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A B S T R A C T   

Accurate determination of the structural disorder (i.e., cation misplacement, anionic and cationic vacancies, and 
reduced cations) of spinels is crucial to understanding the properties of this technologically attractive sub-family 
of ceramics, but it is very difficult to do in practice. Here, constrained–restrained Rietveld refinements of the 
experimentally measured X-ray diffraction patterns are proposed to tackle the challenging quantification of the 
structural disorder in spinels. First, it is demonstrated that the constraints–restraints to be imposed during the 
Rietveld refinements can be formulated by mathematical modelling through the linear inverse problem whose 
framework is first presented generically and then particularised to the different types of possible normal, inverse, 
and mixed spinels, namely, stoichiometric perfect spinels, stoichiometric and non-stoichiometric imperfect spi
nels, and non-stoichiometric imperfect spinels with oxidation state changes. And second, by way of example this 
type of constrained–restrained Rietveld refinement is successfully applied to the experimental quantification of 
the structural disorder in two custom-made spinels (i.e., zinc-ferrite and nickel-ferrite spinels).   

1. Introduction 

Computational methods, based on the use of computer- 
implementable mathematical tools/algorithms, are playing a funda
mental role in solving numerous problems in Materials Science, to the 
point that a new sub-discipline called Computational Materials Science 
has been coined. This is currently an emerging approach to handling 
complicated Materials Science problems when analytical solutions or 
experimental empirical solutions cannot be obtained, or are intractable, 
as is the case for those involving complex relationships between variables 
and/or large combinational spaces. One of these problems is the chal
lenging quantification of the structural disorder (e.g., cation misplace
ment, anionic and cationic vacancies, and reduced cations) in spinels. 

The spinel-type cubic crystal structure is typical of many natural 
minerals and many modern synthesized structural and functional com
pounds [1,2]. Most spinels are given by the general formula AB2X4, 
where A and B are divalent (A2+) and trivalent (B3+) cations, respec
tively, and X are anions which are normally chalcogens (X2− ) and most 
frequently O2− , so that the prototypical spinel is the oxy-spinel 
A2+B3+

2 O2−
4 (hereafter referred to simply as spinel). Spinels typically 

crystallize in the space group Fd3m (sometimes incorrectly assigned to 

F43m) [3–5], and the so-called normal spinels (i.e., (A2+)
tet
(B3+)

oct
2 O2−

4 ), 
in which the tetrahedral sites are fully occupied by A2+ cations and the 
octahedral sites by B3+ cations, have a crystal structure comprising a 
hetero-polyhedral framework of four-fold coordination polyhedra (AO4) 
isolated from each other and sharing corners with neighbouring six-fold 
coordination polyhedra (BO6), the latter in turn sharing six of their 
twelve O–O edges with nearest BO6 neighbours. The so-called inverse 
spinels are those in which the tetrahedral sites are however fully occu
pied by B3+ cations instead of by A2+ cations, and the octahedral sites by 
A2+ and B3+ cations in equal proportions instead of only by B3+ cations, 
thus resulting in a spinel (B3+)

tet
(A2+

0.5B3+
0.5)

oct
2 O2−

4 . Finally, the so-called 
mixed spinels, or partially inverse spinels, are cases intermediate be
tween the normal and inverse spinels, with formulation 
(A2+

1− yB3+
y )

tet
(A2+

y/2B3+
1− y/2)

oct

2
O2−

4 . Here y is termed the inversion degree, 
which takes the value 0 for normal spinels, 1 for inverse spinels, and a 
number in the range 0 – 1 for mixed spinels. Spinels can also be classed 
as perfect if they exhibit only cation misplacement (i.e., (B3+)

tet and 
(A2+)

oct), or as imperfect if there are also other point defects (particu
larly vacancies in the cationic (i.e., (VC)

tet and/or (VC)
oct) and anionic (i. 

e., VO) sub-lattices as well as oxidation state changes (i.e., in particular 
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B3+→B2+ and in general A2+→Ap+ (with p ∕= 2) and B3+→ Bn+ (with n ∕=

3) at both tetrahedral and octahedral sites)). Moreover, spinels can also 
be classed as stoichiometric if the atomic ratios are 4O:1A, 4O:2B, and 
2B:1A, or as non-stoichiometric otherwise. Therefore, it is evident that 
spinels can have very varied configurations of structural disorder, whose 
quantification is of fundamental importance to understanding their 
properties. Unfortunately however, the accurate evaluation of the 
structural disorder in spinels, that is, the determination of set of occu
pancies and vacancies of the crystallographic Wyckoff positions, is 
extremely difficult and tedious to do [1]. 

With the above in mind, the aim of the present work was to develop 
an experimentally simple procedure to accurately quantify the structural 
disorder in spinels using X-ray diffractometry (XRD), in particular by 
performing constrained–restrained Rietveld refinements of their XRD 
patterns [6,7]. While the restrained Rietveld refinements in perfect 
spinels with only cation misplacement are not unusual because it is a 
common practice to impose (i) that the occupancies of the different 
Wyckoff positions necessarily take values in the range 0 – 1 and (ii) that 
there exists only one simple linear relationship between the occupancies 
of the tetrahedral and octahedral Wyckoff positions, the truth is that the 
constrained–restrained Rietveld refinements required in imperfect spi
nels with other point defects are not common but rather occasional 
because in these cases (i) a wider set of constraints plus restraints is 
needed and (ii) the multiple relationships between different occupancies 
and other point defects are more, or much more, complex. Also, while 
the inversion parameter determined by restrained Rietveld refinements 
can provide a full description of the structural disorder in perfect spinels 
with only cation misplacement, this is insufficient for imperfect spinels 
with other point defects. In general, a series of constraints–restraints 
must be imposed during the Rietveld refinement to ensure its conver
gence with crystallographic coherence and therefore reliability of the 
resulting spinel crystal structure, and here will be formulated by 
mathematical modelling through the well-known linear inverse problem 
(LIP) [8]. Therefore, in what follows the basics of LIP are first briefly 
described (Section 2), then LIP is applied to various types of spinels to 
formulate the corresponding sets of constraints–restraints to be imposed 
in each case (Section 3), and finally constrained–restrained Rietveld 
refinements of the XRD patterns of custom-made zinc-ferrite and 
nickel-ferrite spinels (i.e., nominally ZnFe2O4 and NiFe2O4, respectively) 
are performed by way of examples to illustrate their practical utility in 
the experimental characterisation of spinels (Section 4). 

2. The methodological approach proposed 

Generally speaking, in science a direct problem is the process of 
transforming causes into effects, and consequently an inverse problem is 
the process of calculating the causal factors that produced a set of ob
servations, using linear algebra in the case of LIPs. Applied to the 
determination of structural disorder in crystals, the LIP can be defined in 
general form by the following matrix notation: 

A×X = a, (1)  

where X would be the column vector of order n with the occupancies and 
vacancies of the Wyckoff positions, A is a known m × n matrix (with m ≤
n being the number of constraints), and a is a known column vector of 
order n. The order n is the sum of occupancies and vacancies describing 
the crystallographic lattice of the crystal (spinel in this case), and 
therefore varies from one case to another. Individually, each component 
of the column vector X varies from 0 to 1, a condition that could be 
written formally as: 

0≤ I × X ≤ 1, (2)  

where I is the n × n identity matrix, 0 is a column vector of order n with 
all its elements equal to 0, and 1 is the column vector of order n with all 
its elements equal to 1. 

As can be seen above, in general terms there are two possible sets of 
linear equations that can be formulated, namely (i) equalities (i.e., Eq. 
(1)), that must be satisfied exactly, as are the cases with the relations of 
stoichiometry if preserved, the relations of full occupation of the 
Wyckoff positions including vacancies if present, and the condition of 
charge neutrality, and (ii) inequalities (i.e., Eq. (2)), as is the case with 
the different occupancies and vacancies of the Wyckoff positions, which 
necessarily take values in the range 0 – 1. Equation (1) gives rise to 
constraints, and Eq. (2) to restraints. In the case of the spinels, the total 
number of unknowns (i.e., the occupancies and vacancies) is greater 
than the set of possible independent linear equations, and therefore the 
linear system to be solved is mathematically classed as consistent and 
dependent (which in fact gives rise to the different possible varieties of 
spinels). The linear system formulated can be solved “by hand” using 
classical algebraic procedures, or with the help of free software such as 
the LIMSOLVE package. Also, because there is no target function to 
minimise/maximise, whether linear or non-linear, unfortunately LIP 
cannot be used alone to find a single solution (i.e., the set of occupancies 
and vacancies of the Wyckoff positions) but rather the feasible solution 
space, including at least the free unknowns, the ranges for all unknowns, 
and the incompatibilities. This information is nonetheless extremely 
important because it can be used as input in a possible constrained–re
strained Rietveld refinement of the experimentally measured XRD 
pattern, which does seek to minimise the sum of weighted squares of the 
differences between the observed and calculated intensities [6]. By 
doing so, the number of refinable crystallographic parameters is greatly 
reduced while ensuring that the Rietveld refinement converges with 
physical meaning. 

3. Particularisation of LIP to spinels 

In what follows, LIP will be applied to the different types of possible 
spinels to obtain their set of constraints – restraints, namely, to (i) per
fect spinels, which are also stoichiometric, and to (ii) imperfect spinels, 
which in turn can be stoichiometric, non-stoichiometric, and non- 
stoichiometric with oxidation state changes. 

3.1. Perfect spinels 

By definition, perfect spinels may have only cation misplacement at 
tetrahedral and octahedral sites, with no cationic or anionic vacancies, 
and are therefore always stoichiometric. Consequently, in these spinels 
the Wyckoff position 32e is fully occupied by O2− and the Wyckoff po
sitions 8a and 16d by a certain combination of A2+ and B3+ depending 
on whether the perfect spinel is normal, inverse, or mixed. The following 
linear system of 4 equations can thus be formulated for stoichiometric 
perfect spinels (see Appendix A for the derivation): 
(
A2+)oct

+
(
B3+)oct

= 1, (3)  

(
A2+)tet

+
(
B3+)tet

= 1, (4)  

4
(
A2+)oct

− 2
(
B3+)oct

+ 2
(
A2+)tet

−
(
B3+)tet

= 0, (5)  

4
(
A2+)oct

+ 6
(
B3+)oct

+ 2
(
A2+)tet

+ 3
(
B3+)tet

− 8 = 0. (6) 

Physically, these equations are the conditions of full occupation of 
positions 16d (Eq. (3)), of full occupation of positions 8a (Eq. (4)), of 
stoichiometry (Eq. (5)), and of charge neutrality (Eq. (6)). Of those 4, 
only 3 are however linearly independent, which is expected because 
otherwise the linear equation system would be consistent and inde
pendent with a unique solution, in turn implying the falsehood that all 
perfect spinels always have identical cation disorder. The solution to this 
consistent and dependent linear equation system is that the only refin
able occupancy during the Rietveld refinement is actually (B3+)

tet (i.e., 
the inversion degree), and that the others are necessarily given by: 
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(
B3+)oct

(
A2+)tet

(
B3+)tet

⎞

⎟
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⎟
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⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2
(
B3+)tet

1 −
1
2
(
B3+)tet

1 −
(
B3+)tet

(
B3+)tet

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (7) 

Besides these constraints, one further restraint to also be imposed 
during the Rietveld refinement is logically that: 

0 ≤
(
B3+)tet

≤ 1. (8)  

3.2. Imperfect spinels 

By definition, imperfect spinels may have cation misplacement at 
tetrahedral and octahedral sites plus cation (i.e., (VC)

tet and/or (VC)
oct) 

and anion (i.e., VO) vacancies, and even reduced cations. Consequently, 
in these spinels the Wyckoff position 32e is only partially occupied by 
O2− and the Wyckoff positions 8a and 16d only partially by A2+/Ap+

(with p ∕= 2) and B3+/Bn+ (with n ∕= 3), depending on whether the 
imperfect spinel is normal, inverse, or mixed. Besides, imperfect spinels 
can be stoichiometric or non-stoichiometric depending on the particular 
combination of the populations of cation and anion vacancies. If any at 
all, the deviations from stoichiometry will in any case be moderate 
because the vacancy populations cannot be very large. 

3.2.1. Stoichiometric imperfect spinels 
This spinel sub-type comprises imperfect spinels with no oxidation 

state charges that preserve the stoichiometry. The following linear system 
of 6 equations can thus be formulated for stoichiometric imperfect spinels: 

O2− +VO = 1, (9)  

(
A2+)oct

+
(
B3+)oct

+
(
VC)oct

= 1, (10)  

(
A2+)tet

+
(
B3+)tet

+
(
VC)tet

= 1, (11)  

O2− − 2
(
A2+)oct

−
(
A2+)tet

= 0, (12)  

2O2− − 2
(
B3+)oct

−
(
B3+)tet

= 0, (13)  

8O2− − 4
(
A2+)oct

− 6
(
B3+)oct

− 2
(
A2+)tet

− 3
(
B3+)tet

= 0. (14) 

Physically, these equations are the conditions of full occupation of 
positions 32e (Eq. (9)), of full occupation of positions 16d (Eq. (10)), of 
full occupation of positions 8a (Eq. (11)), of stoichiometry (Eq. (12)– 
(13)), and of charge neutrality (Eq. (14)). Of those 6, only 5 are however 
linearly independent. Therefore, the solution to this consistent and 
dependent linear system is that the only 3 refinable occupancies during 
the Rietveld refinement are actually O2− , (A2+)

tet, and (B3+)
tet (i.e., the 

inversion degree), and that the others are necessarily given by: 

⎛

⎜
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O2−

1 − O2−

1
2

(
O2− −

(
A2+)tet

)

1 −
1
2
(
B3+)tet

1 −
1
2

(
3O2− −

(
A2+)tet

−
(
B3+)tet

)

(
A2+)tet

(
B3+)tet

1 −
(
A2+)tet

−
(
B3+)tet

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15) 

Besides these constraints, 3 further restraints to also be imposed 
during the Rietveld refinement are logically that: 

(i) 0≤O2− ≤ 1, (ii) 0≤
(
A2+)tet

≤ 1, and (iii) 0≤
(
B3+)tet

≤ 1. (16)  

3.2.2. Non-stoichiometric imperfect spinels 
This spinel sub-type comprises imperfect spinels with no oxidation 

state changes that do not preserve the stoichiometry. A linear system of 4 
independent equations constituted only by Eqs. (9)–(11) and (14) above 
can thus be formulated for non-stoichiometric imperfect spinels (that is, 
as above for the stoichiometric imperfect spinels except for the two 
equations of stoichiometry (i.e., Eqs. 12 and 13)). Therefore, the solution 
to this consistent and dependent linear system is that the only 4 refinable 
occupancies during the Rietveld refinement are actually O2− , (A2+)

oct , 
(A2+)

tet, and (B3+)
tet (i.e., the inversion degree), and that the others are 

necessarily given by: 
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4
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+
1
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(
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⎞
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.

(17) 

Besides these constraints, 4 further restraints to also be imposed 
during the Rietveld refinement are logically that: 

(i) 0≤O2− ≤ 1, (ii) 0≤
(
A2+)oct

≤ 0.5, (iii) 0≤
(
A2+)tet

≤ 1,

and (iii) 0≤
(
B3+)tet

≤ 1.
(18)  

3.2.3. Non-stoichiometric imperfect spinels with oxidation state changes 
B3+→B2+

This spinel sub-type comprises imperfect spinels with a certain 
fraction of reduced cations B2+. Note that the oxidation state change 
B3+→B2+ generates additional oxygen vacancies, and therefore neces
sarily entails the loss of stoichiometry (see Appendix B for the deriva
tion). The following linear system of 4 equations can thus be formulated 
for non-stoichiometric imperfect spinels with oxidation state changes: 

O2− +VO = 1, (19)  

(
A2+)oct

+
(
B3+)oct

+
(
B2+)oct

+
(
VC)oct

= 1, (20)  

(
A2+)tet

+
(
B3+)tet

+
(
B2+)tet

+
(
VC)tet

= 1, (21)   

8O2− − 4
(
A2+)oct

− 6
(
B3+)oct

− 4
(
B2+)oct

− 2
(
A2+)tet

− 3
(
B3+)tet

− 2
(
B2+)tet

=0.
(22) 

Physically, these equations are the conditions of full occupation of 
positions 32e (Eq. (19)), of full occupation of positions 16d (Eq. (20)), of 
full occupation of positions 8a (Eq. (21)), and of charge neutrality (Eq. 
(22)). The solution to this consistent and dependent linear system is that 
the only 6 refinable chemical occupancies are actually (A2+)

oct, (B3+)
oct, 

(B2+)
oct, (A2+)

tet, (B3+)
tet and, (B2+)

tet, and that the others are necessarily 
given by: 
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Note that in this type of spinel the inversion degree is (B3+)
tet
+

(B2+)
tet. Besides these constraints, 6 further restraints to also be imposed 

during the Rietveld refinement are logically that: 

(i) 0≤
(
A2+)oct

≤ 0.5, (ii) 0≤
(
B3+)oct

≤ 1, (iii) 0≤
(
B2+)oct

≤ 1,

(iv) 0≤
(
A2+)tet

≤ 1, (v) 0≤
(
B3+)tet

≤ 1, and (vi) 0≤
(
B2+)tet

≤ 1.
(24)  

3.2.4. Non-stoichiometric imperfect spinels with any possible oxidation 
state change 

This spinel sub-type comprises imperfect spinels with a certain 
fraction of cations A2+ and B3+ having changed their oxidation states to 
Ap+ (with p ∕= 2) and Bn+ (with n ∕= 3), respectively, and that they do not 
preserve the stoichiometry. The following linear system of 4 equations 
can thus be formulated for non-stoichiometric imperfect spinels with 
any possible oxidation state change: 

O2− +VO = 1, (25)  

(
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+
(
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oct
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(28) 

Physically, these equations are the conditions of full occupation of 
positions 32e (Eq. (25)), of full occupation of positions 16d (Eq. (26)), of 
full occupation of positions 8a (Eq. (27)), and of charge neutrality (Eq. 
(28)). The solution to this consistent and dependent linear system is that 
the only 8 refinable chemical occupancies are actually (A2+)

oct, (B3+)
oct, 

(Ap+)
oct, (Bn+)

oct, (A2+)
tet, (B3+)

tet, (Ap+)
tet, and (Bn+)

tet, and that the 
others are necessarily given by:   

Note that in this type of spinel the inversion degree is (B3+)
tet
+

(Bn+)
tet. Besides these constraints, 8 further restraints to also be imposed 

during the Rietveld refinement are logically that: 

(i) 0≤
(
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(
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(
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(
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≤ 1.

(30)  

4. Experimental quantification of the point defects in zinc- 
ferrite and nickel-ferrite spinels 

4.1. Methodology 

Zinc-ferrite and nickel-ferrite spinels (i.e., nominally ZnFe2O4 and 
NiFe2O4, respectively) were synthesized by the co-precipitation method 
as described elsewhere for NiFe2O4 and cobalt-ferrite (i.e., CoFe2O4) 
spinels [9], and their XRD patterns were measured (D8 Advance, Bruker 
AXS, Germany) over the angular range 20–90◦ 2θ, with step of 0.05◦ 2θ 
and counting time of 2 s per step, using conventional CuKα incident 
radiation (although CoKα would have been more recommendable to 
minimise fluorescence). 

The Rietveld refinements of the XRD patterns of both spinels were 
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performed using the software package FULLPROF (version September 
2020), applying cubic spline interpolation to model the intensity back
ground and the following refinable global, instrumental, and profile 
parameters: (i) the scale factor to capture the peak intensities; (ii) the 
zero-point, transparency, and off-centering parameters to account for 
possible instrumental shifts in the peak positions; (iii) the lattice 
parameter of the cubic crystal structure to model, together with the 
instrumental shifts, the peak positions; and (iv) the mixing parameter, 
the half-width parameters, and the asymmetry parameters of a pseudo- 
Voigt function to describe the peak shape. An approach based on the 
principle of parsimony was followed, therefore starting with the 
simplest spinel model and using gradually more complex spinel models 
only if the Rietveld refinement was unsatisfactory (as measured in terms 
of the conventional agreement indicator χ2

r ). The spinel crystal structure 
was described using the cubic space group Fd3m (No. 227) in the second 
setting, with refinable lattice parameter a, refinable Wyckoff position 
32e (fractional coordinates u,u,u, with u being known as the oxygen 
parameter whose value is close to 0.25) for the anions O2− , and fixed 
Wyckoff positions 8a and 16c (fractional coordinates 0,0,0 and 5

8, 
5
8, 

5
8, 

respectively) for the cations A2+, B3+, and B2+ or Ap+–Bn+ if needed. 

4.2. The zinc-ferrite spinel 

Fig. 1 shows the experimentally acquired XRD pattern of the ZnFe2O4 
spinel together with the plotted output from the constrained–restrained 
Rietveld refinement performed as described above using the stoichio
metric perfect spinel model, which is the simplest one (i.e., Eqs. (7) and 
(8)). It can be seen that the Rietveld refinement shows an excellent fit 
between the experimental and calculated XRD patterns, with χ2

r being as 
low as only 1.24, indicating that the stoichiometric perfect spinel model 
describes well the structural disorder of the present ZnFe2O4 spinel. The 
refinable occupancy (B3+)

tet
= (Fe3+)

tet is thus determined to be 0.152 
(6), in turn resulting in the following occupancies (note that there are no 
vacancies in this case): 
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Therefore, the present ZnFe2O4 spinel is a mixed stoichiometric 
perfect spinel with inversion degree 0.152, given by 
(Zn2+

0.848Fe3+
0.152)

tet
(Zn2+

0.076Fe3+
0.924)

oct
2 O2−

4 . For its complete description, the 

Rietveld refinement also indicated that the lattice parameter of this 
spinel is a = 8.4609(1) Å and that the oxygen parameter is u = 0.2580 
(2). 

4.3. The nickel-ferrite spinel 

Fig. 2 shows the experimentally acquired XRD pattern of the NiFe2O4 
spinel together with the plotted outputs from the constrained–restrained 
Rietveld refinements performed as described above using first the stoi
chiometric perfect spinel model (Fig. 2A), which is the simplest one (i.e., 
Eq. (7)– (8)), and then the stoichiometric imperfect spinel model 
(Fig. 2B), which is the second simplest one (i.e., Eq. (15)– (16)). It can be 
seen that the former did not lead to a satisfactory fit (i.e., χ2

r being as high 
as 2.71) while the latter already does (i.e., χ2

r being as low as 1.37), 
indicating that the perfect spinel model does not describe well the 
structural disorder of the present NiFe2O4 spinel while the stoichio
metric imperfect spinel model already does. In this scenario the refinable 
occupancies O2− , (A2+)

tet
= (Ni2+)tet, and (B3+)

tet
= (Fe3+)

tet are thus 
determined to be 0.960(1), 0.871(2), and 0.112(2), in turn resulting in 
the following occupancies (note that there are anionic and cationic va
cancies in this case):  

Fig. 1. Experimentally acquired XRD pattern of the present ZnFe2O4 spinel 
together with the plotted output from the corresponding constrained–restrained 
Rietveld refinement performed using the stoichiometric perfect spinel model. 
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Therefore, the present NiFe2O4 spinel is a mixed stoichiometric 

imperfect spinel with inversion degree 0.112, given by (Ni2+0.871Fe3+
0.112)

tet 

(Ni2+0.045Fe3+
0.944)

oct
2 O2−

0.960. For its complete description, the Rietveld 
refinement also indicated that the lattice parameter of this spinel is a =
8.3426(9) Å and that the oxygen parameter is u = 0.2626(2). 

5. Concluding remarks 

Determining accurately the structural disorder in spinels, which are a 
very wide sub-family of ceramics with great technological interest in 
many different fields of application, is crucially important to under
standing their properties, but it is very challenging to do in practice. 
Here, a simple procedure based on performing constrained–restrained 
Rietveld refinements of their XRD patterns has been proposed to that 
end, where the constraints–restraints required have in turn been 
formulated by mathematical modelling through the LIP. After a brief 
general description of the LIP, this was particularised to establish the set 
of constraints–restraints to be imposed during the Rietveld refinements 
for the different types of possible normal, inverse, and mixed spinels: 
stoichiometric perfect spinels, stoichiometric and non-stoichiometric 
imperfect spinels, and non-stoichiometric imperfect spinels with 
oxidation state changes. Finally, the applicability of this type of con
strained–restrained Rietveld refinement was illustrated using as exam
ples the XRD patterns of custom-made zinc-ferrite and nickel-ferrite 
spinels synthesized by co-precipitation. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors acknowledge the financial support provided by the 
Spanish Ministry of Science and Innovation under Grant no. PID2019- 
103847RJ-I00, Junta de Andalucía under Grant No. P18-RTJ-1972, and 
Junta de Extremadura under Grants nos. IB20017 and GR21170 (co- 
financed with FEDER Funds). Thanks are also due to Mr Carlos Hurtado 
for providing the zinc-ferrite and nickel-ferrite spinels.  

Appendix A 

The objective of this appendix is to show in more detail how the linear systems of equations to be solved are formulated, and the particularisation to 
the case of perfect spinels as a practical example (i.e., derivation of Eq. (3)– (6)). 

There are two general principles to be applied in all type of spinels:  

1. The three Wyckoff positions in the spinel lattice (i.e., 8a of cations in tetrahedral positions, 16d of cations in octahedral positions, and 32e of 
anions) must be fully occupied, which is expressed mathematically by imposing that the sum of the occupancies by the different types of ions 
placed there plus the corresponding vacancies is 1.  

2. The spinel crystal must be electrically neutral, which is expressed mathematically by imposing the condition of charge neutrality in the form that 
the sum of the positive charges of all cations (regardless of their type and Wyckoff position) plus the negative charges of all anions must be 0. 
In addition, there is also a third particular principle applicable only in the case of stoichiometric spinels:  

3. Stoichiometric spinels must satisfy that, regardless of the Wyckoff positions occupied by the cations, they contain twice as many B3+ cations as A2+

cations, twice as many O2− anions as B3+ cations, and four times as many O2− anions as A2+ cations, which is expressed mathematically by 
imposing that B3+ = 2A2+, O2− = 2B3+, and O2− = 4A2+, respectively. However, one of them is always redundant. 

In the particular case of the perfect spinels, given by the formula (A2+
1− yB3+

y )
tet
(A2+

y/2B3+
1− y/2)

oct

2
O2−

4 , where y is termed the inversion degree, it is 

Fig. 2. Experimentally acquired XRD pattern of the present NiFe2O4 spinel 
together with the plotted output from the corresponding constrained–restrained 
Rietveld refinement performed using (A) the stoichiometric perfect spinel 
model and (B) the stoichiometric imperfect spinel model. 
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satisfied that:  

1. There are no O2− vacancies so that the Wyckoff position 32e is fully occupied by O2− , a condition that is expressed mathematically as O2− = 1.  
2. There are no cation vacancies in octahedral positions but there can be cation misplacement so that the Wyckoff position 16d is fully occupied by 

A2+ and B3+ cations, a condition that is expressed mathematically expressed as (A2+)
oct
+(B3+)

oct
= 1. This is Eq. (3).  

3. There are no cation vacancies in tetrahedral positions but there can be cation misplacement so that the Wyckoff position 8a is fully occupied by A2+

and B3+ cations, a condition that is expressed mathematically expressed as (A2+)
tet
+(B3+)

tet
= 1. This is Eq. (4).  

4. The spinel is stoichiometric so that it contains twice as many B3+ cations as A2+ cations, a condition that is expressed mathematically as 
B3+ = 2A2+→ [(B3+)

tet
+2(B3+)

oct
] = 2[(A2+)

tet
+2(A2+)

oct
]→4(A2+)

oct
− 2(B3+)

oct
+ 2(A2+)

tet
− (B3+)

tet
= 0. This is Eq. (5). Note that one of the three 

stoichiometry equations is always redundant, and that in this case adding the other is redundant with the charge neutrality equation. 
5. The spinel crystal is electrically neutral, with zero net charge. The molecular formula states that there are four O2− anions, two cations in octa

hedral position (i.e., (A2+)
oct
+(B3+)

oct
= 2), and one cation in tetrahedral position (i.e., (A2+)

tet
+(B3+)

tet
= 1), so considering their valences it 

follows that the negative charge is 8, the positive charge in octahedral position is 2
[
2
(
A2+)oct

+ 3
(
B3+)oct

]
=

[
4
(
A2+)oct

+ 6
(
B3+)oct

]
, and the 

positive charge in tetrahedral position is [2(A2+)
tet
+3(B3+)

tet
]. Therefore, the charge neutrality condition is mathematically expressed as 

4(A2+)
oct
+6(B3+)

oct
+2(A2+)

tet
+3(B3+)

tet
− 8 = 0, which is Eq. (6). 

Derivation of the linear systems of equations for other types of spinels follows the same procedure. 

Appendix B 

The objective of this Appendix is to show that the cation reduction B3+→B2+ necessarily breaks the spinel stoichiometry. Let us consider a hy
pothetical case of stoichiometric imperfect spinels with cation misplacement, cation (i.e., (VC)

tet and/or (VC)
oct) and anion (i.e., VO) vacancies, and 

cation reduction (i.e., B3+→B2+). In this scenario the Wyckoff position 32e is only partially occupied by O2− and the Wyckoff positions 8a and 16d only 
partially by A2+, B2+, and B3+ depending on whether the hypothetical stoichiometric imperfect spinel is normal, inverse, or mixed. The following 
linear system of 6 equations can thus be formulated for hypothetical stoichiometric imperfect spinels with oxidation state changes: 
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Physically, these equations are the conditions of full occupation of positions 32e (Eq. (B1)), of full occupation of positions 16d (Eq. (B2)), of full 
occupation of positions 8a (Eq. (B3)), of stoichiometry (Eqs. (B4) – (B5)), and of charge neutrality (Eq. (B6)). The solution to this consistent and 
dependent linear system is that the only 4 refinable occupancies are actually (VC)

oct, (B3+)
tet, (B2+)

tet, and (VC)
tet, and that the others are necessarily 

given by: 
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Very importantly, because the only way to satisfy the relationship (B2+)
oct

= − 1
2(B

2+)
tet is by imposing (B2+)

oct
= (B2+)

tet
= 0, Eq. (B7) reduces to: 
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The implication is then that there are no stoichiometric imperfect spinels with reduced cations or, alternatively, that spinels with reduced cations 
are always non-stoichiometric. This is simply because additional anionic vacancies are required to compensate for the loss of positive charge deriving 
from the cation reduction B3+→B2+, with the attendant loss of stoichiometry. 
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