn. The two main tributaries, the214

Shebelle and Lagh Dera rivers, join the Jubba River close to its mouth. Balint215

et al. (2010) defined three catchment areas for this zone (Jubba, Shebelle, and216

Lagh Dera), although only the Jubba River has access to the sea. Together,217

these three catchments constitute the present work’s study area, which we218

shall term the Jubba River basin. This basin drains a total of 741 751 km2
219

and extends across parts of Somalia, Kenya, and Ethiopia (see Figure 2 for220

the location and distribution of the tributaries).221

3.2. WorldQual model222

The WorldQual model is a global scale water quality model (Voß et al.,223

2012). It is a module of WaterGAP3 (Water Global Assessment and Progno-224
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Figure 2: The Jubba-Shebelle-Lagh basin and its location in eastern Africa.

sis), which is a global water assessment model consisting of a global water use225

model and a global hydrology model (Alcamo et al., 2003; Verzano, 2009).226

Voß et al. (2012) presented WorldQual, and illustrated its performance227

in applying it to model biological oxygen demand (BOD) and total dissolved228

solids (TDS) across Europe. The model was extended to model faecal co-229

liform (FC) loadings for large European rivers and the resulting in-stream230

concentrations (Reder et al., 2015). It has also been applied to model FC and231

BOD in African rivers (Reder et al., 2014). Indeed, it is the only large-scale232

concentration model which has been applied to faecal coliform bacteria for233

various continents (Vermeulen et al., 2019). It has been validated and tested234

with a global sensitivity and uncertainty analysis (Reder et al., 2017).235

The WorldQual model operates on monthly time steps and a 5-by-5 arc-236

minute grid spatial resolution (approximately 9-by-9 km at the equator).237

This resolution divides the Jubba River basin into 8710 cells of about 85238

km2 each in accordance with the drainage direction map of Lehner et al.239

(2008). Estimated concentrations of BOD, FC, and TDS were obtained from240

January 1990 to December 2010 on a monthly basis.241

Figure 3 represents the entire Jubba River basin divided into main and242

secondary stretches based on Strahler stream order (Strahler, 1957). The243
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streams of the river basin are represented as a mathematical tree, and the244

Strahler number is a numerical measure of their branching complexity. A245

stream with no children is a leaf, and its Strahler number is one. Such246

streams are regarded as secondary, and the remaining ones as main. Main247

channels (streams with Strahler number greater than one) are candidates for248

the allocation of stations.249

Figure 3: Grid representation of the Jubba River basin with main and secondary channels.

3.3. Planning objectives250

In order to find macro-locations at which to optimally allocate water251

quality monitoring stations, planning objectives based on economic, environ-252

mental, social, and hydrological aspects are defined. Examples of the use253

of such planning objectives are found in Park et al. (2006), Liyanage et al.254

(2016), and Pérez et al. (2017).255

Let Xij denote a binary variable for the cell (i, j) in the river basin grid,256

with i being the index representing the row and j the index representing the257
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column. This variable determines whether the cell (i, j) is (Xij = 1) or is not258

(Xij = 0) assigned to allocate a station. For the Jubba River basin, there259

are a total of 3097 candidate stations, which are labeled as main channels260

in Figure 3. The vector of binary components denoted by x represents the261

solution of the allocation problem.262

A first criterion is to reduce the economic cost of building the water263

quality monitoring network. This is achieved by keeping the number of mon-264

itoring stations to a minimum. Mathematically, this is defined as minimizing265

the following objective function:266

φ1(x) =
∑
i,j

Xij. (1)

Detecting lower compliance areas is the second criterion considered, which267

is related to an environmental aspect. This criterion is established so that268

the network shows the greatest potential capability to detect polluted ar-269

eas. Mathematically, this is translated into maximizing the probabilities of270

detecting threshold violations. With the WorldQual model, the in-stream271

concentrations of BOD, FC, and TDS were estimated for each grid cell of272

the Jubba River basin on a monthly basis for a period of 21 years. These273

quantities are denoted for BOD, FC, and TDS, respectively, by U
(t)
ij , V

(t)
ij ,274

and W
(t)
ij , for t = 1, 2, . . . T, where T = 252 = 12 · 21 is the total number275

of simulated measurements over the entire period for each pollutant. Values276

of BOD, FC, and TDS under 4 mg/l, 200 cfu/100 ml (colony-forming units277

per 100 ml), and 450 mg/l, respectively, are acceptable (UNEP, 2016). The278

probabilities of detection of threshold violations of BOD (Uij), FC (Vij), and279

TDS (Wij) for each grid cell over the whole period of time are defined as:280

P (Uij > 4) =
1

T

T∑
t=1

I[U
(t)
ij > 4], (2)

P (Vij > 200) =
1

T

T∑
t=1

I[V
(t)
ij > 200], (3)

P (Wij > 450) =
1

T

T∑
t=1

I[W
(t)
ij > 450], (4)

where I[·] represents the indicator function.281

The above probabilities are combined into a single value representing each282

cell, denoted Water Pollution Detection (WPD). This measure is defined for283
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each cell as Dij = P (Uij > 4) + P (Vij > 200) + P (Wij > 450). The greater284

the value of Dij, the more pollution that cell contains. Therefore, cells with285

large values should be preferred for allocating stations in order to detect286

non-compliance areas. Figure 4 shows the WPD values in the Jubba River287

basin.288

Figure 4: WPD for the cells in the Jubba River basin.

The objective function is defined as:289

φ2(x) =
∑
i,j

Dij ·Xij, (5)

which should be maximized.290

The third criterion considers the population involved. The degree of pro-291

tection of areas with large populations takes into account a social dimension.292

The areas with greater populations should be preferred for allocating moni-293

toring stations over those with fewer people. This information is available in294

the WorldQual model, and the population count in each cell is denoted by295

Cij. Figure 5 represents the population in each cell of the Jubba River basin.296
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Figure 5: Population for the cells in the Jubba River basin.

Therefore, the objective function to maximize is:297

φ3(x) =
∑
i,j

Cij ·Xij. (6)

The last criterion is related to a hydrological aspect, involving a classifica-298

tion of the river basin stretches. The Strahler (or Horton–Strahler) number299

of the mathematical tree representing the river basin will be considered for300

this task (Horton, 1945; Strahler, 1957). The Strahler number for a node in301

that tree is just its number of children. It is a numerical measure of branch-302

ing complexity, and is used to define stream size based on a hierarchy of303

tributaries. Let Sij denote the variable representing the Strahler number of304

the cell (i, j). The greater the Strahler number, the more importance the305

cell has hydrologically. These numbers may be of great help to avoid the306

concentration of stations in areas of low hydrological importance. Figure 6307

represents the Strahler number for the cells in the Jubba River basin.308
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Figure 6: Strahler number for the cells in the Jubba River basin.

The objective function to maximize is:309

φ4(x) =
∑
i,j

Sij ·Xij. (7)

Besides the objective functions, two constraints are considered. The first310

is related to the maximum budget allowed. The total number of stations311

should be between a minimum m (m ≥ 1) and a maximum M. The second is312

related to neighbouring cells. This constraint is aimed at avoiding touching313

cells from being selected.314

Finally, the problem of how to allocate monitoring stations is defined as a315

multi-objective optimization problem in which the number of stations is min-316

imized (Equation (1)) over a certain range of values while avoiding touching317

cells at the same time as maximizing the detection of non-compliance areas318

(Equation (5)), the population in the area (Equation (6)), and the hydrolog-319

ical importance (Equation (7)).320
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3.4. Stage-based multi-objective optimization algorithm321

The optimization problem defined in the previous subsection contains322

multiple conflicting objectives. Multi-objective optimization is the natural323

way to solve it.324

The Multi-Objective Artificial Bee Colony (MOABC) algorithm is an ex-325

tension to multi-objective settings of the Artificial Bee Colony (ABC) algo-326

rithm proposed by Karaboga & Basturk (2007). MOABC is an evolutionary327

algorithm based on the intelligent foraging behaviour of honey bee swarms328

with a population defined as a colony with three groups of bees: (1) employed329

bees maintain the currently known solutions of the problem; (2) onlooker bees330

allow the exploitation of the best solutions found so far; and (3) scout bees331

allow the exploration of new solutions when some of the current solutions are332

exhausted (they cannot be further improved). This algorithm allows escape333

from local optima, and provides good approximations to the overall opti-334

mum. MOABC has been successfully applied in several contexts (see, e.g.,335

Karaboga et al. (2014); Pérez et al. (2017); Huo & Liu (2018)).336

In the present work, the MOABC algorithm was adapted to find optimal337

solutions in different stages by means of an efficient implementation that al-338

lows the allocation problem to be solved for river basins of any size. In spite339

of the fact that multi-objective optimization returns a set of non-dominated340

solutions, the proposed approach considers at each stage consensus stations341

which properly approach the overall optima. Algorithm 1 presents the pseu-342

docode for the stage-based MOABC approach. A detailed explanation of343

the MOABC algorithm (lines 3-15) can be found in Pérez et al. (2017). In344

the present work, a stage-based version of MOABC is proposed. In this new345

version, the process is repeated for a maximum number of stages (line 2).346

Here, three stages will be considered. Each stage increases the number of347

stations used, taking into account the stations fixed in the previous stage.348

The first stage has no station fixed (line 1). Once MOABC has obtained the349

non-dominated solutions for that stage, they are saved (line 16) and are used350

to generate the consensus stations (line 17), i.e., the stations most used by351

all the non-dominated solutions. These consensus stations are saved as the352

exact solution for that stage (line 18). The consensus stations will then be353

used as fixed stations (line 19), adding more stations during the processing354

of the next stage.355

The stage-based MOABC algorithm was configured with parameters that356

had been tested to work appropriately, i.e., a colony size of 50, a maximum357
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Algorithm 1 Stage-based MOABC pseudocode.

1: fixed stations← ∅
2: for stage = 1 to max stages do
3: non dominated solutions← ∅
4: #Problem-aware and random generation of the initial colony
5: initial(fixed stations)
6: #Main steps of MOABC are repeated max. cycles or generations
7: for cycle = 1 to max cycles do
8: send employed bees(fixed stations)
9: rank and crowding(colony size)

10: calculate probabilities()
11: send onlooker bees(fixed stations)
12: send scout bees(fixed stations, cycle)
13: rank and crowding(2 ∗ colony size)
14: non dominated solutions← export colony()
15: end for
16: save non dominated solutions(non dominated solutions, stage)
17: consensus stations← get consensus(non dominated solutions)
18: save consensus stations(consensus stations, stage)
19: fixed stations← fixed stations ∪ consensus stations
20: end for

number of cycles of 3000, and a number of tries of 100 before taking a solu-358

tion to be exhausted. Similar parameter values were proposed by the ABC359

authors2. Other values were tested for each of these parameters, but the best360

results were obtained with this configuration.361

In order to ensure the statistical reliability of the results, the execution362

of the algorithm was repeated 31 times because of the stochastic nature of363

the proposed algorithm. The median results obtained from these 31 inde-364

pendent runs will be presented in the Results and Discussion section. This365

is a usual procedure in the optimization field since it avoids only the best366

execution being chosen and provides fairer information about the algorithm’s367

performance (Birattari & Dorigo, 2007).368

Finally, scatter plots will be used to represent the non-dominated solu-369

2http://mf.erciyes.edu.tr/abc/
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tions for each stage, and graphs and descriptive statistics to compare the370

objective values by stages.371

4. Results and Discussion372

This section will present a detailed analysis of the solutions obtained in373

each stage. Then a comparative analysis of the results of the stages will be374

made, followed by a discussion of the stage-based selection of water monitor-375

ing stations.376

4.1. Defining the stages377

The Jubba River basin has a drainage area of 741 751 km2 in a region378

with an arid climate. According to the minimum number of stations defined379

by WMO (WMO, 1994) and summarized by Borden & Roy (2015) of the380

IISD, arid regions should have at least 1 station/5000-20 000 km2. This381

would mean between 37 and 148 water quality monitoring stations in the382

network. But, according to the GEMStat database, the average density for383

African river basins is 0.02 stations/10 000 km2, which is very low compared384

to typical minimum densities of around 1.5 to 4 stations/10 000 km2 of385

river basins in Europe and the USA (UNEP, 2016). These latter values for386

Europe and the USA would mean that there should be from 112 to 296387

stations allocated to the Jubba River basin. Combining the two criteria,388

it would seem reasonable to establish a network with 112 stations for this389

large drainage area. Moreover, to be affordable, this should be performed in390

stages. A three-stage approach is proposed here, with the first comprising391

20 stations, the second incorporating additional 30 stations, and the third392

adding the remaining 62 stations to the 50 stations already allocated in the393

two previous stages.394

4.2. First stage: from 1 to 20 monitoring stations395

In the execution of this stage-based MOABC algorithm, a set of non-396

dominated solutions is generated. In the first stage, each solution corresponds397

to from 1 to 20 locations where the monitoring stations can be placed. Specif-398

ically, 880 different non-dominated solutions are obtained in the first stage399

for the median execution. Note that the four objectives are being optimized400

simultaneously, so that the graphical representation of the solutions involves401

four dimensions. For better understanding, the graphical representation will402
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be decomposed into six 2D plots that include all the possible pairwise combi-403

nations of the four objectives. The objective values of these non-dominated404

solutions are shown in Figure 7.405
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(a) WPD vs number of stations. (b) Strahler number vs number of stations.

(c) Population vs number of stations. (d) WPD vs population.

(e) WPD vs Strahler number. (f) Population vs Strahler number.

Figure 7: Objective values of the non-dominated solutions obtained when the number of
monitoring stations is limited to between 1 and 20.

The following deductions can be made from the plots in Figure 7. Figure406
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7(a) shows that non-dominated solutions are obtained for all numbers of sta-407

tions between 1 and 20, and that the dispersion increases with the number408

of stations. The more stations there are, the greater is WPD. This was to409

be expected since the greater the number of stations, the more threshold vi-410

olations will be detectable. The relationship between the number of stations411

and the Strahler number is shown in Figure 7(b). Again as expected, when412

the number of stations increases, the Strahler number also increases since it413

is possible to cover more river stretches with high hydrological importance.414

The increase in the dispersion stands out more in Figure 7(c) with more415

population being covered as more stations are considered. This would result416

in more people being protected. Figure 7(d) shows that when the popula-417

tion increases, the WPD also increases. Areas with high population may418

produce more pollution in general, and hence greater water contamination.419

Figure 7(e) shows two types of behaviour for the relationship between the420

Strahler number and WPD. First, for most of the solutions, as the Strahler421

number increases, so does the WPD with a steep slope. This means that422

these solutions represent stations at which the pollution increases strongly423

with their growing hydrological importance. Second, there is another group424

of solutions for which this increase is weaker. Finally, Figure 7(f) shows that,425

as the Strahler number increases, so does the population. This means that426

people settle in areas close to important streams.427

This procedure allowed the 2.56 · 1051 possible solutions for from 1 to428

20 monitoring stations to be reduced to the best 880 solutions (i.e., greater429

than 99.99% reduction). Now the best 20 locations based on these 880 non-430

dominated solutions have to be selected. To this end, a procedure based on431

the consensus solution is applied. The frequency of each cell (i.e., the number432

of times that the cell is present in these 880 non-dominated solutions) is433

calculated, and all the cells are ranked according to those frequencies. The434

20 most repeated cells are then taken to be the locations of the monitoring435

stations given by this first stage.436

4.3. Second stage: from 21 to 50 monitoring stations437

Now the focus turns to the next 30 monitoring stations, given that the438

first 20 have been settled. In this case, a total of 2352 different non-dominated439

solutions were found in the median execution. The objective values of these440

non-dominated solutions are shown in Figure 8.441
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(a) WPD vs number of stations. (b) Strahler number vs number of stations.

(c) Population vs number of stations. (d) WPD vs population.

(e) WPD vs Strahler number. (f) Population vs Strahler number.

Figure 8: All the non-dominated solutions obtained when the number of monitoring sta-
tions is limited to between 21 and 50.

The comments made above for the first stage also apply to this stage,442
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but with some additional remarks. The increase in the number of solutions443

leads to greater dispersion than in the first stage. This can be seen in the444

relationship between the number of stations and each of the three objectives445

(Figures 8 (a,b,c)). While again WPD increases as the population grows,446

there now appear three positive slopes which correspond to three different447

areas related to the Strahler numbers (see Figures 8 (d, e)). In Figure 8 (f),448

one observes that larger Strahler numbers are related to lower populations.449

Since the process is progressive, in this stage there are 3077 (=3097-20)450

possible locations. The number of possible solutions with between 21 and 50451

stations is then 5.71 · 10109, which the algorithm reduces to 2352 solutions452

(again greater than 99.99% reduction). The consensus solution approach was453

applied to get the 30 best new locations for this second stage.454

4.4. Third stage: from 51 to 112 monitoring stations455

Now the focus is on allocating the last 62 monitoring stations given that456

the first 50 have been settled in the previous stages. A total of 6283 non-457

dominated solutions were found in the median execution. The objective458

values of these non-dominated solutions are shown in Figure 9.459
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(a) WPD vs number of stations. (b) Strahler number vs number of stations.

(c) Population vs number of stations. (d) WPD vs population.

(e) WPD vs Strahler number. (f) Population vs Strahler number.

Figure 9: All the non-dominated solutions obtained when the number of monitoring sta-
tions is limited to between 51 and 112.

The same trends for the objectives observed in the second stage are even460
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clearer now due to the greater number of solutions found.461

In this stage, there are 3047 (3097-50) possible locations for the stations462

51 to 112. In this stage, there are 1.04 · 10207 possible solutions, which the463

algorithm reduces to 6283, a computationally manageable number. Appli-464

cation of the consensus solution approach allowed the best 62 new locations465

to be determined for this stage. Combination with the solutions found in466

the previous stages yielded an ordered list of 112 locations for water quality467

monitoring stations.468

4.5. Description of the monitoring station locations469

Figure 10 shows the locations of the water quality monitoring stations by470

stage.471

Figure 10: Progressive allocation of 112 monitoring stations in three stages.

The first stage assigned stations in different important areas. Specifically,472

stretches with low Strahler number and high pollution were assigned as sta-473
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tions in the north and northwest of the Jubba River basin (in Ethiopia). In474

the centre of the river basin (in Somalia), the stations assigned corresponded475

to sites with very high Strahler number and population but low pollution.476

Some stations were allocated in the east of the river basin, mainly corre-477

sponding to the Shebelle tributary. These stretches have very high Strahler478

numbers and high pollution. Finally, some stations were allocated close to479

the mouth, along the Jubba River itself. They combine high population with480

the maximum Strahler numbers, but not high pollution.481

The second stage reinforces the coverage of some of the vast areas de-482

scribed for the previous stage, and adds stations in the southwest of the483

Jubba River basin (Kenya) with intermediate pollution, high population,484

and low Strahler numbers.485

Finally, the third stage increases the coverage of all of the previously486

defined areas, and adds focuses on three new areas. One is in the west of487

the river basin (Ethiopia) with locations having low Strahler numbers and488

intermediate population and pollution. Another is around the Kutulo and489

Lak Bor tributaries (Kenya and Somalia) where the locations assigned have490

low population and Strahler number, but high pollution. The last area with491

assigned stations corresponds to the Lagh Dera tributary, especially close to492

where it flows into the Jubba River. These locations have low pollution and493

population, but very high Strahler number.494

The construction of this network based on objective criteria has thus been495

able to allocate in a progressive way the water quality monitoring stations496

in the most significant parts of the river basin. The following subsection will497

compare the performance of the objective values in the three stages.498

4.6. The performance of the stage-based approach499

As was described above, the procedure was defined so that the number500

of stations increases up to 112 in three stages. This subsection will present a501

comparison of the evolution of the objective values for the locations selected502

in the three stages. Since the stations were ranked within each stage, it is503

possible to conform a water quality network with any number of stations504

from 1 to 112. Figure 11 presents the cumulative WPD for any number of505

stations together with its disaggregation by FC, BOD, and TDS.506
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Figure 11: Cumulative amounts of WPD, FC, BOD, and TDS for from 1 to 112 stations.

Figure 11 shows a major increase of cumulative WPD during the first507

stage, with a more moderate rise during the other stages. Specifically, the508

slopes are 1.23, 0.70, and 0.85 for the first, second, and third stages, respec-509

tively. This behaviour shows that the first stations are very well allocated,510

covering the locations with the highest WPD. Then, as the number of mon-511

itoring stations increases, it becomes harder to proportionally detect this512

pollution because the best locations have already been assigned. The infor-513

mation in this figure would allow an exact number of stations for the network514

to be found for any threshold established for cumulative WPD. The disag-515

gregated information shows that FC contributes the most, followed by BOD,516

and finally by TDS, and that this is the case for whatever number of stations.517

Again, a threshold of cumulative FC, BOD, or TDS could be established in518

order to find the exact number of stations required for the network.519

Figure 12 is the analogous graph for the population. The slope of the520

cumulative population curve is steep to begin with, and then gradually starts521
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to flatten out as the number of stations increases. In particular, the slope522

decreases from 49 267 in the first stage to 12 748 in the second and 5098 in523

the third. Again, this indicates that the first stations are very well allocated,524

and then the next stations become harder to match such a high benefit.525

This caveat notwithstanding, the graph allows a population threshold to be526

established so as to find the exact number of stations that need to be set up527

in the network.528

Figure 12: Cumulative population for from 1 to 112 stations.
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Finally, the corresponding graph for the Strahler numbers is shown in529

Figure 13. In this case, the cumulative Strahler number curve has a fairly530

constant upward slope across all three stages, reflecting that a steadily grow-531

ing number of streams are being monitored by the network. Again, the graph532

would allow a Strahler number threshold to be established to find the exact533

number of stations needed in the network.534

Figure 13: Cumulative Strahler numbers for from 1 to 112 stations.
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By way of synthesis, Table 1 lists the objective values (WPD, population,535

and Strahler number) for each stage, as well as the percentage improvement536

of each stage over the preceding one.537

Stage WPD Population Strahler

1
25.08 1 013 221 88

- - -

2
47.10 1 417 275 205

87.80% 39.88% 132.95%

3
99.72 1 740 415 414

111.72% 22.80% 101.95%

Table 1: Objective values and percentage improvements for WPD, population, and
Strahler number by stages.

For WPD, the percentage improvement from the first to the second stage538

is 87.80%, increasing to 111.72% from the second to the third stage. For the539

population objective, the respective improvements are 39.88% and 22.80%,540

and for the Strahler numbers they are both greater than 100%. Observe541

that percentage improvements higher than 100% are possible because the542

increment of monitoring stations from stage 1 to stage 2 is 150% (from 20 to543

50 stations) and the augmentation of stations from stage 2 to stage 3 is 124%544

(from 50 to 112 stations). It can be concluded that the data from Table 1545

lend support to the applicability of the proposed stage-based approach to546

substantially improving the objectives being considered with increases in the547

number of stations.548

5. Conclusions549

A stage-based optimization approach has been developed to construct550

river basin water quality monitoring networks. The approach allows a net-551

work to be created from scratch without the need for in situ pollution mea-552

surements. Instead, it uses, together with other social and hydrological cri-553

teria, pollutant estimates from the WorldQual model. At each stage, the554

proposed stage-based MOABC approach is able to efficiently reduce the huge555

number of possible solutions, and choose just one optimal solution. Moreover,556

the method followed provides a list of candidate stations ranked by impor-557

tance, so that the network can be built up progressively. This approach is558

especially interesting when in situ measurements are absent since it allows a559
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water quality network to be initialized and augmented. It can be applied to560

river basins of any size.561

The results show that the approach finds the best places to allocate mon-562

itoring stations in the Jubba River basin by seeking a compromise between563

detection of pollutants, number of people affected, and the location’s hydro-564

logical importance. At the same time, the number of stations required is565

reduced as much as possible – an aspect that is especially relevant for ap-566

plication by developing countries who may consider this approach as a way567

to obtain an overview of their river basins and then prioritize the initial dis-568

tributions of the networks. The approach would help policy makers to take569

informed decisions based on environmental and sustainability assessments of570

their river basins.571

As a future research line, this approach could be adapted to include more572

pollutants and water information, such as microplastics, nutrients, chemicals,573

pathogens, temperature, among others, with a previous correlation study574

that clarifies the possible relationships among all this information.575

Acknowledgements576

This research was supported by Ministry of Science, Innovation and Uni-577

versities - Spain and State Research Agency - Spain (projects PID2019-578

107299GB-I00/AEI/10.13039/501100011033 and MTM2017-86875-C3-2-R),579

Junta de Extremadura - Spain (projects GR18090 and GR18108), Centre580

for Environmental Systems Research, University of Kassel - Germany (Wa-581

terGAP3 project), and European Union (European Regional Development582

Fund). There are no conflicts of interest.583

References584

Adu-Manu, K., Tapparello, C., Heinzelman, W., Katsriku, F., & Abdulai,585

J.-D. (2017). Water quality monitoring using wireless sensor networks:586

Current trends and future research directions. ACM Transactions on Sen-587

sor Networks , 13 , 1–41.588

Al-Khafaji, M. S., & Abdulraheem, Z. A. (2017). A deterministic algorithm589

for determination of optimal water quality monitoring stations. Water590

Resource Management , 31 , 3575–3592.591

30
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