
Tesis Doctoral

Lenguaje Espećıfico del Dominio
para el Diseño y Ejecución de
Simulaciones de Entornos IoT

José Ángel Barriga Corchero

Programa de Doctorado en Tecnoloǵıas Informáticas
(TIN)

Con la conformidad del director

Dr. Pedro José Clemente Mart́ın

Esta tesis cuenta con la autorización del director de la misma y de la Comisión
Académica del programa. Dichas autorizaciones constan en el Servicio de la

Escuela Internacional de Doctorado de la Universidad de Extremadura.

2024

Tesis Doctoral

Lenguaje Espećıfico del Dominio
para el Diseño y Ejecución de
Simulaciones de Entornos IoT

José Ángel Barriga Corchero

Programa de Doctorado en Tecnoloǵıas Informáticas
(TIN)

2024

A Victoria, mi mujer, por enseñarme a subir a las estrellas y tirarme de cabeza.

A Pepi y a Teofilo, mis padres, por darme la vida y su amor incondicional.

A Arturo, mi hermano, por inspirarme y dar sentido a lo que hago.

A Ángela, mi abuela, por enseñarme qué es lo importante en esta vida.

A Felisa, mi t́ıa, y a Carlota, mi prima, por dar un color especial a mis d́ıas.

A Sergio y Maria José, mis suegros, por tratarme como a un hijo.

Acknowledgments

First of all, I would like to express my deepest gratitude to my doctoral ad-
visor, Professor Pedro José Clemente, whose unwavering support, guidance,
and expertise have been invaluable throughout my doctoral journey. His
dedication to fostering intellectual curiosity, encouraging critical thinking,
and pushing the boundaries of research excellence has profoundly shaped
my academic growth and personal development. I am indebted to him, his
mentorship has been excellent, and I am truly fortunate to have had the
opportunity to work under his guidance.

I wish to extend my heartfelt appreciation to the members of the Quercus
research group, whose collaborative spirit, camaraderie, and dedication have
enriched my doctoral experience immeasurably. I am deeply grateful to my
brother, Arturo Barriga, whose support, encouragement, and shared passion
for research have been a constant source of motivation and productive
discussions. I am also thankful to my esteemed colleagues, Manuel Jesús,
Pablo Alonso, Fernando Tejero, and Pedro Carmona. I am truly fortunate
to have had the opportunity to collaborate with such talented and dedicated
individuals, and I am sincerely grateful for their friendship and support
throughout this journey.

I would also like to extend my sincere appreciation to the remaining
members of the Quercus research group, whose dedication to scholarship
and pursuit of excellence have created a vibrant environment for developing
my thesis. While our interactions may have been less frequent, I am deeply
grateful for sharing with me their passion for research, intellectual curiosity,
and willingness to share their expertise.

Furthermore, I want to express my deep appreciation to José Moreira
and Sónia Gouveia, my mentors during my research stay in Aveiro. I am

sincerely grateful to them for not only making me feel at home but also
for generously sharing their knowledge, providing insightful feedback, and
inspiring me with their passion for research. Their invaluable contributions
significantly contributed to the success of my thesis. I consider myself truly
fortunate to have had the opportunity to learn from such esteemed mentors,
and I am thankful for the profound impact they have had on my academic,
professional, and personal development.

In the following paragraphs, I will express my gratitude for the support
received from my closest friends and family, so I will switch to Spanish.

Quiero agradecer a todos mis amigos del pueblo, Luis, Eloy, Javi, Isma,
Enrique, Joni y Miguel, a mis amigos de Madrid, Páıs Vasco y Cataluña,
Alex, Dani, Javi, Ander, Miguel, Iván, Ángela y Lidia, aśı como a todas
sus parejas, Carlos, Anyelina, Sergio, Yaiza, Estela, Lidia y Julia, por todos
los buenos momentos compartidos e inolvidables que guardamos juntos en
nuestras memorias, por los que nos quedan, y por haber contribuido a ser
lo que soy hoy d́ıa. Muchas gracias a todos y a todas.

Por último, quiero dar el mayor de mis agradecimientos a mi familia,
las personas más importantes en mi vida. En primer lugar, a mi mujer,
Victoria, por tanto amor incondicional, por su constante apoyo en cualquier
proyecto que emprendo, y por ser como es, el amor de mi vida. En segundo
lugar, quiero agradecer a mis padres, Pepi y Teófilo, por haberme guiádo
cada d́ıa de mi vida para ser la persona que soy hoy, pese al esfuerzo que sé,
les ha costado. Pero sobre todo, quiero agradecerles el haberme criado con
tanto amor. También quiero agradecer a mi hermano Arturo, quién a pesar
de nuestras discusiones, ocupa y ha ocupado siempre un lugar especial en
mi corazón, y es que es mi hermano pequeño y a pesar de ello, es para
mı́ un ejemplo a seguir. Otra persona muy importante a la que transmitir
mis agradecimientos es a mi abuela, quién ya no puede comprender estos
párrafos, pero no importa, porque ella sabe y me hace saber siempre lo
orgullosa que se siente de mı́, y lo mucho que me quiere. También están
mi t́ıa Felisa, Ángel, y mi prima, Carlota, quienes hacen de mis d́ıas, d́ıas
especiales cuando los compartimos. Siempre han estado ah́ı, y no puedo
estarles más agradecidos por ser conmigo como son. Por último, no me
olvido de agradecer a mis suegros, Sergio y Maŕıa José, quienes me acogieron
en su familia como a un hijo, y me hacen sentir siempre que estamos juntos
como tal.

Muchas gracias a todos, de corazón.

Abstract

The Internet of Things (IoT) is rapidly evolving and wide-spreading among
several sectors and application areas such as Smart Cities, Agriculture,
Transport (Internet of Vehicles or IoV), and Industry in general terms
(Industrial IoT or IIoT). The broad domains and applications of the IoT
make it a paradigm where a vast amount of heterogeneous technologies may
collaborate and comprise the same system. In addition, the ever-evolving
nature of the IoT, leads to the ongoing introduction of new technologies,
increasing even more this diversity of devices. Furthermore, IoT systems
are often designed without adhering to specific guidelines or methodologies,
as there are no universally accepted standards.

This scenario of technological heterogeneity, ever-evolving nature, and
lack of standards, makes IoT a complex paradigm whose development could
face significant challenges. For this reason, testing processes are imperative
to ensure that IoT systems perform as expected prior to deployment and
production. Testing IoT systems is a costly and time-consuming process
since involves device acquisition, configuration, and deployment among
other tasks. To avoid these shortcomings, IoT simulators can be employed.
However, IoT simulators often tackle simulations from a low level of abstrac-
tion, focusing on low-level details instead of on the high-level IoT concepts
and their relationships. This leads to simulators with a prominent learning
curve to overcome, low agility in designing and simulating IoT systems, and
other difficulties that hinder comprehensively testing them.

Model-driven development (MDD) is a software development method-
ology that focuses on creating and using models to design and implement
software systems. It abstracts the domain of a specific system by capturing
its main concepts and relationships in a Metamodel. This Metamodel serves

as a high-level representation of the system, enabling users to focus on its
core concepts without concerns about low-level details. Users can then
create various models conform to this Metamodel, representing different
systems. Subsequently, code generation tools can automatically produce
code and other artifacts directly from these models, reducing the manual
effort and error proneness associated with software development. More-
over, note that MDD is supported by tools such as graphical editors for
designing models and validators for ensuring the integrity of these models.
Thus, MDD significantly enhances productivity, maintainability, and consis-
tency in software development by providing a Domain Specific Language
(DSL) for modeling, code generation, and facilitating adaptation to evolving
requirements.

To address the aforementioned challenges, this thesis dissertation intro-
duces SimulateIoT, a novel MDD-based simulator designed to streamline
the testing of IoT systems. SimulateIoT leverages the principles of MDD
to offer a high-level abstraction framework for simulating complex IoT
ecosystems. By employing a metamodel that facilitates the modeling and
validation of IoT systems, along with model-to-text transformations for
generating simulation code, configuration files, and deployment scripts, Sim-
ulateIoT significantly reduces the learning curve and enhances the agility
of the design and simulation process. This approach not only simplifies the
initial engagement with the tool but also provides the flexibility needed
for redesign and testing, crucial for achieving optimal IoT system designs.
Moreover, a methodology to support this process has been also developed.

SimulateIoT encompasses a comprehensive range of IoT components
and simulation capabilities, including foundational elements, such as sen-
sors, actuators, fog and cloud nodes; FIWARE architectures, including
several components of the FIWARE catalog; mobile devices, together with
the entire architecture to support them; and task-scheduling nodes and
processes, to define environments where users can test and assess their
task-scheduling proposals. Moreover, these components and simulation ca-
pabilities have been validated through several use cases, such as simulating
an IoT environment deployed at the School of Technology of the University
of Extremadura, a Smart Agricultural IoT system, an Animal Tracking
system, a Smart City focused on managing mobile personal mobility devices,
and on an Industrial IoT system (IIoT) based on the predictive maintenance

of engines among others.

Note that the novelty of these contributions not only relies on providing
a simulator capable of bridging the gaps often present in current IoT
simulators but also in highlighting the potential of MDD techniques in
managing the complexity of IoT systems for simulation purposes.

Thus, SimulateIoT represents an advancement in the field of IoT sim-
ulations, offering a versatile and user-friendly platform for the high-level
abstraction modeling, validation, and testing of IoT systems through simu-
lations. By addressing the primary challenges associated with traditional
IoT testing, SimulateIoT paves the way for more efficient, cost-effective, and
accessible development of IoT technologies, demonstrating the extensive
applicability of MDD in overcoming the complexities of IoT ecosystems.

Resumen

El Internet de las Cosas (IoT) está evolucionando rápidamente y ex-
tendiéndose por varios sectores y áreas de aplicación como las Ciudades In-
teligentes, la Agricultura, el sector del Transporte (Internet de los Veh́ıculos
o IoV) y la industria en general (IoT Industrial o IIoT). Los dominios y
aplicaciones del IoT son muy diversos, convirtiéndolo aśı en un paradigma
donde una gran cantidad de tecnoloǵıas heterogéneas colaboran entre śı
y forman parte de un mismo sistema. Además, la naturaleza cambiante
y evolutiva del IoT tiene como consecuencia la introducción constante de
nuevas tecnoloǵıas, aumentando aún más su diversidad. Por otro lado, los
sistemas IoT a menudo se diseñan sin adherirse a pautas o metodoloǵıas
espećıficas, ya que no existen estándares universalmente aceptados.

Este escenario de heterogeneidad tecnológica, naturaleza cambiante
y falta de estándares claramente definidos y aceptados, hace del IoT un
paradigma complejo, siendo aśı el desarrollo de estos sistemas un desaf́ıo
significativo. Por esta razón, los procesos de prueba son imprescindibles
para asegurar que los sistemas IoT funcionan como se espera antes de su de-
spliegue y puesta en producción. No obstante, comprobar el funcionamiento
de estos sistemas es un proceso costoso y que consume tiempo, ya que
implica la adquisición de dispositivos, su configuración y despliegue, entre
otras tareas. Para evitar estas cuestiones, se pueden emplear simuladores
IoT. Sin embargo, estos simuladores a menudo abordan las simulaciones
desde un bajo nivel de abstracción, centrándose en detalles de bajo nivel
en lugar de en los conceptos de alto nivel y sus relaciones. Esto conduce
a simuladores con una curva de aprendizaje dif́ıcil de superar, a una baja
agilidad en el diseño y simulación de los sistemas IoT, aśı como a otras
dificultades que obstaculizan la prueba de éstos de manera integral.

El desarrollo dirigido por modelos (MDD) es una metodoloǵıa de de-
sarrollo de software que se enfoca en la creación y uso de modelos para
diseñar e implementar sistemas de software. El MDD abstrae el dominio de
un sistema espećıfico capturando sus conceptos principales y relaciones en
un Metamodelo. Este Metamodelo es una representación de alto nivel del
sistema, permitiendo a los usuarios centrarse en sus conceptos principales
sin tener que preocuparse por detalles de bajo nivel. Los usuarios pueden
entonces crear varios modelos conforme a este Metamodelo, representando
diferentes sistemas. Posteriormente, herramientas de generación de código
pueden generar código y otros componentes de forma automática a partir de
estos modelos, reduciendo aśı el esfuerzo manual y la propensión a errores
relativos al desarrollo de software. Además, cabe destacar que el MDD inte-
gra herramientas como editores gráficos para diseñar modelos y validadores
para garantizar la integridad de estos modelos. Aśı, el MDD puede mejorar
significativamente la productividad, mantenibilidad y consistencia en el
desarrollo de software al proporcionar un Lenguaje Espećıfico del Dominio
(DSL) para modelar, generar código y facilitar la adaptación a requisitos
cambiantes.

Para abordar estos desaf́ıos, esta tesis presenta SimulateIoT, un nove-
doso simulador basado en el MDD diseñado para agilizar las pruebas y
validación de sistemas IoT. SimulateIoT aprovecha los principios del MDD
para ofrecer un marco de abstracción de alto nivel con el objetivo de testear,
mediante simulaciones, complejos sistemas IoT. Mediante el empleo de un
metamodelo que facilita el modelado y validación de sistemas IoT, junto
con transformaciones de modelo a texto para generar código de simulación,
archivos de configuración y scripts de despliegue, SimulateIoT reduce signi-
ficativamente la curva de aprendizaje y mejora la agilidad del proceso de
diseño y simulación de éstos sistemas. Este enfoque no solo simplifica el
uso inicial de la herramienta, sino que también proporciona la flexibilidad
necesaria para diseñar y probar sistemas IoT, aspectos clave para imple-
mentar sistemas IoT óptimos. Además, se ha desarrollado una metodoloǵıa
que da soporte a todo este proceso.

En cuanto a sus capacidades, SimulateIoT abarca una amplia gama de
componentes y posibilidades de simulación IoT, incluyendo elementos fun-
damentales, como sensores, actuadores, nodos Fog y Cloud; Arquitecturas
basadas en la plataforma IoT FIWARE, incluyendo varios componentes

de su catálogoE; Dispositivos móviles, junto con toda la arquitectura para
brindar soporte a la movilidad de éstos; Y nodos y procesos enfocados en
la planificación de tareas, para definir entornos donde los usuarios pueden
probar y evaluar sus propuestas de planificación de tareas. Además, estos
componentes y capacidades de simulación han sido validados a través de var-
ios casos de uso, como un entorno IoT desplegado en la Escuela Politécnica
de la Universidad de Extremadura, un sistema IoT agŕıcola inteligente, un
sistema de monitorización de animales, una ciudad inteligente centrada en
la gestión de dispositivos de movilidad personal móviles, y un sistema de
IoT industrial (IIoT) basado en el mantenimiento predictivo de motores,
entre otros.

Cabe destacar que la novedad de estas contribuciones no solo se basan
en proporcionar un simulador capaz de solventar la problemática que suelen
presentar los simuladores IoT actuales, sino también en resaltar el potencial
de las técnicas MDD en la gestión de la complejidad de los sistemas IoT
para fines de simulación.

Aśı, SimulateIoT representa un avance significativo en el campo de las
simulaciones IoT, ofreciendo una plataforma versátil y fácil de usar para el
modelado de alto nivel de abstracción, validación y pruebas de sistemas IoT
a través de simulaciones. Al abordar los desaf́ıos asociados a los procesos
de prueba tradicionales de sistemas IoT, SimulateIoT allana el camino para
el desarrollo eficiente, rentable y accesible de tecnoloǵıas IoT, demostrando
la aplicabilidad del MDD para superar estos desaf́ıos.

Contents

1 Introduction 1

1.1 Research Context . 3

1.1.1 Model-Driven Development 4

1.1.2 The Internet of Things From a Multi-Layered Com-
puting Perspective 5

1.1.3 Mobility in the IoT 10

1.1.4 Task Scheduling in the Cloud-to-Thing Continuum
Paradigm . 12

1.1.5 IoT Platforms: FIWARE, an IoT Platform for Devel-
oping and Deploying IoT Environments 13

1.2 Problem Statement . 16

1.3 Aims and Research Questions 19

1.4 Research Methodology . 21

1.5 Summary of Contributions 24

1.5.1 Simulating the Foundation of the IoT from a High
Level of Abstraction 25

1.5.2 Simulating the foundation of the IoT Powered by
FIWARE . 29

1.5.3 IoT Simulations Toward Mobility Assessments: Mobile-
Driven Design and Functionality 31

1.5.4 IoT Simulations Toward Task-Scheduling Assessments:
Task-Driven Design and Functionality 34

1.5.5 Collaboration: SimulateIoT toward Big Data assess-
ments . 37

1.6 Structure of the Thesis . 40

2 Results 43

2.1 Simulating the Foundation of the IoT from a High Level of
Abstraction . 44

2.2 Simulating the Foundation of the IoT Powered by FIWARE 50

2.3 IoT Simulations Towards Mobility Assessments: Mobile-
Driven Design and Functionality 55

2.4 IoT Simulations Towards Task-Scheduling Assessments: Task-
Driven Design and Functionality 61

3 Publications Overview 69

3.1 Core Compendium Publications 69

3.2 Supplementary Publications 71

4 SimulateIoT: Domain Specific Language to Design, Code
Generation and Execute IoT Simulation Environments 73

5 SimulateIoT-FIWARE: Domain Specific Language to De-
sign, Code Generation and Execute IoT Simulation Envi-
ronments on FIWARE 97

6 Design, code generation and simulation of IoT environments
with mobility devices by using model-driven development:
SimulateIoT-Mobile 123

7 SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm
for Task Scheduling Assessments 151

8 Discussion, Conclusion and Future Works 185

8.1 Discussion . 185

8.2 Conclusion . 190

8.3 Future work . 192

8.4 Reflections and Personal Insights 193

A SimulateIoT: A model-driven approach to simulate IoT
systems* 195

B Designing and simulating IoT environments by using a
model-driven approach* 201

C SimulateIoT: Domain Specific Language to design, code
generation and execute IoT simulation environments (Sum-
mary)* 209

D Simulating IoT Systems from High-Level Abstraction Mod-
els for Quality of Service Assessment 211

E SimulateIoT-FIWARE: Domain Specific Language to De-
sign, Code Generation and Execute IoT Simulation Envi-
ronments on FIWARE 219

F SimulateIoT- Federations: Domain Specific Language for
designing and executing IoT simulation environments with
Fog and Fog-Cloud federations 221

Bibliography 225

List of Figures

1.1 Model-driven development. Four layers of metamodeling. . 5

1.2 IoT architecture from a multi-layered computing perspective. 7

1.3 Main elements of FIWARE architecture. 14

1.4 Design Science Research Methodology stages [1]. 22

2.1 SimulateIoT metamodel. Figure source [2]. 46

2.2 SimulateIoT concrete syntax. Figure source [2]. 47

2.3 Generic IoT architecture generated through SimulateIoT’s
model-to-text transformations. Figure source [2]. 48

2.4 SimulateIoT methodology. Figure source [2]. 49

2.5 Generic IoT system architecture generated and deployed
using SimulateIoT-FIWARE. Figure source [3]. 51

2.6 Excerpt of the SimulateIoT-Mobile metamodel focusing on
the new classes and relationships included in the metamodel
through this contribution. Figure source [4]. 57

2.7 Software architecture of a Fog/Cloud node generated. Figure
source [4]. 58

2.8 Software architecture of a mobile device generated. Figure
source [4]. 60

2.9 Excerpt of the SimulateIoT metamodel including task-scheduling
concepts. It focuses on the new classes and relationships in-
cluded in this contribution. Figure source [5]. 64

2.10 A generic simulation generated by using model-to-text trans-
formations from a model defined with the simulator developed
in this contribution. Figure source [5]. 65

2.11 Task Scheduler component generated by using the model-to-
text transformations developed for this contribution. Figure
source [5]. 66

List of Tables

2.1 Relationships among the main metamodel elements with the
main target components. Table source [3]. 54

3.1 Overview of Core Compendium Publications 70

3.2 Overview of Supplementary Publications 72

Chapter 1

Introduction

“We ourselves feel that what we
are doing is just a drop in the
ocean. But the ocean would be
less because of that missing
drop”

Work unknown (Year unknown)
Attributted to Mother Teresa

The Internet of Things is a paradigm where a vast amount of heteroge-
neous technologies collaborate to deliver a wide spectrum of services [6, 7],
Smart Homes [8], Smart Cities [9], Healthcare (Internet of Medical Things)
[10], Industry (Industrial IoT) [11], Agriculture [12], Smart Grids and En-
ergy Management [13], Connected Vehicles and Transportation (Internet of
Vehicles) [14], are some of the most popular application domains of the IoT.

The landscape of technological heterogeneity, constantly evolving nature
and absence of standardized guidelines make IoT a complex paradigm, thus
presenting significant challenges. Consequently, rigorous testing processes
are imperative to ensure the expected performance of IoT systems prior
to deployment and production. In this respect, testing these systems is
costly and time-consuming, as it involves activities such as device procure-
ment, configuration, deployment, and more. However, simulations can be
performed to test these systems before putting them into production [15].

1

Simulations avoid device acquisition, simplify configuration and deployment
processes, and facilitate the assessment of the system [15]. However, given
the inherent complexity and technological heterogeneity of the IoT, IoT
simulators often focus on low-level details, such as specific device config-
urations or network intricacies [16]. This not only heightens the learning
curve for users but also restricts the agility in designing and deploying IoT
simulations. Thus, leading to increased time, costs, and efforts to carry out
simulations [16].

Model-driven Development [17] can help to overcome the aforementioned
scenario by elevating the level of abstraction at which IoT simulations are
tackled. Focusing on high-level concepts and their relationships, MDD
enables users to focus on the core aspects of their systems, rather than
dealing with their low-level details, which can be managed and included in
the simulations seamlessly to the user. As a result, software code can be
generated for a particular technological platform, enhancing technological
independence and reducing susceptibility to errors.

In the context of the IoT simulations, these features are highly appealing.
This is mainly because of the inherent complexity of the IoT, characterized
by the high technological heterogeneity it encompasses. With the MDD,
IoT simulations can be tackled from a high level of abstraction, focusing on
its high-level concepts, rather on low-level details. Moreover, model-to-text
transformations have a key role since they can generate all the simulation’s
artifacts for different target technologies, thus decreasing error proneness
and increasing user productivity in terms of carrying out simulations [17].

Thereby, in this Ph.D. Thesis, an MDD-based IoT simulator called
SimulateIoT has been developed. This work aims to explore to what extent
MDD techniques are suitable to simulate IoT systems considering several
critical aspects of the current IoT simulators, such as the agility to design
and simulate IoT systems. This simulator allows users 1) to design their
systems through graphical models; 2) to validate their models to verify the
correctness of their designs; 3) to generate the code related to the system
simulation from the modeled system; and 4) to simulate and assess the
system. Note that each stage operates at a high level of abstraction, thus
streamlining the testing process of IoT systems.

Next, an overview of the research conducted in this Ph.D. Thesis is
provided. Section 1.1 details the research context of the thesis. The

2

CHAPTER 1. INTRODUCTION

problem statement is articulated in Section 1.2. The aims and specific
research questions guiding this doctoral research are presented in Section
1.3. A summary of the principal contributions of this Ph.D. Thesis is
provided in Section 1.5. Finally, the structure of the thesis is delineated in
Section 1.6.

1.1 Research Context

This thesis is focused on the exploration of the extent to which MDD
techniques are suitable to simulate IoT systems, considering several critical
aspects of the current IoT simulators, such as the agility to design and
simulate IoT systems. Thus, the research context encompasses the MDD
foundations and several IoT concepts. In this respect, note that the IoT is
a wide domain, being not feasible to capture its whole domain in a single
MDD approach. Therefore, the IoT concepts covered have been selected to
achieve the primary aim of this Ph.D. Thesis, which is stated in Section
1.3. These concepts are listed below:

• The foundation of IoT systems, such as the multi-layered computing
architecture of these systems (Cloud, Fog, Edge, and Mist layers) and
its devices, such as Cloud and Fog nodes, or sensors and actuators
[18].

• IoT mobility, concept included to provide IoT devices with the ability
to move and communicate in various environments seamlessly, sup-
porting continuous connectivity and interaction regardless of location
[19]. This includes mobile devices and the architecture to support
them.

• Task scheduling, concept that refers to the process of organizing,
allocating, and managing tasks across a network of interconnected
devices and computing nodes. This involves the coordination between
various nodes capable of generating and offloading tasks (such as IoT
devices or applications deployed on computing nodes) and computing
nodes (including Edge, Fog, and Cloud computing resources) that are
responsible for scheduling and processing these tasks [20]. Note that

3

1.1. RESEARCH CONTEXT

task scheduling aims to optimize resource utilization, improve system
performance, and ensure timely task execution by considering factors
like computational load, network bandwidth, and latency [20].

• FIWARE, an open-source IoT platform that offers a standardized
framework, based on a catalog of components [21], aimed at simplifying
the development of IoT systems across various domains like smart
cities and smart agriculture [22].

Thereby, the following sections provide a detailed description of the
aforementioned research context aspects addressed in this Ph.D. Thesis.
Section 1.1.1 introduces MDD techniques. Then, Section 1.1.2 delves into
the multi-layered computing architecture in which current IoT systems are
grounded. Subsequently, Section 1.1.3 addresses the mobility concepts that
have to be taken into account in nowadays mobile IoT systems. Later on,
Section 1.1.4 outlines the role of task scheduling within the IoT. Lastly, the
IoT FIWARE platform is presented in Section 1.1.5.

1.1.1 Model-Driven Development

MDD is an evolving area within software engineering that focuses on
the creation of software guided by models. To do so, MDD employs the
Metamodeling technique [17, 23]. Metamodeling is delineated through four
distinct model layers, as illustrated in Figure 1.1.

At this hierarchy, a Model (M1) conforms to a Metamodel (M2), while a
Metamodel, in turn, conforms to a MetaMetaModel (M3), which possesses
reflexive properties [24]. The MetaMetaModel level encompasses well-
established standards and specifications, such as the Meta-Object Facilities
(MOF) [25], and ECore in the Eclipse Modeling Framework (EMF) among
others [26]. A Metamodel is designed to define domain concepts and
relationships within a specific domain, thereby capturing a segment of
reality. A Model (M1) then delineates a concrete system in accordance with
the Metamodel. From these models, it is feasible to generate application code
(M0 - code) either wholly or partially through model-to-text transformations.
This process allows high-level definitions (models) to be translated via model-
to-text transformations into specific technologies (target technology) [27].

4

CHAPTER 1. INTRODUCTION

Figure 1.1: Model-driven development. Four layers of metamodeling.

As a result, software code can be generated for a particular technological
platform, enhancing technological independence and reducing susceptibility
to errors.

In summary, MDD makes it possible to increase the abstraction level
where the software is developed, focusing on the domain concepts and
their relationships rather than on low-level aspects. These domain con-
cepts and their relationships are defined by a model (M1), conform to a
metamodel (M2), which can be analyzed and validated using MDD tech-
niques. Furthermore, the IoT system code, including all the artifacts needed,
can be generated from a model (M1) using model-to-text transformations,
decreasing error proneness and increasing the user’s productivity.

The subsequent sections will delve into the Internet of Things (IoT),
the field of application where the previously described MDD technique has
been employed in this thesis dissertation.

1.1.2 The Internet of Things From a Multi-Layered Com-
puting Perspective

The IoT concept was coined in 1999 by Kevin Ashton, a British technology
pioneer [28]. At that time, he used the term to describe a system where

5

1.1. RESEARCH CONTEXT

objects are connected to the internet through devices, such as sensors,
allowing them to be tracked and managed automatically. His vision was
that objects could be controlled and communicated with over the internet,
leading to an integration of the physical world into computer-based systems,
resulting in improved efficiency, accuracy, and economic benefit [28].

Since the advent of the IoT, many technologies and developments have
contributed to what we now know as IoT [7, 29]. Currently, the IoT embodies
a paradigm structured through multiple computing layers, wherein a vast
amount of heterogeneous devices, services, and applications collaboratively
function to meet specific user requirements [30]. To delve into the finer
aspects of the IoT paradigm, an analysis is conducted from a multi-layered
computing perspective of each computing layer that forms the foundation of
the IoT architecture. The Cloud, Fog, Edge, and Mist layers. This analysis
includes an examination of the types of devices that form each layer and the
role of the aforementioned layers within the broader IoT ecosystem. Figure
1.2 shows an outline of these layers and the devices that comprise them. To
address this analysis in an ordered manner, a logical and chronological order
is followed. First, the Mist layer, which encompasses the end devices of IoT
systems, is presented. Subsequently, the Cloud layer, integrated into the
IoT to provide end devices with high computing and storage capabilities,
is described. Then, the layers conceived to bring the Cloud close to end
devices, i.e. the Fog and Edge layers, are outlined. The analysis can be
found below.

Firstly, end devices also referred to as Things, constitute what is known
as the Mist layer [30]. These devices predominantly fall into two categories:
sensors and actuators. Sensors are designed to sense real-world phenomena;
for instance, thermometers measure temperature, while hygrometers gauge
humidity. Conversely, actuators are devices designed to interact with the
real world; for instance, a heater can elevate the temperature within a
designated space, while a dehumidifier can reduce ambient moisture levels.
Standalone sensors and actuators often can not process data nor connect
to the Internet themselves. So, they are attached to computing modules
that not only facilitate operational logic for these devices (e.g. turn on/off
depending on a specific input) but also serve to connect them to the internet.
Thus, enabling communication between these devices and the rest of the
IoT system [31, 32]. Note that the union between a sensor or an actuator,

6

CHAPTER 1. INTRODUCTION

Figure 1.2: IoT architecture from a multi-layered computing perspective.

or a set of these, with a computing module conforms to what is known as an
IoT device. A device with internet connectivity that can collect, transmit,
and sometimes process data, exemplified by devices like smartwatches or
connected vehicles [31, 32].

On the other side, in the hierarchical layered structure depicted in
Figure 1.2, the uppermost tier is represented by the Cloud layer. This layer
is comprised of powerful servers with abundant resources and extensive
computing capabilities. Indeed, this layer represents the integration of Cloud
computing within the IoT ecosystem, a cornerstone in current IoT systems
[33]. Typically, IoT devices are not equipped with powerful hardware,
constrained by factors such as battery consumption or the cost of the device.
Consequently, the Cloud layer is leveraged to undertake processing tasks

7

1.1. RESEARCH CONTEXT

beyond the capabilities of the IoT devices. Thus, enabling IoT devices to
adhere to the aforementioned constraints [34].

However, devices’ constraints represent only one aspect of the require-
ments that must be addressed in an IoT system. Current IoT systems
also encompass applications, which frequently tend to be distributed rather
than monolithic, typically structured using a microservices architecture
(MSA) [35]. In this context, the Quality of Service (QoS) refers to the set
of performance metrics that govern the overall performance and reliability
of a service or application [36]. QoS encompasses various parameters such
as latency, bandwidth, throughput, error rates, availability, cost, or battery
consumption. QoS is particularly important in scenarios where real-time
data processing and response are critical, such as the Industrial IoT (IIoT)
[37] and the Internet of Vehicles (IoV) [38]. For instance, in the IoV, mini-
mal response times are imperative since any delay could have potentially
fatal consequences for the driver or others [38]. Furthermore, in the context
of electric vehicles, maintaining low costs and efficient battery consumption
is essential, not only to ensure the vehicle’s competitiveness in terms of
price but also to enable significant travel distances without the need for
frequent recharging [39]. Consequently, the services that form part of an
IoT system together with the infrastructure that supports them may be
required to adhere to stringent QoS constraints, which can vary depending
on the specific operational context of each service.

In this scenario, relying only on the Cloud layer may prove insufficient
for meeting some QoS requirements [40]. This limitation arises because
Cloud providers, such as Google or Amazon, do not uniformly distribute
their Cloud servers across all potential IoT deployment locations. In some
instances, there may not even be a Cloud server within the same country
as the deployed IoT system. For example, considering Google’s Cloud
infrastructure in Spain, the only Cloud servers are located in Madrid.
Consequently, for regions like Extremadura, which is approximately 297
kilometers from Cáceres to Madrid, Madrid’s data center is the nearest
[41]. This distance could lead to an insufficient QoS (e.g. response time)
for certain IoT applications. So, further solutions have been explored to
bridge this gap.

Among these solutions, Fog computing, proposed by CISCO in 2012,
emerged as a prominent approach [42]. According to CISCO, Fog computing

8

CHAPTER 1. INTRODUCTION

can be understood as a decentralized computing infrastructure that extends
the Cloud through the placement of end nodes (IoT devices). Therefore,
devices involved in Fog computing can be those with computing and storage
capabilities, strategically positioned between the Cloud and IoT devices in
the network. So, Fog computing puts data, compute, storage, and appli-
cations nearer to the user or IoT devices where the data needs processing,
thus creating a Fog outside the centralized Cloud, and reducing the data
transfer times necessary to process data [43]. Consequently, despite Fog
computing offering limited computing and storage resources compared to
Cloud computing, it delivers better QoS for a wide range of applications
and services. Furthermore, it is noteworthy that Fog computing, as an
extension of the Cloud to end devices, allows for reducing the traffic sent
to Cloud servers. Thus, improving network congestion and therefore the
quality of service of the Cloud layer [42]. As a result, Fog computing has
merged with the IoT paradigm through the establishment of the Fog layer,
illustrated in Figure 1.2 between the Cloud and Edge layers. Considering
said advantages, nowadays, the Fog layer is an indispensable component
within the architectural framework of IoT systems [44, 45].

However, as previously described, the Fog layer consists of devices
positioned between the Cloud layer and the Mist layer. Consequently, a
Fog device might be located closer to the end devices or nearer to the
Cloud servers. This variability in spatial distribution can lead to a scenario
where certain Fog devices, particularly those situated at greater distances
from the end devices, may not be capable of fulfilling the most stringent
QoS requirements. In this scenario, Edge computing plays a key role [46],
constituting a fundamental element in critical IoT systems such as IIoT
or IoV [47, 48]. Since Edge computing is primarily aimed at fulfilling
the most stringent QoS requirements, in the architecture of IoT systems,
the Edge layer is positioned between the Fog layer and the Mist layer,
thus being exclusively composed of devices that are so close to the end
devices [46]. Likewise, Edge devices reside at the very Edge of the network,
marking the boundary beyond which the Fog layer extends. Devices such
as gateways, routers, or switches could be Edge devices. The positioning of
these devices is key for facilitating immediate data processing and decision-
making, thus meeting the most stringent QoS requirements of critical IoT
systems. Finally, it is important to note that, analogous to the relationship

9

1.1. RESEARCH CONTEXT

between the Fog and Cloud layers, while the Edge layer offers better QoS
than the Fog layer, the Edge layer typically has more limited computing
and storage capabilities compared to the Fog layer [46].

In summary, the IoT is a multi-layered computing paradigm, charac-
terized by a diverse array of devices, services, and applications working
together to fulfill specific user needs [30]. Typically, the lower layers, such
as the Mist and Edge layers, where data originates, are equipped with
more limited computing and storage capacities. However, they provide
better QoS due to their proximity to end devices [42, 43, 46]. In contrast,
the higher layers, such as the Cloud and the Fog layers, present greater
computational and storage resources but may deliver comparatively lower
QoS, attributable to their increased distance from these end devices [40, 33].

This section has provided an overview of the foundational aspects of
the IoT paradigm from a multi-layered computing perspective. Subsequent
sections will delve into more specific areas within the wide IoT scope. The
forthcoming section will focus on the aspect of mobility within IoT systems.

1.1.3 Mobility in the IoT

In an IoT system, not all devices are stationary, but some might move or even
need to move to perform their functions, a characteristic that should be taken
into account when designing these systems. In this scenario, the concept of
IoT mobility refers to the ability of IoT systems to support mobile devices,
applications, and services [49]. This involves not just the physical movement
of devices but also the seamless transfer of data and consumption/provision
of services across different networks and environments [50].

IoT applications exhibit a wide range of diversity, each with its unique
set of requirements and needs. IoT mobility requirement arises in specific
contexts where device mobility is essential for operational purposes. For
instance, personal mobility devices (PMD’s) such as bicycles and scooters,
available for rent in urban settings, exemplify this need [51]. Similarly, GPS
sensors attached to animals on extensive farms serve as another example
[52]. Likewise, manufacturing and industrial processes may necessitate the
deployment of mobile IoT devices throughout a factory setting. Currently,
there does not exist a specific standardized architecture particularly tailored
to support mobile devices within the IoT. Instead, there exists a plethora

10

CHAPTER 1. INTRODUCTION

of technologies, standards, and protocol stacks to use, depending on the
application domain of the IoT system [53]. Therefore, this section is
dedicated to discussing some of the key aspects to take into account when
dealing with IoT mobility.

A pivotal aspect of IoT mobility lies in the wireless connectivity that
interconnects the different devices of an IoT ecosystem. This connectivity
not only aims at maintaining constant communication but also ensures
that such communication is resilient and adaptable to a variety of scenarios
and conditions that arise from mobility. As mobile devices move between
different locations and network coverage areas, the ability to seamlessly
switch connections, maintain data integrity, and ensure minimal service
disruption is crucial. This requires architectures, handover strategies, and
protocols that can manage these transitions smoothly [54].

On the other hand, energy consumption is a critical factor in any IoT
system. This is because of the devices’ constraints previously discussed in
Section 1.1.2. However, it often becomes more pronounced and challenging
in mobile IoT systems compared to stationary IoT systems [55]. For these
reasons, the optimization of data transmission frequency, the processing
power of the device, and the activity level of sensors, particularly in persis-
tent monitoring applications, play a significant role in minimizing energy
consumption. Furthermore, network stability is another critical factor as
unreliable connectivity can lead to increased power usage due to frequent
signal searches, connections, and the need for data retransmission. So, the
longevity and effectiveness of IoT systems are significantly influenced by
their ability to manage these aspects, thus conserving power efficiently [55].

In addition, security is another essential characteristic in the IoT land-
scape, with the mobility of devices introducing additional layers of complex-
ity that necessitate advanced security measures. In mobile IoT scenarios,
devices frequently transition across different network environments. If not
properly managed, this mobility can expose them to several network vulner-
abilities and potential security threats [53]. In this regard, the deployment
of secure authentication protocols is vital. These protocols ensure the
verification of devices’ identities, thereby preventing unauthorized access
and ensuring that only authenticated devices are granted access to the IoT
system [53, 56].

In summary, supporting mobile devices and seamless data communica-

11

1.1. RESEARCH CONTEXT

tion across networks faces several challenges such as the aforementioned, i.e.
wireless connectivity management, energy consumption and security. Thus,
to overcome these challenges, aspects such as robust connectivity, energy
awareness, and ensuring security are key.

1.1.4 Task Scheduling in the Cloud-to-Thing Continuum
Paradigm

As described in Section 1.1.2, the architecture of IoT systems can be
conceptualized from a multi-layered computing standpoint. From this
perspective, IoT systems are structured into several computing layers:
the Mist, Edge, Fog, and Cloud layers. Each of these layers presents
different characteristics, thus providing a diverse range of possibilities in
terms of computing and storage resources, QoS, and other relevant aspects
[30]. However, one of the most interesting features of this multi-layered
computing architecture that has not been covered in Section 1.1.2, is the
potential for federation among the nodes comprising each of these layers.
Federations enable the nodes of an IoT system to collaborate and act as a
single entity rather than isolated nodes. Moreover, federations can include
nodes that belong to different layers, constituting a Cloud-Fog-Edge-Mist
heterogeneous federation [57]. The Cloud-to-Thing Continuum paradigm
emerges [58].

The Cloud-to-Thing Continuum paradigm can be defined as the orches-
trated coordination of services and resources across the various computing
layers within an IoT system. This paradigm facilitates the seamless flow of
data through Cloud data centers, intermediary nodes such as Fog or Edge
nodes, and ultimately to end devices. Consequently, the Cloud-to-Thing
Continuum paradigm is a holistic approach that encompasses the entire
spectrum of IoT architecture, from the Cloud layer to the Mist layer, thus
enhancing data processing, decision-making, and system responsiveness by
strategically leveraging resources in closer proximity to the data source
when necessary [58].

As the infrastructure of the IoT has continued to evolve and advance,
there has been parallel progress in the optimization of resource management
within these systems. A fundamental strategy in this regard is task schedul-
ing, a well-known technique extensively utilized in distributed computing

12

CHAPTER 1. INTRODUCTION

environments similar to IoT systems structured around the Cloud-to-Thing
Continuum paradigm [59]. In such environments, services are typically
broken down into a series of tasks, each representing an individual unit of
work or a specific job to be executed. These tasks can range from data
collection and processing to control commands and other computational
processes. Within the context of IoT, task scheduling aims to strategically
allocate the execution of these tasks across the computing nodes of these
systems. The overarching goal is to enhance system efficiency by optimizing
the use of available resources from various angles [60]. For example, some
task scheduling proposals focus on reducing the makespan, which is the total
time required to complete a given task [61], others prioritize minimizing
system energy consumption [62] or reducing the costs in terms of money
associated with task processing [63], while others aim for several objectives,
i.e., multi-objective approaches that seek to achieve a balance between two
or more of the aforementioned aspects [64]. Thus, by effectively schedul-
ing tasks, these proposals aim to optimize overall system performance,
addressing key operational aspects such as time, energy, and cost among
others.

In summary, the Cloud-to-Thing Continuum paradigm and task schedul-
ing approaches are highly synergistic, thus achieving optimal utilization of
the resources of IoT systems and the effective execution of tasks throughout
all their layers, from Cloud to Things.

1.1.5 IoT Platforms: FIWARE, an IoT Platform for Devel-
oping and Deploying IoT Environments

Given the complexity of IoT systems, outlined through sections 1.1.2, 1.1.3
and 1.1.4, to facilitate their development, multiple technologies are available
from configuring a specific sensor to analyzing a vast amount of data in
real-time. In this context, IoT platforms are tools designed to support
and manage IoT devices and applications. These platforms provide a
suite of tools and services that help in connecting devices and accessing
and managing data. There are several IoT platform providers, such as
Microsoft Azure IoT Hub [65], ThingSpeak IoT Platform [66], Thingworx
IIoT Platform [67], Things Network [68], and FIWARE [22] among others.
Each of these IoT platforms presents distinct characteristics and mechanisms

13

1.1. RESEARCH CONTEXT

for defining devices, establishing connections, storing and analyzing data,
as well as generating notifications [69].

Specifically, FIWARE is an open-source project that defines and imple-
ments a universal set of standards for context data management intending
to optimize the development of IoT environments in different fields, such as
Smart Cities, Smart Buildings, Smart Agro, Smart Energy, Smart Industry,
etc.

Within the FIWARE framework, context refers to the state of the IoT
environment at any given moment. Therefore, context elements or data are
those that provide meaning to the environment [70]. For instance, they can
define environmental characteristics such as temperature or wind speed, or
architectural aspects like the position of an element or its movement speed.
Thus, FIWARE makes IoT simpler by driving key standards for breaking
the information silos, transforming Big Data into knowledge, enabling data
economy, and ensuring sovereignty over data [71].

Figure 1.3: Main elements of FIWARE architecture.

Figure 1.3 shows the main elements that constitute the FIWARE archi-

14

CHAPTER 1. INTRODUCTION

tecture [21]. Each of these elements is addressed below: A) The core and
indispensable component of any FIWARE solution is the Orion Context
Broker. The Orion Context Broker manages the entire data lifecycle within
an IoT system powered by FIWARE. This includes the creation and regis-
tration of context elements in the system and their subsequent management
[71]. Context elements could be sensors, actuators, and Complex Event
Processing (CEP) engines [72] among others; B) On the other hand, the
Short-Term Historic Data and Big Data elements provide the FIWARE
architecture with data persistence, thus enabling the Orion Context Broker
to maintain an ongoing awareness of the IoT system’s context at any given
moment, which facilitates the effective management of the data lifecycle of
the system [71]; C) Sensors and actuators have the same role that in any
other IoT system, serving as fundamental components for data collection
and action initiation; D) Additionally, the IoT Broker, a central element in
publish/subscribe protocols commonly employed in IoT environments, such
as MQTT [73], is employed by FIWARE. This broker is used for aggregating
and dispatching data to and from sensors and actuators, thereby intercon-
necting them with the rest of the FIWARE ecosystem; E) Meanwhile, the
IoT Agents serve as interoperability components that bridge the Orion
Context Broker, which utilizes the NGSI protocol [74], and the different
IoT brokers that FIWARE offers users to integrate into their IoT systems
[75]. It is noteworthy that, although not depicted in Figure 1.3, FIWARE
supports not only publish/subscribe protocols but also protocols such as
LoRaWAN [76] or Sigfox [77]. Accordingly, FIWARE provides IoT agents
that facilitate the integration of these protocols with the Orion Context
Broker; F) Finally, the CEP component facilitates real-time data processing
[72]. This is achieved by applying users’ pre-defined rules to the data, which,
when met, trigger corresponding events and notifications. For instance, to
automatize and control the operation of actuators.

In summary, the development and management of IoT systems can
be partially addressed by using IoT platforms like FIWARE. As depicted
in Figure 1.3, FIWARE offers several solutions in terms of functionality,
interoperability, data governance, etc. by means of its catalog of components
[21]. Thus, facilitating users in the building and managing of IoT systems,
from device configuration to advanced data processing.

15

1.2. PROBLEM STATEMENT

1.2 Problem Statement

Systems based on the IoT are experiencing continuous growth and are being
increasingly applied in numerous domains, including smart cities [78], home
environments [79], buildings [80], agriculture [81], and industry [82]. How-
ever, as discussed in Section 1.1, IoT systems are complex ecosystems that
integrate a wide array of heterogeneous technologies, encompassing a vast
amount of devices, various protocols, optimization techniques, services, and
applications among others [7]. Furthermore, the continuous evolution of the
IoT leads to the emergence of even more technologies, thereby expanding
the possibilities but also adding to the complexity of IoT ecosystems. Addi-
tionally, the field of the IoT is characterized by the absence of universally
accepted standards in terms of, for instance, system deployment, the de-
velopment of IoT software artifacts, interoperability, and the orchestration
of the various services and applications involved in the system [83]. This
landscape, characterized by a lack of standardization, diverse technologies
and solutions, coupled with the ever-evolving and dynamic nature of IoT,
poses a formidable challenge within the field.

On the one hand, during the design stage of an IoT system, users are
required to make several key decisions concerning the system’s infrastructure.
For instance, some of these decisions could include: A) Pertaining to the
Mist layer, selecting the appropriate types and quantities of sensors and
actuators, as well as their optimal placement [84]; B) For the Edge and Fog
layers, the choice of appropriate hardware and devices to constitute these
layers, the strategic deployment locations for each Edge and Fog node, and
determining the computing power and storage capacity that these nodes
should have to meet the requirement of the system (e.g. desired applications’
and services’ QoS) [85]; C) In the context of the Cloud layer, selecting
the most suitable Cloud service providers for the IoT system, taking into
account factors such as the cost, QoS, availability, elasticity, and other
relevant parameters related to the services offered by Cloud providers [85].

Moreover, pivotal decisions related to system deployment and functioning
are also essential. For instance, some of these decisions could include: A) In
terms of service and application deployment, determining the most suitable
nodes within the various computing layers for deploying each service and
application, with a focus on meeting the diverse QoS requirements considered

16

CHAPTER 1. INTRODUCTION

essential for the system’s correct functioning [86, 87, 88]; B) Regarding
software components such as CEP engines or IoT brokers that could be
part of the system, selecting the most suitable IoT platform; C) For sensors
and actuators in general, the frequency of data gathering and publishing,
respectively [89]. For mobile devices, defining and predicting the routes that
mobile devices should or could take [90]; D) Additionally, in the context
of task execution, it is imperative to identify the most effective strategies
for federating the system, which includes determining how many different
federations could co-exist within the system, selecting those task scheduling
proposals that best align with the system’s needs across different potential
scenarios, etc. [62, 91].

These represent some of the key design decisions that users may deal
with. While these decisions are high-level in terms of abstraction, nu-
merous additional low-level decisions are essential for the effective design,
deployment, and performance of an IoT system. These include internal
device configuration, the development of ad-hoc software solutions, and the
management of low-level networking aspects, among others.

Given the complexity of IoT systems, the wide spectrum of devices that
could be involved, the lack of standards, as well as the numerous decisions
that users have to face during the design stage, comprehensive testing
is essential before deploying and putting the designed IoT system into
production [92]. Thus, allowing users to assess the system’s performance
and identify unexpected behaviors. To conduct a thorough assessment of the
system, these tests must encompass a variety of scenarios, including stress
testing under peak loads to evaluate system performance and stability [93];
compatibility checks across different devices and platforms to ensure seamless
operation [94]; QoS assesments to guarantee services’ and applications’
reliability and responsiveness by measuring their latency, throughput, packet
loss, and error rates under diverse network conditions [95, 96]; assessments
about the different devices of the system during any scenario that the
system could face, not only to ensure correct operation during peak loads
but also to optimally select the computing power and storage capacity
of each device [97]; for battery-operated devices, power consumption and
battery life testing should be also undertaken to ensure that these devices
will perform correctly and that the power consumption of the overall system
is as expected [98, 99]; failover and recovery testing to evaluate the system’s

17

1.2. PROBLEM STATEMENT

resilience [100, 101]; and load-balancing tests for systems distributing tasks
across multiple nodes, thus assessing if the task distribution is as expected
during system functioning [102].

These are some of the tests that users should conduct prior to deploying
their designed IoT systems into production. By conducting these tests,
users can gain knowledge and insights that would enable them to verify the
correct design of their systems and reduce the risk of unforeseen scenarios
that could result in system malfunctions or partial failures.

However, carrying out these tests involves a significant investment of
money, time, and effort in acquiring devices, their configuration, deployment,
etc. Moreover, the continuously evolving nature of the IoT, which leads
to increasing complexity over time, not only escalates the costs associated
with these tests but also amplifies their necessity.

In an effort to bridge this gap, several tools have been proposed in
the literature. Specifically, simulation and emulation tools are widely
recognized and adopted to conduct IoT system tests [103, 104, 105]. These
tools often enable users to design, test, and validate their IoT systems
through simulations, thereby avoiding the aforementioned costs typically
associated with such processes. For instance, acquiring IoT devices is not
yet required with most of these simulation tools. However, there is a wide
spectrum of IoT simulators, each of them with different features to both
1) design simulations, i.e. how the simulator allows users to design the
simulations; and 2) simulate, i.e. kind of IoT system or elements of an IoT
system that allows to simulate.

Given this scenario and the challenges described throughout this section,
the desired characteristics for an IoT simulator to simulate IoT systems
comprehensively and in an effortless and cost-efficient manner could be
summarized in: 1) Adaptive integration capability, 2) User-friendly learning
curve, 3) Efficient design agility, and 4) Cost-efficiency. These features are
described below:

• Adaptive integration capability: Capability to integrate new elements
to the simulations that are not covered by default by the simulator,
such as a new kind of device, or a task scheduling proposal that a user
has developed and wants to test. This is crucial for the simulator’s

18

CHAPTER 1. INTRODUCTION

usability and to cover wide scopes within the IoT. This feature is
an enabler to simulating comprehensive IoT systems tailored to the
specific simulation needs of the stakeholders, i.e. the IoT systems or
IoT elements that users want to simulate. This characteristic is also
especially appealing due to the ever-evolving nature of the IoT, where
technologies are constantly being updated and new ones are being
included, as is the case of certain users’ proposals, such as recently
published task scheduling algorithms [106, 107, 108].

• User-friendly learning curve: This is a critical aspect since stakeholders
often have limited resources regarding time and money to overcome
the learning curve of an IoT simulator.

• Efficient design agility: A key capability to enable users to design and
re-design IoT simulations in a fast and effective manner.

• Cost-efficiency: Finally, IoT simulators should be cost-efficient, as
carrying out IoT simulations should require a reasonable amount of
time, money, and effort. This characteristic is closely related to the
three aforementioned since it could be mostly fulfilled by meeting
them.

However, most existing simulators present significant variations regard-
ing the desired characteristics listed above. Therefore, efforts should be
aimed at providing IoT simulation tools that meet the above-described
features. Bridging this gap would enable users to conduct tests regarding
their IoT systems in a comprehensive, user-friendly, agile, and cost-efficient
manner.

1.3 Aims and Research Questions

Accordingly to the research context and the stated problem presented
in sections 1.1 and 1.2, respectively, the primary aim of this Ph.D.
Thesis is to provide the IoT community with a tool that enables
them to comprehensively test and enhance their IoT system de-
signs without the cost, time, and effort often associated with this
process.

19

1.3. AIMS AND RESEARCH QUESTIONS

To fulfill this objective, a set of four Research Questions (RQs) has been
formulated. By addressing these RQs, this Ph.D. Thesis intends to achieve
the aforementioned aim. The RQs are as follows:

• RQ1. To what extent are MDD techniques appropriate for
developing tools and languages that can tackle effectively
the complexity of IoT systems? As outlined in Section 1.1.1,
MDD increases the abstraction level where the software is developed,
focusing on the domain concepts and their relationships rather than
on low-level aspects. Consequently, by increasing the abstraction level
in the context of IoT systems, MDD could contribute significantly to
addressing the technological heterogeneity of these systems. Thus,
managing the broad spectrum of technologies and low-level details,
such as hardware configurations or device communications features
that these systems may incorporate. Therefore, this RQ seeks to
ascertain the suitability of applying MDD in this context.

• RQ2. To what degree are MDD techniques adequately suited
for generating the simulation code necessary to simulate an
IoT system? Even if MDD techniques are capable of handling and
managing the complexity of IoT systems by increasing the abstraction
level from which they are addressed, it remains unclear whether these
techniques can be effectively used to develop tools for simulating IoT
systems. However, as outlined in Section 1.1.1, and as can be seen
in Figure 1.1, MDD allows to generate code (M0) from models (M1)
modeled conforms to a metamodel (M2). This process suggests the
potential feasibility of generating the code related to the simulation
of a modeled IoT system. Nevertheless, given that at the beginning of
the development of this Thesis there were no IoT simulators based on
the MDD, is not possible to conclusively determine whether code for
simulating IoT systems can be effectively generated from models using
MDD. Given that this would be key in developing an MDD-based IoT
simulation tool, this RQ seeks to explore this possibility.

• RQ3. In what measure are MDD techniques effective in
developing IoT simulation tools that not only offer adaptive
integration capabilities and a user-friendly learning curve

20

CHAPTER 1. INTRODUCTION

but also ensure agility in designing IoT systems and cost-
efficiency in testing and validating them? Even though MDD-
based simulators are feasible, it would remain unclear whether these
simulation tools would exhibit adaptive integration capabilities, a
user-friendly learning curve, agility in designing IoT systems, and
cost-efficiency in testing and validating them. Crucial characteristics
that an IoT simulation tool should meet as discussed in Section 1.2.
Consequently, this RQ aims to resolve this dilemma.

• RQ4. To what extent is it feasible for a methodological
approach grounded in MDD-based simulators to achieve
an optimal IoT system design in terms of users’ specific
needs? If the aforementioned RQs yield affirmative results, the
development of a formal and methodological approach for testing
and refining IoT systems until an optimal design is achieved, may be
feasible. Consequently, this particular RQ is dedicated to investigating
methodologies capable of integrating a testing and refinement process
with an MDD-based IoT simulator. The goal is to establish a formal
and methodological approach for testing and refining IoT systems in
a manner that is not only agile and straightforward but also cost-
efficient.

1.4 Research Methodology

Over the years, Design Science (DS) research [1] has gained prominence in
the field of Information Systems (IS), with a focus on developing successful
artifacts (models, methods, software components, or tools). DS research has
been applied in the creation of SimulateIoT, the MDD-based IoT simulator
proposed in this Ph.D. Thesis, along with all the artifacts associated with it.
However, several DS research approaches could have been applied for this
purpose. Among others, it is possible to highlight Systems Development
Research Methodology [109], DS Research Process Model [110], Action
Design Research [111], Soft Design Science Methodology [112], Participatory
Action Design Research [113] and Design Science Research Methodology
(DSRM) [114].

21

1.4. RESEARCH METHODOLOGY

In the course of this Ph.D. Thesis, each of these methodologies has been
carefully studied aiming to select the most appropriate for the development
of the IS artifacts involved in this research. Moreover, frameworks intended
to assist in this selection process were also explored. Specifically, the
framework proposed in [115] by some of the most renowned researchers
in the field of DS research, such as John R. Venable, Jan Pries-Heje, and
Richard L. Baskerville, was applied. After applying this framework, DSRM
was identified as the most suitable for the development of SimulateIoT.

Figure 1.4: Design Science Research Methodology stages [1].

DSRM is a methodological approach focused on the creation and evalua-
tion of artifacts designed to address specific problems. DSRM is structured
in several activities or stages as can be seen in Figure 1.4. These stages
are: 1) DSRM starts with the identification of a problem; 2) followed by
setting clear objectives for a solution; 3) the core of DSRM is the design
and development phase, where an artifact is created and iteratively refined;
4) this artifact is then demonstrated in a relevant environment, such as a
use case, to illustrate its applicability in solving the identified problem; 5)
after that, follows a rigorous evaluation of the artifact, assessing how well

22

CHAPTER 1. INTRODUCTION

it meets the set objectives and addresses the problem; 6) the methodology
finishes in the communication stage, where the research process and find-
ings, including the efficacy of the artifact, are documented and shared. For
instance, publishing an article in a journal or a congress.

In addition, it is noteworthy that, as can be seen in Figure 1.4, cycling
back to earlier stages is a key aspect of the DSRM. Particularly, cycling
back from the Evaluation (5) or Communication (6) stages to the Define
Objectives (2) or Design & Development (3) stages. The iterative nature
of the DSRM is crucial for refining the developed artifact. For instance, if
the Evaluation stage reveals that the artifact does not meet its intended
aims or effectively solve the identified problem in the first stage of the
DSRM, it could be necessary to revisit the Define Objectives (2) stage
to reassess and redefine the goals. Similarly, during the Communication
stage (6), feedback from peers and users could reveal aspects of the artifact
that require further development or refinement, prompting a return to the
Design & Development stage.

As for the selection of DSRM, it was grounded in the alignment of
SimulateIoT with the specific criteria and guidelines defined in [115] to
choose the most suitable DS research methodology for the development of
ISs. The main rationale for this selection, based on the aforementioned
guidelines, is detailed below.

• Philosophy (Paradigm, Objectives, Domain): DSRM aligns with an
objectivist and positivist paradigm, which is appropriate for projects
focused on creating software artifacts with measurable outcomes. Since
this Ph.D. Thesis aims to develop an IoT simulator that encompasses
several software artifacts with measurable outcomes for simulation
and validation purposes, DSRM fits suitably in this regard.

• Scope (DS Research Activities): DSRM covers essential DS research
activities such as problem identification, defining objectives, design
and development, and evaluation. This methodology is ideal for
SimulateIoT, ensuring that all critical aspects of the simulator’s de-
velopment, from conceptualization to evaluation, are systematically
addressed.

23

1.5. SUMMARY OF CONTRIBUTIONS

• Output: The primary output of DSRM is the artifact, which in
the case of this Ph.D. Thesis is SimulateIoT, an MDD-based IoT
simulator.

• Practice (Background, User Base, Participants): DSRM’s academic
orientation suits the research nature of this Ph.D. Thesis. Its widespread
use and recognition in academic circles provide a solid foundation for
this research.

In summary, the selection of the DSRM for the development of Simu-
lateIoT in this Ph.D. Thesis represents a well-founded choice. This decision
is based on thoroughly examining various DS research methodologies and
applying the framework proposed by John R. Venable, Jan Pries-Heje,
and Richard L. Baskerville in [115], which shows the alignment between
this Ph.D. Thesis and the DSRM. Furthermore, the iterative nature of
DSRM, as illustrated in Figure 1.4, ensures a flexible and adaptive approach
to the development of SimulateIoT, allowing for continuous refinement
and improvement based on evaluation and feedback. Moreover, note that
this methodology not only guides the systematic development of the IoT
simulator but also enhances the academic rigor of the research.

1.5 Summary of Contributions

This section presents a summary of the primary contributions of this
Ph.D. Thesis, which are focused on providing insights and answers to
the RQs stated in Section 1.3. All these primary contributions can be
summarized in SimulateIoT, the main artifact developed during this Ph.D
Thesis. This artifact has been developed iteratively following the DSRM. As
a result, each version of SimulateIoT together with its particular artifacts
and contributions has been communicated through a journal article and
several related conferences, leading to the publication of four Journal
Citation Report (JCR) journal articles and six conferences (four of them
international conferences). Moreover, note that there is another manuscript
under development and a national conference paper under review. Therefore,
it can be stated that SimulateIoT is founded on four main contributions,
i.e. each journal article and its related conferences.

24

CHAPTER 1. INTRODUCTION

Regarding these four main contributions, they are: A) SimulateIoT
[2], a simulator focused on simulate the foundation of IoT systems; B)
SimulateIoT-FIWARE [71], a version of SimulateIoT where the target tech-
nology is FIWARE; C) SimulateIoT-Mobile [4], an extension of SimulateIoT
that includes the concept of IoT mobility to the simulator; D) And a version
of SimulateIoT that includes task-scheduling capabilities [5].

To present these main contributions in an organized and systematic man-
ner, this section is divided into four subsections, each one corresponding to
one of the four main contributions. Within these subsections, the structure
is as follows: 1) Title that summarizes the contribution; 2) Ph.D. Thesis
Context providing an overview of the relevant time frame and objectives
related to the thesis development; 3) Problem Statement that summarizes
the problem identified; 4) Contributions that summarizes the particular
contributions made to address the problem identified; 5) RQs Addressed
which links the contributions made to the specific RQs they attempt to
address; 6) Related Artifacts that describes each developed artifact to im-
plement each contribution, respectively; and lastly 7) Communications that
offers an overview of the dissemination efforts related to the contributions.

1.5.1 Simulating the Foundation of the IoT from a High
Level of Abstraction

Ph.D. Thesis Context

The initial main contribution of this Ph.D. Thesis was developed during
its first year, immediately after stating the four RQs that this Ph.D. Thesis
aims to address. Consequently, this first contribution involves a preliminary
attempt to approach these RQs.

Problem Statement

The complexity and low level of abstraction of IoT simulators lead to
significant costs in time, money, and effort due to steep learning curves,
and reduced agility in designing, validating, simulating, and improving IoT
systems. Moreover, the lack of formal methodologies can lead to ad-hoc
development of these systems, an error-prone practice that further increases
costs [2].

Contributions

25

1.5. SUMMARY OF CONTRIBUTIONS

To deal with the problem identified, adopting a higher level of abstraction
to address IoT simulations is key. This approach simplifies development by
focusing on essential aspects rather than specific details, thereby enhancing
the design, validation, and improvement processes of IoT systems, and
reducing the need to integrate numerous devices, concepts, and ad-hoc
solutions.

To materialize this contribution, MDD techniques, introduced in Section
1.1.1, emerged as a potential solution. Thus, an MDD-based simulator
called SimulateIoT, capable of tackling IoT simulations from a high level of
abstraction, was developed. This proposal, allows users to graphically design,
formally validate, and deploy their IoT system simulations by means of its
three main components: 1) a metamodel that captures the main concepts
of IoT systems and their interrelationships while allowing their formal
modeling and validation; 2) a graphical concrete syntax for graphically and
user-friendly modeling IoT systems; and 3) a model-to-text transformation
for generating the code of IoT system simulations from their models.

In addition, a methodology that defines each step required to model and
validate the IoT system simulations with SimulateIoT has been proposed.
Thus, users can use this methodology while designing, validating, and
testing their IoT systems through simulations with SimulateIoT.

Furthermore, the validation of SimulateIoT and the proposed methodol-
ogy has been carried out by conducting two use cases. The first examines
a smart building scenario at the University of Extremadura’s School of
Technology, encompassing six distinct buildings equipped with sensors, ac-
tuators, and data analysis processes. The second case study explores an
IoT-based irrigation management system aimed at enhancing tomato crop
production across ten hectares, incorporating real-time monitoring sensors
and irrigation actuators, supported by fog nodes and mosquito brokers.

RQs Addressed

The four RQs defined in Section 1.3 have been addressed to some extent.
Through the development of SimulateIoT, the proposed methodology and
the two use cases conducted, RQ1 (To what extent are MDD techniques
appropriate for developing tools and languages that can tackle effectively the
complexity of IoT systems?), RQ2 (To what degree are MDD techniques
adequately suited for generating the simulation code necessary to simulate

26

CHAPTER 1. INTRODUCTION

an IoT system?) and RQ3 (To what extent is it feasible for a methodological
approach grounded in MDD-based simulators to achieve an optimal IoT
system design in terms of users’ specific needs?) are partially addressed,
while RQ4 (To what extent is it feasible for a methodological approach
grounded in MDD-based simulators to achieve an optimal IoT system design
in terms of users’ specific needs?) is fully answered. This is because,
although this initial version of SimulateIoT involves several technologies,
it does not cover the entire IoT ecosystem and its associated concepts.
In addition, it mainly includes components exclusively developed for it.
Consequently, a positive answer to RQ1, RQ2, and RQ3 is feasible, but
only within the boundaries of the IoT context captured by this first version
of SimulateIoT. As for RQ4, it is fully addressed since its resolution is
independent of the specific IoT context captured. Instead, the proposed
methodology relies on the MDD workflow, i.e. modelization, validation,
and model-to-text transformations. Therefore, the proposed methodology is
applicable to any version of SimulateIoT, as long as this simulator is based
on MDD. Detailed discussions regarding these outcomes are reserved for
Section 8.1, which is dedicated to the discussion of the results achieved.

Related Artifacts

The key artifacts developed to implement these contributions include
SimulateIoT, the proposed methodology for modeling, validating, generating,
and simulating IoT systems through SimulateIoT, and the two use cases
developed to show the feasibility of both SimulateIoT and the methodology.
Additionally, it should be highlighted the three main components that
constitute SimulateIoT: 1) the metamodel, which captures the main concepts
of IoT systems and their interrelationships while also allowing the formal
modeling and validation of these systems; 2) the graphical concrete syntax
for graphically and user-friendly modeling IoT systems; and 3) the model-
to-text transformations for generating the code of IoT system simulations
from the modeled IoT system.

Communications

The contributions achieved in this respect have been disseminated
through a JCR journal article and presentations at three international
conferences and one national conference. Moreover, there is another journal
paper under development. The details of these communications are listed
below chronologically.

27

1.5. SUMMARY OF CONTRIBUTIONS

• IEEE Acess 2021 [2]: Barriga, J. A., Clemente, P. J., Sosa-Sánchez,
E., & Prieto, Á. E. (2021). SimulateIoT: Domain Specific Language
to design, code generation and execute IoT simulation environments.
IEEE Access, 9, 92531-92552. JCR Q2 (Computer Science, In-
formation Systems) IF: 3.476.

• Jornadas de Investigación Predoctoral en Ingenieŕıa Informática
- Doctoral Consortium in Computer Science (JIPII) 2022
[71]: Barriga, J. A., & Pedro, J. (2022). SimulateIoT: A model-
driven approach to simulate IoT systems. Predoctoral en Ingenierıa
Informática, 29. International Conference.

• Iberian Conference on Information Systems and Technolo-
gies (CISTI) 2022 [116]: Barriga, J. A., & Clemente, P. J. (2022,
June). Designing and simulating IoT environments by using a model-
driven approach. In 2022 17th Iberian Conference on Information
Systems and Technologies (CISTI) (pp. 1-6). IEEE. International
Conference.

• Jornadas de Ciencia e Ingenieŕıa de Servicios (JCIS) 2022
[117]: Barriga Corchero, J. Á., Clemente Mart́ın, P. J., Sosa Sánchez,
E., Prieto Ramos, Á. E.: SimulateIoT: Domain Specific Language
to design, code generation and execute IoT simulation environments.
In: Navarro, E. (ed.) Actas de las XVII Jornadas de Ingenieŕıa
de Ciencia e Ingenieŕıa de Servicios (JCIS 2022). Sistedes (2022).
https://hdl.handle.net/11705/JCIS/2022/006. National Confer-
ence.

• International Conference on Service-Oriented Computing
(ICSOC) 2022 [118]: Barriga, J. A. (2022, November). Simulating
IoT Systems from High-Level Abstraction Models for Quality of
Service Assessment. In International Conference on Service-Oriented
Computing (pp. 314-319). Cham: Springer Nature Switzerland.
International Conference.

• Under development: Barriga, J. A., Alonso, P., Sosa-Sánchez, E.,
Perez-Toledano, M. A., & Pedro, J. (2023). Integrating Hardware in

28

CHAPTER 1. INTRODUCTION

the Loop into IoT Systems Simulations: A Model-Driven Development
Approach.

1.5.2 Simulating the foundation of the IoT Powered by FI-
WARE

Ph.D. Thesis Context

The second contribution of this Ph.D. Thesis is aligned with the first,
being an extension of it. This contribution was developed after completing
the first one and after exploring several possibilities to further address the
RQs defined in Section 1.3, taking into consideration the partial answers
provided by the first contribution.

Problem Statement

The first approach to SimulateIoT mainly relies on custom-developed
components. To comprehensively address RQ1 (To what extent are MDD
techniques appropriate for developing tools and languages that can tackle
effectively the complexity of IoT systems?) and RQ2 (To what degree
are MDD techniques adequately suited for generating the simulation code
necessary to simulate an IoT system?), the integration of various third-party
IoT components into SimulateIoT has been considered. Since third-party
components are not specifically tailored for SimulateIoT and can have
very different purposes, their successful integration would show that MDD
techniques can effectively manage virtually any IoT component and its
inherent complexity. This would provide complete answers to both RQ1
and RQ2, as well as further answer RQ3 (In what measure are MDD
techniques effective in developing IoT simulation tools that not only offer
adaptive integration capabilities and a user-friendly learning curve but also
ensure agility in designing IoT systems and cost-efficiency in testing and
validating them?).

Contributions

To tackle the identified problem, the open-source IoT platform FIWARE
was explored. Since this platform offers a wide array of IoT components
that have very different purposes, to address the identified problem, the
integration of several FIWARE components into SimulateIoT was carried
out.

29

1.5. SUMMARY OF CONTRIBUTIONS

Thus, an extension of SimulateIoT toward the FIWARE IoT platform
was developed. This enhancement involves expanding one of the primary
components of SimulateIoT: its model-to-text transformations. Conse-
quently, users are able to graphically model IoT systems, validate them
conforming to the metamodel, and automatically generate the entire IoT
system. In this respect, the new model-to-text transformations incorporate
FIWARE as target technology, including components such as the ORION
Context Broker, the MongoDB database provided by FIWARE, and the
CEP engine Perseo among others. This process also includes generating the
custom SimulateIoT components and integrating them with the selected
FIWARE components, all performed transparently to the user. Lastly, users
can deploy the system and simulate it in the same way as in the first version
of SimulateIoT.

Moreover, note that SimulateIoT-FIWARE was validated by carrying
out two use cases. Note that these use cases are the same as those included
in the first contribution (see Section 1.5.1), differing in that the target
technology in this case is the FIWARE platform.

RQs Addressed

This second contribution fully addresses RQ1 (To what extent are MDD
techniques appropriate for developing tools and languages that can tackle
effectively the complexity of IoT systems?) and RQ2 (To what degree
are MDD techniques adequately suited for generating the simulation code
necessary to simulate an IoT system?). This is because this second con-
tribution successfully integrates diverse third-party IoT components from
the FIWARE platform into SimulateIoT. Moreover, it demonstrates the
effectiveness of MDD in managing the complexity of these components
through two use cases.

Related Artifacts

The artifacts delivered through this contribution are the three main
components of SimulateIoT, initially developed in the first contribution:
the metamodel, the concrete syntax, and the model-to-text transformations.
However, in this second contribution, these artifacts are extended toward
the FIWARE IoT platform, thus enabling users to generate and simulate
IoT systems with FIWARE components.

Communications

30

CHAPTER 1. INTRODUCTION

The contributions achieved in this respect have been disseminated
through a JCR journal article and a presentation at one national conference.
The details of these communications are listed below chronologically.

• IEEE Acess 2022 [3]: J. A. Barriga, P. J. Clemente, J. Hernández
and M. A. Pérez-Toledano, ”SimulateIoT-FIWARE: Domain Specific
Language to Design, Code Generation and Execute IoT Simulation
Environments on FIWARE,” in IEEE Access, vol. 10, pp. 7800-7822,
2022, doi: 10.1109/ACCESS.2022.3142894. JCR Q2 (Computer
Science, Information Systems) IF: 3.9.

• Jornadas de Ingenieŕıa del Software y Bases de Datos
(JISBD) 2023 [119]: Barriga Corchero, J. Á., Clemente Mart́ın,
P. J., Hernández Núñez, J. M., Pérez Toledano, M. Á.: SimulateIoT-
FIWARE: Domain Specific Language to Design, Code Generation
and Execute IoT Simulation Environments on FIWARE. In: Durán
Toro, A. (ed.) Actas de las XXVII Jornadas de Ingenieŕıa del Soft-
ware y Bases de Datos (JISBD 2023). Sistedes (2023). https://hdl.
handle.net/11705/JISBD/2023/8183. National Conference.

1.5.3 IoT Simulations Toward Mobility Assessments: Mobile-
Driven Design and Functionality

Ph.D. Thesis Context

This third contribution was developed during the second year of develop-
ment of this Ph.D. Thesis. Taking into account the stage of the Ph.D. Thesis
development, it was deemed to further verify and validate the answers given
to RQs before proceeding further in the development of the Ph.D. Thesis.

Problem Statement

SimulateIoT lacks a crucial feature often present in nowadays IoT
systems: the mobility of their devices. Since several users could have
to test the mobility of their devices within their IoT systems, and given
that this extension would verify and validate further the previous results
achieved, it has been considered appropriate to incorporate the mobility
concept into SimulateIoT. Note that this contribution verifies the answers
already given to RQs as it involves the addition of new IoT concepts to

31

1.5. SUMMARY OF CONTRIBUTIONS

SimulateIoT. In the context of this contribution, within the boundaries of
IoT mobility. Thus, it verifies further the applicability of MDD in managing
the complexity of IoT systems with mobile devices (RQ1 To what extent
are MDD techniques appropriate for developing tools and languages that can
tackle effectively the complexity of IoT systems?). Moreover, its suitability
as a technique to develop a simulation tool to test IoT systems with mobile
devices in an agile, user-friendly, and cost-efficient manner, together with
the possibility of validating the system design before its simulation, is also
further verified (RQ2 To what degree are MDD techniques adequately suited
for generating the simulation code necessary to simulate an IoT system? ;
RQ3 In what measure are MDD techniques effective in developing IoT
simulation tools that not only offer adaptive integration capabilities and a
user-friendly learning curve but also ensure agility in designing IoT systems
and cost-efficiency in testing and validating them?).

Contributions

This third contribution aims to integrate the mobility concept, which
includes mobile devices and their supporting architecture, into SimulateIoT.
This contribution is aligned with the first contribution developed but not
with the second one. This is because the second contribution was mainly
undertaken to further answer RQ1 and RQ2, for which several components
developed for SimulateIoT were replaced by FIWARE components. Con-
versely, the first contribution that released SimulateIoT was designed to be
able to model, validate, and simulate the foundation of IoT environments
with components developed by the author of this Ph.D. Thesis. For this
reason, it has been considered appropriate to develop the mobility concept
on top of SimulateIoT’s first approach.

Thus, to develop this contribution, SimulateIoT-Mobile, an extension
of SimulateIoT toward IoT mobility, was developed. This enhancement
involves expanding the three primary components of SimulateIoT: its meta-
model, concrete syntax, and model-to-text transformations. Consequently,
with this extension, users can graphically model, validate, and simulate IoT
systems incorporating mobile devices and the architecture that supports
their mobility. Namely, users can simulate the mobile sensors and actua-
tors, and design the routes that they will perform during the simulation.
Note that these devices integrate several functionalities developed in the
framework of this contribution to be able to move, such as all the clients

32

CHAPTER 1. INTRODUCTION

and the logic required to interact with the architecture that enables them
to move suitably throughout the IoT system. Regarding the architecture to
support mobile devices, components such as the Broker Discovery Service
and the Topic Discovery Service, among others, have been included. These
components facilitate mobile devices to discover brokers and the range of
topics each broker offers, respectively. Thus, enabling mobile devices to
request the necessary information to move effectively throughout the entire
IoT system while performing their functions.

This extension was validated through two use cases. The first simulates
an IoT system for tracking animal movements with GPS. Data collection
is facilitated by Fog nodes at strategic locations like lagoons, which then
relay data to a Cloud node for behavioral analysis. The second case study
simulates a smart Personal Mobility Device (PMD) system in urban settings,
enhancing the management and safety of bicycles and electric scooters with
sensors for real-time monitoring and actuators for user alerts on issues.
Fog nodes across the city collect and forward PMD data to Cloud nodes
for analysis and enable automatic notifications regarding device status,
ensuring efficiency and safety.

In short, this contribution is focused on simulating IoT mobility and
its related concepts, with the aim of furnishing users with valuable insights
regarding the design of their IoT systems with mobile devices. Additionally,
this extension also serves to further verify and validate the answers provided
by the preceding contributions to the defined RQs.

RQs Addressed

This contribution is related to all RQs, as this extension involves the
addition to SimulateIoT of several concepts and components related to
the IoT. Namely, to the IoT mobility. While this contribution does not
conclusively answer RQ3, the sole RQ that is not completely answered to
this point, it further answers all RQs, verifying and validating the research
outcomes achieved by the previous contributions.

Related Artifacts

The main artifacts delivered through this contribution are the three
primary components of SimulateIoT, initially developed in the first con-
tribution: the metamodel, the concrete syntax, and the model-to-text
transformations. However, in this third contribution, these artifacts are

33

1.5. SUMMARY OF CONTRIBUTIONS

extended toward IoT mobility, thus enabling users to include mobile devices
together with the mobility-supporting architecture in their simulations.

Communications

The contributions achieved have been disseminated through a journal
article. Moreover, there is another paper related to this contribution
already submitted to a conference and under review. The details of these
communications are shown below.

• Pervasive and Mobile Computing (PMC) 2023 [4]: Barriga,
J. A., Clemente, P. J., Pérez-Toledano, M. A., Jurado-Málaga, E.,
Hernández, J. (2023). Design, code generation and simulation of IoT
environments with mobility devices by using model-driven develop-
ment: SimulateIoT-Mobile. Pervasive and Mobile Computing, 89,
101751. JCR Q2 (Computer Science, Information Systems)
IF: 4.3.

• Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
2024 (Under review): Barriga, J. A., Clemente, P. J., Pérez-
Toledano, M. A., Jurado-Málaga, E., Hernández, J., Design, code
generation and simulation of IoT environments with mobility devices
by using model-driven development: SimulateIoT-Mobile*. Sistedes
(2024). National Conference.

1.5.4 IoT Simulations Toward Task-Scheduling Assessments:
Task-Driven Design and Functionality

Ph.D. Thesis Context

This contribution was developed in the third year of the Ph.D. Thesis,
following the complete addressing and validation of RQ1 (To what extent
are MDD techniques appropriate for developing tools and languages that
can tackle effectively the complexity of IoT systems?), RQ2 (To what degree
are MDD techniques adequately suited for generating the simulation code
necessary to simulate an IoT system?), and RQ4 (To what extent is it
feasible for a methodological approach grounded in MDD-based simulators
to achieve an optimal IoT system design in terms of users’ specific needs?)
through the three prior contributions. RQ3 (In what measure are MDD

34

CHAPTER 1. INTRODUCTION

techniques effective in developing IoT simulation tools that not only offer
adaptive integration capabilities and a user-friendly learning curve but also
ensure agility in designing IoT systems and cost-efficiency in testing and
validating them?) remains the only RQ not fully addressed at this stage.
Therefore, this contribution is focused on answering RQ3 further while
simultaneously expanding the simulation capabilities of SimulateIoT.

Problem Statement

RQ3 is the only RQ that has not been comprehensively addressed.
Specifically, the question To what extent are MDD techniques effective in
developing IoT simulation tools that possess adaptive integration capabilities?
related to RQ3 has to be answered to fully address this RQ. So, this
contribution is focused on resolving this aspect of RQ3.

In this respect, it has been considered to extend SimulateIoT toward task
scheduling. Task scheduling is a well-known and widespread technique to
optimize task execution within distributed systems like IoT systems. How-
ever, there is a lack of IoT simulators that include modeling task scheduling
in line with current IoT systems that integrate the Cloud-To-Things Con-
tinuum paradigm. Additionally, existing task-scheduling simulators do not
easily allow users to test their own task-scheduling algorithms, a gap that
this contribution aims to fill while answering RQ3.

Contributions

This fourth contribution integrates task scheduling capabilities into
SimulateIoT for simulation purposes. To implement it, SimulateIoT was
extended toward several task-scheduling concepts, which involved expanding
the three primary components of SimulateIoT: its metamodel, concrete
syntax, and model-to-text transformations. Therefore, with this extension,
users can graphically model, validate, and simulate IoT systems with task
scheduling capabilities. Namely, users can model: 1) Tasks by means of
Workflows [120, 121]; 2) the nodes that will generate these tasks during sim-
ulation execution, such as TaskNodes and TaskApps ; 3) the Task Scheduler
that will schedule these tasks; 4) the task processors of the system, which
will process the scheduled tasks. Often they will be Fog and Cloud nodes,
although Mist/Edge nodes such as the Task Nodes can also incorporate
task processing capabilities; 5) several federations between nodes; and 6)
relevant task-scheduling networking aspects such as the bandwidth and
delay between the links of each federated node.

35

1.5. SUMMARY OF CONTRIBUTIONS

So, within this task-scheduling environment, as users can integrate their
task-scheduling algorithms in the Task Scheduler node, users can test their
own task-scheduling proposals, assess and validate them, and compare them
with other existing in the literature.

Note that this contribution has been validated by carrying out two use
cases.

RQs Addressed

From the perspective of RQs, the most relevant component released
in this contribution is the Task Scheduler. This is because it provides
the required answers to completely address RQ3. In this respect, the
Task Scheduler component is capable of integrating users’ task-scheduling
algorithms and using them within the defined simulations. Thus, users can
use SimulateIoT to asses their own task-scheduling proposals, measure their
performance, compare them with the existing ones in the literature, etc.
So, by developing this contribution, it is feasible to fully answer RQ3 by
responding to the question: To what extent are MDD techniques effective in
developing IoT simulation tools that possess adaptive integration capabilities?
A part of RQ3 that previous contributions lacked an answer.

Moreover, note that as task scheduling includes new IoT concepts,
functionalities, and components to SimulateIoT, the rest of the RQs are
also further validated.

Related Artifacts

The main artifacts delivered through this contribution are the three
primary components of SimulateIoT: the metamodel, the concrete syntax,
and the model-to-text transformations. However, in this fourth contribution,
these artifacts are extended toward IoT task scheduling, thus enabling users
to test their task-scheduling algorithms within a wide IoT ecosystem by
means of simulations.

Communications

This contribution has been disseminated through a conference paper
and a journal article. The details of these communications are shown below
chronologically.

• International Workshop on Model-Driven Engineering for
Smart IoT Systems (MeSS) 2022 [122]: Barriga, J. A., &

36

CHAPTER 1. INTRODUCTION

Clemente, P. J. (2022). SimulateIoT-Federations: Domain Specific
Language for designing and executing IoT simulation environments
with Fog and Fog-Cloud federations. International Conference.

• Journal of Object Technology (JOT) 2023 [5]: Barriga, J. A.,
Chaves-González, J. M., Barriga, A., Alonso, P., & Clemente, P.
J. Simulate IoT Towards the Cloud-to-Thing Continuum Paradigm
for Task Scheduling Assessments. JCR Q4 (Computer Science,
Software Engineering) IF: 0.8.

1.5.5 Collaboration: SimulateIoT toward Big Data assess-
ments

Ph.D. Thesis Context

In the concluding year of this Ph.D. Thesis, a collaborative stay was
undertaken with a research group at the Universidade de Aveiro in Aveiro,
Portugal. This research stay was focused on extending SimulateIoT toward
Big Data systems.

It is important to acknowledge that this contribution is currently unpub-
lished as it remains under development. Specifically, the completion of a use
case and the writing of the corresponding paper are still pending. In this
respect, note that due to the absence of definitive results at this stage, this
contribution is mentioned in this summary but will not be included in the
chapter dedicated to presenting the results of this Ph.D. Thesis (Chapter
2).

Problem Statement

Some IoT simulators are designed to simulate the Big Data segment of
an IoT system, which is responsible for providing storage and query services
[123, 104, 124]. These simulators primarily assess the performance of these
services in the context of the IoT. For instance, by measuring the time that
these systems take to process a particular request in a specific timeframe,
when various devices may be executing concurrent requests.

Despite their value in analyzing different aspects of Big Data systems in
IoT environments, these simulators have several limitations. Primarily, they
tend to assess the Hadoop File System [123, 104], neglecting the need to

37

1.5. SUMMARY OF CONTRIBUTIONS

test a more diverse range of Big Data systems. In addition, these simulators
often lack integration adaptability. For instance, users could face challenges
in integrating their custom requests into simulations. Thus, hindering a
more accurate assessment of users’ system performance. Besides, these
simulators often focus on the Big Data system and neglect the rest of the
IoT system, thus capturing a small domain regarding the IoT [124]. Note
that the IoT domain is critical in these kinds of simulators, as it enables
an accurate assessment of the IoT environment’s influence on the Big Data
system. Moreover, these simulators often adopt a low level of abstraction
in their simulation approach, which can lead to increased time, cost, and
effort in the system testing process.

In short, the predominant focus on the Hadoop File System, coupled
with the identified shortcomings in integration adaptability, IoT scope
covered, and abstraction level used to tackle simulations, underscores the
need for improvements in the design and functionality of these kinds of
simulators.

Contributions

This contribution is based on the integration of Big Data capabilities
into SimulateIoT. For this purpose, SimulateIoT has been extended toward
several Big Data concepts, which involved expanding the three primary com-
ponents of SimulateIoT: its metamodel, concrete syntax, and model-to-text
transformations. Therefore, with this extension, users can graphically model,
validate, generate, and simulate IoT systems with Big Data capabilities.

This simulator offers users several capabilities, including: 1) Configuring
and deploying a Big Data system based on MongoDB, covering elements
such as shards, replicaset nodes, query router nodes, config server nodes,
and the MongoDB schema with its databases and collections; 2) Simulating
workloads, which constitute the set of requests generated by devices and
applications during the simulation. These workloads can incorporate user-
defined requests, thus enhancing the customization and adaptability of
simulations to meet specific user requirements. Note that these workloads
will be sent to the defined database system for their processing; 3) Generating
enhanced synthetic data for sensors, since the simulator is primarily data-
centric. This is because the key assessment that can be carried out with
this tool is to analyze the performance of the Big Data system regarding
request execution. So, as requests involve data, and as more complex data

38

CHAPTER 1. INTRODUCTION

enables more complex and varied requests, the synthetic data generation
has been improved; 4) data aggregators that aggregate published data on
user-selected topics and send it to the database for their storing.

These functionalities represent the main aspects available for simulation.
However, the simulator also allows extensive customization through various
configurable parameters, with the aim of mirroring real-world systems
and obtaining results applicable in practical scenarios. In addition, the
simulator incorporates features such as a real-time simulation analyzer,
which generates multiple graphs that provide valuable information such as
each request generated and processed together with their processing time
among other insights.

Thereby, this comprehensive set of features and customizable options
make the simulator a versatile tool for accurately modeling and analyzing
Big Data systems in the context of IoT, avoiding the shortcomings identified
in the problem statement section of this contribution.

RQs Addressed

This contribution addresses the four RQs defined. Regarding RQ1
(To what extent are MDD techniques appropriate for developing tools and
languages that can tackle effectively the complexity of IoT systems?), this
contribution extends the simulator toward Big Data systems within the
scope of the IoT. Thus, verifying the suitability of the application of MDD
to tackle effectively the complexity of IoT systems, in this context, with Big
Data capabilities. Concerning RQ2 (To what degree are MDD techniques
adequately suited for generating the simulation code necessary to simulate an
IoT system?), this contribution extends the model-to-text transformations
of SimulateIoT, generating the entire architecture of a Big Data system and
the IoT environment that interacts with this system. Thus, validating that
MDD is adequately suited for generating the simulation code necessary to
simulate IoT systems, in this respect, with Big Data capabilities. As for RQ3
(In what measure are MDD techniques effective in developing IoT simulation
tools that not only offer adaptive integration capabilities and a user-friendly
learning curve but also ensure agility in designing IoT systems and cost-
efficiency in testing and validating them?), this simulator provides high
adaptability in terms of integrating user-defined requests and user-defined
sensor data generation. Moreover, as with the other releases of SimulateIoT,
this contribution integrates a concrete graphical syntax to facilitate system

39

1.6. STRUCTURE OF THE THESIS

modeling for users. It also offers the possibility to validate models according
to the metamodel. Furthermore, allows for testing these systems in a
cost-efficient manner. In this respect, the costs associated with these
simulations are the efforts made to design the system simulation, mitigated
by the low learning curve of SimulateIoT, and the energy consumption that
the simulation could require to be executed. Lastly, regarding (To what
extent is it feasible for a methodological approach grounded in MDD-based
simulators to achieve an optimal IoT system design in terms of users’
specific needs?), the methodology developed in the first contribution has
been further validated by using it to carry out the use case conducted in
this contribution.

Thereby, this final contribution has been designed to both help users test
their Big Data systems within their IoT environments and to finally verify
and validate the answers given to each RQ. Thus, conclusively answering
them.

Related Artifacts

The main artifacts delivered through this contribution are the three
primary components of SimulateIoT: the metamodel, the concrete syntax,
and the model-to-text transformations. However, in this last contribution,
these artifacts are extended toward Big Data systems, thus enabling users
to test their Big Data systems within a wide IoT ecosystem by means of
simulations.

Communications

Since this contribution is still under development, there are no publica-
tions yet.

1.6 Structure of the Thesis

This Ph.D. Thesis is organized into four main sections. The initial section
provides a summary of the thesis, including Chapter 1, which serves as
the Introduction, and Chapter 2, which presents the Results. The second
section compiles the key research papers that underpin the foundation of
this Ph.D. Thesis, including Chapter 3, which presents an overview of these
publications, and Chapters 4, 5, 6, and 7, which include the papers that
comprise the compendium of publications. The third section is dedicated to

40

CHAPTER 1. INTRODUCTION

the Conclusions, summarizing the insights and implications of the research.
The final section encompasses the Appendices, offering supplementary
material supporting the research findings.

41

1.6. STRUCTURE OF THE THESIS

42

Chapter 2

Results

“The Road goes ever on and on
down from the door where it
began. Now far ahead the road
has gone, and I must follow, if I
can, pursuing it with eager feet,
until it joins some larger way
where many paths and errands
meet. And whither then? I
cannot say.”

The Fellowship of the Ring
(1954)

Tolkien, J. R. R.

This section describes the main contributions of this PhD thesis, which
aim to provide insights and answers to the RQs specified in Section 1.3. As
mentioned in Section 1.5, the primary artifact and contribution of this Ph.D.
thesis, SimulateIoT, is founded on four main contributions. This section
elaborates on these four contributions. To this end, first, the problem
statement on which each contribution is based, previously outlined in
Section 1.5, is revisited. Subsequently, the contributions, also summarized
in Section 1.5, are presented and elaborated in detail.

43

2.1. SIMULATING THE FOUNDATION OF THE IOT FROM A HIGH
LEVEL OF ABSTRACTION

2.1 Simulating the Foundation of the IoT from a
High Level of Abstraction

There is a wide diversity among IoT simulators [125]. Some simulators are
specialized in simulating specific segments of an IoT system, such as the
Cloud Layer or the Fog Layer, while others have been designed to conduct
holistic simulations, encompassing components related to each computing
layer within an IoT system. Regardless of what layer or set of layers a
simulator focuses on, the types of simulations that can be performed, and
therefore the insights that can be derived, vary significantly [125]. For
instance, certain cloud-focused IoT simulators allow for the simulation of
specific node types, like ’Data Center’ nodes [103], while other cloud-focused
IoT simulators do not include this type of node.

This diversity among simulators stems from the complexity of IoT
systems. This complexity makes it unfeasible to capture the heterogeneous
and vast array of technologies, such as devices and communication protocols,
in a single IoT simulator. For this reason, holistic simulations are too
complex to handle by a single simulator, and simulators face difficulties in
providing users with a wide spectrum of knowledge and insights. Therefore,
users often have to use several IoT simulators in order to comprehensively
test their IoT systems [125], which increases the learning curve that users
have to overcome to test their systems.

Given this scenario, there is an opportunity to elevate further the level
of abstraction at which IoT simulations are addressed. This elevation would
enable simulators to focus on the core concepts of IoT systems rather
than on low-level details like the kind of nodes to include regarding IoT
computing layers. For instance, high-level abstract simulators should include
the generic concept of a Cloud node and the pertinent parameters associated
with these nodes (which could play a crucial role during simulations, such as
their computing power), instead of the myriad of existing cloud node types,
like the aforementioned ’Data Center’ nodes. Likewise, these high-level
abstract simulators would allow users to focus on what actually matters
instead of on low-level aspects of their specific IoT systems. Thus, reducing
the learning curve to use the simulator.

So, elevating further the level of abstraction at which IoT simulations are
tackled avoids capturing the wide spectrum of technologies that comprise

44

CHAPTER 2. RESULTS

IoT systems. Thereby, making it feasible to perform holistic simulations,
or at least, allowing for more comprehensive simulations. Moreover, it
also helps users to design and test their IoT systems without concern for
low-level details, which decreases the learning curve of the simulator.

On the other hand, another problem identified is the lack of methodolo-
gies documented in the literature for designing, validating, and simulating
IoT systems, which can lead to errors and inaccurate simulation outputs.

In this context, MDD techniques, introduced in Section 1.1.1, emerged
as a potential solution. Thus, an MDD-based simulator called SimulateIoT,
capable of tackling IoT simulations from a high level of abstraction, was
developed. This tool allows users to graphically design, validate, and deploy
their IoT system simulations by means of its three main components: 1)
a metamodel that captures the main concepts of IoT systems and their
interrelationships, while also allowing the modeling and validation of these
systems; 2) a graphical concrete syntax for graphically and user-friendly
modeling these IoT systems; and 3) a model-to-text transformation for
generating the code of the specific IoT system simulation based on the
modeled IoT system.

The metamodel of SimulateIoT is shown in Figure 2.1. In this Figure,
it can be observed some of the high-level concepts related to IoT systems
that have been captured, such as Sensors, Actuators, Fog and Cloud nodes,
etc. that are common in any IoT system. The explanation of each of these
concepts can be found in the paper included in Chapter 4. Specifically, in
Section IV - subsection A, of this paper.

The concrete syntax developed to graphically assist users in modeling
IoT system simulations conform to the proposed metamodel, is illustrated
in Figure 2.2. This tool, which can be integrated into Eclipse IDEs [126]
via plugins, provides a palette featuring all the modelable elements, along
with a canvas where users can design their simulations. Further details
about this component can be found in the paper included in Chapter 4.
Specifically, in Section IV - subsection B, of this paper.

Once an IoT system model is designed and validated, its code can be
generated. Figure 2.3 shows a generic architecture regarding the components
and their interactions that can be generated through SimulateIoT model-
to-text transformations.

45

2.1. SIMULATING THE FOUNDATION OF THE IOT FROM A HIGH
LEVEL OF ABSTRACTION

Figure 2.1: SimulateIoT metamodel. Figure source [2].

46

CHAPTER 2. RESULTS

Figure 2.2: SimulateIoT concrete syntax. Figure source [2].

Note that the architecture shown in Figure 2.3 is close to a real IoT
system rather than a simulated one. Each component is wrapped in a
docker container [127], such as a MongoDB Database [128], a Mosquitto
Broker [129], and CEP engines such as EsperTech-based ones [130], among
other components. This is because SimulateIoT relies on real components
to perform simulations. It automatically integrates them into simulations
depending on the systems modeled by users. The rationale for this de-
cision is mostly founded on RQ1 (To what extent are MDD techniques
appropriate for developing tools and languages that can tackle effectively the
complexity of IoT systems?). This RQ seeks to ascertain if MDD is suitable
for managing the complexity of IoT systems. Managing the complexity
of IoT systems involves both capturing the domain of IoT systems and
handling their technological heterogeneity. By capturing the domain of
IoT systems, MDD enables users to model IoT systems. By handling their
technological heterogeneity, MDD enables users to automatically generate
the code of each IoT component that has to be included in the system, the
configuration files required for each component, the deployment script to
orchestrate the deployment of the system, etc. Therefore, truly handling the

47

2.1. SIMULATING THE FOUNDATION OF THE IOT FROM A HIGH
LEVEL OF ABSTRACTION

Figure 2.3: Generic IoT architecture generated through SimulateIoT’s
model-to-text transformations. Figure source [2].

complexity of IoT systems, from modeling to deploying and orchestrating
them. Nevertheless, it is noteworthy that although SimulateIoT performs
simulations relying on real components, there are also several simulation
processes, such as the sensors’ synthetic data generation among others.

On the other hand, the second contribution is the development of a
methodology (see Figure 2.4) that defines each step required to model,
validate, and simulate IoT system simulations with SimulateIoT. Thus,
users can use this methodology while designing, validating, and testing

48

CHAPTER 2. RESULTS

Figure 2.4: SimulateIoT methodology. Figure source [2].

their IoT systems through simulations with SimulateIoT. In Figure 2.4, the
proposed methodology, named SimulateIoT methodology (depicted in blue),
is displayed along with its integration into the SimulateIoT Design & Im-
plementation stages. These stages essentially mirror the process commonly
employed by any tool based on MDD, encompassing modeling, validation,
and model-to-text transformations (code generation from models). Addi-
tionally, the figure illustrates the outcome of applying this methodology,
which results in the deployment of the simulation.

Finally, the third contribution is the validation of SimulateIoT and the
proposed methodology by conducting two use cases. The first case study
focuses on the simulation of a smart building, specifically, the School of
Technology at the University of Extremadura. It has six buildings (Com-
puter Science, Civil Works, Architecture, Telecommunications, Research,

49

2.2. SIMULATING THE FOUNDATION OF THE IOT POWERED BY
FIWARE

and a Common Building). So, each building has been furnished with a
set of sensors, actuators, and analysis information processes. The second
case study focuses on simulating an IoT system for managing irrigation and
weather data to improve crop production. This case study includes sensors
distributed over ten hectares of tomatoes that are monitored in real time.
Moreover, actuators to control the irrigation of these tomatoes, together
with elements to allow the operation of these sensors, such as fog nodes
or mosquito brokers, are also included. The paper included in Chapter 3,
delves into the inner details of these use cases in Sections V - A and B
respectively.

Before concluding this section, it is important to acknowledge that
these contributions have limitations since this first approach to SimulateIoT
is focused on simulating some of the key components of IoT systems by
applying MDD techniques, such as the simulation of cloud and fog nodes,
or sensors and actuators. However, it does not allow the simulation of other
key concepts such as the federation between nodes or their mobility. This
is because this first approach is mainly focused on initially addressing the
RQs stated in Section 1.3, rather than on providing a final IoT simulator.

2.2 Simulating the Foundation of the IoT Powered
by FIWARE

Given the partial answers given to RQ1 (To what extent are MDD techniques
appropriate for developing tools and languages that can tackle effectively
the complexity of IoT systems?) and RQ2 (To what degree are MDD
techniques adequately suited for generating the simulation code necessary to
simulate an IoT system?) by the first contribution, this second contribution
primarily aims to answer these two RQs further. In this respect, it is
noteworthy that the initial version of SimulateIoT primarily encompasses
custom components specifically designed for it. Therefore, to address
RQ1 and RQ2 further, the integration of third-party IoT components into
SimulateIoT was considered. Third-party components are not specifically
designed for SimulateIoT or tools based on MDD. Moreover, third-party
components are heterogeneous and can vary significantly, each serving
distinct functions within an IoT system. Consequently, if these components

50

CHAPTER 2. RESULTS

could be successfully incorporated into SimulateIoT, it would validate the
findings and solutions related to RQ1 and RQ2 achieved through the first
contribution. Thus, leading to a conclusive answer for these two RQs.

For this purpose, the open-source IoT platform FIWARE was chosen as
the target technology. This platform provides a comprehensive array of IoT
components through its catalog that can be integrated into SimulateIoT,
along with its paradigm for managing IoT systems, which is centered on
context awareness, as elaborated in Section 1.1.5. This approach is not only
suitable for addressing the previously stated problem but also enhances the
simulation capabilities offered by SimulateIoT to the community. Namely,
to the best of our knowledge, there are currently no MDD-based IoT
simulators specifically designed for simulating and testing IoT systems that
use FIWARE.

Figure 2.5: Generic IoT system architecture generated and deployed using
SimulateIoT-FIWARE. Figure source [3].

Thus, SimulateIoT has been extended towards FIWARE. For this pur-
pose, only one of its three main components of SimulateIoT has been
extended, the model-to-text transformations. The metamodel and the
concrete syntax remain unchanged from the first version of SimulateIoT.
This is because the metamodel of SimulateIoT-FIWARE does not intro-

51

2.2. SIMULATING THE FOUNDATION OF THE IOT POWERED BY
FIWARE

duce new IoT concepts. Therefore, the systems that can be modeled with
SimulateIoT-FIWARE are identical to those with the original SimulateIoT.
However, in this version, all components that were developed for the initial
version of SimulateIoT and could be substituted with FIWARE platform
components, have been replaced. Moreover, those FIWARE components re-
quired in any IoT system powered by FIWARE, such as the core component
of FIWARE, the ORION Context Broker, that orchestrates every FIWARE
component, have been also included. Furthermore, some components to
integrate FIWARE components with SimulateIoT components, have been in-
cluded likewise. Thus, when generating the code and deploying simulations
in this second approach, several FIWARE components are involved. Figure
2.5 illustrates a generic IoT system deployed with SimulateIoT-FIWARE.
The FIWARE components included are the ORION Context Broker, the
MongoDB database provided by FIWARE, the CEP engine Perseo, and
the IoTAgent. They are addressed below.

• ORION Context Broker [131]: This is the core component of the
FIWARE platform. It manages the entire lifecycle of context informa-
tion including updates, queries, registrations, and subscriptions. It
allows the system to perform updates and manage changes in the state
of connected entities (such as IoT devices, user-defined entities, etc.),
making this information available for other components or third-party
applications.

• MongoDB Database Provided by FIWARE [132]: MongoDB, in the
context of FIWARE, is used as a database to store context information.
It’s a NoSQL database, which means it can handle large volumes of
data and is highly scalable. In FIWARE, MongoDB is often used to
store the data managed by the Orion Context Broker, providing a
robust and efficient way to handle the data generated by IoT devices
and other sources.

• CEP Engine Perseo [133]: The Complex Event Processing Engine
Perseo is a rule-based system designed to support the definition and
notification of events based on specific patterns detected in the data
managed by the Orion Context Broker. Essentially, it allows actua-
tors, by notifying them, to perform real-time responses to complex

52

CHAPTER 2. RESULTS

sequences of events, which is crucial for dynamic and responsive IoT
applications.

• IoTAgent [134]: The IoT Agents in FIWARE are responsible for the
communication between IoT devices and the Orion Context Broker.
They translate the device-specific protocols into the standard NGSI
(Next Generation Service Interfaces) used by the Orion Context Broker.
This means that devices using different communication protocols can
be integrated into the FIWARE ecosystem, ensuring interoperability
and seamless data flow between devices and the Context Broker.

In addition to these components, some components have been developed
in order to increase the functionality of the included FIWARE components,
such as the NotificationMiddlewareComponent, which adapts the HTTP
notification of the component CEP Perseo to MQTT, and the ORION-
TopicManager that saves all the published data in each topic in a collection
of MongoDB. Note that the standard version of FIWARE saves the data of
each sensor in distinct collections.

On the other hand, Table 2.1 presents a mapping between the compo-
nents of SimulateIoT and the SimulateIoT-FIWARE. This mapping shows
the relationship between the metamodel concepts and each component, in-
dicating which components from SimulateIoT have been replaced, by which
FIWARE components have been replaced, and which have been preserved.
Thus, regarding the ProcessorNodes, which can be fog and cloud nodes, the
Mosquitto broker and the MQTT client, both deployed on these computing
nodes, have been replaced for those provided by FIWARE. Moreover, the
Orion Context Broker and the IoT Agent have been included and deployed
on these fog and cloud nodes, as they are enabler components for FIWARE
allowing it to be integrated with the rest of the system. Note that further
description about these components can be found in Section 1.1.5, as well as
for the rest of the FIWARE components involved in this Section. Regarding
the DataBase, the MongoDB has been replaced with the MongoDB provided
by FIWARE. In addition, the MongoDB client developed in the prior version
of SimulateIoT has been replaced by the ORION Context Broker, which has
been designed to manage all the data published in topics and store them
suitably in MongoDB. Lastly, the CEP engine developed with EsperTech

53

2.2. SIMULATING THE FOUNDATION OF THE IOT POWERED BY
FIWARE

M
e
ta

m
o
d
e
l

E
le
m

e
n
t

S
im

u
la
te
Io

T
C
o
m

p
o
-

n
e
n
ts

D
e
sc

r
ip

ti
o
n

F
IW

A
R
E

C
o
m

p
o
n
e
n
ts

D
e
sc

r
ip

ti
o
n

P
ro

c
e
ss
N
o
d
e

M
o
sq
u
it
to

M
Q
T
T

B
ro
k
er

M
o
sq
u
it
to

M
Q
T
T

B
ro
k
er

M
Q
T
T

C
li
en

t
(i
n
te
rn

a
l

co
m
p
o
n
en

t)

P
u
b
li
sh

/
su

b
sc
ri
b
e

o
n
to
p
ic
s

M
Q
T
T

cl
ie
n
t

P
u
b
li
sh

/
S
u
b
sc
ri
b
e

o
n

to
p
ic
s

O
ri
o
n

C
o
n
te
x
t

B
ro
k
er

D
ev

ic
e

a
n
d

C
o
n
te
x
t

d
a
ta

m
a
n
a
g
em

en
t

Io
T
A
g
en

t-
J
so
n

B
ri
d
g
e
b
et
w
ee
n
M
Q
T
T
-

J
so
n
a
n
d
N
G
S
I

C
o
m

p
o
n
e
n
t

D
a
ta

b
a
se

M
o
n
g
o
D
B

cl
ie
n
t

M
o
n
g
o
D
B

m
a
n
-

a
g
em

en
t

O
ri
o
n

C
o
n
te
x
t

B
ro
k
er

O
ri
o
n
h
a
s
a
cl
ie
n
t
to

in
-

te
ra
ct

w
it
h
M
o
n
g
o
D
B

M
o
n
g
o
D
B

N
o
S
q
l
D
a
ta
b
a
se

M
o
n
g
o
D
B

N
o
S
q
l
D
a
ta
b
a
se
.
A

d
e-

p
en

d
en

cy
o
f
O
ri
o
n
C
o
n
-

te
x
t
B
ro
k
er
.
D
u
e
to

th
e

a
b
o
v
e

fa
ct
,
th

e
C
o
m
-

p
o
n
e
n
tD

a
ta
ba
se

is
n
o

lo
n
g
er

a
n
o
p
ti
o
n
a
l
co

m
-

p
o
n
en

t

C
o
m

p
o
n
e
n
t

P
r
o
c
e
ss

E
n
g
in

e

C
E
P

E
n
g
in
e

A
p
p
ly

ru
le
s

to
to
p
ic
s

P
er
se
o

P
er
se
o
-F
ro
n
tE

n
d
:
S
u
b
-

sc
ri
b
e

to
O
ri
o
n

co
n
-

te
x
t
d
a
ta

a
n
d

P
u
b
li
sh

n
o
ti
fi
ca

ti
o
n
s

(H
T
T
P
),

P
er
se
o
-C

o
re
:

A
p
p
ly

ru
le
s
to

O
ri
o
n

co
n
te
x
t

d
a
ta

M
Q
T
T

cl
ie
n
t

S
u
b
sc
ri
b
e
o
n
to
p
-

ic
s,

P
u
b
li
sh

n
o
ti
fi
-

ca
ti
o
n
s
o
n
to
p
ic
s

Table 2.1: Relationships among the main metamodel elements with the
main target components. Table source [3].

54

CHAPTER 2. RESULTS

for SimulateIoT has been also replaced by Perseo, a CEP Engine provided
by FIWARE. Note that, as mentioned before in this Section, to adapt the
behavior of Perseo regarding notifications, as well as how the Orion Context
Broker manages and stores data, the NotificationMiddlewareComponent and
the OrionTopic Manager components have been developed and integrated,
respectively, in the resulting SimulateIoT-FIWARE architecture, as can be
seen in Figure 2.5.

Finally, this contribution was validated by carrying out two use cases.
Note that these use cases were the same as those included in the first
contribution (see Section 2.1), differing in that the target technology in this
case is the FIWARE platform. The paper included in Chapter 4, delves into
the inner details of these use cases in Sections VI - A and B respectively.

2.3 IoT Simulations Towards Mobility Assessments:
Mobile-Driven Design and Functionality

Having comprehensively addressed RQ1 (To what extent are MDD techniques
appropriate for developing tools and languages that can tackle effectively the
complexity of IoT systems?), RQ2 (To what degree are MDD techniques
adequately suited for generating the simulation code necessary to simulate
an IoT system?), RQ4 (To what extent is it feasible for a methodological
approach grounded in MDD-based simulators to achieve an optimal IoT
system design in terms of users’ specific needs?), and partially RQ3 (In
what measure are MDD techniques effective in developing IoT simulation
tools that not only offer adaptive integration capabilities and a user-friendly
learning curve but also ensure agility in designing IoT systems and cost-
efficiency in testing and validating them?) through the first and the second
contributions, it was deemed appealing to further verify and validate the
answers given to these RQs. Thus, ensuring the validity of the results
achieved and being able to focus on comprehensively answering RQ3 in
the fourth contribution. Note that, increasing the simulation features of
SimulateIoT, implies the addition of several and diverse new IoT concepts,
components, and functions. Thereby, verifying and validating further the
results achieved to answer the RQs. This is especially appealing at this
stage, given SimulateIoT’s capabilities to simulate the foundation of IoT

55

2.3. IOT SIMULATIONS TOWARDS MOBILITY ASSESSMENTS:
MOBILE-DRIVEN DESIGN AND FUNCTIONALITY

systems, which makes it possible to target more specific simulation aspects
by leveraging these foundational elements. In this respect, taking into
account that SimulateIoT lacks a crucial feature often present in current
IoT systems, the mobility of their devices, it was considered to extend it
toward IoT mobility and its related concepts.

To develop this contribution, the three primary components of Sim-
ulateIoT were extended: the metamodel, the concrete syntax, and the
model-to-text transformations. Consequently, with this extension, users
can graphically model, validate, and simulate IoT systems incorporating
mobile devices and the architecture that supports their mobility.

The extension made to the metamodel is illustrated in Figure 2.6. Note
that for the sake of clarity, this figure focuses exclusively on the new classes
and relationships included on top of the first SimulateIoT metamodel.
This extension includes: 1) the ability to model mobile devices capable
of publishing and subscribing to topics; 2) the capability to set specific
parameters for these devices. Notably, this includes the option to specify a
buffer for data storage during periods of disconnection, as well as the signal
gain power of these devices, which refers to each device’s ability to detect
and amplify coverage signals; 3) the ability to model the route that each
of these devices will follow during simulation execution; 4) the capability
of configuring mobility-relevant parameters for fog and cloud nodes, such
as signal coverage power. This parameter pertains to the signaling power
of gateways associated with fog and cloud nodes, which enables devices
to connect to them and with the rest of the system. 5) the capability of
modeling features related to the security of the mobile IoT system, such as
a token verification service to prevent unauthorized devices from connecting
to the system.

Regarding the concrete syntax, it remains the same tool as in the two
previous contributions, but with the required graphical elements to represent
the included mobile concepts.

On the other hand, the model-to-text transformations have been also
extended. These transformations enable users to generate IoT systems
with mobile devices that users can model with the SimulateIoT-Mobile
metamodel. Moreover, these transformations also generate the mobility-
supporting architecture. In essence, this architecture is based on several
components deployed on fog and cloud nodes, capable of supporting the

56

CHAPTER 2. RESULTS

Figure 2.6: Excerpt of the SimulateIoT-Mobile metamodel focusing on
the new classes and relationships included in the metamodel through this
contribution. Figure source [4].

movement of mobile devices. For the sake of clarity, firstly, this architecture
and its related components are addressed. Subsequently, mobile devices are
described.

Figure 2.7 illustrates the components and modules that can comprise

57

2.3. IOT SIMULATIONS TOWARDS MOBILITY ASSESSMENTS:
MOBILE-DRIVEN DESIGN AND FUNCTIONALITY

Figure 2.7: Software architecture of a Fog/Cloud node generated. Figure
source [4].

the fog and cloud nodes of SimulateIoT-Mobile. Among these components,
it can be observed that some of them are highlighted in blue or orange,
while others are not highlighted. The components highlighted in blue are
those components generated by the extended model-to-text transformations.
They have been exclusively developed for this contribution and primarily
focus on supporting mobile devices’ movement. Among these components,
it can be observed: A) The Broker Discovery Service, which provides mobile
devices with information related to the location of the brokers of the IoT
system. With this information, mobile devices know to which brokers
they could connect during their routes throughout the system; B) The
Topic Discovery Service, which is a complementary module to the Broker
Discovery Service since it provides users with information related to the
topics offered by each broker of the system. Thus, mobile devices know
whether a specific broker would allow them to publish or subscribe to a
specific topic. Information that can be used by mobile devices to determine
whether to connect or not to a broker; C) The Token Security System,
which ensures that untrustworthy devices can not connect to the system.

58

CHAPTER 2. RESULTS

This security service provides a token to each device at the beginning of
the simulation. Thus, each time a device has to publish or subscribe to
a broker, it first requests to the Token Security System, which will verify
its token. So, if the token is valid, the device can continue performing its
operations. Conversely, if the token is not valid, the device is disconnected
from the system. Note that during simulations, these tokens change over
time, and devices are provided by this security system with new tokens; D)
Finally, the Jitter Controller aims to measure the jitter produced in the
exchange of messages between the different devices of the IoT environment.
These measurements are simulation outputs that can be used to analyze
the behavior of the system in this respect.

As for the components highlighted in orange, there are the Connections
Manager, the MongoDB Manager, and the MongoDB Client. The Connec-
tions Manager is the component that manages the connections of fog and
cloud nodes with the rest of the nodes in the IoT environment. The Mon-
goDB Manager manages all the operations with the MongoDB Database,
and the MongoDB Client is the component that allows the MongoDB
Manager to perform these operations through requests. These components
are already included in the first release of SimulateIoT. However, they have
been extended to support mobile devices. For instance, the MongoDB
Manager can make new requests related to the supporting mobility archi-
tecture, such as the information of each topic offered in this fog or cloud
node. Information that mobile devices could request to determine whether
is feasible for them to connect to that broker or not, as previously described.

Concerning the components not highlighted, they were initially devel-
oped for the first release of SimulateIoT. Although they are also part of
SimulateIoT-Mobile, they did not require any extensions or modifications.
Among, these components, it is possible to observe the MQTT Broker,
the MQTT Client, and the CEP Engine among others. Note that these
components are addressed in Section 2.1, reserved for the results of the first
release of SimulateIoT.

Firstly, the components related to the mobility supporting architecture
introduced in this contribution include the Topic Discovery Service Client,
the Broker Discovery Service Client, and the Token Security Service (TSS)
Client. These clients facilitate interaction with their respective services
deployed on fog and cloud nodes (see Figure 2.7). Additionally, other

59

2.3. IOT SIMULATIONS TOWARDS MOBILITY ASSESSMENTS:
MOBILE-DRIVEN DESIGN AND FUNCTIONALITY

Figure 2.8: Software architecture of a mobile device generated. Figure
source [4].

components have been included, such as the Intermediate Buffering Manager,
which manages the data buffer for mobile devices, crucial for storing data
when the device is disconnected and avoiding the loss of data. The Synthetic
Route Manager, which implements the movement of mobile devices based
on user-defined routes. The Battery Simulation Module, which tracks power
consumption actions related to various device activities, including movement,
connection changes, and publication frequency.

The extended components, highlighted in orange, are the Connections
Manager and the Statistical Information Manager. The Connections Man-
ager handles connections and disconnections to brokers. The Statistical
Information Manager, is an enhanced component to comprehensively collect
and store device data for post-simulation analysis. For instance, it stores
the metrics from the Battery Simulation Module.

Lastly, the components retained from the first release of SimulateIoT are
the MQTT Client, enabling data publication and notification receipt via the
MQTT protocol, and the Synthetic Data Generation module, responsible
for generating simulated data such as temperature or humidity readings.

Furthermore, note that this contribution was validated by carrying out
two use cases. The first use case addresses the simulation of an IoT system
designed for tracking animal movements through GPS devices. Thus, each
animal was modeled with a GPS device. The devices are set to follow
predefined routes to mimic flock movements. For data collection and

60

CHAPTER 2. RESULTS

analysis, three Fog nodes are deployed in key locations like lagoons. Note
that the data gathering is done when the flock is near and their devices have
coverage from the gateways modeled into the fog nodes. After collecting this
data from the GPS devices, they send it to a central Cloud node for analysis.
This structure enables effective tracking and analysis of animal behavior
in their natural habitat. The second case study focuses on simulating a
smart Personal Mobility Device (PMD) system within a city, addressing the
increasing use of bicycles and electric scooters. To enhance management
and user safety, PMDs were modeled with various sensors for real-time
monitoring, including GPS for location tracking, pressure sensors for wheels,
and timers to track usage duration. Additionally, actuators alert users to
issues like inadequate wheel pressure. There are also Fog nodes modeled
with gateways deployed throughout the city. These nodes not only handle
data from PMDs but also forward it to Cloud node elements for storage
and further analysis. As in the previous use case, note that these PMDs
offload their data to the different Fog nodes when they receive coverage
from their gateways. In addition, Fog nodes assess critical PMD data,
such as lease term, battery level, and wheel pressure, enabling automatic
notifications to users through the PMD’s actuators, thus ensuring both
operational efficiency and safety.

With these devices and their components, as well as with the mobility-
supporting architecture, this contribution enables users to model, validate,
generate, and simulate IoT systems with mobile devices. Thus, providing
users with knowledge and insights to improve their designs. In addition,
note that this contribution has been validated through carrying out two use
cases.

2.4 IoT Simulations Towards Task-Scheduling As-
sessments: Task-Driven Design and Function-
ality

At this stage of the research, RQ3 (In what measure are MDD techniques
effective in developing IoT simulation tools that not only offer adaptive
integration capabilities and a user-friendly learning curve but also ensure
agility in designing IoT systems and cost-efficiency in testing and validating

61

2.4. IOT SIMULATIONS TOWARDS TASK-SCHEDULING
ASSESSMENTS: TASK-DRIVEN DESIGN AND FUNCTIONALITY

them?) is the sole RQ that has not been yet comprehensively addressed.
Regarding this RQ, initial findings show that the high level of abstraction
facilitated by MDD, coupled with the developed concrete syntax, reduces
the learning curve associated with using SimulateIoT and makes it a user-
friendly tool. Additionally, SimulateIoT demonstrates a high level of agility
in its ability to model, validate, and simulate IoT systems. This agility is
attributed to the integration of these three processes within its methodology,
proposed in the first contribution of this Ph.D. Thesis (see Section 2.1).
In addition to this, SimulateIoT provides a suite of tools designed to
efficiently facilitate these processes, thereby enhancing further the agility
and effectiveness of its application.

These findings partially address RQ3. Nevertheless, SimulateIoT has
not yet proven to have a high adaptive integration capability. Although
SimulateIoT enables users to incorporate their own devices into simulations
since it works with real IoT components, such as the MQTT protocol, this
integration process requires manual intervention. A similar situation is
observed with services and applications, which can be manually deployed
on the fog and cloud nodes within SimulateIoT, but no facilities have been
provided by SimulateIoT to help with this process.

In an effort to comprehensively address RQ3, SimulateIoT has been
extended to include task scheduling capabilities. Task scheduling plays a
pivotal role in IoT systems, as described in Section 1.1.4. Consequently,
researchers are investing significant efforts towards optimizing and inno-
vating task-scheduling algorithms. However, there is a notable scarcity of
simulators that facilitate the testing of these task-scheduling algorithms.
Moreover, among the available simulators, it is exceedingly uncommon
to find one that is both up-to-date with the latest advancements in IoT
systems and equipped to allow users to seamlessly integrate and test their
task-scheduling proposals by default. So, the extension made to Simu-
lateIoT aims to answer RQ3 by bridging this gap. For this purpose, this
contribution places special emphasis on enabling users to integrate their own
task-scheduling proposals into the broader simulation environment. This
focus aims to explore the adaptive integration capabilities that SimulateIoT
can offer in this respect, thus targeting to fully answer RQ3.

Therefore, to implement this contribution, the three primary components
of SimulateIoT have been extended: the metamodel, the concrete syntax,

62

CHAPTER 2. RESULTS

and the model-to-text transformations. Thus, with this extension, users can
graphically model, validate, and simulate IoT systems with task-scheduling
capabilities.

The extension made to the metamodel is illustrated in Figure 2.10. Note
that for the sake of clarity, this figure focuses exclusively on the new classes
and relationships included in this contribution (highlighted in blue). This
extended metamodel includes the integration of Task Nodes and Task Apps
through the TaskNode and TaskApp classes. These components are the
elements that generate and offload tasks to the system. These tasks are
introduced by the Workflow class. This class can be linked with the Tas-
kNode and TaskApp classes to define the specific workflows to be generated
and offloaded by each of these components. A Workflow can be defined as
a set of tasks and dependencies between tasks. So, to model a Workflow,
Task and Edge classes have been added, enabling the representation of
Workflow nodes and task dependencies. The metamodel’s extension also in-
cludes hardware specification for each node, with the inclusion of CPU and
RAM classes under the Hardware specification class for detailed hardware
resource modeling. The hardware specification is a critical aspect in this
context as tasks have to be processed, and the time required for this process
highly depends on the hardware of the processing node. Additionally, the
new Federation class introduces federation capabilities, comprising Links
and classes like Delay specification and Bandwidth specification’ to model
link characteristics between federated nodes. Thus, these extensions collec-
tively enhance the metamodel’s expressiveness, enabling users to model IoT
systems with task-scheduling capabilities.

Regarding the concrete syntax, it remains the same tool as in the three
previous contributions, but with the required graphical elements to represent
the included task-scheduling concepts.

On the other hand, the model-to-text transformations have been also
extended. These transformations enable users to generate IoT systems
with task-scheduling devices and functions that users can model with the
extended metamodel proposed in this contribution. Figure 2.10 illustrates
a generic simulation deployment using the components generated with
the extended model-to-text transformations. Components included in this
contribution are marked in red while those from the previous versions are
in blue.

63

2.4. IOT SIMULATIONS TOWARDS TASK-SCHEDULING
ASSESSMENTS: TASK-DRIVEN DESIGN AND FUNCTIONALITY

Figure 2.9: Excerpt of the SimulateIoT metamodel including task-scheduling
concepts. It focuses on the new classes and relationships included in this
contribution. Figure source [5].

64

CHAPTER 2. RESULTS

Figure 2.10: A generic simulation generated by using model-to-text trans-
formations from a model defined with the simulator developed in this
contribution. Figure source [5].

Regarding the system illustrated in Figure 2.10, Tasks are generated
and offloaded to the system by Task Nodes A and Task Apps B . Task
offloading, depicted as 1.1 , 1.2 , 1.3 , and 1.4 , is performed to the fog layer.

65

2.4. IOT SIMULATIONS TOWARDS TASK-SCHEDULING
ASSESSMENTS: TASK-DRIVEN DESIGN AND FUNCTIONALITY

Then, the Task Scheduler C , deployed on FogNode 1 , schedules these
tasks and sends them back for processing, as shown by 2.1 , 2.2 , and 2.3 .
Each task is then processed by the respective Task Processor of fog, cloud,
and Task Nodes. Note that Task Processors are the components with the
role of performing the execution of tasks. Consequently, they are deployed
in each component capable of processing tasks such as Task Nodes, fog,
and cloud nodes. Once the processing of a task is performed, the results
obtained are returned to the subsequent nodes (3.1 , 3.2 , 3.3). Lastly, note
that all these interactions, such as task offloading or the return of the results
from processed tasks, are subjected to the network bandwidth and delay
modeled by the user. Thus, simulating more realistic task-scheduling IoT
environments.

In short, simulations generated with the extended model-to-text transfor-
mations involve concurrent generation, offloading, scheduling, and processing
of tasks, adhering to the user-defined model.

Figure 2.11: Task Scheduler component generated by using the model-to-
text transformations developed for this contribution. Figure source [5].

On the other hand, within the context of the RQs, the key component
introduced through this contribution is the Task Scheduler, depicted in
Figure 2.11. This component is particularly significant as it is designed

66

CHAPTER 2. RESULTS

to offer a high integration adaptability, thus addressing a gap identified in
previous contributions related to RQ3. Specifically, an aspect of RQ3 aims
to probe the extent to which MDD can facilitate the development of highly
adaptive IoT simulators. To this end, the Task Scheduler is equipped with
an API that enables users to retrieve workflows submitted for scheduling.
Additionally, it provides access to critical system status parameters, such as
the network status, including the delay and bandwidth utilization of each
system link, and the hardware resource usage of each processing node within
the same federation as the Task Scheduler. Note that these parameters are
pivotal in task scheduling and are frequently employed in task-scheduling
algorithms documented in the literature to schedule tasks [61, 62, 63, 64].
So, by requesting this API, users can attach their task-scheduling algorithms
to simulations by feeding them with the information retrieved from the API.
Then, the algorithms can interact again with the API to return the tasks
already scheduled. Lastly, the Task Scheduler redirects the scheduled tasks
to the system for their processing. Consequently, users have the capability
to incorporate their own algorithms into SimulateIoT, enabling them to
evaluate algorithmic performance within the context of the simulated IoT
environment. This integration necessitates the only use of an API, which
facilitates feeding the algorithms and ensures seamless interaction with the
other components of the simulated IoT system.

67

2.4. IOT SIMULATIONS TOWARDS TASK-SCHEDULING
ASSESSMENTS: TASK-DRIVEN DESIGN AND FUNCTIONALITY

68

Chapter 3

Publications Overview

“Even the mightiest warriors
experience fears. What makes
them a true warrior is the
courage that they possess to
overcome their fears.”

Dragon Ball Z: Majin Buu Saga
(1994)

Toriyama, Akira

This section presents the dissemination efforts made to communicate
the results achieved through this Ph.D. Thesis. It serves as a summary of
all the journal and conference papers published as part of this Ph.D. Thesis,
thereby giving an overview of them. These publications are presented in
Sections 3.1 and 3.2.

3.1 Core Compendium Publications

This section is dedicated to outlining the compendium of publications that
constitute this Ph.D. Thesis. According to the guidelines provided by
the University of Extremadura, a Ph.D. Thesis can be structured as a
compendium of publications. To fulfill this criterion, the Ph.D. candidate is
required to have a minimum of two publications deemed highly relevant and

69

3.1. CORE COMPENDIUM PUBLICATIONS

one considered relevant. Publications classified as Q1 or Q2 in the JCR index
are categorized as highly relevant. Those ranked as Q3 or Q4 are recognized
as relevant. Additionally, presentations at international conferences rated as
class 1 or 2 by the Global Guide to Scientific Conferences (GGS) conference
rating system are also acknowledged as relevant publications.

This Ph.D. Thesis is composed of three publications classified as highly
relevant and one publication deemed relevant. Detailed information regard-
ing these publications is provided in Table 3.2.

Title Key Contribution
Journal

Name (Year)

Journal
Quality
(JCR)

Chapter

SimulateIoT: Domain
Specific Language to

Design, Code Generation
and Execute IoT

Simulation Environments

First release of
SimulateIoT, which

includes the
foundational

concepts of the IoT

IEEE Access
(2021)

Q2 4

SimulateIoT-FIWARE:
Domain Specific

Language to Design,
Code Generation and

Execute IoT Simulation
Environments on

FIWARE

SimulateIoT-
FIWARE, an
extension of

SimulateIoT where
the target

technology is the
FIWARE platform

IEEE Access
(2022)

Q2 5

Design, code generation
and simulation of IoT
environments with

mobility devices by using
model-driven
development:

SimulateIoT-Mobile

SimulateIoT-Mobile,
an extension of
SimulateIoT that
includes mobile
devices and their

supporting
architecture

Pervasive and
Mobile

Computing
(PMC, 2023)

Q2 6

SimulateIoT Towards the
Cloud-to-Thing

Continuum Paradigm for
Task Scheduling
Assessments

A release of
SimulateIoT which
includes the main
task-scheduling

concepts related to
the IoT

Journal of
Object

Technology
(JOT, 2023)

Q4 7

Table 3.1: Overview of Core Compendium Publications

70

CHAPTER 3. PUBLICATIONS OVERVIEW

3.2 Supplementary Publications

This section presents an overview of the supplementary publications that
complement the core findings of this Ph.D. Thesis. These additional works,
while not forming the core of this Thesis, provide valuable insights and
further depth to the primary research. They encompass a range of topics
that are tangentially related to the main subject matter, offering broader
context and supporting evidence for the arguments and conclusions pre-
sented in the main body of the work. Thereby, note that they have not been
included in the compendium to maintain a focus on the central findings
and contributions of this dissertation.

Title Status
Conference

Name
Nature Appendix

SimulateIoT: A
model-driven approach to

simulate IoT systems
Published

Doctoral
Consortium in

Computer Science
(JIPII, 2022)

International A

Designing and simulating
IoT environments by using
a model-driven approach

Published

Iberian Conference
on Information
Systems and
Technologies
(CISTI, 2022)

International B

SimulateIoT: Domain
Specific Language to

design, code generation
and execute IoT simulation

environments

Published

Jornadas de
Ciencias e

Ingenieŕıa de
Servicios (JCIS,

2022)

National C

Simulating IoT Systems
from High-Level

Abstraction Models for
Quality of Service

Assessment

Published

International
Conference on

Service-Oriented
Computing

(ICSOC, 2022)

International D

Integrating Hardware in
the Loop into IoT Systems

Simulations: A
Model-Driven

Development Approach

Unpublished Under development - -

SimulateIoT-FIWARE:
Domain Specific Language

to Design, Code
Generation and Execute

IoT Simulation
Environments on FIWARE

Published

Jornadas de
Ingenieŕıa del

Software y Bases
de Datos (JISBD,

2023)

National E

* The Table continues on the next page.

71

3.2. SUPPLEMENTARY PUBLICATIONS

SimulateIoT-
Federations: Domain
Specific Language for

designing and
executing IoT
simulation

environments with Fog
and Fog-Cloud
federations

Published

International
Workshop on MDE

for Smart IoT
Systems (MeSS)

International F

Design, code
generation and

simulation of IoT
environments with
mobility devices by
using model-driven

development:
SimulateIoT-Mobile

Under
review

Jornadas de
Ingenieŕıa del

Software y Bases
de Datos (JISBD,

2024)

National -

Table 3.2: Overview of Supplementary Publications

72

Chapter 4

SimulateIoT: Domain
Specific Language to Design,
Code Generation and
Execute IoT Simulation
Environments

“Your focus determines your
reality.”

Star Wars: Episode I - The
Phantom Menace (1999)

Lucas, George

Authors: José A. Barriga, Pedro J. Clemente, Encarna Sosa-Sánchez,
Álvaro E. Prieto
Title: SimulateIoT: Domain Specific Language to Design, Code Generation
and Execute IoT Simulation Environments
Year: 2021
Journal: IEEE Access
Quality (JCR): Q2

73

DOI: 10.1109/ACCESS.2021.3092528

74

Received June 9, 2021, accepted June 19, 2021, date of publication June 25, 2021, date of current version July 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3092528

SimulateIoT: Domain Specific Language to
Design, Code Generation and Execute IoT
Simulation Environments
JOSÉ A. BARRIGA , PEDRO J. CLEMENTE , ENCARNA SOSA-SÁNCHEZ ,
AND ÁLVARO E. PRIETO
Quercus Software Engineering Group, Department of Computer Science, University of Extremadura, 10003 Cáceres, Spain

Corresponding author: José A. Barriga (jose@unex.es)

This work was supported in part by the Ministry of Science and Innovation (MCI), for the State Research Agency (AEI) under Project
RTI2018- 098652-B-I00, in part by the Government of Extremadura, Council for Economy, Science and Digital Agenda under
Grant GR18112, in part by the European Regional Development Fund (ERDF) under Project IB20058, and in part by the Cátedra
Telefónica de la Universidad de Extremadura (Red de Cátedras Telefónica).

This work did not involve human subjects or animals in its research.

ABSTRACT Internet of Things (IoT) is being applied to areas as smart-cities, home environment, agriculture,
industry, etc. Developing, deploying and testing IoT projects require high investments on devices, fog nodes,
cloud nodes, analytic nodes, hardware and software. New projects require high investments on devices,
fog nodes, cloud nodes, analytic nodes, hardware and software before each system can be developed. In
addition, the systems should be developed to test them, which implies time, effort and development costs.
However, in order to decrease the cost associated to develop and test the system the IoT system can be
simulated. Thus, simulating environments help to model the system, reasoning about it, and take advantage
of the knowledge obtained to optimize it. Designing IoT simulation environments has been tackled focusing
on low level aspects such as networks, motes and so on more than focusing on the high level concepts
related to IoT environments. Additionally, the simulation users require high IoT knowledge and usually
programming capabilities in order to implement the IoT environment simulation. The concepts to manage
in an IoT simulation includes the common layers of an IoT environment including Edge, Fog and Cloud
computing and heterogeneous technology. Model-driven development is an emerging software engineering
area which aims to develop the software systems from domain models which capture at high level the domain
concepts and relationships, generating from them the software artefacts by using code-generators. In this
paper, a model-driven development approach has been developed to define, generate code and deploy IoT
systems simulation. This approach makes it possible to design complex IoT simulation environments and
deploy them without writing code. To do this, a domain metamodel, a graphical concrete syntax and a model
to text transformation have been developed. The IoT simulation environment generated from each model
includes the sensors, actuators, fog nodes, cloud nodes and analytical characteristics, which are deployed
as microservices and Docker containers and where elements are connected by using publish-subscribe
communication protocol. Additionally, two case studies, focused on smart building and agriculture IoT
environments, are presented to show the simulation expressiveness.

INDEX TERMS IoT systems, IoT simulation, fog computing, model-driven development, model to text
transformation, data analysis.

I. INTRODUCTION
The Internet of Things (IoT) is widely applied in several
areas such as smart-cities, home environments, agriculture,

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaolong Li .

industry, intelligent buildings, etc. [46]. Usually, these IoT
environments require using hundreds of sensors and actuators
shared throughout these areas which are generating a vast
amount of data. Data must be suitably stored, analysed and
published using Big Data or Stream Processing techniques.
Big Data or Stream Processing techniques must be applied

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 92531

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 1. IoT architecture: Cloud, Fog and Edge computing.

to conveniently store and analyse published data. Taking into
account where data are processed and stored, the IoT envi-
ronment architecture can be defined by several computing
layers (Edge, Fog and Cloud computing (see Figure 1) [30]).
Edge layer is defined closer to data generators, Fog layer
resides on top of the edge and act as intermediary layer with
limited storing and processing capabilities and Cloud layer
is defined with full storing and processing capabilities. Thus,
the development of IoT systems requires themanagement and
integration of conveniently heterogeneous technologies such
as devices, actuators, databases, communication protocols,
stream processing engines, etc. As a consequence, in order to
implement, deploy and test the IoT systems a high investment
must be made in time, money and effort.

Simulating IoT environments is one way to decrease
this initial investment because the users can measure and
dimension the artefacts needed to deploy and interconnect
the systems. Thus, these artefacts can include several kinds
of devices from sensors or actuators to NoSQL databases,
messaging brokers or stream processor engines. However,
although there are several simulation environments for wire-
less sensor networks (WSN), there is a lack of IoT simulator
tools for designing IoT environments at a high level that
enable modeling this kind of systems by using the domain
concepts and relationships. In addition, there is a lack of
IoT simulation tools that makes it possible to deploy the IoT
system on multiple nodes in order to test the communica-
tions among the system’s elements and where complex IoT
components such as databases, complex event processing or
message brokers can be suitable deployed and tested.

Currently, there is a lack of methodologies and tools to
simulate IoT systems and allow users to properly describe
the IoT environment. Currently, not only tools are needed
but also methodologies to guide the simulation designing and
simulation process of IoT environments. So, both methodolo-
gies and tools to simulate IoT systems are interesting research
areas. should be developed. Thus, while methodologies

FIGURE 2. Model-driven development. Four layers of metamodeling.

would allow developers to describe the steps and the char-
acteristics to simulate IoT systems, the tools would help to
design and execute the IoT environment simulated in sandbox
environments. These tools should take into account the main
IoT characteristics including heterogeneous devices (sensors
and actuators), heterogeneous communication mechanisms
such as publish-subscribe communication protocol, analy-
sis from information generated, storing of information, etc.
However, an IoT environment is a broad and heterogeneous
concept which involves heterogeneous technologies such as
communication protocols such as publish-subscribe commu-
nication protocol, databases, analysis tools, etc. Not only
should IoT methodologies and tools be designed and devel-
oped, but they should also be carried out using software
engineering good practices.

Model-Driven Development is an emerging software engi-
neering research area that aims to develop software guided
by models based on Metamodeling technique. Metamodel-
ing is defined by four model layers (see Figure 2). Thus,
a Model (M1) is conform to a MetaModel (M2). Moreover,
a Metamodel conforms to a MetaMetaModel (M3) which is
reflexive [2]. The MetaMetaModel level is represented by
well-known standards and specifications such asMeta-Object
Facilities (MOF) [29], ECore in EMF [48] and so on. A
MetaModel defines the domain concepts and relationships in
a specific domain in order to model partial reality. A Model
(M1) defines a concrete system conform to a Metamodel.
Then, from these models it is possible to generate totally or
partially the application code (M0 - code) by model-to-text
transformations [44]. Thus, high level definition (models)
can be mapped by model-to-text transformations to specific
technologies (target technology). Consequently, the software
code can be generated for a specific technological platform,
improving the technological independence and decreasing
error proneness.

92532 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

So, Model-Driven Development (MDD) is proposed
to tackle this heterogeneous technology (devices, actua-
tors, complex event processing engines, notification tech-
nology, publish-subscribe communication protocol, etc.).
Model-Driven Development [16], [20], [40], [43] increases
the abstraction level where the software is implemented,
focusing on the domain concepts and their relationships.
These domain concepts (sensors, actuators, fog nodes, cloud
nodes, etc.) and their relationships are defined by a model
(M1), conform to a metamodel (M2), which can be anal-
ysed and validated using MDD techniques. Besides, the IoT
environment code, including all the artefacts needed, can be
generated from a model (M1) using model-to-text transfor-
mations, decreasing error proneness and increasing the user’s
productivity.

The main contributions of this paper include:
• This work shows that using Model-Driven Develop-
ment techniques are suitable to develop tools and
languages to tackle successfully the complexity of het-
erogeneous technologies in the context of IoT simulation
environments.

• Amethodology called SimulateIoT to describe each step
needed to define an IoT simulation environment and
execute it.

• A Model-Driven solution that supports the methodol-
ogy proposed. It facilitates the development of each
methodology phase by defining a SimulateIoT meta-
model (M2), a graphical concrete syntax (graphical
editor) to define models (M1) and a model-to-text trans-
formation towards the code generation for specific IoT
simulation environment (M0 - code). It includes the code
generation to execute the IoT simulation. Furthermore,
the IoT system generated can be deployed.

• An IoT deployment process that makes it possible to
deploy the simulation based on microservices which are
deployed on Docker containers, including components
such as databases, complex-event processing engines or
message brokers.

• The application of SimulateIoT to two case studies
focused on different kinds of IoT systems (Smart build-
ings and Agricultural environment).

The rest of the paper is structured as follows. In Section 2,
we give an overview of existing IoT simulation approaches
centered on both low level and high level IoT simulation
environments. In Section 3, we present the SimulateIoT
methodology. Section 4 describes SimulateIoT design and
implementation phases including the SimulateIoT meta-
model, the graphical editor and the model-to-text transforma-
tion developed. In Section 5 two case studies are presented.
Finally, Section 6 elaborates on the limitations of the pre-
sented approach before Section 7 concludes the paper.

II. RELATED WORKS
IoT environments and IoT simulation environments have
been developed using several strategies with different targets
and distinct abstraction levels. The abstraction levels are

not related to the different IoT Architecture levels (Edge,
Fog or Cloud layers) but also the concepts and relationships
used to design the simulation at the IoT architecture level.
For instance, you could use concepts to low level such as
memory, network capabilities and use tools to manage this
kind of configuration or using high level concepts such as Fog
Node, Cloud Node or Complex Event Processing, engines,
NoSQL storage where low level concepts could be transpar-
ently managed. Additionally, using high level abstractions
could be used to generate code for specific technological
targets. In this sense, among other, the concepts analysed
for each different related work include: the abstraction level
used to define the IoT environment, Edge modeling capa-
bilities, Fog modeling capabilities, Cloud modeling capa-
bilities, Complex Event Processing, Big data support, and
Code generation support. So, in the following subsections
several IoT simulation approaches are reviewed that focus on
the different abstraction levels used for their definitions. So,
we are examining i) Low level IoT simulation environments;
and ii) High level IoT simulations environments and IoT
modeling based on model-driven development. The former
are based on defining sensors and actuators close to hardware
(Contiki-Cooja, OMNeT++, IoT-Lab), so these proposals
foster the knowledge of hardware, networks or energy con-
sumption characteristics. The latter (COMFIT, CupCarbon,
IoTSim) focus on defining IoT context and environments at
a level of high abstraction.

A. LOW LEVEL IoT SIMULATION ENVIRONMENTS
Contiki-Cooja [42] is a network simulator tool based on
the Contiki operating system. It is implemented in Java and
allows users to define large and small Contiki motes (a node
in a sensor network) which can be deployed throughout the
network. Relevant information about the network such as
mote output or time-lines could be obtained after the sim-
ulation execution. Note that a mote can be defined ad-hoc
using the motes templates. Obviously, these simulations are
defined at a low level focusing on hardware and network
issues more than IoT contexts or communication patterns
such as publish-subscribe.

OMNeT++ [51] is a general network simulator adapted to
simulate IoT networks. It offers a Domain Specific Language
for modelling the IoT context including aspects related to
routers, switchers, routing protocols or network protocols
(IPv4, IPv6, etc.). This is a powerful simulator focused on
analysing low level aspects of network issues. It uses compo-
nents and component-based compositions to define network
simulations. This approach focuses on defining IoT environ-
ments at a low level of abstraction closed to hardware. So,
it is not centered on describing the IoT environment and
high-level component relationships. Therefore, simulating
wide IoT environments could be tedious and error prone.

IoT-Lab [35] is a platform which allows deploying com-
piled WSN (Wireless Sensor Network)/IoT applications on a
large WSN infrastructure. The applications can be installed
on different types of sensors and can be developed on the

VOLUME 9, 2021 92533

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

Contiki operating system, among others. Thus, the goal of
the authors is showing how both local and global energy
consumption can be precisely monitored.

Tossim [24] is a Wireless Sensor Network (WSN) sim-
ulator tool used over TinyOS. It can simulate thousands
of nodes while it is able to capture the network behaviour
with accuracy. It emulates the underlying raw hardware
behaviour. Thus, the aim of this approach is simulating low
level motes without defining communication patterns such as
publish-subscribe or without using pattern data generations.

B. HIGH LEVEL IoT MODEL-DRIVEN DEVELOPMENT AND
SIMULATION ENVIRONMENTS
This section includes both IoT development environments
and IoT simulation environments which are based on graphi-
cal or textual domain concept descriptions, or model-driven
technologies. There are several IoT metamodels [8], [36],
[47] to model IoT systems, and usually the application code
is partially generated from these models.

In [8] a Domain Specific Language has been defined to
model IoT environments, taking into account several IoT
concepts such as devices, and input and output properties.
Its goal is modelling IoT environments and generating code
for a specific platform such as KNX/EIB. Although it is not
related to IoT simulation, it uses model-driven techniques in
order to tackle designing IoT systems and it can be used for
quick IoT system prototyping.

Another approach based on Model Driven Develop-
ment [9] makes it possible to model complex event process-
ing for near real-time open data. This approach is interesting
because they present a methodology and a domain specific
language to define models in order to model open-data
sources, the processing nodes and the notifications agents.
However, this approach does not focus on modeling and
simulating IoT environments.

COMFIT [15] was a cloud environment to develop the
Internet of Things system. It used model-driven techniques
included in the Model-Driven Architecture (MDA) speci-
fication [18]. For instance, a model-to-text transformation
towards code generation for specific operating system tar-
gets (for instance, Contiki or TinyOS operating systems)
was implemented. It defined several UML Profiles such as
PIM:UML Profile and PSM:UML Profile, a model to model
transformation from PIM models to PSM models, and a
model-to-text transformation. So, authors used well-known
UML tools to model the IoT Systems, however they did not
define an ad-hoc metamodel for IoT, but used UML diagrams
such as detailed activity diagrams.

On the other hand, IoTSuite [36], [47] defined a high level
domain specific language in order to model IoT environ-
ments including concepts such as regions, sensors, actuator,
storage, request, action, etc. Thus, it joined computational
services with spatial information related to regions such
as buildings or floors. Several modelling languages were
defined to model these kinds of systems: Srijan Vocabulary
Language (SVL), Srijan Architecture Language (SAL) and

Srijan Deployment Language (SDL). Then, a code generation
process allows generating the application code. Although
IoTSuite makes it possible to define IoT environments, it isn’t
an IoT simulator.

In [39] a component-based approach for theWeb of Things
was presented. They defined a Model Driven Development
process to model Web of Things (WoT) systems by using
model-driven techniques such as meta-modelling and model
transformations. Thus, they defined a metamodel for WoT
which related Physical Entities such as Sensors or Actua-
tors with Visual Entities such as components deployed on
a system. These models can automatically turn into code
skeletons. However, this metamodel does not allow defining
specific domain concepts related to simulation or storage
issues, among others.

Other approaches focus on simulating IoT systems propos-
ing specific tools [4], [27], [45]. Thus, CupCarbon [27]
defined an IoT Simulator environment which allows users to
describe IoT contexts using a graphical editor. For instance,
a mote could be added on a map like Google Maps, taking
into account parameters such as action radio. It implements an
ad-hoc language to manage the sensor’s communication and
the business logic. It can execute simulations including the
reactions to random events. So, although this approach allows
describing IoT simulation issues, it does not allow describing
the storage information or the complex communication pro-
tocols such as publish/subscribe using messages brokers.

IoTSim [53] is an extension of CloudSim [6] that focuses
on simulating IoT applications in cloud environments. It sup-
ports and enables IoT big data processing using the MapRe-
duce model in the cloud. However, in order to execute the
IoT application to be simulated, users should implement the
workflow that IoTsim proposes, including Datacenter config-
uration, IoTDataCenterBroker, JobTracker, etc. Obviously,
this approach offers a framework to execute IoT applications
on cloud, however it does not offer a designing tool to easily
define the artefacts necessary to be deployed on the IoT-
Sim. Additional extensions to CloudSim deal with the anal-
ysis and use of BigData. BigDataSDNSim [1] allows the
simulation of the big data management system YARN, its
related programming models MapReduce, and SDN-enabled
networks in a cloud computing environment. On the other
hand, IoTSim-Edge is another CloudSim extension spe-
cialised in EdgeComputing [22]. In this way, this simulator
allows defining and simulating elements such as EdgeN-
odes (EdgeDevice, EdgeDataCenter, EdgeBroker), IoTDe-
vices (sensors and actuators) and their characteristics such
as battery consumption, mobility, communication protocol,
etc. These simulators deal with relevant aspects of the IoT
in detail, allowing the simulation of IoT environments or
parts of these environments in a very realistic way. However,
these works lack a high-level abstraction graphical inter-
face to visualise and model the architecture of the environ-
ment. On the other hand, they lack a module capable of
validating a configured environment before its simulation.
Therefore, although these simulators are able to simulate an

92534 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

IoT environment with high detail they need to define the
configuration simulation environment using JSON files and
Java code, which raise the learning curve. For instance, each
sensor type needs to be implemented before being used on a
configuration file. Finally, they do not model high concepts
related to Complex Event Processing or they facilitate code-
generation. Another important aspect is related with Simu-
lation deployment which is carried out in the same machine
without deploying a service-oriented architecture (common
architecture where an IoT system is deployed), that is, all
IoT aspects are simulated so code cannot be re-used for real
implementation proposes.

Using the approach in [4] the developers can test their
cloud and on premise MQTT (Message Queuing Teleme-
try Transport) [33] application for functional and load test-
ing. So, it allows deploying IoT environments focused on
using sensors, actuators and MQTT servers. This tool allows
users to define sensors and actuators and publish/subscribe
concepts to define the IoT environment. It defines a set
of template sensors to be used in order to model the IoT
environment. Besides, data generation can be defined by the
users following several data patterns such as concrete value,
range values, random set or based on time & client. However,
the IoT environment does not make it possible to define
stream rules to react to event patterns.

In [45] an IoT simulator was defined. It was written in
Java and it allowed defining IoT simulations including agents,
places and the context therein. The main steps to define a
simulation included: i) defining the environment, ii) devel-
oping the behaviour and iii) packing and deploying it all
together. The IoT system behaviour should be implemented
ad-hoc using Java. So, this simulator required high expertise
implementing Java agents. Furthermore, this approach did not
resolve how to manage or analyse the device data.
Viptos [7] is an integrated graphical development and sim-

ulation environment for TinyOS-based [21] wireless sensor
networks. Developers can model algorithms with the graph-
ical framework included in Viptos and generate their code in
nesC [17]. Besides, users can define environments to simulate
the behaviour of these algorithms. These environments could
have features such as communication channels, network
topology (the nodes where the algorithms will be tested)
and physical characteristics (low-level, such as OS interrup-
tions) of the environment. In short, this framework allows
application developers to easily transition between high-level
simulation of algorithms to low-level implementation and
simulation. However, due to the characteristics mentioned,
this framework works with a low level of abstraction. For that
reason, the application developers that use this framework
need to know low level concepts about it and the domain
which can simulate. In addition, modelling an extensive sim-
ulation could be complex and the use of simulators with a
higher level of abstraction would be more suitable.
VisualSense [3] is a modelling and simulation framework

for wireless sensor networks that builds on and leverages
Ptolemy II [12]. This framework supports the modelling

of sensor nodes, wireless communication channels, physi-
cal media such as acoustic channels, and wired subsystems
among others characteristics. Besides, this framework sup-
ports the modelling of dynamic networks where nodes can
change their connectivity in run-time. It’s worth mentioning
that the communication between nodes is via events with
timestamps [5]. Finally, the models can be simulated and
visualised at run time. However, this simulator is focused
on modeling networks at a low level of abstraction, without
including high level concepts based onCloud/Fog computing,
publish-subscribe communication protocols and so on.

To sum up, although there is a wide literature focus on
defining the IoT environment and IoT simulation environ-
ments at different abstraction levels, several issues should be
additional treated including fog computing, cloud computing,
storage data, communication protocols or data analysis (see
Table 1. The following sections describe the SimulateIoT
methodology and tools which are proposed to tackle the
complexity of the description and execution of IoT simulation
environments.

III. SimulateIoT METHODOLOGY
This section describes the Simulation Methodology which
has two phases, simulation description and simulation exe-
cution, as shown in Figure 3.

First, simulation description includes the following steps:

1) Data and WSAN specification: Users should define
the wireless sensors and actuator network (WSAN) to
identify the device characteristics (including their data
inputs and outputs) The wireless sensors and actuator
network (WSAN) should be defined to identify the
device characteristics (including their data inputs and
outputs). It allows defining the edge computing layer
formed by sensors and actuators;

2) Fog/Cloud computing spec includes defining devices
with different process capacities. For instance, these
nodes can define how and where data should be stored,
including the database characteristics (SQL database,
NoSQL database, etc.);

3) Processing data specification defines the communi-
cation schemas, that is, the communication protocols
to connect the devices and nodes previously identi-
fied. In addition, this phase should make it possible to
describe how data should be processed using multiple
technologies such as big data or stream processors.

Next, Simulation execution phase includes aspects related
to the hosts where the IoT devices and nodes should be
deployed. So, it includes where databases, message brokers,
stream processors, etc. should be deployed. As a conse-
quence, these aspects allow the IoT to tailor the simulation,
adapting it to real situations.

IV. SimulateIoT TOOLS
This section describes the tools designed to implement the
SimulateIoT methodology (defined in Section III) which

VOLUME 9, 2021 92535

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

TABLE 1. Key elements of the related works summarized (IoT simulation and model-driven development).

FIGURE 3. SimulateIoT methodology overview.

include a Domain-Specific Language (DSL) named Simu-
lateIoT for defining and deploying IoT simulation environ-
ments. For this, SimulateIoT uses model-driven development
techniques to manage the IoT simulation environment defini-
tion using models. So, the models guide the system descrip-
tion and the code generation. Later on, the code generated can
be deployed through several hosts.

In a Model-Driven Development approach like this the
software development is guided through Models (M1) which
conform to a MetaModel (M2). Moreover, a Metamodel

conforms to a MetaMetaModel (M3) which is reflexive.
The MetaMetaModel level is represented by well-known
standards and specifications such as Meta-Object Facilities
(MOF), ECore in EMF and so on. A MetaModel defines the
concepts and relationships in a specific domain in order to
model partial reality. Then these models are used to gener-
ate totally or partially the application code by model-to-text
transformations. Thus, the software code can be generated for
a specific technological platform, improving the technologi-
cal independence and decreasing error proneness.

92536 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

Figure 4 shows a mapping among the phases defined in
the SimulateIoT methodology and the SimulateIoT design
and implementation which defines a model-driven develop-
ment process and the SimulateIoT deployment and execution
phase. Thus, it shows the main elements needed to build
the SimulateIoT ToolsExecution Environment and includes:
a Metamodel definition, a Graphical Concrete Syntax def-
inition (Figure 4-1) and the model-to-text transformations
(Figure 4-2) to generate the code artefacts needed to deploy,
monitor and measure the IoT environment (Figure 4-3).

Thus, the Design and Implementation phase makes it pos-
sible to design the IoT models and generate the code which
will be deployed and executed during the Deployment and
Execution phase. Both the Design and Implementation phase
and the Deployment and Execution phase together address
users to design and implement the SimulateIoT methodology
focusing on using well-known model driven software engi-
neering practices such as metamodeling, validating, model
transformations, etc. Using it improves the system develop-
ment productivity and decreases the error proneness [43].

The main elements of the Design and Implementation
phase such as the SimulateIoT Metamodel or the model-
to-text transformations are described below.

A. SimulateIoT DESIGN AND IMPLEMENTATION PHASE.
SIMULATE IoT METAMODEL
A MetaModel defines the concepts and relationships in a
specific domain in order to model partially reality [43].
Then these models could be used to generate total or par-
tially the application code. Thus, the software code could
be generated for a specific technological platform, improv-
ing its technological independence and decreasing the error
proneness.

Figure 5 defines the domainmetamodel including concepts
related to sensors, actuators, databases, fog and cloud nodes,
data generation, communication protocols, stream process-
ing, and deploying strategies, among others. The relevant
elements are summarised below:
• The Environment element defines the global param-
eters of the IoT simulation environment, including
simulationSpeed and the number of messages to be inter-
changed among the nodes (numberOfMessages). These
attributes define global policies to manage simulation
resources to be applied on all theNode elements defined.

• Node is an abstract concept to represent each node
in the IoT simulation environment. It is extended by
several concepts such as EdgeNode or ProcessNode
in order to specialise each kind of node. A Node can
publish and subscribe to a specific Topic. It defines
publish or subscribe references towards a Topic element
in which it is interested. Note that, later on, each con-
crete kind of Node could be defined with specific con-
straints. Thus, the device position (Coordinates element)
can be defined using latitude and longitude attributes.
latitude and longitude attributes define the device
position (Coordinates element). Furthermore, with the

RaspBerryPi attribute, the generation of the node will
be carried out for this kind of device.

• The EdgeNode element makes it possible to define sim-
ple physical devices such as a sensor or an actuator
without process capacities. Moreover, with the attribute
quantity, it is possible to define how many EdgeNodes
of a type must be generated. Each EdgeNode could be
linked with ProcessNode elements by Topic elements.
Topic elements allow link each EdgeNode with Pro-
cessNode elements. Moreover, each EdgeNode can be
mapped with a physical device such as a temperature
sensor, a humidity sensor, a turn on/off light device or
an irrigation water flow device at the IoT environment.

• A Sensor element extends the EdgeNode element. It is
the device that publishes the data that the IoT environ-
ment works with.
A Sensor element analyses a specific environment
issue (temperature, humidity, people presence, people
counter, etc.) and sends these data to be analysed later.
A Sensor element is able to publish on Topic elements
which propagate data throughout the simulation nodes.
To perform this data propagation, Sensors could inte-
grate the element AdditionalConfiguration that, together
with the element RedirectionConfiguration, can define
a redirection route of ProcessNode through which their
data can flow. Thus, Sensors are able to publish their data
in Topics not accessible to them.

• An Actuator element is a device in the IoT environment
which can execute an action from a set of inputs. For
instance, the inputs could determine that an actuator turn
on or turn off a light; other actuators could require data
input to define the light’s luminosity. In order to receive
data, anActuator element should be subscribed to topics.

• Topic is a central element in this metamodel because it
defines the information transmitted among any kind of
Node elements. Thus, Topic elements are defined from
CloudNode and FogNode elements, and help users to
model a publish-subscribe communication model. Node
elements should identify the target Topic for both pub-
lication or subscription. Consequently, the Topic ele-
ment is a flexible concept to model how data should be
interchanged.

• Data element defines the simple data type to be gen-
erated (Boolean, short, integer, real, string). It has a
DataSource element tomodel either theDataGeneration
element or LoadFromFile element. The former (Data-
Generation element) models how synthetic data are gen-
erated, for instance, using an Aleatory strategy among
two values defined in a GenerationRange element. The
latter (LoadFromFile element) models the path-file that
contains the historic data, for instance, it could be
defined by a CSVload element. In addition, external
tools such as [11], [19] can be linked to increase the
capabilities to offer additional data generation patterns.

• The ProcessNode element defines an IoT node with
process capability. For this, two subtype nodes could

VOLUME 9, 2021 92537

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 4. SimulateIoT methodology and SimulateIoT execution design & implementation phase and deployment & execution phase
related.

be defined: CloudNode and FogNode. Essentially, both
have the same properties and only differ in their pro-
cess capability. Thus, in order to classify the Pro-
cessNode capacity (the size attribute) related to batteries,
CPU, memories, etc. a set of granularity values have
been defined (XS, S, L, XL and XXL). They make it
possible to define different kinds of nodes and apply
different kinds of policies. Thus, Model-Driven Devel-
opment helps to deal with the complexity of IoT systems
and policies management by model abstractions and
constraints.
Using labels (XS, S, L, XL and XXL) to define the
node capacity simplifies the knowledge needed to model
the IoT environment, overall in a changing environment
such as IoT. Labels are used to simplify the reality
taken into account the user’s knowledge and expertise.
For instance, Scrum agile methodology [41] makes it
possible to define the effort needed for a set of devel-
opers to develop a specific user history by using labels.
Concretely they use the Planning Poker technique which
uses Poker cards to estimate the effort needed to carry
out a specific task summarising the developer’s knowl-
edge and expertise, task complexity, context changing,
and so on. In the same sense we estimate the node

capacities using the labels defined. The resources that
different users can associate to a specific label can
change throughout the time or taking into account their
knowledge and expertise.
This strategy allows specifying the ProcessNode ele-
ment capacity and associating specific constraints. For
example, in an XS ProcessNode a ProcessesEngine such
as Complex Event Processing (CEP) engine cannot be
deployed. Hence, granularity labels are used as in a
Scrum project development to define task complexity.
As mentioned, ProcessNode can define Topic elements,
which can be referenced by any kind of Node elements.
Besides, the redirectionTime attribute defines the fre-
quency that stored data are flushed towards the next
ProcessNode element defined by redirect references
(redirection route defined in Sensors). The attribute
BrokerType defines the message-oriented broker that
currently is established by Mosquitto [32]. In addi-
tion, the ProcessNode element hides the complexity
about how data should be gathered and processed. For
instance, it defines how data will be stored, published or
offered to be analysed by stream processing engines (SP)
or complex event processing engines (CEP) by defin-
ing Component elements. Note that either the stream

92538 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 5. SimulateIoT metamodel.

VOLUME 9, 2021 92539

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

processing or the complex event processing capabilities
help to define when an Actuator element should carry
out an action.

• FogNode allows users to describe fog computing
instances [6] which could manage and coordinate sev-
eral devices or actuators. Thus, this concept focuses on
aggregating data for a limited time or connection condi-
tions that are released later on. Furthermore, a FogNode
element can include persistent data storing and data
processing.

• CloudNode extends ProcessNode and allows describing
a special node deployed on a public or private cloud
computing environment.

• The ProcessEngine element should be linked to a Pro-
cessNode, to allow real time data analysis defining
coming from ProcessNode elements or EdgeNode ele-
ments. To do this, defining complex event patterns can
be carried out by Rule elements. These patterns anal-
yse Topic data in real time. Currently, the SimulateIoT
environment works with WSO2 Stream Processor [37]
and Esper CEP [13]. Usually, a CEP (Complex Event
Processing) engine has a higher process capacity and
lower latency than an ESP (Event Stream Processing)
engine [25], [26].

• Rule elements are linked with the ProcessEngine
elements defined at the ProcessNode element. Rule ele-
ments can be defined using the Event Processing Lan-
guage (EPL) [14] defined for a concrete ProcessEngine
kind. Note that the eventType attribute is used to name a
rule.

• Notification elements make it possible to throw alerts
by using several notification kinds: TopicNotification
or eMailNotification. Obviously, Notification hierarchy
could be extended in further metamodel versions. Men-
tion that the Notifications are carried out by messages.
Mention that messages carry out the Notifications. In
this manner, the attribute message could define the noti-
fication message which will be notified.

B. SimulateIoT DESIGN AND IMPLEMENTATION PHASE.
GRAPHICAL CONCRETE SYNTAX AND VALIDATOR
The Design phase includes creating models conforming
to the SimulateIoT metamodel. So, in order to do this,
a Graphical Concrete Syntax (Graphical editor) has been
generated using the Eugenia tool [23]. —- So, in order
to do this, the Eugenia tool [23] —- makes it possible
to generate a Graphical Concrete Syntax (Graphical edi-
tor). The Graphical Concrete Syntax generated from Sim-
ulateIoT metamodel is based on Eclipse GMF (Graphical
Modeling Framework) and EMF (Eclipse Modeling Tools).
Consequently, models (EMF and OCL (Object Constraint
Language) [34] based) can be validated against the defined
metamodel (EMF and OCL based). Note that OCL is a stan-
dard to define model constraints. Figure 6 shows an excerpt
from this graphical editor. It helps users to improve their
productivity allowing not only defining models conforming

to the SimulateIoT metamodel, but also their validation using
OCL constraints [34]. OCL rules have been defined as part
of the SimiulateIoT metamodel using OCLInEcore Tools
(https://wiki.eclipse.org/OCL/OCLinEcore). Each OCL rule,
defined as invariant, has its own context which is related
to the class where it is established. Some of these OCL
constraints are the following:
• An EdgeNode element can only send data to Topic ele-
ments defined in one FogNode:

class EdgeNode {
\ldots
invariant send_data_to_one_node: self.

publish-> forall (topic1, topic2 |
topic1.oclContainer() = topic2.
oclContainer());

\ldots
}

• EachEdgeNode element should be connected (to publish
or to subscribe) with a Topic:

class Sensor {
\ldots
invariant sensor_publish: self.publish > 0
\ldots

class Actuator {
\ldots
invariant actuator_subscribed: self.

subscribed > 0
\ldots

• TopicNotification generated by a Rule should be pub-
lished on a Topic created by the FogNodewhich analyses
data with this Rule:

class ProcessNode {
\ldots
invariant TopicNotificationPublication:

self.create_topic->includesAll(self.
component->selectByKind(ProcessEngine)
.rule.generates_notification->
selectByKind(TopicNotification).
publish_on_topic);

\ldots
}

• ProcessNode could be a FogNode or a CloudNode,
the main difference between these two kinds of node are
their computation power, a characteristic defined by the
ProcessNode attribute size which should be greater than
L in the CloudNode element and smaller than or equal to
L in the FogNode element:

class CloudNode {
\ldots
invariant cloudSizeMajorThanL: self.size.

toString() = ’XL’ or self.size.
toString() = ’XXL’;

\ldots
}

class FogNode {
\ldots
invariant fogSizeMinorThanXL: self.size.

toString() <> ’XL’ and self.size.
toString() <> ’XXL’;

\ldots
}

92540 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 6. Graphical editor based on the Eclipse to model conforming to the SimulateIoT metamodel.

• The ProcessNode element has the ability to redirect
data. To redirect data ProcessNode must have data per-
sistence, be connected to another ProcessNode and its
attribute redirectionTimemust be greater than 0. If redi-
rectionTime is equal to 0, ProcessNode won’t redirect
the data and does not have to meet these requirements.

c l a s s ProcessNode {
\ l d o t s
i n v a r i an t r e d i r e c t i o nR e q u e r im e n t s : s e l f .

r e d i r e c t i o n T im e = 0~or s e l f .
r e d i r e c t i o n T im e > 0~and s e l f .
component−>se l e c tByK ind (DataBase) <>
nu l l and s e l f . r e d i r e c t −>s i z e () > 0 ;

\ l d o t s
}

To sum up this subsection, the graphical concrete syntax
(based on an Eclipse plugin) developed offers a suitable
way to model the IoT environment by using the high-level
concepts defined in the SimulateIoT metamodel. Later on,
the graphical concrete syntax will be used to model and
validate several case studies.

C. SimulateIoT DESIGN AND IMPLEMENTATION PHASE.
MODEL-TO-TEXT TRANSFORMATION
Once the models have been defined and validated con-
forming to the SimulateIoT metamodel, several artefacts can
be generated using a model-to-text transformation defined
using Acceleo . a model-to-text transformation defined using
Acceleo [38] can generate several artefacts.

The generated software includes, MQTT messaging bro-
ker (based on MQTT protocol [33]), device infrastructure,
databases, a graphical analysis platform, a stream processor
engine, docker container, etc. In this regard, Table 2 sum-
marises each node type characteristic including the Docker

container, NoSQL database, MQTT broker, Monitoring using
graphical visualisation and analysing characteristics labelled
as Complex Event Processing (CEP).

D. SimulateIoT DEPLOYMENT AND EXECUTION PHASE
The Execution phase involves deploying all the artefacts
generated from the models. So, several software artefacts
such as the MQTT messaging broker, device infrastructure,
databases, graphical analysis platform, etc. can be configured
and deployed.

Code is generated to allow users to package code, deploy
and monitor the simulation. Thus, the simulation can be
deployed through several hosts where each node should be
deployed. Figure 7 shows an example of the IoT simula-
tion deployed. It shows the different elements that can be
deployed including a CloudNode or FogNode, Sensors and
Actuators. Thus, each CloudNode and FogNode is imple-
mented as a micro-service based on Thorntail [49] and
it is deployed on a Docker container [28]. Besides, each
node can be deployed on hardware with different charac-
teristics such as Rasberry Pi, Jaguarboard, Orange Pi or
Pine64. Note that these micro-computers run under several
versions of Linux and Docker containers can be deployed
on them.

Furthermore, eachCloudNode/FogNode can define a Com-
plex Event Processing Engine (e.g. Esper) or Event Stream
Processing Engine (e.g. WSO2). Besides, it includes an
MQTT broker (e.g Mosquitto), a No-SQL database (e.g.
MongoDB) and a REST API. Likewise, as can be observed,
all of these elements are inter-connected and are deployed on
Docker containers. Finally, all Docker containers are orches-
trated using Docker Swarm.

VOLUME 9, 2021 92541

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

TABLE 2. Available code generation for each different kind of node.

FIGURE 7. Deploy diagram.

Moreover, each node deployed with storing characteristics
includes a specificmonitoring tool. Figure 8 shows an excerpt
from themonitoring environment based on Compass [10]. So,
users take over the monitoring tool including several kinds of
graphical elements such as bar graphs, data lists and so on.
The monitoring environment makes it possible to query the
data stored.

Finally, an overview dashboard is generated to monitor the
simulation execution. So, each node defined can be queried.
For instance, the data stored on a specific ProcessNode can
be queried in real-time. For instance, the user can query the
data stored on a specific ProcessNode in real-time. So, during
simulation execution the console of each ProcessNode shows
the simulation execution log. Later on, the simulation logs
and data stored in the ProcessNode with storage capacity are
available to be queried.

The simulation execution process including the following
steps: i) compiling and deploying the artefacts previously

generated from a SimulateIoT model; ii) data generation to
commence the simulation process, consequently the defined
sensors start to generate data and send them towards the
defined Topics; iii) data propagation, data analysis and
actions are carried out taking into account the defined data
flows; and iv) log simulation can be analysed both in real-time
querying the databases or after simulation execution by
querying the log simulation. For instance, the following char-
acteristics can be analysed: the performance of each compo-
nent (in real-time) including CPU or RAM usage, the total
memory used for each component, the amount of data sent
and received for each component over its network inter-
face, etc.

Algorithm 1 shows a simplified simulation execution pro-
cess. It focuses on the actions carried out in the Docker
containers deployed to execute the simulation process.
Note that each Docker container has its own behaviour
depending on the simulation component deployed (Sensor,

92542 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 8. MongoDB compass to monitor the data stored in the MongoDB databases.

Actuator, FogNode or CloudNode) as has been described
previously.

The number of interactions in Algorithm 1 grows to O(N ∗
M) that is O(N 2), where N is the number of Node elements
and where M the number of messages to be interchanged.
Note that, each Node is deployed on a concrete Docker con-
tainer where each Node should execute its behaviour (O(N)).

The generated IoT system defines a mesh topology net-
work where sensors, actuators, fog nodes and cloud nodes
could be interconnected following the model defined. The
system modeller can use the Graphical Concrete Syntax
that has been developed to describe the Node elements
interactions.

V. CASE STUDIES
Next, two case studies have been defined using the Sim-
ulateIoT methodology and tools previously presented. The
first one defines an IoT simulation on a smart building while
the second one defines an IoT simulation in an agricultural
environment.

Below is a synthesis of the methodology required to use
SimulateIoT and the processes carried out by this tool to
simulate these use cases in order to illustrate them more
effectively.

1) Model definition: This step refers to the modelling of
the IoT Environment that the user wants to deploy.
This model corresponds to the DSL and therefore can
contain all the elements defined in it. Two examples
of IoT Environment models are shown in Figure 9 and
in Figure 11.

2) Code generation and deployment: Once the model
has been defined, the source code of all the elements
involved can be generated from it. Sensors, Actuators,
FogNodes, CloudNodes and all their sub-components
and configuration files will be ready for the deploy-
ment phase. The deployment performs many steps for
the correct deployment of all previously generated
components.

A. CASE 01. SCHOOL OF TECHNOLOGY
Our first case study presents the simulation of a smart build-
ing, more specifically, we have modelled the School of

Technology at the University of Extremadura. It has six build-
ings (Computer Science, CivilWorks, Architecture, Telecom-
munications, Research and a Common Building). So, each
building has its own environment with a set of sensors, actu-
ators and analysis information processes.

1) CASE 01. MODEL DEFINITION
Figure 9 shows an excerpt from the School of Technology
model. Note that Figure 9 also includes numerical references
for each node which are then used to describe the use case.
It is a design of an IoT system which includes several nodes
shared throughout the different buildings. Each building takes
over its own ProcessNode (Figure 9, references 1.1, 1.2, 2)
which recovers all the information produced by the sensors
(Figure 9, references 3.1, 3.2). Thus, these data are suit-
ably stored on specific databases (Figure 9, references 6.1,
6.2, 6.3), analysed and monitored in ProcessNode elements.
In this case study, a FogNode element is defined for each
building (Figure 9, references 1.1, 1.2). For instance, Com-
mon_Building or Computer_Science are FogNode elements
(Figure 9, references 1.2, 1.1). Furthermore, a CloudNode
named SchoolTechnologyCloudNode (Figure 9, reference 2)
is defined to store information gathered from the FogNode
elements. Both FogNode and CloudNode elements define
several Topic elements such as heating_temperature, pres-
ence, smoke-detection topics (Figure 9, references 5.1, 5.2,
5.3). These Topic elements communicate data among the
Node elements defined in the IoT system (Figure 9, references
1.1, 1.2, 2, 3.1, 3.2, 3.3).

In order to model the School of Technology case study,
several sensors such as heating_temperature_meter, pres-
ence_detector, smoke_detector (Figure 9, reference 3.1) and
so on have been defined in Figure 9. Each of them pub-
lishes its own data on a specific Topic element (Figure 9,
reference 5.1). As can be observed in Figure 9, the Sen-
sor elements publish data to several FogNode through Topic
elements.

Note that Sensor elements are EdgeNode elements which
generate data, so the data pattern generators should be defined
(Figure 9, references 4.1, 4.2). For instance, in order to
describe the synthetic data generated by a temperature sensor

VOLUME 9, 2021 92543

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

Algorithm 1: Deploying and Executing the IoT Simulation

1 begin
2
3 //Step 1)~Connections and configuration of each component
4
5 Compile and deploy each IoT component by using Docker Swarm
6 Subscribe each Node (Fog-CloudNode, Sensors, Actuators) to the Topics offered by MQTT Brokers
7 Subscribe each ProcessNode (FogNode and CloudNode) to the Topics on other Fog-CloudNode
8 Configure~the CEP/SP Engine with their EPL rules
9
10 //Step 2)~Start the message flow, the~components start their processes
11
12 //Start Data Generation
13 foreach Sensor do
14 start to publish data from it sources (.csv, syntheticDataGeneration(), etc.) to Topic
15 done
16
17 // Main process executed in parallel by each Node
18 while (data in Sensors is available) do
19 Nodes (FogNode, CloudNode, Actuator) subscribed to Topic receive the data
20
21 //each Node (FogNode, CludNode or Actuator) process the data received
22 switch (NodeType n)
23
24 ProcesNode:
25
26 //2.1 CEP/SP Analysis
27 if (n has CEP/SP engine) then
28 foreach rule to apply to data do
29 ruleObserved=CEP-SP.applyRule(rule[i])
30 if ruleObserved == True then
31 CEP-SEP.sendNotification(rule[i].notificationDestiny)
32 endif
33 endforeach
34 endif
35
36 // 2.2. Data Store
37 if (n has Persistence) then
38 n.saveData(MongoDB)
39 endif
40
41 // 2.3. Data redirection
42 if (n has redirection data) then
43 redirectionData = n.checkredirectionableData(MongoDB)
44 foreach redirectionData do
45 n.redirectData(redirectionData.Destiny)
46 endforeach
47 endif
48
49 Actuator:
50 n.doSomeAction(data)
51 endswitch
52 done
53 end

a.csv input file has been defined. It makes it possible to
reuse historical data. Other sensors can define their synthetic
data generators using a random pattern, incremental pattern,
etc. So, the approach can consume synthetic data based on
simple data, range data, a specific set of values, the values
obtained from a.csv file, data obtained from a url source or
data generated form the external tools such as [11], [19].

As mentioned, in Figure 9 each FogNode has its own
characteristics about how data should be managed includ-
ing storing, analysing or addressing. For instance, the Com-
puterScience FogNode element (Figure 9, reference 1.1)

addresses the information every thirty seconds, storing the
data obtained in a specific NoSQL database (Figure 9, ref-
erence 6.1). Then all data are flushed to the next node
FogNode or CloudNode defined in the architecture and
named in the example SchoolofTechnology_CloudNode. On
the other hand, the Common_Building FogNode element
(Figure 9, reference 1.2) defines a different behaviour
in order to analyse the data and take advantage of being
close to the devices that should carry out some action. For
instance, the Common_Building FogNode defines a CEP
engine component (Esper_CEP) and several Rule elements

92544 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 9. Case 01. The school of technology model conforms to the SimulateIoT metamodel.

(Figure 9, reference 7), for example, the rule_heating anal-
yses the data obtained from a specific Topic named heat-
ing_temperature to notify a specific action to another Topic
named turn_on_heatingwhich is subscribed by specificActu-
ator named heating. Thus, the rule_heating rule analyses the

temperature sent to the heating_temperature Topic element
from the heating_temperature_meter Sensor. Consequently,
it is gathered and analysed by the CEP engine by means of
the rule_heating Rule. Consequently, the CEP engine can
gather data and analyse them by means of the rule_heating

VOLUME 9, 2021 92545

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 10. Case 01. The school of technology model deployed.

Rule. As a consequence, when the pattern defined is matched
(for instance, if (temperature < 20) then switch on heating),
the CEP engine generates an event to turn_on_off_heating
Topic. As a consequence, the CEP engine generates an event
to turn_on_off_heating Topic when the pattern defined is
matched (for instance, if (temperature < 20) then switch on
heating).

2) CASE 01. CODE GENERATION AND DEPLOYMENT
Once the model has been defined, the model-to-text trans-
formation is applied with the following goals: i) to generate
Java code which wraps each device behaviour; ii) to generate

configuration code to deploy the message brokers necessary,
including the topic configurations defined; iii) to generate
the configuration files and scripts necessary to deploy the
databases and stream processors defined; and finally, to gen-
erate the code necessary to query the databases where the
data will be stored; iv) to generate for each ProcessNode
and EdgeNode a Docker container which can be deployed
throughout a network of nodes using Docker Swarm.

Figure 10 shows an excerpt from the School of Technology
IoT model deployed and it includes the following: Each
Node has been deployed on a Docker container using Docker
Swarm technology. Each Docker container instance deploys

92546 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

the characteristics defined on the IoTmodel, including: where
the nodes are deployed, and what the components included in
each ProcessNode are.

Finally, executing the simulation modelled and later on
deploying it, makes it possible to analyse the final IoT
environment before it is implemented and deployed. Thus,
each EdgeNode and ProcessNode element carries out its own
functions such as sending messages, processing and storing
messages, acting from messages, etc. Consequently, the code
generated can be reused on the final system deployed. For
instance, the EdgeNode elements can be replaced by physical
devices (both sensors and actuators), and the Process Node
can be deployed asDocker containers either on premise or on
cloud. Not only is the simulation code generated, but also the
final IoT system code is partially generated.

B. CASE 02. AGRICULTURAL ENVIRONMENT
This case study focuses on designing an IoT system for
managing irrigation andweather data in order to improve crop
production. So, the case study has been designed to simulate
the sensors and actuators distributed over the countryside
which can be monitored in real time. Nowadays, the agricul-
tural domain has several requirements [50], [52]: i) Collec-
tion of weather, crop and soil information; ii) Monitoring of
distributed land; iii) Multiple crops on a single piece of land;
iv) Different fertilizer and water requirements for different
pieces of uneven land; v) Diverse requirements of crops for
different weather and soil conditions; vi) Proactive solutions
rather that reactive solutions.

For instance, sensors such as temperature sensors, humid-
ity sensors, irrigation sensors, PH sensors and actuators such
as irrigation artefacts help to monitor and save water, opti-
mising crop production.

This agricultural IoT environment has been designed over
ten hectares of soil where tomatoes are being cultivated. So,
for each hectare a set of sensors and fog nodes has been
shared. So, using fog nodes decreases the communication
requirements among them. The sensor network is built by
temperature, humidity, irrigation and water pressure sensors.
These sensors send data to a specific Topic element linked to
a FogNode element which is gathering data and re-sending
it, if it is needed. In addition, the irrigation actuators have
been defined for controlling irrigation water. The notification
events from the FogNode elements are sent to Actuator ele-
ments using Topic elements.

1) CASE 02. MODEL DEFINITION
In Figure 11 an excerpt from an IoT model conforming to
the SimulateIoT metamodel is defined. It shows different
Sensor elements such as ph_H1, temperature_H1, Humid-
ity_H1, etc. (Figure 11, reference 3.2) which generates data
for simulation. Moreover, several fog computing nodes have
been defined, although in Figure 11 (for the sake of sim-
plicity) only two FogNode elements are shown (Figure 11,
references 1.1, 1.2). They define several Topics such as
Humidity, Temperature, pH, Water_pressure, etc (Figure 11,

references 5.1, 5.2). In addition, each FogNode element
defines a MongoDB database (Figure 11, references 6.1,
6.2) and an ESP engine (Figure 11, references 7.1, 7.2)
by means of Component elements. Besides, several Rule
elements (event pattern definitions) such as rule_Humidity
or rule_pH have been defined to analyse the data gath-
ered from Topic elements in real-time. Likewise, when an
event pattern is matched, a Notification element such as
Low_pH, High_pH, Low_Humidity, High_Humidity and so
on is thrown. For instance, the Actuator element named Irri-
gator (Figure 11, references 3.1) activates when the Notifica-
tion element named Low_Humidity is thrown.

2) CASE 02. CODE GENERATION AND DEPLOYMENT
Once the model has been completed and validated, a model-
to-text transformation is carried out obtaining the simula-
tion code, which can be deployed on a specific platform.
Thus, the code generated includes several modules defined
using several frameworks or programming languages. Thus,
in order to define a scalable IoT environment, each deploy-
able element (EdgeNode, CloudNode, FogNode, Actuators
and ProcessEngine) is defined as a microservice, wrapping
each Node element in aDocker container. Figure 12 shows an
excerpt from the case study deployment architecture includ-
ing the Docker containers defined and deployed. In Figure 12
the main characteristics of each node can be observed. For
instance, each ProcessNode (Figure 12, references 1.1, 1.2,
2) defines a MongoDB database (Figure 12, references 8.1,
8.2, 8.3), a Mosquitto MQTT message broker (Figure 12,
references 5.1, 5.2, 5.3), and a WSO2 Stream Processor
engine (Figure 12, references 6.1, 6.2). In addition, the Rule
elements defined are processed through the WSO2 engine
defined.

Each Docker container has its own characteristics:
• CloudNode (Figure 12, reference 2) is composed of
a message-driven broker (Figure 12, reference 5.3)
like Mosquitto [32] (that implements a MQTT com-
munication protocol) and a NoSQL database like
MongoDB [31] (Figure 12, reference 7.3). Besides,
the MongoDB instance exposes the data stored using
a REST API (Figure 12, reference 8.3). Moreover,
theCloudNode deploys a Compass instance [10] tomon-
itor the data gathered.

• Each FogNode (Figure 12, references 1.1, 1.2) is com-
posed of a message-driven broker (Figure 12, references
5.1, 5.2) like Mosquitto [32] (that implements a MQTT
communication protocol) and a NoSQL database like
MongoDB [31] (Figure 12, references 7.1, 7.2). Mon-
goDB stores the temporal data gathered by the FogN-
ode instance. Currently, the main difference between
a CloudNode and a FogNode is the process capability.
Using the size attribute at FogNode element makes it
possible to define the process capabilities of the node.
Consequently, both CloudNode elements and FogNode
elements are deployed as Docker containers on hardware
nodes such as PC, VM or Raspberry Pi.

VOLUME 9, 2021 92547

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 11. Case 02. AgroTech model conforming to the SimulateIoT metamodel.

• The ESP characteristic defined at ProcessNode deploys
an event stream processor to process high amounts of
messages in real-time. As can be observed in Figure 12 a
WSO2 engine (Figure 12, references 6.1, 6.2 is deployed
on each FogNode. The WSO2 engine processes the Rule
elements associated with it.

• The EdgeNode elements including sensors (Figure 12,
references 4.1, 4.2) and actuators (Figure 12, references
9.1, 9.2) defined in the model are suitably deployed in
Docker containers.

Later on, the execution information can be audited by
querying theMongoDB database or using the monitoring tool
available on each ProcessNode. Moreover, each Docker is
generating log information during the IoT execution. Finally,

the nodes deployed are accessible from a dashboard tool
which gathers the available endpoints of each element, for
example, to query a MongoDB database or to show informa-
tion about a Mosquitto broker.

VI. DISCUSSION
Model-driven development can be used to model complex
IoT environments using domain concepts. They could not
be tied to specific technology, but rather a model-to-text
transformation makes it possible to generate the code needed
to deploy and simulate the systems. Besides, the system
deployed is gathering continuous data which can be analysed
later on.

92548 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 12. Case 02. AgroTech deployment architecture.

Simulate IoT makes it possible to define models which
could include a large amount of Node elements. Then,
the code generated from models allows to create an scalable
deployment based on well-known software architecture pat-
terns such as publish-subscribe and Docker containers among
others.

The technology used as a target, such as micro-services
(Thorntail), containers (Dockers), message-oriented middle-
ware and MQTT (Mosquitto broker) or a container orches-
trator (Docker Swarm) can be quickly replaced by other
suitable technology if needed. In order to change the target
technology, a model-to-text transformation should be imple-
mented. However, the domain concepts used to model the
IoT environment are fixed. As a consequence, the models
help users to understand the IoT system, their relationships

and constraints. Besides, the code generated can be analysed
later on.

On the other hand, the target users could be both: a) pro-
fessional users and b) students. Professional users can use the
methodology and tools presented in this work to define and
analyse complex IoT environments where finally heteroge-
neous technology is used. Besides, our approach can be used
for teaching purposes because it makes it possible for students
to learn about IoT concepts and relationships. In addition,
they can deploy the IoT simulation, and they can study
the code generated to learn the technology used to deploy
the IoT system. Thus, they can understand edge technology
and integration patterns such as data patterns, IoT charac-
teristics, publish-subscribe communication protocols, MQTT
(Message Queuing Telemetry Transport) communication

VOLUME 9, 2021 92549

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

protocol, containers, NoSQL databases, distributed systems
and so on.

An IoT environment where the nodes are moving through-
out the system can be partially modelled. These kinds of
nodes are needed to define more complex IoT simulation
environments such as wearables, people on the move, etc.
Modeling complex node behaviours could be managed by
means of dynamic behaviours and self-adaptation charac-
teristics which could be defined in order to offer additional
mechanisms for simulation purposes. For example, currently
we are working on Topics elements which could be discov-
ered by using a service discovery or using an introspection
mechanism over the MQTT broker. The node service dis-
covery is a new service deployed on Fog and Cloud Node
elements able to offer by an API information about the Topics
available, making possible that the IoT Nodes can connect to,
send to and receive data from not fixed IoT nodes.

The proposal that we are implementing to manage Node
mobility includes the following aspects:
• It is possible to model a route generation, taking advan-
tage of the geolocation that is already modellable. In this
way, Node elements that require mobility to perform
their functions can be moved through the IoT environ-
ment in such a way that the user who has modelled the
environment requires it.

• The route generation solves the problem that arises from
the need formobility of devices in an environment. How-
ever, it is also necessary to define the coverage of the
different Brokers in the environment, so that the different
devices are able to make the decision to disconnect from
one broker and connect to another. To solve this problem,
it is proposed again the use of geolocation. In this way,
the user whomodels the environment can define a radius
of coverage of the different Brokers deployed, so that the
devices, taking into account their own geolocation, can
determine which Brokers are within reach and which are
not. Thus, the different mobile devices in the environ-
ment can analyse which Brokers to connect to and which
to disconnect from.

• The Topic Discovery Mechanism is a service that makes
it possible to dynamically re-configure the Node ele-
ments in order to publish or subscribe on compatible
Topics. To do this, Node elements publish a broadcast
package to the network following Topic Services avail-
able and compatible with a concrete Topic. To answer
the broadcast, each Node Processing element imple-
ments a Topic Discovery Node which answers it with
the list of Topics available and compatible. Currently,
the Topic compatibility is based on the Topic Data inter-
changed, Topic’s name or Topic’s Tags.

Initial results of this approach to manage node mobility show
that IoT nodes can dynamically reconfigure their connections
to send or receive data.

Finally, using the IoT simulation environment, users can
propose and compare several policies before implementing
them. Consequently, they can carry out several stress tests on

the IoT architecture, obtaining valuable data. For instance,
users can detect if a ProcessNode is running out of RAM. In
addition, the bottlenecks in the IoT system could be detected
by analysing the data gathered, producing valuable data that
helps users to consider different IoT architectural alternatives.

A. LIMITATIONS
Although the domain-specific language and tools presented
offer a wide expressiveness, they have several limitations to
take into account:
• Node mobility has been partially developed following
the approach that has been described before by defining
the Topic Discovery Node (TDN). In this sense, on one
hand, the route for nodes can be defined, and, on the
other hand, the TDN makes it possible re-configuring
dynamically the WSN deployed.

• This current version of our simulator IoT environment,
for the sake of simplicity, allows defining connected
nodes by TCP/IP, and we assume that connectivity is
guaranteed.

• It is possible to simulate IoT environments defined
using a high-level domain-specific language. However,
the hardware simulation is only managed by the size
attribute at ProcessNode which implies several con-
straints to avoid creating specific software elements (see
Table 2). Obviously, it could be considered a simplistic
approach to tackle this complex problem but in the end,
it helps users to model the IoT environments thinking
about the hardware restrictions.

VII. CONCLUSION
Model-driven development techniques are a suitable way
to tackle the complexity of domains where heterogeneous
technologies are integrated. Initially, they focus on modelling
the domain by using the well-known four-layer metamodel
architecture. Then, by using model-to-text transformations
the code for specific technology could be generated. Thus,
in this paper, we are tackling the IoT simulation domain
allowing users to define and validate models conforming to
the SimulateIoT metamodel. Then, a model-to-text transfor-
mation generates code to deploy the IoT simulation model
defined.

The IoT simulationmethodology and tools proposed in this
work help users to think about the IoT system, to propose
several IoT alternatives and policies in order to achieve a
suitable IoT architecture. Finally, the IoT systems modelled
can be deployed and analysed.

Future works include new concepts taking into account the
role of connections among devices and brokers which could
be simulated specifying the type of connection or distance
among devices. Obviously, the SimulateIoT metamodel will
be improved by applying these new concepts, although it will
require that users define more accurately the IoT simulation
model. Additionally, dynamic behaviours and self-adaptation
characteristics could be defined in order to offer additional
mechanisms for simulation purposes. For example, Topics

92550 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

elements could be discovered by using a service discovery
or using introspection mechanism over the MQTT broker.
Finally, another interesting further work includes the defi-
nition and generation of new types of data generation pat-
terns. Again, these model extensions will improve the IoT
simulation.

REFERENCES
[1] K. Alwasel, R. N. Calheiros, S. Garg, R. Buyya, M. Pathan,

D. Georgakopoulos, and R. Ranjan, ‘‘Bigdatasdnsim: A simulator for
analyzing big data applications in software-defined cloud data centers,’’
Softw. Pract. Exper., vol. 51, no. 5, pp. 893–920, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%
2Fspe.2917

[2] C. Atkinson and T. Kuhne, ‘‘Model-driven development: A metamodeling
foundation,’’ IEEE Softw., vol. 20, no. 5, pp. 36–41, Sep. 2003.

[3] P. Baldwin, S. Kohli, A. Edward Lee, X. Liu, and Y. Zhao, ‘‘Modeling of
sensor nets in ptolemy II,’’ in Proc. 3rd Int. Symp. Inf. Process. Sensor
Netw. (IPSN), New York, NY, USA, 2004, pp. 359–368.

[4] Bevywise. (2018). Bevywise IoT Simulator. [Online]. Available:
https://www.bevywise.com/iot-simulator/

[5] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng,
‘‘Heterogeneous concurrent modeling and design in java (volume 3:
Ptolemy ii domains),’’ Dept. Elect. Eng. Comput. Sci., Univ. California,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2008-37, 2008.

[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Soft-
ware: Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[7] E. Cheong, E. A. Lee, and Y. Zhao, ‘‘Viptos: A graphical development
and simulation environment for tinyos-based wireless sensor networks,’’
in Proc. SenSys, vol. 5, 2005, p. 302.

[8] J. P. Clemente,M. J. Conejero, J. Hernández, and L. Sánchez, ‘‘Haais-DSL:
DSL to develop home automation and ambient intelligence systems,’’ in
Proc. 2nd Workshop Isolation Integr. Embedded Syst. (IIES), New York,
NY, USA, 2009, pp. 13–18.

[9] P. Clemente and A. Lozano-Tello, ‘‘Model driven development applied to
complex event processing for near real-time open data,’’ Sensors, vol. 18,
no. 12, p. 4125, Nov. 2018.

[10] (2018). MongoDB Compass. [Online]. Available: https://www.mongodb.
com/products/compass

[11] A. G. D. Prado, G. Ortiz, J. Hernández, and E. Moguel, ‘‘Generación de
datos sintéticos para arquitecturas de procesamiento de datos del Internet
de las cosas,’’ Jornadas de Ciencia e Ingeniería de Servicios (JCIS), 2018.
[Online]. Available: http://hdl.handle.net/11705/jcis/2018/007

[12] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, ‘‘Taming heterogeneity–the ptolemy approach,’’
Proc. IEEE, vol. 91, no. 1, pp. 127–144, Jan. 2003.

[13] EsperTech. (Nov. 2016). Esper CEP. [Online]. Available: http://www.
espertech.com/esper/

[14] EsperTech. (Jul. 2019). Esper EPL Language. [Online]. Available:
http://esper.espertech.com/release-5.2.0/esper-reference/html/
epl_clauses.html

[15] C. M. de Farias, I. C. Brito, L. Pirmez, F. C. Delicato, P. F. Pires,
T. C. Rodrigues, I. L. dos Santos, L. F. R. C. Carmo, and T. Batista, ‘‘COM-
FIT: A development environment for the Internet of Things,’’FutureGener.
Comput. Syst., vol. 75, pp. 128–144, Oct. 2017.

[16] R. France and B. Rumpe, ‘‘Model-driven development of complex
software: A research roadmap,’’ in Proc. Future Softw. Eng. (FOSE),
May 2007, pp. 37–54.

[17] D. Gay, P. Levis, R. von Behren, M.Welsh, E. Brewer, and D. Culler, ‘‘The
nesC language: A holistic approach to networked embedded systems,’’
ACM SIGPLAN Notices, vol. 38, no. 5, pp. 1–11, May 2003.

[18] MDA Guide Revision, Object Management Group, Needham, MA, USA,
2014.

[19] L. Gutiérrez-Madroñal, I. Medina-Bulo, and J. J. Domínguez-Jiménez,
‘‘IoT–TEG: Test event generator system,’’ J. Syst. Softw., vol. 137,
pp. 784–803, Mar. 2018.

[20] B. Hailpern and P. Tarr, ‘‘Model-driven development: The good, the bad,
and the ugly,’’ IBM Syst. J., vol. 45, no. 3, pp. 451–461, 2006.

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, ‘‘System
architecture directions for networked sensors,’’ ACM SIGARCH Comput.
Archit. News, vol. 28, no. 5, pp. 93–104, Dec. 2000.

[22] D. N. Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K. Battula,
S. Garg, D. Puthal, P. James, A. Zomaya, S. Dustdar, and R. Ranjan,
‘‘IoTSim-edge: A simulation framework for modeling the behavior of
Internet of Things and edge computing environments,’’ Softw. Pract.
Exper., vol. 50, no. 6, pp. 844–867, 2020.

[23] D. S. Kolovos, A. García-Domínguez, L. M. Rose, and R. F. Paige,
‘‘Eugenia: Towards disciplined and automated development of GMF-based
graphical model editors,’’ Softw. Syst. Model., vol. 16, no. 1, pp. 229–255,
2015.

[24] P. Levis, N. Lee, M. Welsh, and D. Culler, ‘‘Tossim: Accurate and scalable
simulation of entire tinyos applications,’’ in Proc. 1st Int. Conf. Embedded
networked sensor Syst., pp. 126–137. ACM, 2003.

[25] D. Luckham. (2006). What’s the Difference Between ESP and
CEP?. [Online]. Available: http://www.complexevents.com/2006/08/
01/what%e2%80%99s-the-difference-between-esp-and-cep/

[26] A. Mathew, ‘‘Benchmarking of complex event processing engine-esper,’’
Dept. Comput. Sci. Eng., Indian Inst. Technol. Bombay, Maharashtra,
India, Tech. Rep. IITB/CSE/2014/April/61, 2014.

[27] K.Mehdi,M. Lounis, A. Bounceur, and T. Kechadi, ‘‘CupCarbon: Amulti-
agent and discrete event wireless sensor network design and simulation
tool,’’ in Proc. 7th Int. Conf. Simul. Tools Techn., Lisbon, Portugal, 2014,
pp. 126–131.

[28] D. Merkel, ‘‘Docker: Lightweight linux containers for consistent develop-
ment and deployment,’’ Linux J., vol. 2014, no. 239, p. 2, 2014.

[29] Meta Object Facility (MOF) Core Specification Version 2.5.1, Meta Object
Facility (MOF), Milford, MA, USA, Nov. 2016.

[30] N. Mohan and J. Kangasharju, ‘‘Edge-fog cloud: A distributed cloud for
Internet of Things computations,’’ in Proc. Cloudification Internet Things
(CIoT), 2016, pp. 1–6.

[31] MongoDB. (2018). Mongodb is a Document Database. [Online]. Avail-
able: https://www.mongodb.com/

[32] Mosquitto. (2018). Eclipse Mosquitto: An Open Source MQTT Broker.
[Online]. Available: https://mosquitto.org/

[33] Message Queuing Telemetry Transport (MQTT) v5.0 Oasis Standard,
Oasis, Woburn, MA, USA, 2019.

[34] OMG Object Constraint Language (OCL), Version 2.3.1, OMG,
Milford, MA, USA, Jan. 2012. [Online]. Available: https://www.omg.org/
contact.htm

[35] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, T. Noel, and G. Schreiner,
‘‘Adding value to WSN simulation using the IoT-LAB experimental plat-
form,’’ in Proc. IEEE 9th Int. Conf. Wireless Mobile Comput., Netw.
Commun. (WiMob), Oct. 2013, pp. 485–490.

[36] P. Patel and D. Cassou, ‘‘Enabling high-level application development for
the Internet of Things,’’ J. Syst. Softw., vol. 103, pp. 62–84, May 2015.

[37] (2018). WSO2 Stream Processor. [Online]. Available: https://wso2.com/
analytics-and-stream-processing/

[38] (2016). Acceleo Project. [Online]. Available: http://www.acceleo.org
[39] A. Ruppen, J. Pasquier, S. Meyer, and A. Rüedlinger, ‘‘A component based

approach for the Web of things,’’ in Proc. 6th Int. Workshop Web Things
(WoT), 2015, pp. 1–6.

[40] D. C. Schmidt, ‘‘Model-driven engineering,’’ IEEE Computer Society,
vol. 39, no. 2, p. 25, Feb. 2006.

[41] K. Schwaber and M. Beedle, Agile Software Development With Scrum,
vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[42] A. Sehgal, ‘‘Using the Contiki Cooja simulator,’’ Center Adv. Syst. Eng.,
Comput. Sci., Jacobs Univ. Bremen Campus Ring, Bremen, Germany,
Tech. Rep., 2013. [Online]. Available: https://www.researchgate.net/
profile/Anuj-Sehgal-4

[43] B. Selic, ‘‘The pragmatics of model-driven development,’’ IEEE Softw.,
vol. 20, no. 5, pp. 19–25, Sep. 2003.

[44] S. Sendall and W. Kozaczynski, ‘‘Model transformation: The heart and
soul of model-driven software development,’’ IEEE Softw., vol. 20, no. 5,
pp. 42–45, Sep. 2003.

[45] Siafu. (2007). An Open Source Context Simulator. [Online]. Available:
http://siafusimulator.org/

[46] E. Siow, T. Tiropanis, and W. Hall, ‘‘Analytics for the Internet of Things:
A survey,’’ ACM Comput. Surv. , vol. 51, no. 4, p. 74, 2018.

[47] D. Soukaras, P. Patel, H. Song, and S. Chaudhary, ‘‘Iotsuite: A toolsuite for
prototyping Internet of Things applications,’’ in Proc. 4th Int. Workshop
Comput. Netw. Internet Things (ComNet-IoT), 16th Int. Conf. Distrib.
Comput. Netw. (ICDCN), 2015, p. 6.

VOLUME 9, 2021 92551

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

[48] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Reading, MA, USA: Addison-Wesley,
2009.

[49] Thorntail. (2018). Microprofile for Optimizing Enterprise Java Applica-
tions. [Online]. Available: https://thorntail.io/

[50] Aqeel-ur-Rehman, A. Z. Abbasi, N. Islam, and Z. A. Shaikh, ‘‘A review
of wireless sensors and networks’ applications in agriculture,’’ Comput.
Standards Interfaces, vol. 36, no. 2, pp. 263–270, Feb. 2014.

[51] A. Varga and R. Hornig, ‘‘An overview of the OMNeT++ simulation
environment,’’ in Proc. 1st Int. Conf. Simulation Tools Techn. Commun.,
Netw. Syst. Workshops, 2008, p. 60.

[52] N. Wang, N. Zhang, and M. Wang, ‘‘Wireless sensors in agriculture and
food industry-recent development and future perspective,’’ Comput. Elec-
tron. Agricult., vol. 50, no. 1, pp. 1–14, 2006.

[53] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and
R. Ranjan, ‘‘IOTSim: A simulator for analysing IoT applications,’’ J. Syst.
Archit., vol. 72, pp. 93–107, Jan. 2017.

JOSÉ A. BARRIGA received the degree in com-
puter science from the University of Extremadura,
in 2017. He is currently working as a Junior
Researcher with the University of Extremadura.
He has been working in the IoT and the simulation
IoT environments research areas since two years.

PEDRO J. CLEMENTE received the B.Sc. degree
in computer science from the University of
Extremadura, Spain, in 1998, and the Ph.D.
degree in computer science, in 2007. He is cur-
rently an Associate Professor with the Computer
Science Department, University of Extremadura.
He has published numerous peer-reviewed articles
in international journals, workshops, and confer-
ences. He is involved in several research projects.
His research interests include component-based

software development, aspect orientation, service-oriented architectures,
business process modeling, and model-driven development. He has partic-
ipated in many workshops and conferences as a speaker and a member of the
program committees.

ENCARNA SOSA-SÁNCHEZ received the B.Sc.
degree in computer science from the University of
Granada, in 1995. She is currently pursuing the
Ph.D. degree with the Computer Science Depart-
ment, University of Extremadura, Spain. She is
also an Assistant Professor with the Computer
Science Department, University of Extremadura.
She has published several peer-reviewed articles
in international journals, workshops, and confer-
ences, and is involved in several research projects.

Her research interests include service-oriented architectures, business pro-
cess modeling, and model-driven development.

ÁLVARO E. PRIETO received the B.Sc. and Ph.D.
degrees in computer science from the University
of Extremadura, Spain, in 2000 and 2013, respec-
tively. He is currently an Assistant Professor with
the University of Extremadura. He is also a mem-
ber of the Quercus Software Engineering Group.
He is involved in various research, development,
and innovation projects. His research interests
include ontologies, linked open data, data engi-
neering, and predictive analytics.

92552 VOLUME 9, 2021

Chapter 5

SimulateIoT-FIWARE:
Domain Specific Language to
Design, Code Generation and
Execute IoT Simulation
Environments on FIWARE

“Happiness can be found, even in
the darkest of times, if one only
remembers to turn on the light.”

Harry Potter and the Prisoner of
Azkaban (1999)
Rowling, J. K.

Authors: José A. Barriga, Pedro J. Clemente, Juan Hernández, Miguel A.
Pérez-Toledano
Title: SimulateIoT-FIWARE: Domain Specific Language to Design, Code
Generation and Execute IoT Simulation Environments on FIWARE
Year: 2022
Journal: IEEE Access

97

Quality (JCR): Q2
DOI: 10.1109/ACCESS.2022.3142894

98

Received December 28, 2021, accepted January 9, 2022, date of publication January 13, 2022, date of current version January 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3142894

SimulateIoT-FIWARE: Domain Specific Language
to Design, Code Generation and Execute IoT
Simulation Environments on FIWARE
JOSÉ A. BARRIGA , PEDRO J. CLEMENTE , JUAN HERNÁNDEZ,
AND MIGUEL A. PÉREZ-TOLEDANO
Quercus Software Engineering Group, Department of Computer Science, Universidad de Extremadura, 10003 Cáceres, Spain

Corresponding author: José A. Barriga (jose@unex.es)

This work was supported in part by the Ministerio de Ciencia e Innovación (MCI) through the Agencia Estatal de Investigación (AEI)
under Project RTI2018-098652-B-I00; in part by the Government of Extremadura, Council for Economy, Science and Digital Agenda,
under Grant GR18112 and Grant IB20058; in part by the European Regional Development Fund (ERDF); and in part by the Cátedra
Telefónica de la Universidad de Extremadura (Red de Cátedras Telefónica).

ABSTRACT Systems based on the Internet of Things (IoT) are continuously growing in many areas such as
smart cities, home environments, buildings, agriculture, industry, etc. This system integrates heterogeneous
technologies into a complex architecture of interconnected devices capable of communicating, processing,
analysing or storing data. There are several IoT platforms that offer several capabilities for the development
of these systems. Some of these platforms are Google Cloud’s IoT Platform, Microsoft Azure IoT suite,
ThingSpeak IoT Platform, Thingworx 8 IoT Platform or FIWARE. However, they are complex IoT platforms
where each IoT solution has to be developed ad-hoc and implemented by developers by hand. Consequently,
developing IoT solutions is a hard, error-prone and tedious task. Thus, increase the abstraction level
from which the IoT systems are designed helps to tackle the underlying technology complexity. In this
sense, model-driven development approaches can help to both reduce the IoT application time to market
and tackle the technological complexity to develop IoT applications. In this paper, we propose a Domain-
Specific Language based on SimulateIoT for the design, code generation and simulation of IoT systems
which could be deployed on FIWARE infrastructure (an open-source IoT platform). This implies not only
designing the IoT system for a high abstraction level and later on code generation, but also designing
and deploying an additional simulation layer to simulate the system on the FIWARE infrastructure before
final deployment. The FIWARE IoT environment generated includes the sensors, actuators, fog nodes,
cloud nodes and analytical characteristics, which are deployed as microservices on Docker containers
and composed suitability to obtain a service-oriented architecture. Finally, two case studies focused on
a smart building and an agricultural IoT environment are presented to show the IoT solutions deployed
using FIWARE.

INDEX TERMS Model-driven development, Internet of Things, IoT simulation, services-oriented,
FIWARE.

I. INTRODUCTION
The Internet of Things (IoT) is widely applied in several
areas such as smart cities, home environments, agriculture,
industry, intelligent buildings, etc. [45]. In order to build
IoT applications, multiple technologies are available from
configuring a specific sensor to analysing a vast amount of

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

data in real-time. Thus, data should be, among other actions,
stored, communicated, analysed, visualised and notified.
For this, multiple IoT cloud platforms have emerged for
development such as Google Cloud’s IoT Platform [17],
Microsoft Azure IoT suite [23], ThingSpeak IoT Platform
[47], Thingworx 8 IoT Platform [48] or FIWARE [13].

Each IoT platform has its own characteristics and
mechanisms to define devices, connect them, store and
analyse data or carry out notifications that provoke the well-
known (vendor lock-in problem [36]). Likewise, each IoT

7800 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

platform offers different services and QoS which should be
managed ad-hoc.

However, it is possible to define IoT solutions independent
of the IoT platforms on which they will be deployed. For
them, it is necessary to focus on the IoT application domain
and not on their specific technological issues. Model-Driven
Development(MDD) [43], [51] is able to tackle this hetero-
geneous technology (vendor lock-in problem) increasing the
abstraction level where the software is developed, focusing
on the domain concepts and their relationships. Thus, the IoT
concepts and relationships are defined by a model which can
be analysed and validated.

In this sense SimulateIoT [3] is an approach based on
Model-Driven Development (MDD) to define IoT environ-
ments (Set of components, such as sensors, actuators, Fog
or Cloud nodes, etc. that are part of an IoT architecture),
generate its code and deploy it. Later on, the IoT environment
generated could be simulated. This is because the MDD
allows 1) the definition of a Domain Specific Language
(DSL), able to model IoT environments, and 2) a model-to-
text (M2T) transformations needed to code-generation and
deploy the IoT environment.

However, SimulateIoT is limited to code generation
towards proprietary infrastructure based on microservices.
In order to show that an MDD approach is able to gen-
erate code on different technological platforms, it is inter-
esting extending the code generation to other technological
approaches such as cloud open-source IoT environments such
as FIWARE [13]. It is an open-source project that provides a
large catalogue of components for the development of IoT
environments, including, among other functions and compo-
nents tomanage, analyse or store the data which are generated
and shared in an IoT environment [13]. This paper presents
the extension of the SimulateIoTMDDplatform to deploy the
IoT environments modelled in the FIWARE open-source IoT
Platform. Consequently, it shows that is possible tomodel IoT
environments independently of technology and deploy them
on concrete IoT cloud platforms such as FIWARE. Thus, the
IoT concepts and relationships are defined by a model which
can be analysed and validated. Besides, the IoT environment
code, including all the artefacts needed, can be generated
from a model using model to text transformations, decreasing
error-proneness and increasing the user’s productivity.

The main contributions of this paper include:
• A proposal that shows that Model-Driven Development
is a suitable approach to develop tools and languages
to tackle the complexity of heterogeneous technology
successfully in the context of IoT environments such as
sensors, actuator, databases, complex-event processing
engines, communication protocols, etc.

• AModel-Driven Development proposal to generate IoT
solutions based on FIWARE infrastructure, hiding the
complexity of a cloud IoT framework.

• An extended version of SimulateIoT Domain Specific
Language named SimulateIoT-FIWARE that can be
used to define IoT environments and generate their

implementation based on the components provided by
FIWARE. That means reusing both SimulateIoTAbstract
Syntax (Metamodel and OCL constraints) and Simu-
lateIoTConcrete Syntax, while theM2T transformations
have been improved and adapted to generate, configure
and deploy FIWARE artefacts.

• Two case studies have been developed following the
methodology and tools presented, focusing on different
kinds of IoT systems. Note that, these two use cases are
the same as those defined in [3], demonstrating that it
is possible to deploy these same environments on the
FIWARE platform.

The rest of the paper is structured as follows. Section 2
introduces the FIWARE architecture and how IoT systems
should be implemented on it. Section 3 describes shortly
SimulateIoT Domain Specific Language. Section 4 presents
the integration of SimulateIoT DSL with the FIWARE archi-
tecture and artefacts. Section 5 describes the aspects related
to code generation towards FIWARE technology from mod-
els. Then, Section 6 illustrates the use of the Model-Driven
approach presented in two different case studies: Smart
Building and Smart Agro. In Section 7 the discussion and lim-
itations of the approach are described, before presenting the
related works in Section 8 and the conclusions in Section 9.

II. THE FIWARE ARCHITECTURE
FIWARE is an open-source project that defines and imple-
ments a universal set of standards for context data manage-
ment with the aim of optimising the development of IoT
environments in different fields, such as Smart Cities [16],
[27], Smart Buildings [15], Smart Agro [25], Smart Energy,
Smart Industry [13], etc. FIWARE makes IoT simpler by
means of driving key standards for breaking the information
silos, transforming Big Data into knowledge, enabling data
economy and ensuring sovereignty on your data [13]. Conse-
quently, usingFIWARE to design, develop andmanage an IoT
environment makes it possible reuse the advantages afore-
mentioned and to reuse the knowledge and tools developed as
part of FIWARE. In this sense, although FIWARE has several
components to support the developing of IoT environments in
the scenarios aforementioned, the main and only mandatory
component of any FIWARE solution is FIWARE Context
Broker. Mention that the concept of context within FIWARE,
is the state in which the IoT environment is at a given time.
Thus, the context elements or data are those that give context
to the environment, i.e., they define a characteristic of the
environment, such as climatic data of the environment as
temperature or wind speed and also data of the architecture
of the environment, such as geoposition of an element or the
speed at which it moves.

The FIWARE implementation is based on a set of lay-
ers and integrated elements such as i) Interface to IoT,
Robotics and third party systems, ii) Core Context Manage-
ment, iii) Context Processing, Analysis and Visualisation and
iv) Data/API management and Publication and Monetisation
of Context Information. Each layer is supported by several

VOLUME 10, 2022 7801

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

tools such as Context Broker, Complex Event Processing, IoT
Broker or IoT Backend Device Manager that constitute the
architecture that can be seen in Figure 1. These elements com-
municate among themselves through the NGSI protocol [14],
although FIWARE has a middleware that acts as a bridge
between NGSI and protocols such asMQTT orHTTP to com-
municate with external elements. Next, the most important
elements of the FIWARE architecture (Figure 1) are defined:
• The Context Broker element named Orion (Figure 1-1)
is the core of the FIWARE architecture. Orion allows
the management of the complete data lifecycle includ-
ing updates, queries, registrations and subscriptions.
In other words, Orion allows creation and registra-
tion of the context elements, such as sensors, actu-
ators, CEP engines, etc. and manages them through
updates and queries. In addition, devices can subscribe
to context information so when some condition occurs
these devices receive a notification [10]. Moreover, it
should be mentioned thatOrion Context Broker includes
MongoDB [30], a NoSql database [22] for the data
persistence required to perform the above-mentioned
functions as well as those of other FIWARE elements.

• A CEP (Complex Event Processing) (Figure 1-2) [8]
element allows more complex analysis techniques than
Orion Context Broker subscriptions. Thus, in order to
develop CEP applications in FIWARE, a CEP compo-
nent named CEP Perseo [12] has been included in the
FIWARE architecture. CEP Perseo is a CEP software
based on the Esper language [9], i.e., software that
listens for events that come from context information
to identify event patterns described by rules, in order
to immediately react to them by triggering actions [12].
CEP Perseo is composed of two basic elements, Perseo
front-end and Perseo core. Perseo front-end stores the
event rules (written using Event Processing Language
(EPL) [37]) on MongoDB and then, processes the
incoming events sending them to Perseo Core. Next,
Perseo Core checks incoming events against the event
rules and notifies Perseo front-end if an action must be
executed [11]. Finally, Perseo front-end sends notifica-
tions to the appropriate devices.

• The IoT Broker (Figure 1-3) element allows developers
to use a message broker such as Mosquitto [31] (based
on MQTT protocol) to ensure message exchange among
the devices or components defined in an IoT environ-
ment. It implements a publish/subscribe communication
protocol that makes it possible to interconnect the IoT
devices and components such as Sensors, Actuators or
other FIWARE components.

• The IoT Backend Device Management Figure 1-4) con-
sumes data from Sensors Figure 1-5) and sends it to the
Actuators (Figure 1-6). IoT-Agent carries out this task.
Thus, IoT-Agent acts as a bridge between the NGSI pro-
tocol and other protocols such asMQTT orHTTP. In this
way, the IoT-Agent brings a standard interface to all
IoT interactions at the context information management

level (Orion Context Broker) allowing each IoT device
to be able to use it own protocols to communicate
with FIWARE.

The elements described above are the main components
of the FIWARE platform which are enough to develop an
IoT environment on the FIWARE platform. However, as can
be seen in Figure 1, FIWARE offers a larger number of
components. These components aim to meet specific needs
such as service orchestration, Big Data processing, payment
management, etc.

For instance, supposing a general Smart Building case
study where several sensors are deployed in the building,
these sensors send data to a FIWARE instance, which are
analysed in real-time by a CEP component in order to notify
different event rules detected. Additionally, data processed is
stored for later analysis. The system architecture deployed to
support this IoT environment can be observed in Figure 2.
Developing this case study includes, among others, the

following:
• Define the sensors and actuators into Orion context
broker.

• Define and configure the messages that should be inter-
changed from/to devices to FIWARE architecture.

• Configure and deploy each node for the FIWARE infras-
tructure, including Orion context broker, CEP perseo,
databases, messages brokers, and so on.

• Define the EPL rules and deploy them on the CEP
Perseo.

• etc.
Additional issues should be taken into account and they

should be resolved by implementing additional ad-hoc
modules:
• Components such as Perseo notifies event matched
by HTTP protocol. Consequently, in order to notify
Actuators who are subscribed to a specific Topic,
an HTTP2MQTT converter should be developed.
In Figure 2 this module is named NotificationMiddle-
wareComponent.

• Originally, event patterns analysis can’t be defined on
Topic data. So, an additional infrastructure based on
Topic data should be registered on Orion. In Figure 2
is named OrionTopicManager.

Developing an IoT environment by hand involves tedious
and error-prone tasks. So, the complexity of the whole
process defined previously to implement and deploy the
IoT environment using heterogeneous technology should be
tackled by increasing the abstraction level of the defined
IoT environment. Therefore, the SimulateIoT model-driven
approach is extended and used to model and generate IoT
environments on FIWARE platform.

III. SimulateIoT: A MODEL-DRIVEN APPROACH TO
DEVELOPING IoT SIMULATION ENVIRONMENTS
In a Model-Driven Development approach like SimulateIoT,
the software development is guided through Models (M1)

7802 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 1. FIWARE architecture [13].

FIGURE 2. Smart building case study architecture deployed on FIWARE.

which conform to a MetaModel (M2). Moreover, a Meta-
model conforms to a MetaMetaModel (M3) which is
reflexive [2]. The MetaMetaModel level is represented by
well-known standards and specifications such asMeta-Object
Facilities (MOF) [29], ECore in EMF [46] and so on.
A MetaModel defines the concepts and relationships in
a specific domain in order to model partial reality based
(conceptual model). Additionally, OCL is formal language

used to describe semantic expressions on Metamodels such
as UML. These expressions typically specify invariant con-
ditions that must hold for the system being modeled [35].
So, Model conforms to a MetaModel requires to validate
with this semantic extensions (OCL invariants). Later on,
the validated models are used to generate totally or partially
the application code by model-to-text transformations [44].
Thus, the software code can be generated for a specific

VOLUME 10, 2022 7803

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

technological platform, improving the technological indepen-
dence and decreasing error proneness.
SimulateIoT is a tool that uses model-driven development

techniques to manage the IoT environments definition using
models, so, the models guide the system description and
the code generation. Subsequently, the code generated can
be deployed through several hosts or be used to deploy a
simulation of the IoT environment. There are three main
elements of SimulateIoT tools: 1) a Metamodel definition,
2) a Graphical Concrete Syntax definition and 3) the M2T
transformations to generate the code artefacts needed to
deploy, monitor and measure the IoT environment. In order
to be a self-contained paper, next the SimulateIoT proposal is
explained.

Figure 3 defines the domainmetamodel including concepts
related to sensors, actuators, databases, fog and cloud nodes,
data generation, communication protocols, stream process-
ing, and deployment strategies, among others. The relevant
elements are summarised below:
• The Environment element defines the global parameters
of the IoT simulation environment, including simula-
tionSpeed and the number of messages to interchange
among the nodes (numberOfMessages).

• Node is an abstract concept to represent each node in the
IoT simulation environment. It is extended by several
concepts such as EdgeNode or ProcessNode in order
to specialise each kind of node. A Node can publish
and subscribe to a specific Topic. It defines publish or
subscribe references towards a Topic element in which
it is interested. Note that, later on, each concrete kind of
Node could be definedwith specific constraints. Further-
more, the device position can be defined using latitude
and longitude attributes.

• The EdgeNode element makes it possible to define sim-
ple physical devices such as a sensor or an actuator
without process capacities. Each EdgeNode could be
linked with ProcessNode elements by Topic elements.
Moreover, each EdgeNode can be mapped with a phys-
ical device such as a temperature sensor, a humidity
sensor, a turn on/off light device or an irrigation water
flow device in the IoT environment. Additionally, the
CoverageSignalGain attribute allows users to define the
coverage reception capacity (offered by the different
ProcessNodes) of the device.

• A Sensor element extends the EdgeNode element and
defines a set of characteristics such as id or genera-
tion_speed. A Sensor element analyses a specific envi-
ronment issue (temperature, humidity, people presence,
people counter, etc.) and sends these data to be analysed
later. A Sensor element is able to publish on Topic ele-
ments which propagate data throughout the simulation
nodes.

• An Actuator element is a device in the IoT environment
that can execute an action from a set of inputs. For
instance, the inputs could determine that an actuator
turns a light on or off; other Actuators could require data

input to define the light’s luminosity. In order to receive
data, an Actuator element should be subscribed to
topics.

• Topic is a central element in this metamodel because it
defines the information transmitted among any kind of
Node elements. Thus, Topic elements are defined from
CloudNode and FogNode elements and help users to
model a publish-subscribe communication model. Obvi-
ously, the Topic element is a flexible concept to manage
the data interchange.

• Data element defines the simple data type to be gen-
erated (Boolean, short, integer, real, string). It has a
DataSource element tomodel either theDataGeneration
element or LoadFromFile element. The former (Data-
Generation element) models how synthetic data are gen-
erated, for instance, using an aleatory strategy among
two values defined in a GenerationRange element. The
latter (LoadFromFile element) models the path-file that
contains the historic data, for instance, it could be
defined by a CSVload element. In addition, external
tools such as [1], [19] can be linked to increase the
capabilities to offer additional data generation patterns.

• The ProcessNode element defines an IoT node with
process capability. For this, two subtype nodes could
be defined: CloudNode and FogNode. Essentially, both
have the same properties and only differ in their process
capability. Thus, in order to classify the ProcessNode
capacity (the size attribute) related to batteries, CPU,
memories, etc. a set of granularity values have been
defined (XS, S, L, XL and XXL) They make it possible
to define different kinds of nodes. This strategy allows
specifying the ProcessNode element capacity and asso-
ciating specific constraints, for example, in an XS Pro-
cessNode a ProcessesEngine such as a Complex Event
Processing (CEP) engine cannot be deployed. Hence,
granularity labels are used as in a Scrum project devel-
opment [42] to define task complexity. As mentioned,
ProcessNode can define Topic elements, with which can
be referenced by any kind of Node elements. Besides,
the redirectionTime attribute defines the frequency that
stored data are flushed towards the next ProcessNode
element defined by redirect references. The attribute
BrokerType defines the message-oriented broker that
currently is established by Mosquitto. In addition, the
ProcessNode element hides the complexity of how
data should be gathered and processed. For instance,
it defines how data will be stored, published or offered
to be analysed by stream processing engines (SP) or
complex event processing engines (CEP) by defin-
ing Component elements. Note that either the stream
processing or the complex event processing capabili-
ties help to define when an Actuator element should
carry out an action. Finally, the CoverageSignalPower
attribute is used to establish the range of coverage
offered by a ProcessNode for those mobile devices that
want to connect to it.

7804 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 3. SimulateIoT metamodel.

VOLUME 10, 2022 7805

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

• FogNode allows users to describe fog computing
instances [5] which could manage and coordinate sev-
eral devices or Actuators. Thus, this concept focuses
on aggregating data for a limited time or connection
conditions, that are released later on. Furthermore, a
FogNode element can include persistent data storage and
data processing.

• CloudNode extends ProcessNode and allows describing
a special node deployed in a public or private cloud
computing environment.

• The ProcessEngine element should be linked to a Pro-
cessNode, to allow real-time data analysis defining com-
ing from ProcessNode elements or EdgeNode elements.
To do this, defining complex event patterns can be
carried out by Rule elements. These patterns analyse
Topic data in real-time. Usually, a CEP (Complex Event
Processing) engine has a higher process capacity and
lower latency than an ESP (Event Stream Processing)
engine [4], [26].

• Rule elements are linked with the ProcessEngine ele-
ments defined at the ProcessNode element. Rule ele-
ments can be defined using the EPL language defined
for a concrete ProcessEngine kind.

• Notification elements make it possible to throw alerts
by using several notification kinds: TopicNotification or
eMailNotification. Obviously, the notification hierarchy
could be extended in further metamodel versions.

• Route element allows to define the route throughout the
coordinates by which the mobile device must move. For
this purpose, 3 different methods have been included for
their generation 1) Fog/Cloud Route, 2) Linear Route,
3) Random Route. Fog/Cloud Route allows the user to
establish a route from the selection of several Fog/Cloud
nodes so that the mobile device will move sequentially
among the selected nodes. Linear Route allows the user
to define 2 coordinates, in this way the mobile device
will move in a linear way between these coordinates.
Finally, Random Route generates a random route at run
time.

Later on, the SimulateIoT models can be created by
using a Graphical Concrete Syntax (Graphical editor) defined
by using Eugenia [24] from the SimulateIoT metamodel.
Figure 4 shows an excerpt from this graphical editor. It helps
users to improve their productivity allowing not only defining
models conforming to SimulateIoT metamodel but also their
validation using OCL constraints [35].

Once the models have been defined and validated con-
forming to the SimulateIoT metamodel, several artefacts can
be generated using an M2T transformation defined using
Acceleo [40]. The generated software artefacts include an
MQTT messaging broker, device infrastructure, databases,
a graphical analysis platform, a stream processing engine,
a docker container, etc.

IV. USING A MODEL-DRIVEN DEVELOPMENT APPROACH
TO GENERATE IoT APPLICATIONS WHERE FIWARE IS A
TARGET TECHNOLOGY
This section describes how to apply a Model-Driven Devel-
opment approach (based on SimulateIoT) to generate IoT
applications based on FIWARE. For this purpose, the tools
previously described (SimulateIoT and FIWARE) have been
integrated. In this way, an extended version of SimulateIoT
can define IoT environments and carry out M2T transfor-
mations based on the components provided by FIWARE.
That means reusing both SimulateIoTAbstract Syntax (Meta-
model and OCL constraints) and SimulateIoT Concrete
Syntax while the M2T transformations have been improved
and adapted to generate, configure and deploy FIWARE
artefacts. Next, SimulateIoT-FIWARE components and the
SimulateIoT components are compared, identifying the main
FIWARE components that should be integrated, configured
and deployed through the newM2T transformations based on
SimulateIoT-FIWARE components.

A. SimulateIoT VS SimulateIoT-FIWARE
This section shows the differences between SimulateIoT and
SimulateIoT-FIWARE version of SimulateIoT. Below are the
metamodel classes whose components or functions have been
modified after integration with (SimulateIoT-FIWARE).

From the FIWARE point of view, Sensors and Actuators
(see Figure 1-(5 and 6)) are external elements which the
FIWARE architecture is interconnecting. Consequently, the
code generation for several concepts defined on the Simu-
lateIoT models such as Sensors or Actuators among others
do not have direct mapping to FIWARE components as they
are external to FIWARE. Thus, their logic has been updated.

Next, Table 1 compares for each main SimulateIoT
metamodel element (ProcessNode, Component Database
or Component Process Engine) how it is implemented in
both SimulateIoT and SimulateIoT-FIWARE, including the
description of each component.

In addition to the mapping defined in Table 1,
two components have been specifically developed for
SimulateIoT-FIWARE: NotificationMiddleware and Orion-
TopicManager. Besides, as has been previously mentioned,
the Sensors behaviour has been modified.
• Sensors. Sensors have the same components in Sim-
ulateIoT and in the SimulateIoT-FIWARE, however,
in SimulateIoT-FIWARE Sensors publish their data
twice. On the one hand, one of the publications is
directly addressed to Orion Context Broker to enable
it to record the information published by each Sensor
separately, so that the data published by each Sensor
can be consulted independently. On the other hand, the
other publication is addressed to the OrionTopicMan-
ager component which allows Orion Context Broker to
record the data published in a certain Topic. In this way,

7806 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 4. Graphical editor based on the Eclipse to model conforming to the SimulateIoT metamodel.

all the data published in a specified Topic can be con-
sulted independently from the Sensor that published it.
In this way, for instance, the CEP component can apply
rules by Topic and it does not need to collect and consult
the data that each sensor has published in the Topic
where it is going to apply the rules. As for the topology
of Topics concerning the receipt of publications by each
sensor independently, it is as follows: ‘‘/token/Sensor-
Name + SensorId/attrs’’ for instance, when token is
1234 and SensorName and SensorId are parameters pre-
defined in a Sensor element within the IoT Environment
model, we get ‘‘1234/temperaturemeter5/attrs.’’

• NotificationMiddleware. SinceCEP Perseo only sends
its notifications by the HTTP protocol, a middleware is
necessary to act as a bridge between the HTTP protocol
and the MQTT protocol as this is used by the Actuator
elements to receive data or to receive notifications in this
instance. NotificationMiddleware performs the above
actions.

• OrionTopicManager. In SimulateIoT, the rules can
be applied by Topic. However, due to the internal
operation of Orion Context Broker and CEP Perseo,
applying rules by Topic becomesmore complex. To cope
with this complexity, an additional module named Ori-
onTopicManager has been developed, enabling CEP
Perseo to apply its rules by Topic as in SimulateIoT.
It allows reusing the SimulateIoTmetamodel and related
tools.

The Sensors logic,NotificationMiddleware component and
OrionTopicManager component will be generated from the
M2T transformation.

B. KNOWING THE INTERACTIONS OF THE INTERNAL
COMPONENTS IN ORDER TO INTEGRATE
FIWARE ARTEFACTS
In order to deploy the IoT environments of SimulateIoT
on FIWARE, it is necessary to define the relationship and
interaction between components. Thus, this section describes
these relationships or interactions that allow the deployment
of IoT environments on FIWARE.

• IoTAgent-Json and Mosquitto Broker. IoTAgent-
Json needs to receive the messages published in the
Mosquitto’s Topics from sensors to send them to Orion
Context Broker.

• Orion Context Broker and IoTAgent-Json. Orion
Context Broker can receive in NGSI protocol the mes-
sages published by the Sensors because IoTAgent-Json
is able to act as a bridge between Sensors and the Orion
Context Broker.

• Orion Context Broker and MongoDB. Firstly,
MongoDB is a functional dependency of Orion Context
Broker. Thus, Orion Context Broker needs to interact
with MongoDB to manage all the context data and the
devices. Figure 5 shows a sequence diagram illustrating
the interactions described up to this point which includes
IoT-Agent, Sensors, Mosquito, Orion Context Broker
and MongoDB.

• Orion Context Broker and CEP Perseo. CEP Perseo
needs to interact with Orion Context Broker. Specifi-
cally, CEP Perseo subscribes to Orion Context Broker
data and it is able to apply event pattern analysis to them.

• Perseo Core and Perseo-FrontEnd. CEP Perseo is
composed of two components which need to interact

VOLUME 10, 2022 7807

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

TABLE 1. Relationships among the main metamodel elements with the main target components.

with each other. Basically, Perseo Core is the CEP
engine which applies rules to the data and notifies
Perseo-FrontEnd. Perseo-FrontEnd is the component
that gets the data from Orion Context Broker and sends
them to Perseo Core.

• CEP Perseo and MiddlewareNotificationComponent.
CEP Perseo only sends its notifications through the
HTTP protocol, however, in the SimulateIoT code gen-
eration, the Actuators can only receive it through the
MQTT protocol.
MiddlewareNotificationComponent is an additional
component developed that listens to CEP Perseo notifi-
cations and redirects them to Actuators through MQTT.
Figure 6 shows a sequence diagram that illustrates the
interactions described up to this point. Note that in
Figure 6 data start from Orion to Perseo Front-end. The
elements involved in this sequence messages includes
PerseoFrontEnd, Orion, PerseoCore, MiddlewareNoti-
ficationComponent, Mosquito and Actuators elements.

• OrionTopicManager and Orion Context Broker.
In order to ensure the application of rules based on
Topics carried out by CEP Perseo, OrionTopicMan-
ager resends all the messages of a concrete Topic to

Orion Context Broker. Figure 7 shows a sequence dia-
gram illustrating the interactions described up to this
point. The elements involved in this sequence messages
includes Orion Topic Manager, Sensors, Mosquito and
Orion elements.

At this point, the steps needed to integrate FIWARE com-
ponents and SimulateIoT artefacts in order to be successfully
deployed has been explained. Next, the M2T transformation
and the specific IoT environment deployment characteristics
are described.

V. IoT ENVIRONMENT CODE GENERATION
AND DEPLOYMENT
This section describes the main characteristics of the M2T
transformation and deployment phase based on the analyses
about how to integrate FIWARE components and artefacts
defined on a SimulateIoT model (Section IV-B).

A. MODEL-TO-TEXT TRANSFORMATION
Once the models have been defined and validated, an M2T
transformation is able to generate the IoT environments that
have been modelled for a specific technology. Thus, the
generated software includes FIWARE components such as

7808 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 5. Orion Context Broker updated from Sensors by means of the IoT-Agent.

TABLE 2. Available code generation for each different kind of node defined from a SimulateIoT model.

Orion Context Broker, CEP Perseo or IoTAgent, and others
components can also be generated like an MQTT messaging
broker, device infrastructure, databases, a graphical analysis
platform, docker container, a REST API etc. These FIWARE
components can be deployed as a part of Node elements
defined on a SimulateIoT model. In this regard, Table 2 sum-
marises for each Node type the components that can be gen-
erated and deployed including NoSQL database, DataBase
Client, REST API,MQTT Broker,MQTT Client, Orion Con-
text Broker, CEP Perseo, IoTAgent, NotificationMiddleware
or OrionTopicManager. Besides, hardware requirements are
included with each component. These hardware requirements
indicate the minimum hardware power needed to deploy
each component of Cloud, Fog or Edge node. The hardware
power is represented with the following labels: XS, S, M, L,
XL, where XS represents the lowest hardware requirements,
for instance, a RaspBerry Pi, and XL represents the highest
hardware requirements, for instance, a cloud infrastructure.

In addition to these components, the M2T transformation
also generates all the configuration files required to deploy all
the artefacts successfully. These configuration files include:

• The registration in Orion for each device. An excerpt of
the device registry file configuration in Orion Context
Broker can be seen in Appendix B

• The specification of CEP Perseo’s rules. A fragment
of the file to configure CEP Perseo can be seen
in Appendix C.

• The connection of each component with the oth-
ers, which is managed with a docker-compose file.
An example of the docker-compose file is illustrated
in Appendix A.

• The deployment scripts needed to deploy the artefact
generated.

B. IoT ENVIRONMENT DEPLOYMENT ON
FIWARE INFRASTRUCTURE
The Execution phase involves deploying all the artefacts
generated from the models. So, several software artefacts
such as the MQTT messaging broker, device infrastruc-
ture, databases, graphical analysis platform, Orion, Perseo,
IoTAgent, etc. are configured and deployed.

VOLUME 10, 2022 7809

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 6. Managing CEP Perseo notifications to notify the event patterns detected to the Actuators.

FIGURE 7. OrionTopicManager operation and interactions.

It should be noted that, although it is a simulation, the
deployment of the Fog and Cloud layers of the environment is
a real deployment, in other words, the architecture generated
could be implemented in a real IoT environment. However,
the devices of the Edge layer (sensors and actuators) are fully
simulated, interacting with the rest of the layers publishing
data, imposing the pace of the simulation (speed of data
generation), connecting to and disconnecting from different
nodes in the Fog layer (displacement), receiving notifications
processed in the Fog or Cloud layer (actuators), etc.

Figure 2 shows the architecture of a Smart Building
environment where it is possible to observe the different

elements that can be deployed including a CloudNode or
FogNode, Sensors and Actuators. Note that CloudNode
and FogNode are composed of several elements, including
FIWARE elements such asOrion Context Broker,CEPPerseo
or IoTAgent.

Furthermore, each CloudNode/FogNode can define a
Complex Event Processing Engine or, in other words, the
inclusion of CEP Perseo. Besides, it includes Orion Context
Broker, IoTAgent-Json, a Non-SQL database, as MongoDB
is essential due to it being a dependency of Orion Context
Broker, a DataBase Client, a REST API, an MQTT broker
(e.g Mosquitto) and an MQTT Client. Likewise, as can be

7810 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 8. Case 01. The school of technology model conforms to the SimulateIoT metamodel.

observed in Figure 2, all of these elements are intercon-
nected and are deployed on Docker containers. Specifically,
all Docker containers are orchestrated using Docker Swarm.

Finally, along with the device code generated, a deploy-
ment script is included which contains the necessary instruc-
tions for deploying the IoT environments. Algorithm 1

VOLUME 10, 2022 7811

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

Algorithm 1 Deploying an IoT Environment Simulation on
FIWARE Architecture and Microservices

1 begin
2 //Step 1) Compilation and docker wrapping of

the artefacts.
3 while there are components which will have to

be compiled do
4 Compile component
5 if component should be in a docker then
6 Wrap component in a docker
7 endif
8 endwhile
9
10 //Step 2) Pushing of docker images to the

local registry.
11 while there are docker images to push to local

registry do
12 Push image
13 endwhile
14
15 //Step 3) Creating the Swarm Cluster.
16 create manager node ’Environment’
17 foreach fogNode do
18 Create worker node ’fogNode.name’
19 Connect worker node to the manager node
20 endforeach
21
22 //Step 4) Configuration of each Swarm node and

deploy of the FIWARE components on them.
23 foreach worker node do
24 Configure node
25 Deploy FIWARE components from docker-

compose-file
26 configure FIWARE components from

configuration files
27 endforeach
28
29 //Step 5) Pulling of docker images from the

local registry in each Swarm node.
30 foreach worker node do
31 foreach docker image wrapped for this node

in the local registry do
32 Pull image
33 endforeach
34 endforeach
35
36 //Step 6) Deployment of the docker components

as services from the manager node of the
Swarm cluster.

37 Connect to the swarm manager node
38 foreach worker node do
39 foreach pulled docker image in the worker

node do
40 Deploy docker as service
41 endforeach
42 endforeach
43 end

shows the deployment phase of an IoT environment
on FIWARE.

VI. CASE STUDIES
Next, two case studies have been defined using SimulateIoT.
The first one defines an IoT simulation for a a smart build-
ing while the second one defines an IoT simulation for an
agricultural environment. Note that these two cases are the
same as the ones modelled in [3]. Thus demonstrating that

the proposal presented in this paper can deploy these same
environments with SimulateIoT-FIWARE on the FIWARE
platform, without the need to know any technical aspects
about it.

A. CASE 01. SCHOOL OF TECHNOLOGY
The first case study presents the simulation of a smart build-
ing, more specifically, we have modelled our School of
Technologies. It has six buildings (Computer Science, Civil
Works, Architecture, Communications, Research and a Com-
mon Building). So, each building has its own environment
with a set of Sensors, Actuators and analysis information
processes.

1) CASE 01. MODEL DEFINITION
Figure 8 shows an excerpt from the School of Technology
model. The IoT system modelled includes several Node ele-
ments shared throughout the different buildings. Each build-
ing takes over its own ProcessNode (Figure 8 references 1.1,
1.2 and 2) which gathers all the information produced by the
Sensors (Figure 8 references 3.1 and 3.2). Thus, these data
are suitably stored on specific databases (Figure 8 references
6.1 and 6.2), analysed and monitored by the ProcessNode
element. In this case study, a FogNode element has been
defined for each building. For instance,Common_Building or
Computer_Science have defined FogNode elements (Figure 8
references 1.1 and 1.2).

Furthermore, a CloudNode named SchoolTechnology-
CloudNode (Figure 8 reference 2) is defined to store informa-
tion gathered from the FogNode elements. Both FogNode and
CloudNode elements define several Topic elements (Figure
8 references 5.1, 5.2 and 5.3) such as heating_temperature,
presence and smoke_detection. These Topic elements com-
municate data among the Node elements defined in the IoT
system.

In order to model the School of Technology case study,
several Sensors such as heating_temperature_meter, pres-
ence_detector, smoke_detector and so on have been defined
in Figure 8. Each of them publishes its own data on a specific
Topic element. As can be observed in Figure 8, the Sen-
sor elements publish data to several FogNode through Topic
elements.

Note that Sensor elements are EdgeNode elements that
generate data, so the data pattern generators should be defined
(Figure 8 references 4.1 and 4.2). For instance, in order to
describe the synthetic data generated by a temperature sensor
a .csv input file has been defined. It makes it possible to reuse
historical data. Other Sensors can define their synthetic data
generators using a random pattern, incremental pattern, etc.
So, the approach can consume synthetic data based on simple
data, range data, a specific set of values, the values obtained
from a .csv file, data obtained from a URL source or data
generated from the external tools such as [1], [19].

As mentioned, in Figure 8 each FogNode has its
own characteristics about how data should be managed
including storing, analysing or addressing. For instance,

7812 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

the ComputerScience FogNode element addresses the infor-
mation every thirty seconds, storing the data obtained in a
specificNoSQL database. Then all data are flushed to the next
node FogNode or CloudNode defined in the architecture and
named in the example SchoolTechnologyCloudNode.

On the other hand, the Common_Building FogNode ele-
ment defines a different behaviour in order to analyse the
data and take advantage of being close to the devices
that should carry out some action. For instance, the Com-
mon_Building FogNode defines a CEP engine component
and severalRule elements (Figure 8 reference 7), for example,
the rule_heating analyses the data obtained from a specific
Topic named heating_temperature to notify a specific action
to another Topic named turn_on_heating which is subscribed
by a specific Actuator named heating (Figure 8 reference
3.3. Thus, the rule_heating rule analyses the temperature
sent to the heating_temperature Topic element from the heat-
ing_temperature_meter Sensor. Consequently, it is gathered
and analysed by CEP Engine by means of the rule_heating
Rule. As a consequence, when the defined pattern is matched
(for instance, if (temperature < 20) then switch on heating),
the CEP engine generates an event to turn_on_off_heating
Topic.

2) CASE 01. CODE GENERATION AND DEPLOYMENT
Once the model has been defined, the M2T transformation
is applied with the following goals: i) to generate Java code
that wraps each device behaviour; ii) to generate configura-
tion code to deploy based on FIWARE components. These
files include the code necessary to register all devices in
Orion Context Broker and the code required to define all
rules in CEP Perseo. iii) to generate configuration code to
deploy the message brokers necessary (and connect them
with FIWARE), including the topic configurations defined;
iv) to generate for each ProcessNode and EdgeNode aDocker
container which can be deployed throughout a network of
nodes using Docker Swarm v) to generate the Swarm cluster
to deploy the simulation in orchestrated mode.

Figure 9 shows a simplified excerpt from the School of
Technology IoT model deployed (full version available in
Figure 12) and it includes the following: Each Node has
been deployed on a Docker container using Docker Swarm
technology. Each Docker container instance deploys the
characteristics defined on the IoT model, including: where
the nodes are deployed, and what the components included
in each ProcessNode are. Thus, each EdgeNode and Pro-
cessNode element carries out its own functions such as send-
ing messages, processing and storing messages, acting from
messages, etc.

Additionally, the code generated can be reused on the final
system deployed. For instance, the EdgeNode elements can
be replaced by physical devices (both Sensors andActuators),
and the Process Node can be deployed as Docker containers
either on-premise or on the cloud. Not only is the simulation
code generated, but also the final IoT system code is partially
generated.

Finally, executing the simulation modelled and later on
deploying it, makes it possible to analyse the final IoT
environment before it is implemented and deployed. The
analysis that can be carried out is fundamentally based on
the log behaviour of each node within the simulation. This
log behaviour includes parameters such as: i) Each com-
ponent performs its functions successfully, such as pub-
lishing, receiving, analysing, redirecting data, etc. ii) The
resources used by each component, such as CPU or Memory
usage iii) The general function of the IoT architecture mod-
elled, in other words, if the IoT environment is satisfying
the user needs or requirements iv) The evolution of the
above-mentioned parameters over time.

In this sense, users using the simulation logs, could evalu-
ate the behaviour of the environment by exposing it to differ-
ent levels of stress by experimenting with different number
of devices, size of published messages, publication periods,
etc. and study parameters such as a) jitter between messages,
checking in mongodb the timestamps of the messages of
a sensor, b) response delay of a particular component, for
instance, checking the CEP engine logs it can be seen when
a rule is met and when the notification is sent to the actuator,
c) packet loss rate, checking the difference of number mes-
sages between the messages published by a sensor (sensor
logs) and the messages stored in MongoDB from that
sensor, etc.

In short, users can carry out different experiments by cre-
ating different models and simulating them, thus determining
which aspects can be improved until the version that meets
his requirements is achieved.

B. CASE 02. AGRICULTURAL ENVIRONMENT
This case study focuses on designing an IoT system for man-
aging irrigation and weather data to improve crop production.
So, the case study has been designed to simulate the Sensors
and Actuators distributed over the countryside which can be
monitored in real-time. Nowadays, the agricultural domain
has several requirements [49], [50]: i) Collection of weather,
crop and soil information; ii) Monitoring of distributed land;
iii) Multiple crops on a single piece of land; iv) Differ-
ent fertiliser and water requirements for different pieces of
uneven land; v) Diverse requirements of crops for different
weather and soil conditions; vi) Proactive solutions rather
than reactive solutions.

For instance, Sensors such as temperature Sensors, humid-
ity Sensors, irrigation Sensors, PH Sensors and Actuators
such as irrigation artefacts help to monitor and save water,
optimising crop production.

This agricultural IoT environment has been designed over
ten hectares of soil where tomatoes are being cultivated. So,
for each hectare, a set of Sensors and fog nodes has been
shared. So, using fog nodes decreases the communication
requirements among them.

The sensor network is built by temperature, humidity,
irrigation and water pressure Sensors. These Sensors send
data to a specific Topic element linked to a FogNode

VOLUME 10, 2022 7813

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 9. Case 01. Deployment of the school of technology IoT model (Simplified version, full version available in
Figure 12).

element which is gathering data and re-sending them if
needed.

In addition, the irrigation Actuators have been defined
for controlling irrigation water. The notification events from
the FogNode elements are sent to Actuator elements using
messages by Topic elements.

1) CASE 02. MODEL DEFINITION
In Figure 10 an excerpt from an IoT model conform-
ing to the SimulateIoT-FIWARE metamodel is defined.
It shows different Sensor elements such as (ph_H1, tem-
perature_H1, Humidity_H1, etc.) which generate data for
simulation (Figure 10 references 3.1 and 3.2). Moreover,
several Fog computing nodes have been defined, although
in Figure 10 (for the sake of simplicity) only two FogN-
ode elements are shown (Figure 10 references 1.1 and 1.2).
They define several Topics such as Humidity, Temperature,
pH, Water_pressure, etc (Figure 10 references 5.1 and 5.2).
In addition, each FogNode element defines a CEP engine
by means of Perseo elements (Figure 10 references 7.1 and
7.2). Besides, several Rule elements (event pattern defini-
tions) such as rule_Humidity or rule_pH have been defined
to analyse the data gathered from Topic elements in real-
time. Likewise, when an event pattern is matched, a Notifi-
cation element such as Low_pH, High_pH, Low_Humidity,

High_Humidity and so on is thrown. For instance, the Actua-
tor element named Irrigator (Figure 10 references 3.1) is acti-
vated when the Notification element named Low_Humidity is
thrown.

2) CASE 02. CODE GENERATION AND DEPLOYMENT
Once the model has been completed and validated, an M2T
transformation is carried out obtaining the simulation code,
which can be deployed on a specific platform, specifically
using FIWARE components.

Thus, in order to define a scalable IoT environment, each
deployable element (EdgeNode, CloudNode, FogNode, Actu-
ators and ProcessEngine) is defined as a microservice, wrap-
ping each Node element in a Docker container. It is worthy
of mention that one component could have a complex archi-
tecture and be defined in several microservices. In conse-
quence, these kinds of components will be wrapped in several
Docker containers (each defined microservice in a container,
as for example in the case of FogNode and CloudNode com-
ponents). Figure 11 shows a simplified excerpt from the
case study deployment architecture (full version available
in Figure 13). In Figure 11 the main characteristics of
each node can be observed. For instance, each ProcessNode
defines anOrion Context Brokerwith itsMongoDB database,
an IoTAgent, a Mosquitto MQTT message broker and a CEP

7814 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 10. Case 02. AgroTech model conforming to the SimulateIoT metamodel.

Perseo engine. In addition, the Rule elements defined are
processed through the CEP Perseo engine defined.

Each ProcessNode element deployed on a Docker con-
tainer has its own characteristics:
• CloudNode, named AgroTe_CloudNode, is composed of
anOrion Context Brokerwith itsMongoDB [30], an IoT
Agent and a message-driven broker like Mosquitto (that
implements anMQTT communication protocol). More-
over, the CloudNode deploys a Compass instance [7] to
monitor the data gathered.

• Each FogNode namedHectare_1 andHectare_2 respec-
tively, is composed of an Orion Context Broker
with its MongoDB [30], an IoT Agent, a message-
driven broker likeMosquitto (that implements anMQTT

communication protocol) and a Perseo engine. Mon-
goDB stores the temporal data gathered by the FogN-
ode instance. Currently, the main difference between a
CloudNode and FogNode is the processing capability.
Using the size attribute at the FogNode element makes
it possible to define the process capabilities. Conse-
quently, both CloudNode elements and FogNode ele-
ments are deployed as Docker containers on hardware
nodes such as PC, VM or Raspberry Pi.

• The CEP characteristic defined at ProcessNode deploys
a complex event processor to process high amounts
of messages in real-time. As can be observed in
Figure 11 a CEP Perseo engine is deployed on each
FogNode. Later on, each CEP Perseo engine analyses

VOLUME 10, 2022 7815

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 11. Case 02. Agrotech deployment architecture (Simplified version, full version available in Figure 13).

the incoming events by the Rule elements associated
with it.

• The EdgeNode elements including Sensors and Actu-
ators defined in the model are suitably deployed in
Docker containers.

Later on, the execution information can be audited query-
ing the MongoDB database or using the monitoring tool
available on each ProcessNode. Moreover, each Docker is
generating log information during the IoT execution. Finally,
the nodes deployed are accessible from a dashboard tool that
gathers the available endpoints of each element, for example,
to query aMongoDB database or to show information about a
Mosquitto broker. In the above-mentioned ways, it is possible
to perform the analysis of the environment mentioned at the
end of Section VI-A.

VII. DISCUSSION
Model-driven development can be used to model complex
IoT environments using domain concepts. They need not be
tied to a specific technology, but rather an M2T transforma-
tion makes it possible to generate the code needed to deploy
and simulate the systems.

The technology used as a target, such as FIWARE, micro-
services (Thorntail), containers (Dockers), message-oriented
middleware, MQTT (Mosquitto) or a container orchestrator
(Docker Swarm) can be quickly replaced by other suitable
technology if needed. Of course, to change the target tech-
nology, an M2T transformation should be implemented.

For the reasons mentioned above, it has been considered
to give FIWARE an added value through integration with
SimulateIoT. The result of this integration is SimulateIoT-
FIWARE, which is able tomodel and generate an IoT environ-
ment with FIWARE artefacts. In short, SimulateIoT-FIWARE,
the resulting tool from the integration of FIWARE and Sim-
ulateIoT based on Model-Driven development, define an
abstraction layer that allows the use of FIWARE artefacts
without the need to know how these components work inter-
nally, that is, how they interact with each other and with the
other components of an environment, how their deployment
is configured, how they are configured to work in the environ-
ment, etc. with the final purpose of generating and deploying
an IoT environment powered by FIWARE.
Finally, the target users could be both: a) professional users

and b) students. Professional users could use the methodol-
ogy and tools presented in this work to define and analyse
complex IoT environments where finally heterogeneous tech-
nology is used, even though the core comprises components
provided by FIWARE. Besides, our approach can be used for
teaching purposes because it makes it possible for students
to learn about IoT concepts and relationships. In addition,
they can deploy the IoT simulation, and study the code gen-
erated to learn the technology used to deploy the IoT system.
Thus, they can understand IoT cutting-edge technology such
as FIWARE, edge technology and integration patterns such
as data patterns, IoT characteristics, publish-subscribe com-
munication protocols, MQTT, containers, NoSQL databases,
distributed systems and so on.

7816 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

A. LIMITATIONS
Although the domain-specific language and tools presented
offer a wide expressiveness, they have several limitations to
take into account:
• The Edge Nodes can be defined as mobile nodes by
using several approaches (FogCloudRoute, LinearRoute
and RandomRoute). However, IoT mobility is a wide
and interesting research area where multiples protocols
and mobility mechanisms could be additionally defined.

• For the sake of simplicity, the current version of our
simulator IoT environment for FIWARE allows defining
connected nodes by TCP/IP, and it is assumed that con-
nectivity is guaranteed.

• It is possible to simulate IoT environments defined
using a high-level domain-specific language. However,
the hardware simulation is only managed by the size
attribute at ProcessNode which implies several con-
straints to avoid creating specific software elements (see
Table 2). Obviously, it could be considered a simplistic
approach to tackle this complex problem, but in the end,
it helps users to model the IoT environments taking
hardware restrictions into account.

VIII. RELATED WORK
At this point, several Model-Driven Development approaches
have been defined to manage IoT complexity, however, there
are noMDD approaches focused on generating code for well-
know or global IoT platforms such as FIWARE. Next, addi-
tionalMDD approaches related to IoT environment definition
are analysed. Next, the main Model-Driven approaches to
generate IoT systems are reviewed.
FRASAD [33] is a model-driven software development

framework to manage the complexity of the Internet of
Things (IoT) applications. FRASAD is based on node-centric
software architecture and a rule-based programming model
that allows designers to describe their applications (IoT envi-
ronments).

An application within FRASAD could include several sen-
sors with multiple characteristics. For instance, some sensors
could publish temperature, others could receive it and, if rules
are specified, the centric-node will apply the rules to this tem-
perature data and from the result of the analysis, modify the
behaviour of the sensors.It is worthy of mention that, regard-
less of the characteristics chosen, within FRASAD all devices
are sensors, there is not a hierarchy of devices. In addition,
each sensor could have multiple inputs and outputs. Although
FRASAD provides multiple options to model sensors, users
cannot choose the target technology, for example, to apply
rules, to communicate each sensor (communication proto-
col), to store data, etc.
MDE4IoT [6] is a Model Driven Engineering [41]

approach that allows the modelling of IoT components and
supports intelligence as self-adaptation of Emerging Config-
urations in the IoT.WithinMDE4IoT they call Emergent Con-
figuration (EC) of connected systems a set of things/devices

with their functionalities and services that connect and coop-
erate temporarily to achieve a goal. In short,MDE4IoT allows
users to define an IoT environment that is able to adapt the
behaviour of its devices at run-time. For instance, MDE4IoT
could define and generate an IoT environment where several
inter-connected Smart-Lamps adapt their behaviour (light
colour, brightness, etc.) depending on the traffic flow or
other environmental data such as car speed, the distance
between cars, natural light, etc. MDE4IoT allows users to
define hardware and software characteristics of a device,
being able to define a sensor, an actuator or another kind of
device, of course, each with its own characteristics. However,
MDE4IoT does not allow users to choose the technology
they want to use, for instance, the users cannot choose the
database, the rule engine (to manage the EC), the communi-
cation protocol, etc. On the other hand, MDE4IoT generates
the code to be implemented in the physical devices of the
environment, not allowing a simulation of it. Additionally, a
global target such as FIWARE is not available.

Another approach such as [38] proposes a model-driven
software development framework that allows users to model
IoT environments with several types of devices with many
modelling features. It proposes that the stakeholders could
add features to the framework. These stakeholders are: 1) The
sensor Manufacturer/sensor Provider, who could add device
features such as device drivers, data models or device inter-
faces, 2) The Algorithm expert/Algorithm developer who
defines algorithm features as CPU/Memory requirements,
performance or accuracy, 3) The Domain Expert who man-
ages themodel requirements or themapping of the algorithms
to the sensors and 4) The System Administrator who could
add features such as CPU/Memory availability or the calcu-
lations of the network characteristics through devices and the
cloud. In this way, these four stakeholders could develop a
powerful framework to generate IoT environments, however,
although the abstraction layer to develop IoT environments
has been incremented with this framework, the user needs
to know several concepts about the domain of these four
stakeholders. For instance, this framework incorporates many
algorithms that can be added to devices, in this way, the user
does not need to know how to implement the algorithms, but
they need to know how they work because several algorithms
could do the same thing in different ways, and the user needs
to know which one best fits their needs and requirements.
The above-mentioned example can be extrapolated to the
other features which could be modelled with this framework.
In short, due to the low abstraction layer that this framework
provides, the users need to be experts in the IoT and all
the concepts around it, such as the hardware used, algo-
rithms or the IoT domain. In [38] an initial prototype had
been developed to cover some of the aforementioned aspects.
In addition, the IoT applications defined using this framework
are deployed using their own implementation. Consequently,
they do not use a global IoT architecture such as FIWARE as
a target.

VOLUME 10, 2022 7817

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 12. Case 01. Deployment of the school of technology IoT model (Full version, simplified version available in
Figure 9).

Fog computing is proposed to solve the latency problems
of the services offers by the Cloud. Nevertheless, to realise
the full potential of Fog and IoT paradigms, it is neces-
sary to design resource management techniques that deter-
mine which modules of analytics applications are pushed to
each edge device to minimize the latency and maximse the
throughput [18].

In [18] iFogSim an IoT simulator is proposed that enables
the quantification of the performance of resource manage-
ment policies on an IoT or Fog computing infrastructure in a
repeatable manner. This simulator can measure performance
in four different areas: latency, network congestion, energy
consumption, and cost.
iFogSim allows users to model an IoT environment with

several nodes such as Sensors, Actuators, Fog devices, etc.
with different nodes or environmental properties such as
1) Hardware characteristics: accessible memory, processor,
storage size, uplink, and downlink bandwidths, 2) Network
characteristics: connectivity among devices, latency, network

congestion, etc. 3) Data characteristics: Data flow, type of
data, etc. among other devices or environment properties.
iFogSim is a simulator that, because of the great capacity

of expression that it possesses, can simulate very similar
environments to a real one. In consequence, the users that
employ this tool need to skillfully manage a lot of concepts
about IoT, Networking, Fog and Cloud paradigms, etc. Due
to the above-mentioned aspect, this tool is recommended for
expert users, and may not be the best option to some purposes
or targets such as education, novel users in IoT or engineering,
small IoT environments such as a domotic house, or IoT
environments that do not need to use Fog computing.
MobIoTSim [39] is an Android IoT simulator which aims to

help Cloud application developers to create IoT environments
with several devices without buying real sensors. In this way,
MobIoTSim allows the simulation of IoT environments where
developers can learn, test and demonstrate IoT applications,
which works with IoT Cloud providers such as Bluemix [21]
or Google IoT Platform, in a fast and efficient way.

7818 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 13. Case 02. Agrotech deployment architecture (Full version, simplified version available in Figure 11).

MobIoTSim allows, from anAndroid device, the configura-
tion of several IoT Cloud gateways to allow connection with
the devices. Add, edit or delete devices that sends (MQTT
and JSON) random data in a range defined by the user with a
frequency. In addition, devices can receive data, for instance,
in [39] Bluemix is configured to send warning notifications
to devices if it detects critical values. Besides, MobIoTSim
provides the display of the data published by the simulated
devices.

In [32], the authors make an in-depth analysis of the
state of the art of deployment and orchestration in IoT
environments. Additionally, the authors have developed a
taxonomy of DEPO4IOT to classify, analyse, and compare

the studies. This taxonomy takes into account factors such
as the deployment and orchestration support, design support
and other advanced supports. Our proposal takes into account
the importance of deployment and orchestration of the IoT
environment, including the possibility of deploying them
in Docker containers and orchestrating them using Docker
Swarm, also generating a deployment script from the models
defined by the users, where all the necessary parameters are
automatically configured to carry out a reliable deployment.

The expressiveness of SimulateIoT Domain Specific
Language determines the expressive capacity of SimulateIoT-
Fiware. Therefore, simulation of specific aspects of particular
IoT environments require developing an ad-hoc extension.

VOLUME 10, 2022 7819

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

So, SimulateIoTFiware requires additional changes to model
IoT environments focus on particular aspects such as : a) Thi-
nORAM [20], a lightweight client-side ORAM system that
substantially improves response time and network usage
respect the existing ORAM systems in literature; b) The
approach conducted in [34], a descentralised Blockchain-
based architecture to manage the roles and permissions of
the IoT devices of an IoT environment; c) ProfilIoT [28],
a machine learning approach that, from the traffic generated
by a device on the network, is able to determine whether it is
an IoT device (and what kind of IoT device it is) or not.

Although SimulateIoTFiware requires additional changes
to model an IoT environment with ThinORAM [34] or Pro-
filIoT [28], it has the expressive capability to model the IoT
architecture of FIWARE-based Edge, Fog and Cloud nodes.

To sum up, although there are several approaches focused
on rising the abstraction level from the IoT applications that
can be developed, there is a lack of approaches to carry out
this process using a global IoT infrastructure as the target. The
present proposal is tailored to FIWARE technology, allowing
modelling large IoT projects which can be deployed later on
using this IoT platform.

IX. CONCLUSION
Model-driven development techniques are a suitable way to
tackle the complexity of domains integrating heterogeneous
technologies. Initially, they focus on modelling the domain,
then, by using M2T transformations, the code for specific
technology could be generated. SimulateIoT takes advantage
of this technology to allow the modelling and the generation
of IoT environments.

Moreover, FIWARE has a large catalogue with several
components oriented to the IoTwhich allow the development
of complex IoT architectures. Besides, FIWARE is a popular
open-source project,and as a consequence, FIWARE has great
support and its components are highly tested.

Both technologies (SimulateIoT and FIWARE) have been
integrated. In this way, the resulting tool allows users to
define and validate models conforming to the SimulateIoT
metamodel. Then, an M2T transformation makes it possible
to generate the FIWARE components needed to deploy the
IoT Simulation defined.

Future projects include new concepts taking into account
the FIWARE catalogue. For instance, components such as
Cosmos, which enables an easier BigData analysis, FogFlow,
to support dynamic processing flows over cloud and edges,
or Knowage, which brings a powerful Business Intelligence
platform enabling users to perform business analytics over
traditional sources and big data systems. Other interesting
further work includes the improvement of the SimulateIoT
components which cannot be replaced by FIWARE, for
instance, the Sensors, which could be improved by defining
and generating new kinds of data generation patterns. Finally,
it is expected to explore the code generation to other IoT plat-
forms such as Google Cloud’s IoT Platform [17], Microsoft

Azure IoT suite [23], ThingSpeak IoT Platform [47] or Thing-
worx 8 IoT Platform [48].

APPENDIX A

orion:
image: FIWARE/orion:2.0.0
hostname: orion
container_name: FIWARE-orion
depends_on:

- mongo-db
expose:

- "1026"
ports:

- "8082:1026"
....

iot-agent:
image: FIWARE/iotagent-json
hostname: iot-agent
container_name: FIWARE-iot-agent
depends_on:

- mongo-db
- Mosquitto

expose:
- "4041"

ports:
- "4041:4041"

environment:
- IOTA_CB_HOST=orion
- IOTA_CB_PORT=1026
- IOTA_NORTH_PORT=4041
- IOTA_REGISTRY_TYPE=mongodb
- IOTA_MONGO_HOST=mongo-db
- IOTA_MONGO_PORT=27017
- IOTA_MONGO_DB=iotagent-json
- IOTA_MQTT_HOST=mosquitto
- IOTA_MQTT_PORT=1883
- IOTA_PROVIDER_URL=
http://iot-agent:4041

....
mongo-db:
image: mongo:3.6
hostname: mongo-db
container_name: db-mongo
expose:

- "27017"
ports:

- "27017:27017"
\ldots.

perseo-core:
image: FIWARE/perseo-core
environment:

- PERSEO_FE_URL=http://perseo-fe:9090
- MAX_AGE=6000

depends_on:
- mongo-db

environment:
- PERSEO_FE_URL=http://perseo-fe:9090
- MAX_AGE=6000

....
perseo-fe:
image: FIWARE/perseo
ports:

- 9090:9090
depends_on:

- perseo-core
environment:

- PERSEO_MONGO_ENDPOINT=mongo-db
- PERSEO_CORE_URL=
http://perseo-core:8080
- PERSEO_LOG_LEVEL=debug
- PERSEO_ORION_URL=http://orion:1026/

....

7820 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

Mosquitto:
image: eclipse-mosquitto
hostname: Mosquitto
container_name: Mosquitto
expose:
- "1883"
- "9001"

ports:
- "1883:1883"
- "9001:9001"

....

APPENDIX B
CODE FRAGMENT TO CONFIGURE ORION

curl -iX POST \
’http://localhost:4041/iot/devices’ \
-H ’Content-Type: application/json’ \
-H ’FIWARE-service: openiot’ \
-H ’FIWARE-servicepath: /’ \
-d ’{

"devices": [
{

"device_id": "
Sensor_Heating_Temperature_meter_5",
"entity_name":
"urn:ngsi-ld:Sensor_Heating_Temperature_meter
:5",
"entity_type": "
Sensor_Heating_Temperature_meter",
"protocol": "JSON",
"transport": "MQTT",
"timezone": "Europe/Berlin",
"attributes": [
{ "object_id": "v", "name": "value",
"type": "Integer" }

],
"static_attributes": [
{ "name":"name", "type":
"String", "value": "

Sensor_Heating_Temperature_meter"}
]

}
]

}’

APPENDIX C
CODE FRAGMENT TO CONFIGURE PERSEO

curl -iX POST ’http://localhost:9090/rules’ -H ’
FIWARE-service: openiot’ -H ’FIWARE-
servicepath: /’ -H ’Content-Type: application
/json’ -d ’{

"name": "rule0_sensor_heating_temperature_meter
",

"text":"select *,\"
rule0_sensor_heating_temperature_meter\" as

ruleName from pattern [everyev=iotEvent
(cast(cast(value?,String),float)>25 and
id=\"urn:ngsi-ld:Topic_heatingtemperature:0\")

]",
"action": {

"type": "post",
"template": "{\"value\":\${value}}",
"parameters": {

"url": "
http://mncsecciontecnologia2
:5150/heating_0",
"headers": {

"Content-type":
"application/json"

}
}

}
}’

APPENDIX D
COMPLETE USE CASE DEPLOYMENT ARCHITECTURE
See Figures 11 and 12.

REFERENCES
[1] J. W. Anderson, K. E. Kennedy, L. B. Ngo, A. Luckow, and A. W. Apon,

‘‘Synthetic data generation for the Internet of Things,’’ in Proc. IEEE Int.
Conf. Big Data (Big Data), Oct. 2014, pp. 171–176.

[2] C. Atkinson and T. Kühne, ‘‘Model-driven development: A metamodeling
foundation,’’ IEEE Softw., vol. 20, no. 5, pp. 36–41, Sep. 2003.

[3] J. A. Barriga, P. J. Clemente, E. Sosa-Sanchez, and A. E. Prieto, ‘‘Simu-
lateIoT: Domain specific language to design, code generation and execute
IoT simulation environments,’’ IEEE Access, vol. 9, pp. 92531–92552,
2021.

[4] T. Bass, ‘‘Mythbusters: Event stream processing versus complex event pro-
cessing,’’ in Proc. Inaugural Int. Conf. Distrib. Event-Based Syst. (DEBS),
2007, p. 1.

[5] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011.

[6] F. Ciccozzi and R. Spalazzese, ‘‘Mde4iot: Supporting the Internet of
Things with model-driven engineering,’’ in Proc. Int. Symp. Intell. Distrib.
Comput. Cham, Switzerland: Springer, 2016, pp. 67–76.

[7] (2018). MongoDB Compass. [Online]. Available: https://www.mongodb.
com/products/compass

[8] G. Cugola and A. Margara, ‘‘Processing flows of information: From data
stream to complex event processing,’’ ACM Comput. Surv., vol. 44, no. 3,
pp. 1–62, 2012.

[9] EsperTech. (Nov. 2016). Esper Cep. [Online]. Available:
https://www.espertech.com/esper/

[10] Fiware. (2019). Orion Context Broker. [Online]. Available: https://fiware-
orion.readthedocs.io/en/master/#welcome-to-orion-context-broker

[11] Fiware. (2019). Perseo Architecture. [Online]. Available: https://perseo.
readthedocs.io/en/latest/architecture/architecture/

[12] Fiware. (2019). Perseo Context-Aware Cep. [Online]. Available:
https://perseo.readthedocs.io/en/latest/#perseo-context-aware-cep

[13] FIWARE. (2021). Fiware. [Online]. Available: https://www.fiware.org/
about-us/

[14] Fiware. (2021). Ngsi Protocol. [Online]. Available: https://knowage.
readthedocs.io/en/6.1.1/user/NGSI/README/index.html

[15] E. Fotopoulou, A. Zafeiropoulos, F. Terroso-Sáenz, U. Şimşek,
A. González-Vidal, G. Tsiolis, P. Gouvas, P. Liapis, A. Fensel, and
A. Skarmeta, ‘‘Providing personalized energy management and awareness
services for energy efficiency in smart buildings,’’ Sensors, vol. 17, no. 9,
p. 2054, Sep. 2017.

[16] M. García, ‘‘New businesses around open data, smart cities and fiware,’’
Eur. Public Sector Inf. Platform, Tech. Rep. 4, 2015. [Online]. Available:
https://data.europa.eu/sites/default/files/report/2015_new_businesses_
around_open_data_smart_cities_and_fiware.pdf

[17] Google. (2017). Google Cloud IoT. [Online]. Available:
https://cloud.google.com/solutions/iot/

[18] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments,’’ Softw., Pract.
Exper., vol. 47, no. 9, pp. 1275–1296, 2017.

[19] L. Gutiérrez-Madroñal, I. Medina-Bulo, and J. J. Domínguez-Jiménez,
‘‘IoT–TEG: Test event generator system,’’ J. Syst. Softw., vol. 137,
pp. 784–803, Mar. 2018.

[20] Y. Huang, B. Li, Z. Liu, J. Li, S.-M. Yiu, T. Baker, and B. B. Gupta,
‘‘ThinORAM: Towards practical oblivious data access in fog computing
environment,’’ IEEE Trans. Services Comput., vol. 13, no. 4, pp. 602–612,
Jul. 2020.

[21] IBM. (2014). IBM Cloud. [Online]. Available: https://www.ibm.
com/cloud/bluemix/

[22] J. Han, E. Haihong, G. Le, and J. Du, ‘‘Survey on NoSQL database,’’
in Proc. 6th Int. Conf. Pervasive Comput. Appl. (ICPCA), Oct. 2011,
pp. 363–366.

VOLUME 10, 2022 7821

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

[23] S. Klein, IoT Solutions Microsoft’s Azure IoT Suite. New York, NY,
USA: Springer, 2017.

[24] D. S. Kolovos, A. García-Domínguez, L. M. Rose, and R. F. Paige,
‘‘Eugenia: Towards disciplined and automated development of GMF-based
graphical model editors,’’ Softw. Syst. Model., vol. 16, pp. 1–27, Feb. 2015.

[25] J. A. López-Riquelme, N. Pavón-Pulido, H. Navarro-Hellín, F. Soto-Valles,
and R. Torres-Sánchez, ‘‘A software architecture based on FIWARE cloud
for precision agriculture,’’Agricult. WaterManage., vol. 183, pp. 123–135,
Mar. 2017.

[26] Arun Mathew., ‘‘Benchmarking of complex event processing engine-
esper,’’ Dept. Comput. Sci. Eng., Indian Inst. Technol. Bombay,
Maharashtra, India, Tech. Rep. IITB/CSE/2014/April/61, 2014.

[27] Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran, and S. Guizani,
‘‘Internet-of-Things-based smart cities: Recent advances and challenges,’’
IEEE Commun. Mag., vol. 55, no. 9, pp. 16–24, Sep. 2017.

[28] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa,
N. O. Tippenhauer, and Y. Elovici, ‘‘ProfilIoT: A machine learning
approach for IoT device identification based on network traffic analysis,’’
in Proc. Symp. Appl. Comput., Apr. 2017, pp. 506–509.

[29] Meta Object Facility (MOF) Core Specification Version 2.5.1, Meta Object
Facility, Milford, MA, USA, Nov. 2016.

[30] MongoDB. (2018). Mongodb is a Document Database. [Online]. Avail-
able: https://www.mongodb.com/

[31] Mosquitto. (2018). Eclipse Mosquitto: An Open Source MQTT Broker.
[Online]. Available: https://mosquitto.org/

[32] P. Nguyen, N. Ferry, G. Erdogan, H. Song, S. Lavirotte, J.-Y. Tigli, and
A. Solberg, ‘‘Advances in deployment and orchestration approaches for
IoT—A systematic review,’’ in Proc. IEEE Int. Congr. Internet Things
(ICIOT), Jul. 2019, pp. 53–60.

[33] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, ‘‘FRASAD: A frame-
work for model-driven IoT application development,’’ in Proc. IEEE 2nd
World Forum Internet Things (WF-IoT), Dec. 2015, pp. 387–392.

[34] O. Novo, ‘‘Blockchain meets IoT: An architecture for scalable access
management in IoT,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 1184–1195,
Apr. 2018.

[35] OMG Object Constraint Language (OCL), Version 2.3.1, OMG, Milford,
MA, USA, Jan. 2012.

[36] J. Opara-Martins, R. Sahandi, and F. Tian, ‘‘Critical review of vendor lock-
in and its impact on adoption of cloud computing,’’ in Proc. Int. Conf. Inf.
Soc. (i-Society), Nov. 2014, pp. 92–97.

[37] Oracle. (2019). CEP EPL Language Reference. [Online]. Available:
https://docs.oracle.com/cd/E12839_01/apirefs.1111/e14304/toc.htm

[38] A. Pal, A. Mukherjee, and P. Balamuralidhar, ‘‘Model-driven develop-
ment for Internet of Things: Towards easing the concerns of applica-
tion developers,’’ in Internet Things. User-Centric IoT, R. Giaffreda,
R.-L. Vieriu, E. Pasher, G. Bendersky, A. J. Jara, J. J.P.C. Rodrigues,
E. Dekel, B. Mandler, Eds. Cham, Switzerland: Springer, 2015,
pp. 339–346.

[39] T. Pflanzner, A. Kertesz, B. Spinnewyn, and S. Latre, ‘‘MobIoTSim:
Towards a mobile IoT device simulator,’’ in Proc. IEEE 4th Int.
Conf. Future Internet Things Cloud Workshops (FiCloudW), Aug. 2016,
pp. 21–27.

[40] Acceleo Project. (2016). Acceleo Project. [Online]. Available:
https://www.acceleo.org

[41] D. C. Schmidt, ‘‘Model-driven engineering,’’ IEEE Comput. Soc., vol. 39,
no. 2, p. 25, Feb. 2006.

[42] K. Schwaber and M. Beedle, Agile Software Development With Scrum,
vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[43] B. Selic, ‘‘The pragmatics of model-driven development,’’ IEEE Softw.,
vol. 20, no. 5, pp. 19–25, Sep. 2003.

[44] S. Sendall and W. Kozaczynski, ‘‘Model transformation: The heart and
soul of model-driven software development,’’ IEEE Softw., vol. 20, no. 5,
pp. 42–45, Sep. 2003.

[45] E. Siow, T. Tiropanis, and W. Hall, ‘‘Analytics for the Internet of Things:
A survey,’’ ACM Comput. Surv., vol. 51, no. 4, p. 74, 2018.

[46] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Reading, MA, USA: Addison-Wesley,
2009.

[47] ThingSpeak. (2010). Thingspeak for IoT Projects. [Online]. Available:
https://thingspeak.com

[48] ThingWorxs. (2019). Thingworxs IoT Platform. [Online]. Available:
https://www.ptc.com/en/products/iiot/thingworx-platform

[49] A. Z. Abbasi, N. Islam, and Z. A. Shaikh, ‘‘A review of wireless sensors
and networks’ applications in agriculture,’’ Comput. Standards Interfaces,
vol. 36, no. 2, pp. 263–270, Feb. 2014.

[50] N. Wang, N. Zhang, and M. Wang, ‘‘Wireless sensors in agriculture and
food industry-recent development and future perspective,’’ Comput. Elec-
tron. Agricult., vol. 50, no. 1, pp. 1–14, 2006.

[51] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, ‘‘Modeling
languages in industry 4.0: An extended systematic mapping study,’’ Softw.
Syst. Model., vol. 19, no. 1, pp. 67–94, Jan. 2020.

JOSÉ A. BARRIGA received the degree in com-
puter science from the University of Extremadura,
in 2017. He is currently working as a Junior
Researcher with the University of Extremadura.
He has been working for two years in IoT and
simulation IoT environments research areas.

PEDRO J. CLEMENTE received the B.Sc. degree
in computer science from the University of
Extremadura, Spain, in 1998, and the Ph.D.
degree in computer science, in 2007. He is cur-
rently an Associate Professor with the Engi-
neering of Computer and Telematics Systems
Department, University of Extremadura. He has
published numerous peer-reviewed papers in inter-
national journals, workshops, and conferences.
His research interests include component-based

software development, aspect orientation, service-oriented architectures,
business process modeling, and model-driven development. He is involved
in several research projects. He has participated in many workshops and
conferences as speaker and member of the program committees. He has
been the Head of the Engineering of Computer and Telematics Systems
Department, University of Extremadura, since February 2018.

JUAN HERNÁNDEZ received the B.Sc. degree in
mathematics from the University of Extremadura,
Spain, and the Ph.D. degree in computer sci-
ence from the Technical University of Madrid.
He is currently a Full Professor in languages and
systems and the Head of the Quercus Software
Engineering Group, University of Extremadura.
His research interests include service-oriented
computing, cloud computing, and model driven
development. He is involved in several research

projects as responsible and senior researcher related to these subjects. He has
published the results of his research in more than 150 papers in international
journals, conference proceedings and book chapters. He has participated in
many workshops and conferences as a speaker and a member of the program
committee. He is currently the Vice President of SISTEDES, the Spanish
Society of Software Engineering and Software Development Technology,
and the Vice-Chancellor for Digital Transformation with the University of
Extremadura.

MIGUEL A. PÉREZ-TOLEDANO received the
M.Sc. degree in computer science from the Poly-
technic University of Catalonia, in 1993, and
the Ph.D. degree in computer science from the
University of Extremadura, in 2008. He is cur-
rently an Associate Professor with the Engineering
of Computer and Telematics Systems Depart-
ment, University of Extremadura. He belongs to
the Quercus Software Engineering Group. His
research interests include software architecture,

component-based software development, software coordination and adap-
tation, and aspect oriented software development. He has participated as an
organizer of different editions of the workshop and conferences. He was the
Head of the Engineering of Computer and Telematics Systems Department,
University of Extremadura, from September 2009 to February 2018.

7822 VOLUME 10, 2022

122

Chapter 6

Design, code generation and
simulation of IoT
environments with mobility
devices by using
model-driven development:
SimulateIoT-Mobile

“A dream can make a man feel
alive or it can kill him instead.
But to be without a dream is to
be dead.”

Berserk (2003)
Miura, Kentaro

Authors: José A. Barriga, Pedro J. Clemente, Miguel A. Pérez-Toledano,
Elena Jurado-Málaga, Juan Hernández
Title: Design, code generation and simulation of IoT environments with
mobility devices by using model-driven development: SimulateIoT-Mobile

123

Year: 2023
Journal: Pervasive and Mobile Computing (PMC)
Quality (JCR): Q2
DOI: https://doi.org/10.1016/j.pmcj.2023.101751

124

Pervasive and Mobile Computing 89 (2023) 101751

Contents lists available at ScienceDirect

Pervasive andMobile Computing

journal homepage: www.elsevier.com/locate/pmc

Design, code generation and simulation of IoT environments
withmobility devices by usingmodel-driven development:
SimulateIoT-Mobile✩

José A. Barriga ∗, Pedro J. Clemente, Miguel A. Pérez-Toledano,
Elena Jurado-Málaga, Juan Hernández
INTIA Research Institute, Quercus Software Engineering Group, Spain 1

Department of Computer and Telematic Systems Engineering, Universidad de Extremadura, Av. Universidad s/n,
10003, Cáceres, Spain

a r t i c l e i n f o

Article history:
Received 15 January 2022
Received in revised form 30 December 2022
Accepted 11 January 2023
Available online 20 January 2023

Keywords:
IIoT systems
IoT simulation
IoT mobility
Model-driven development
Model to text transformation

a b s t r a c t

Systems based on the Internet of Things (IoT) are continuously growing in many areas
such as smart cities, home environments, buildings, agriculture, industry, etc. Device
mobility is one of the key aspects of these IoT systems, but managing it could be a
challenge. Mobility exposes the IoT environment or Industrial IoT (IIoT) to situations
such as packet loss, increased delay or jitter, dynamism in the network topology, new
security threats, etc. In addition, there is no standard for mobility management for the
most commonly used IoT protocols, such as MQTT or CoAP. Consequently, managing IoT
mobility is a hard, error-prone and tedious task. However, increasing the abstraction
level from which the IoT systems are designed helps to tackle the underlying technology
complexity. In this regard, Model-driven development approaches can help to both
reduce the IoT application time to market and tackle the technological complexity to
develop IoT applications. In this paper, a Domain-Specific Language based on SimulateIoT
is proposed for the design, code generation and simulation of IoT systems with mobility
management for the MQTT protocol. The IoT systems generated integrate the sensors,
actuators, fog nodes, cloud nodes and the architecture that supports mobility, which are
deployed as microservices on Docker containers and composed suitability. Finally, two
case studies focused on animal tracking and a Personal mobility device (PMD) based on
bicycles IoT systems are presented to show the IoT solutions deployed.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Internet of Things (IoT) and Industrial Internet of Things (IIoT) are being exploited in several areas such as smart-
cities, home environments, agriculture, industry, intelligent buildings, etc. [1]. As can be seen, IoT applications can be

✩ This work was funded by the Government of Extremadura, Council for Economy, Science and Digital Agenda under the grant GR21133 and
the project IB20058 and by the European Regional Development Fund (ERDF); and Cátedra Telefónica de la Universidad de Extremadura (Red de
Cátedras Telefónica).

∗ Corresponding author at: Department of Computer and Telematic Systems Engineering, Universidad de Extremadura, Av. Universidad
s/n, 10003, Cáceres, Spain.

E-mail addresses: jose@unex.es (J.A. Barriga), pjclemente@unex.es (P.J. Clemente), toledano@unex.es (M.A. Pérez-Toledano), elenajur@unex.es
(E. Jurado-Málaga), juanher@unex.es (J. Hernández).
1 http://quercusseg.unex.es.

https://doi.org/10.1016/j.pmcj.2023.101751
1574-1192/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

very different from each other and therefore have different requirements and needs. Thus, one of the more interesting
requirements of an IoT environment is the mobility of its devices [2,3]. This is because in certain environments some
devices need to be mobile to perform their tasks, e.g. personal mobility devices such as bicycles, scooters, etc. that can be
rented in any city, or GPS sensors that may be placed on animals in extensive farms [4,5]. In the same way, manufacture
and industrial processes could demand the deployment IoT mobile devices throughout on industrial factory [6].

However, managing the mobility of a device through an IoT environment can be challenging. In this sense, according to
the design of the environment, mobility can lead to periods of disconnection, resulting in packet loss [7]. Besides, mobility
can also lead to increased delay or, in distributed systems, increased jitter [8], e.g. when a device is far away from its
gateway or migrates to another gateway. Mobility also means, at the network level, dealing with network dynamism [9].
As for the most commonly used communication protocols in IoT, such as MQTT [10] or CoaP [11], they do not offer
mechanisms for mobility management. In addition to these issues, there are also some concerns such as security [12],
efficient battery management of the devices [13], etc.

Approaches to managing all these problems need to be measured and tested in order to handle mobility in an efficient
way. For example, in order to avoid packet loss during a disconnection period, the Intermediate Buffering technique [14]
can be applied, however several tests are necessary to choose the optimal buffer size for each device. Another example is
the need to measure jitter [8], as for some critical devices this parameter should not exceed certain limits. On the other
hand, it is necessary to measure and efficiently use the energy of each device to guarantee the correct functioning of the
device until the next load. It may also be interesting to test the behaviour of the environment if one of the mechanisms
supporting mobility goes down (e.g. the neighbour discovery service to deal with the dynamism of the network topology).

Taken into account the aforementioned problems, several research questions could be defined:

RQ1. How could mobility be managed in IoT systems where the MQTT protocol is used?
RQ2. How might model-driven techniques be applied to model IoT systems with mobile nodes?
RQ3. To what extent is it possible to generate the code needed to simulate an IoT system with mobile nodes from a

model of the system?
RQ4. To what extent could simulations of mobile IoT systems be useful for optimising the real system?

Taken into account the aforementioned problems and limitations, in this paper, we propose the use of a Model-Driven
Development (MDD) [15,16] approach to design, simulate and generate the IoT mobility systems. In this context, MDD
helps domain experts to model the system using high level tools based on models which can be modelled, validated and
used to generate the IoT code. Using MDD for developing IoT environment with mobility support helps users reason about
the IoT system focusing on the specific domain more than the specific code or framework to use.

SimulateIoT [17] is an MDD approach that makes it possible to design and simulate IoT systems. The IoT systems
designed with SimulateIoT can include different IoT nodes such as Cloud, Fog, or Edge nodes and multiple computing
services such as Complex Event Processing service, Publish/Subscribe service or Storage service.

However, it cannot model mobile devices or nodes. Mobility could be an interesting extension in order to facilitate the
description and simulation of complex IoT environments where IoT mobility represents a key factor. In this way, solutions
to device mobility can be measured and tested by means of simulations, thus helping IoT developers to handle mobility
efficiently within an IoT system.

In this work, SimulateIoT-Mobile, an extension of SimulateIoT that includes support for simulating IoT systems with
mobile nodes, is presented. In this regard, note that the content described in this communication only focuses on
describing new contributions or features added as part of the SimulateIoT-Mobile extension.

Thus, the main work contributions are the following:

• This work shows that the use of Model-Driven Development techniques is suitable for developing tools and
languages to tackle successfully the complexity of IoT environments where devices mobility is a key factor.

• This work includes a metamodel to model IoT environments with mobile nodes. It includes model restrictions and
a Graphical Concrete Syntax.

• A Model-to-text transformation to code generate for specific IoT platform.
• Two case studies have been designed and evaluated in order to validate the proposal.

The rest of the paper is structured as follows. In Section 2, we give an overview of existing IoT simulation approaches
centred on both low-level and high-level IoT simulation environments. Next, Section 3 introduces SimulateIoT-Mobile.
In Section 4 the MQTT Mobility Management Model is defined. Next, Section 5 presents the SimulateIoT-Mobile taken
into account design and implementation phases including the SimulateIoT-Mobile metamodel and the graphical editor. In
Section 6 the model-to-text transformation from SimulateIoT-Mobile models to code is explained. Section 7 shows the
IoT environment simulation outputs and how they could be analysed. In Section 8 two case studies are presented. Finally,
Section 9 elaborates on the discussion of the presented approach before Section 10 concludes the paper.

2. Related works

Mobility devices in IoT environment has been addressed for multiple points of view: (1) including extending commu-
nication protocols, (2) including communication protocols with additional devices characteristics such as the battery, QoS,
latency, etc. or (3) using high-level proposals for managing IoT mobility devices.

2

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

On the one hand, several protocols allow mobility in IoT environments as reflected in [18]. This article discusses and
compares various communication protocols for Wireless Sensor Networks based on 6LoWPAN technology. Some of these
protocols are MIPv6, HMIPv6, ZoroMSN or LoWMob among others. All of them try to achieve optimal performance in
terms of QoS, Resource Management, Security, Topology control and Routing protocol. However, the work [18] concludes
that there is no efficient solution to meet all requirements and constraints of WSN with 6LoWPAN technology.

Similar studies such as [19] communicates that due to resource constraints in IoT or WSNs, the design of new
communication protocols is required. Furthermore, studies such as [20,21] come to the same conclusions and present
their own proposals to solve this issue. However, IoT is a heterogeneous area, where systems have different requirements
and where technologies such as 6LoWPAN are still being studied and applied in IoT systems nowadays [22–24].

An example of such studies is [25], that conducts a comparative study between classical and bio-inspired mobility.
This study addresses different schemes of mobility within a WSN, however, a greater effort is made to optimise the so-
called sink node. The sink nodes are nodes that move through the WSN collecting data sensed by different devices on the
network. In this way, the use of energy of the other devices is harvested by avoiding the use of multi-hop communication.
Besides, mobile sink nodes offer other features such as load balancing of the network, in the sense that they can transfer
the data collected anywhere in the WSN. Therefore, by optimising the sink nodes, the entire WSN is optimised. To this
end, the authors compare the different classical mobility protocols with the bio-inspired ones, concluding that the latter
surpasses the classics in several aspects such as network congestion, computational complexity or latency among others.
However, although these types of protocols are promising, major research efforts are still needed to effectively implement
them in a real WSN.

With the aim of addressing the resource constraints of some IoT systems or WSNs, protocols such as MQTT, Coap or
DDS have been developed, becoming in the most widely used in the IoT due to their high performance [26]. However,
this protocols lack mechanisms for the use of mobile nodes. In this regard, several works [8,27,28] focus on addressing
the challenges of mobility management of these protocols.

In [27] the authors propose a solution to avoid the loss of information when mobile devices are not connected to any
MQTT Broker, such as when devices are migrating from one Broker to another. This proposal is based on a technique
called intermediate buffering. This technique decouples the production of messages from their publication, establishing
between these two phases an intermediate buffer where the messages are stored in an ordered manner with the aim of
publishing them in the first instance when the mobile device in question recovers the connection. This technique avoids
the loss of information, however, it has not been tested in large scale IoT environments, and it only partially solves one
of the problems associated with mobility in IoT when MQTT protocol is being used.

In [28] a protocol is proposed to allow mobility nodes in CoAP IoT environments. For this, an architecture based on
three elements is used, these elements are: (1) CoAP Node (Server), (2) CoAP Node (Client), (3) Mobility Management Table
(MMT). Thus, the CoAP Node Client can request data from some CoAP Node Server through the Mobility Management
Table. The Mobility Management Table stores relevant information about CoAP nodes such as their IP address, temporal
IP address, state of the nodes (handover data or not), etc. making possible the communication between nodes whether
they are moving or not. Besides, mechanisms to avoid packet loss have been included in this protocol, this mechanism
put in ‘‘hold’’ mode the CoAP nodes to avoid wrong publications, for instance, when a node is changing its IP. However,
is not taken into consideration the loss of connection with the Mobility Management Table, the connection to another
Mobility Management Table, the new data that a node could retrieve during the ‘‘hold’’ mode and its storage (intermediate
buffer), etc. which can result in packet loss and also reduced scalability in the sense that devices can only use one Mobility
Management Table.

The authors of [8] define a proposal for mobility handling in IoT applications using the MQTT protocol. Since MQTT
is not a protocol adapted to handle mobility issues, the authors rely on Intermediate Buffering to guarantee that there
is no packet loss in hand-off periods due to mobility nodes. Thus, several experiments were carried out to study the
behaviour of intermediate buffers. These experiments include parameters such as access point migration, no available
access point periods, the size of the messages published, the number of publisher devices, the inter-message delay, etc.
The results of these experiments indicate the optimal buffer size to avoid packet loss depending on the situation to which
the mobile environment is subjected. However, Although the experiments carried out deal with a wide range of situations,
no mechanism is provided for the user to determine the size of the intermediate buffers in their specific situation.

SimulateIoT-Mobile, the proposal that will be described in this communication, has the aim of helping to develop
this kind of IoT systems, i.e. the development of IoT systems with mobile nodes that use publish/subscribe protocols.
In this sense, a literature review has been carried out to identify key concepts for managing mobility in IoT systems.
Specifically, for those that use the MQTT protocol. So, SimulateIoT-Mobile includes in its implementation an MQTT mobility
management model (Section 4). Thus, being able of simulate this kind of IoT systems. Developers can therefore use
SimulateIoT-Mobile to model, validate, generate and simulate their IoT systems with mobility characteristics, and use
the simulation results to optimise them, identifying weaknesses or errors in their designs (Sections 5–7).

3. Introduction to SimulateIoT-Mobile

SimulateIoT-Mobile is an extension of SimulateIoT [17]. For the sake of clarity, the aim of this Section is to outline the
new features added as part of this extension. Thus, differentiating between what was the previous work (SimulateIoT)
and what is new (SimulateIoT-Mobile).

3

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 1. The four layers of metamodeling. In SimulateIoT [17]: (a) M3 is Ecore, (b) M2 is SimulateIoT Metamodel (c) M1 is a model conform to
SimulateIoT Metamodel and (d) Code is generated using the model-to-text transformations defined in SimulateIoT approach.

In this regard, SimulateIoT and therefore SimulateIoT-Mobile are based on the MDD, which is an emerging software
engineering research area that aims to develop software guided by models based on Metamodeling technique. Meta-
modeling is defined by four model layers (see Fig. 1). Thus, a Model (M1) is conform to a MetaModel (M2). Moreover, a
Metamodel conforms to a MetaMetaModel (M3) which is reflexive [29]. So, a MetaModel defines the domain concepts
and relationships in a specific domain in order to model partial reality. A Model (M1) defines a concrete system conform
to a Metamodel. Then, from these models it is possible to generate totally or partially the application code (M0 - code) by
model-to-text transformations [30]. Thus, high level definition (models) can be mapped by model-to-text transformations
to specific technologies (target technology). Consequently, the software code can be generated for a specific technological
platform, improving the technological independence and decreasing error proneness.

Therefore, in order to extend SimulateIoT towards SimulateIoT-Mobile, it is required to work in these metamodelling
layers. Specifically, it is required to extend: (1) The Metamodel or Abstract Syntax (M2), (2) The Graphical Concrete
Syntax or the element that allows to graphically design models (M1) from the Metamodel (M2) and (3) Model-to-Text
Transformations (M2T), the element that carry out the code generation (M0) from models (M1).

In this regard, as indicated in Section 1, SimulateIoT does not support mobile devices. Therefore, all the new features
added to SimulateIoT (above mentioned metamodelling layers) are focused on allowing it to integrate mobile devices in
its simulations (Sections 5 and 6). In addition, SimulateIoT uses the MQTT protocol and this protocol does not natively
support device mobility. So, firstly, it is necessary to define, develop and integrate a MQTT mobility model (Section 4) to
SimulateIoT to allow it to support mobile devices.

This mobility model aims to manage mobile devices, i.e. this model assumes that mobile devices exist. However, as
aforementioned, SimulateIoT, the previous version of this work, is not able to generate or simulate IoT environments with
mobile devices. Therefore, additional mobility-related concepts such as the mobile devices itself, their movement logic,
the route that each mobile device will follow, or the battery consumption of these devices also have to be part of the
SimulateIoT-Mobile metamodel.

Fig. 2 shows, from a high level of abstraction, the deployment of a generic simulation generated by using model-to-text
transformation from a SimulateIoT-Mobile model. In Fig. 2 is possible to differentiate the main components included as
extensions in this communication of the components belonging to the previous version of the simulator.

In this regard, the Edge/Mist, Fog and Cloud layers have been extended. On the one hand, the Mist/Edge layer has
been extended with mobile devices. These devices can follow a (user-defined) route, connect to different fog nodes (to
their brokers) during their route, so publishing their data to different brokers, receive coverage signals from different fog

4

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 2. A generic model of an IoT system conforms SimulateIoT-Mobile metamodel.

nodes, carry out the simulation of battery consumption due to these new mobility-related concepts, etc. On the other
hand, the Fog/Cloud layer has been extended by a set of components that aim to support mobile devices when using the
MQTT protocol. These components represent the integration the mobility model (Section 4) in the IoT simulator.

All these extensions are described in detail as follows. First, the MQTT mobility model is presented in Section 4. The
extension made to the Metamodel and to the Concrete Syntax is presented in Section 5. The extension made to the M2T
is presented in Section 6. The new knowledge that can be obtained to optimise the real system from this extension, is
described in Section 7. Besides, Section 8 presents two case of study focused on show the simulations that can be carried
out with the extension presented. Finally, note that everything described in these sections is focused on showing the
new contributions carried out on SimulateIoT-Mobile and it was not part of SimulateIoT.

4. MQTT mobility management model

In this section, the envisioned model to support mobility in protocols that follow the publish/subscribe paradigm is
described. Specifically, the model has been designed for the MQTT protocol, one of the most widely used publish/subscribe
protocols in the IoT [26].

First, in Section 4.1 a set of preliminary considerations are made based on the analysis of the protocols that traditionally
support mobility and publish/subscribe protocols. Second, in Section 4.2, the necessary entities proposed to provide mobile
support for the MQTT protocol are identified and described. In Section 4.3, a solution to mitigate packet loss in the mobility
model is proposed. Section 4.4 describes a basic security mechanism to address the vulnerabilities of the model. Next,
in Section 4.5 the deployment of the main elements required and their interactions are described. Finally, Section 4.6
presents a review of envisioned scenarios where the MQTT mobility model could be applied.

Note that this model is not intended to be a standard for mobility in publish/subscribe protocols. The MQTT mobility
management model proposed is claimed to simulate IoT environments using the MQTT protocol and mobile nodes.

5

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

4.1. Preliminary considerations

When traditional protocols address mobility in the literature, they generally address issues such as the entities that
carry out the support of mobility, e.g., the Home Agent in the Mobile IP protocol [31], or the Mobility Anchor Point in the
HMIP protocol [32]. Also, they address the required data that needs to be shared by the nodes to support mobility, such
as the Identifier (Home Address) or the Locator (Care of Address) of mobile nodes in the Mobile IP protocol [31].

On the other hand, interactions between entities are also addressed, such as the interactions needed to start direct
communication with a mobile node in the Host Identity Protocol. The Correspondent Node (CN) needs to send the Host
Identity Tag to the DNS to get the IP address of the Rendezvous Server. Later, after sending the first packet, the CN and
the mobile node can start communication on the direct path [33].

In short, it addresses those issues that allow managing the IPs of the mobile nodes in an efficient and effective way so
that changes in the IP by the mobile nodes do not affect the communication between the nodes of the network, and that
this management affects as less as possible the parameters involved in the QoS (delay, etc.).

However, the main protocols used in IoT includes publish/subscribe protocols such as MQTT, AMQP or JMS [26]. In
the publish/subscribe paradigm, there is no CN to start communication and no mobile node to start communication with.
In publish/subscribe protocols there are Brokers that provides Topics, where devices can publish/subscribe to data. For
example, in a hypothetical scenario of ‘‘intelligent temperature management’’ of a room, the devices that measure the
temperature of the room would publish their measurements in a Topic ‘‘Temperature’’, to which the devices that control
the temperature would subscribe.

In our proposal the Brokers are kept static (located on Fog nodes and Cloud nodes), being the devices publishing
or subscribing to Topics the mobile nodes. In this regard, the mobile nodes will always be able to communicate with
the Broker (static IP) and the Broker will be responsible for redirecting the data. Therefore, mobility management in
publish/subscribe protocols (where the Broker remains static) differs from traditional mobility management proposals
(no identifiers, locators, mappings, etc.).

4.2. Entities to support mobility in the MQTT protocol: The Broker Discovery Service and the Topic Discovery Service

Thus, focusing on a publish/subscribe protocol such as MQTT for IoT environments there are several key elements:
publishers, subscribers, topics and brokers. Data are organised on Topics that are deployed by a Broker and where several
elements (IoT nodes) are subscribed and where other elements (IoT nodes) have the role of data publishers. In this context,
if a device needs to move through an IoT environment to carry out its own behaviour then it will be needed to connect to
different Brokers in order to publish and receive data. Thus, specific entities or services to manage this issue are required.
For this regard, a Broker Discovery Service (BDS) will be necessary.

On the other hand, publications and subscriptions are addressed to Topics. Since each Topic can be used very differently,
a service is needed to analyse the Topics offered by a Broker. Thus, a mobile node can determine whether or not it
is feasible to publish/subscribe to a particular Topic. Consequently, an additional service named Topic Discovery Service
(TDS) is also needed.

Using the Broker and Topic discovery services, a device will be able to: (a) Connect to different Brokers in case it needs
it; and (b) Publish/subscribe to compatible Topics that allows it to continue performing their tasks.

In this sense, the BDS allows devices to know the Brokers with which they can establish a connection (Ip). For this,
each BDS is deployed together with the rest of the services on a Fog node (one BDS node per Fog/Cloud node). So, the BDS
subscribes to the Topic ‘‘BDS’’ where it will receive requests from the mobile nodes. Later, it will publish the responses
to each request on a specific Topic for each mobile node (‘‘BDS+DeviceId’’). Note that the data shared by the BDS include
valuable information such as the distance measure between the device and each Broker.

However, in order to establish a suitable connection with the Fog node, not only should be reachable a Fog node (data
obtained from BDS), but also the Topics of the Broker’s Fog node should be compatible with the Topics required to publish
on. To fulfil this requirement, the TDS is used.

Like the BDS, the TDS is a Fog/Cloud node service (one TDS node per Fog/Cloud node). This service allows IoT devices
to know which Topics of a Broker are compatible with the requesting device. To carry out the above, the TDS connects to
the Fog node’s Broker, subscribing to a Topic (‘‘TDS’’) reserved for listening to requests from the devices and publishing
the responses in Topics generated dynamically for this purpose (‘‘TDS+DeviceId’’). To determine which Topics of a Broker
are compatible with a device, the TDS analyses the information provided by the IoT device in its request (the Topics that
the device uses and their characteristics) and compares this information with the information it has about each Broker’s
Topic.

4.3. Disconnection periods and packet loss

Due to the movement of devices and the topology of the designed IoT environment, periods of disconnection may
occur, leading to the loss of packets. In order to handle this issue, the Intermediate Buffering technique is applied. The
Intermediate Buffering consists of adding a buffer in each mobile device capable of storing the packets that should have
been delivered during the disconnection periods. In this way, once the connection is reached, all buffered packets are
delivered.

6

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 3. Topic negotiation protocol to re-connect mobile devices with Fog nodes.

4.4. Security issues

Security is a critical issue in an IoT environment and the mobility of devices leads to the need for additional security
services [34]. In this sense, token-based security is usually mandatory, as mobile devices move through the environment
making different connections to different nodes and consuming different services in the environment along their way [34].
Thus, a token-based security environment, with the same philosophy as Fiware’s token-based security environment [35],
has been included in the proposal. Thus, this token-based security environment limits and controls the device connection
and access to nodes and services in the IoT environment.

4.5. Model deployment and interactions between entities

A sequence diagram that illustrates the necessary interaction of a device with the mobility architecture (TSS, BDS and
TDS) is shown in Fig. 3. It shows four key interactions: Fig. 3-(1) The Device interacts with the Fog node’s Token Security
System (TSS). In this first interaction, the Device sends its token to the TSS, then the TSS verifies that the token is valid and
gives the device the approval to continue with its tasks; Fig. 3-(2). Once the TSS approval is received, the Device requests
the BDS to obtain Broker information. The BDS then gathers Broker information and sends it to the Device; Fig. 3-(3). The
third interaction is with the TDS, as the device now needs information about the Topics offered in each Broker. Thus, the
Device request the TDS, the TDS then gathers information about Topics and sends it to the Device.; Fig. 3-(4). Finally, with
all the Brokers and Topics information, the Device can choose the best Broker to connect and establish a connection with it.

4.6. Envisioned scenarios

This section describes several envisioned scenarios or IoT systems for which this MQTT mobility management model
has been designed. Thus, being able to be simulated with SimulateIoT-Mobile, taking into account the limitations of the

7

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

mobility model and the modelling expressiveness of SimulateIoT-Mobile (Section 5). Multiple scenarios could be modelled
by using SimulateIoT-Mobile such as Data muling, Animal movement or Smart Cities.

Data muling and ferrying approaches have been vastly investigated. Such proposals focus on managing IoT systems
where mobile devices collect data in a specific area, transporting it to a specific nodes of the system [36–39].

Animal movement can be the answer to many biological phenomena, whose understanding could be critical to
successfully address challenges such as climate change, species conservation, health and food [40]. Therefore, many IoT-
related studies focus their efforts on animal tracking [41–44]. In this regard, Section 8.1 describes a use case where
SimulateIoT-Mobile is applied such a system.

Smart cities are IoT systems that can also include mobile nodes. In this sense, mobile nodes can be used for different
purposes. The authors of [45] describe an IoT system that tracks vehicles in order to facilitate vehicle parking. The authors
of [46] present results from an study where 80 riders of e-bikes discuss their experience with smart mobility. Other studies
such as [47] makes a proposal to enable green mobility in cities. This work presents a device that can be integrated into
citizens’ personal mobility devices, such as segways or electric scooters. This device gathers environmental information
to provide personal mobility devices with eco-efficiency services, integrating them in the smart city environment. A use
case based on the latter study is carried out in Section 8.2.

In short, SimulateIoT-Mobile is designed to simulate several kinds of IoT systems with mobile nodes, taking into account
the limitations outlined in the introduction of this subsection.

To sum up, several of the main characteristics taken into account in IoT environments with mobile devices have been
identified. They, together the envisioned scenarios described in Section 4.6, facilitate describing suitably the context
where IoT devices should be defined and deployed. In this sense, the next section presents the SimulateIoT-Mobile
domain-specific language in order to define IoT environments with mobile devices.

5. Extensions of metamodel and concrete syntax

SimulateIoT-Mobile, as a MDD approach, is composed of three main elements: (1) Metamodel or Abstract Syntax, (2)
Graphical Concrete Syntax and (3) Model-to-Text Transformations (M2T). This Section describes the SimulateIoT-Mobile
Metamodel and Concrete Syntax.

5.1. Metamodel extensions

A Metamodel captures the concepts and relationships in a specific domain in order to model partially reality [15].
Then, it is possible to design models from this Metamodel. These models can be used to generate total or partially
the application code. Thus, the software code could be generated for a specific technological platform, improving its
technological independence and decreasing the error proneness.

SimulateIoT metamodel [17] defines in deep the core concepts and relationships related to the IoT domain, including
elements such as sensors, actuators, edge node, fog node, cloud node, database, complex-event processing services, data
definition, topics, message broker, etc. However, it has not enough expressiveness to simulate IoT systems with mobile
nodes. Therefore, SimulateIoT-Mobile metamodel, an extension of SimulateIoT metamodel with enough expressiveness to
define IoT systems with mobile nodes, has been developed.

For a sake of clarity, Fig. 4 shows an excerpt of the SimulateIoT-Mobile metamodel, concretely the elements required
for modelling IoT mobile devices (elements which are numbered and highlighted in Fig. 4 on blue colour). Note that Fig. 14
(Appendix A) shows the complete metamodel, with the elements relating to the extension carried out highlighted in blue.

This extension includes the classes and relationships needed to model the mobility entities and services described in
Section 4. Besides, some concepts necessary to capture the specific mobility domain, such as the routes that mobile nodes
will follow, are also included. Finally, some concepts useful for the end-user in terms of simulation analysis (Jitter, Battery
etc.) are also included.

Thus, in order to describe the SimulateIoT-Mobile metamodel, this section is divided into the domain-specific IoT
mobility concepts identified: Device movement, Disconnection periods and packet loss, Jitter, Battery management, the
Broker Discovery Service and the Topic Discovery Service and security issues. In this way, each of these subsections include
the contributions that make it possible to model the aspects of these mobility concepts (classes and relations shown in
Fig. 4).

5.1.1. Device movement
In order to model device mobility for simulation purposes, the Route concept is introduced. A Route is a set of

coordinates that specifies the movement of one or more mobile devices. Thus, each mobile device is linked to a Route
that specifies its movement through the IoT environment.

In this way, SimulateIoT-Mobile metamodel proposes defining several kinds of synthetic routes: FogCloudRoute,
LinearRoute, RandomRoute, and CSV_Route. These Routes have been included as classes in the metamodel and are identified
in Fig. 4 with numbers two, five, three and four respectively. Note that the class Route identified with the number one is
an abstract class and superclass of the Route hierarchy.

8

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 4. Except of SimulateIoT-Mobile metamodel focusing on the mobile concepts. The complete SimulateIoT-Mobile could be found in Appendix A
at Fig. 14.

• FogCloudRoute class allows users to define a sequence of Cloud and Fog nodes (related to ProccessNode class). These
nodes are fixed nodes in the IoT environment that has a coordinate (position in the environment). Thus, the sequence
of node coordinates defines the Route that will be followed by the device linked to it during the whole simulation.
This FogCloudRoute will be followed by the device linked to it during the whole simulation, from beginning to end
and backward.

• LinearRoute class allows the user to define routes as a sequence of x/y coordinates (related to Coordinates class). So,
the mobile device will move throughout this sequence of coordinates indefinitely. Note that once the end of the
route is reached, it follows the route in reverse.

• Random_Route class makes it possible to generate random routes. These routes start in a specific coordinate and
are ad-hoc generated up to the end of the simulation. Note that, from each coordinate is generated the next step
direction, avoiding jumps in the route.

• CSV_Route class allows the user to load routes defined in a CSV file. The CSV files must include an x/y coordinate
in each row. In this way, the device interprets the route and follows it throughout the simulation. As with all other
routes, once the end is reached, it retraces the route in reverse.

5.1.2. Disconnection periods and packet loss
As described in Section 4, in order to avoid packet loss, the possibility of using the Intermediate Buffering technique

is introduced. Thus, each EdgeNode has been extended with the IntermediateBuffersize attribute (Fig. 4-(8)). In this way,
the end-user is able to specify the amount of memory in terms of Kb that the Intermediate Buffer of a mobile device will
have.

5.1.3. Jitter
Currently, a critical aspect in IoT is the delay between the communication of two or more components. In this sense,

there are many studies that address this issue which often use simulators to corroborate their hypotheses [48–50].
Therefore, it has been considered appropriate to provide SimulateIoT-Mobile with mechanisms able to model and to
measure the delay between components. In particular, when it comes to the delay caused by the mobility of devices
(e.g. in a handover period).

Jitter is the variation in the delay of two messages received consecutively by a subscriber from a publisher. This way of
measuring delay has been chosen because of the asynchrony of the internal clocks of the devices in a distributed system.
When measuring jitter, only the subscriber clock is used. Thus, a possible asynchrony among the internal clocks of the
publisher, broker or the subscriber does not affect the measurement [8].

In order to add the concept of jitter in the metamodel, a Boolean attribute called jitter Controller (Fig. 4-(9)) has been
added to the ProcessNode element (nodes where the control services will be deployed). Whether it is specified as True, all

9

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

the services required to measure jitter will be generated in the model-to-text transformations; if it is set to False, these
services will not be generated.

5.1.4. Battery management
As well as jitter, the battery management is also currently a critical aspect in IoT. An efficient battery consumption in IoT

environments is one of the challenges that researchers are currently facing [51,52]. Concerns about energy consumption
are even more pronounced in mobile environments, where devices must also expend energy on the movements. Therefore,
it has been considered to add the possibility to model the battery of each device so that users can analyse the behaviour
of the battery after the simulation.

In this sense, note that there are a large number of IoT devices with different features, so there could be a big
difference in consumption from one device to another. Therefore, in order to simulate energy consumption, a count of
the tasks that consume energy is carried out. These tasks include: (a) data publishing; (b) data receiving; (c) movement;
(d) data processing and storage; and (d) other interactions (e.g. neighbour discovery or security). Thus, the aforementioned
parameters are used at simulation run-time to simulate battery consumption.

To model the concept of the battery usage of devices to the metamodel. To do so, an Integer attribute named
batteryManagement (Fig. 4-(8)) has been added to the EdgeNode element (nodes that will be able to simulate their energy
consumption). Thus, the user is able to specify the battery milliampere capacity in each device. If it is specified with a value
>0, all the services required to simulate the battery consumption will be generated in the model-to-text transformations;
if it is set to 0, these services will not be generated.

5.1.5. The Broker Discovery Service and the Topic Discovery Service
The BDS and TDS are two entities introduced in Section 4, designed to manage mobility in the MQTT protocol. These

entities are static and their properties are not needed to be modelled by the user. Therefore, the domain-specific features
of these entities have not been added to the metamodel. However, there are some concepts related to the execution of
these two entities that the user should be able to model, such as the coverage of the access points to these entities and
the gain of the devices to sense this coverage.

In order to extend the metamodel in this way, an attribute named coveragesignalPower (Fig. 4-(9)) has been added to
FogNode and CloudNode elements. Thus, the end-user is able to define the signal strength of the gateways (included on
the FogNode and CloudNode elements).

During a simulation, this signal strength limits the perimeter within which a mobile node may or may not connect to
a gateway. It therefore plays a key role in the design of the architecture of the IoT simulation environment. Thus, users
can model the IoT simulation environment and identify areas where there will be no connection, and whether in these
areas there are communication problems taken into account properties such as packet loss, size of intermediate buffers,
signal strength, etc.

On the other hand, to allow users to model the communications capabilities of a mobile device to detect the gateway
coverage signal, an attribute named coverageSignalGain has been added to the EdgeNode element (Fig. 4-(8)). In this way,
the aforementioned coverage perimeters will be variable for each mobile device, thus having different needs (e.g. the size
of the intermediate buffer), bringing the simulation closer to reality.

5.1.6. Security issues
Section 4 describes a token-based security system to address vulnerabilities arising from the proposed mobility

management model.
In this regard, the metamodel is extended to provide the user the possibility to choose whether or not to add this

security system to the IoT environment. For this purpose, a hierarchy of elements has been added to the metamodel. The
superclass of this hierarchy is named SecuritySystem(Fig. 4-6 SimulateIoT-Mobile metamodel). This class can contain a
security service called TokenSecuritySystem(Fig. 4-7 SimulateIoT-Mobile metamodel). If, when modelling an IoT environ-
ment, an instance of the TokenSecuritySystem class is created, the model-to-text transformations will generate the security
architecture necessary to implement the token-based security services discussed in Section 6.6. If it is not instantiated,
these services shall not be generated.

5.2. Graphical concrete syntax and validator extensions

Model-Driven Development allows creating models conforming to a metamodel. So, in order to do this, the Eugenia
tool [53] makes it possible to generate a Graphical Concrete Syntax (Graphical editor). The Graphical Concrete Syntax
generated for SimulateIoT-Mobile metamodel is an extension of the Graphical Concrete Syntax defined in SimulateIoT,
which is based on Eclipse GMF (Graphical Modeling Framework) and EMF (Eclipse Modeling Tools). Consequently, models
(EMF and OCL (Object Constraint Language) [54] based) can be validated against the defined metamodel (EMF and OCL
based). Note that OCL is a standard to define model constraints. Fig. 5 shows an excerpt from this graphical editor. It helps
users to improve their productivity allowing not only defining models conforming to the SimulateIoT-Mobile metamodel
but also their validation using this metamodel and OCL constraints [54].

The graphical concrete syntax (based on an Eclipse plugin) developed offers a suitable way to model the IoT
environment by using the high-level concepts defined in the SimulateIoTModel metamodel (Fig. 4). Later on, the graphical
concrete syntax will be used to model and validate several case studies.

10

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 5. Graphical editor based on the Eclipse to model conforming to the SimulateIoT-Mobile metamodel.

6. Extensions of model-to-text transformations

As aforementioned, SimulateIoT-Mobile, as a MDD approach, is composed of three main elements: (1) Metamodel or
Abstract Syntax, (2) Graphical Concrete Syntax and (3) Model-to-Text Transformations (M2T). In Section 5, the extensions
carried out in (1) Metamodel or Abstract Syntax (Section 5.1) and (2) Graphical Concrete Syntax (Section 5.2) were
described. Thus, in this section, the extensions for SimulateIoT-Mobile carried out in (3) Model-to-Text Transformations
(M2T) are described.

Once the models have been defined and validated conforming to the SimulateIoT-Mobile metamodel (examples of
models in the Figs. 8 and 11), a model-to-text transformation defined using Acceleo [55] can generate the IoT environment
modelled.

Thus, this section describes the main features of the Model-To-Text transformation carried out in order to generate the
IoT environment, focusing in the transformations which allow mobile support (the target of this work). For the sake of
clarity, this section is divided into the domain-specific IoT mobility concepts identified (as in Section 5). In this way, each
subsection contains the contributions that make it possible to generate the code of each component (M2T transformations)
related to these mobility concepts. Finally, a section describing the overall generation and integration of the artefacts is
included.

6.1. Device movement

Section 5.1.1 describes the extensions carried out to make it possible to model the movement of mobile devices. In this
sense, Route is an abstract class that can be specified by different elements: (a) CSV file (CSV_Route class), (b) Fog/Cloud
nodes (FogCloudRoute class), (c) Predefined Coordinates (LinearRoute class), and (d) Random Coordinates (Random_Route
class). In order to manage the Route elements and their specifications, the following services are required:

• Mapping services, to map the routes defined in a CSV file, list of Fog/Cloud nodes or Coordinates to a suitable format
for the devices.

• A coordinate generation service, to generate realistic random routes in real-time (this service takes care that the
direction of the route is consistent, that there are no incoherent movements from one position to another, etc.).

• A route management service, in order to make the mobile devices capable of interpret the routes and move along
them during the simulation.

Therefore, Simulate-IoT model-to-text transformations have been extended to generate and integrate these three
services on every mobile device in the environment (i.e. on every mobile device modelled by the user in a model).

11

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

6.2. Disconnection periods and packet loss

Section 5.1.2 describes the extensions carried out to make it possible to model the application of the Intermediate
Buffering technique for mobile devices. Thus, in order to implement and apply the Intermediate Buffering technique, it is
necessary to include two new services to the mobile devices, a buffer storage service and a buffer publish service.

• Buffer storage service: This service have the capacity (Kb) modelled through the EdgeNode element Intermediate-
Buffersize attribute (Fig. 4-8). Thus, this service controls the size of the messages that are stored in the buffer and
that the memory does not overflow. Whether the buffer is full and the device is still offline, this service acts as a
queue, eliminating the oldest messages (packet loss) so that the new ones can be stored, always taking into account
the size of each message.

• Buffer publish service: Once the device decides to connect to a gateway, the buffer publish service (integrated with
the device’s publishing logic) reads and empties the buffer, subsequently publishing all this data.

Therefore, Simulate-IoT M2T transformations have been extended to generate and integrate these two services on
every mobile device in the environment (i.e. on every mobile device modelled by the user in a hypothetical model).

6.3. Jitter

Section 5.1.3 describes the extensions needed to make it possible to model whether to deploy the Jitter analysis service
or not. Thus, in order to generate and deploy the Jitter analysis service, it is necessary to include this service in the Cloud
and Fog nodes.

At simulation start, the jitter analysis service is deployed to monitor jitter next to each Broker (deployed at each
Fog/Cloud node). Thus, the jitter analysis service subscribes to all Topics, receiving all the messages published in them
and registering the reception timestamp of each message. At the end of the simulation, this service calculates the jitter
of the messages received by the devices. It should be noted that the data published by each device is structured in JSON
format and contains a field reserved for identifying the publisher and the timestamp of each published message [17].

At simulation ends, the jitter control service generates an output with the jitter experienced during the whole
simulation so, the average jitter, the maximum jitter and the minimum jitter.

Note that the following expression is used to determine the jitter:

Jitter = m′

n − m′

n−1 − T

This expression considers the reception of two messages. The arrival time for message n is defined as m′
n. Note that T

is a fixed parameter representing the publishing period of the publisher.
As an instance of the above, consider a situation where a hypothetical sensor has a period T equal to 500 ms, assuming

that a message m′
n − 1 from the sensor is received by an actuator at instant 0 and the next message m′

n from this sensor
is received 621 ms later, the Jitter between these two messages is: 621 − 0 − 500 = 121 ms.

Thus, Simulate-IoT M2T transformations have been extended in this sense to generate and integrate this service on
every Fog or Cloud node modelled in the environment (i.e. on every Fog or Cloud node modelled by the user in a model,
whose attribute jitter_Controller is setted as True).

6.4. Battery management

Section 5.1.4 describes the extensions carried out to make it possible to model whether to include the Battery
consumption simulation or not. Thus, in order to generate and deploy the Battery consumption simulation, it is necessary
to include this simulation module in the Cloud and Fog nodes.

Therefore, the battery simulation is based on the integration of several counters throughout the devices code generated,
thus counting each of the tasks carried out by a device. These tasks include: (a) Data publishing, (b) Data receiving,
(c) Movement, (d) Data processing and storage, (d) Other interactions (e.g. neighbour discovery or security interactions).

All these parameters are used at simulation run-time to simulate the battery consumption of each device. In addition,
once the simulation is finished, the battery simulation service of each device outputs a log with the results of these
counters. Thus, the user can then use these parameters to predict more accurately the battery consumption of a specific
real device.

Therefore, Simulate-IoT M2T transformations have been extended in this sense to generate and integrate all the
aforementioned counters in the device code, thus simulating the battery consumption of each modelled device (i.e. on
every device modelled by the user in a hypothetical model).

12

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

6.5. Broker Discovery Service and Topic Discovery Service

The BDS and TDS are nodes deployed on each Fog/Cloud node of the system. These nodes are designed to support
mobility in IoT environments where the MQTT protocol is used. The behaviour of the BDS nodes and TDS nodes is also
described in Section 4.2. However, this section aims to identify and describe individually each of the services generated
from the model-to-text transformation for the BDS nodes and the TDS nodes.

The BDS nodes are entities that communicate to mobile devices useful information about the Brokers deployed in the
system. In this way, mobile devices can use this information to make an appropriate selection of which Broker to publish
to or subscribe to.

In this sense, the device communicates to the BDS (to those within their reach) information about its geographical
location. Using this data, the BDS nodes reply to the device with a list of Brokers and details about each one of them, such
as their geographical location, IP address or the distance to them in a straight line. Therefore, three services are identified:

• MQTT client: The first service identified is the MQTT client that uses the BDS and the underlying logic to communicate
with the target device.

• DataBase client: Secondly, it is identified the client of the database where the BDS queries all the data related to the
Brokers.

• To Measure of distance between device and Brokers: Thirdly, it is identified the component that applies the logic
necessary to interpret the coordinates of the mobile devices and calculate the distance between it and the Brokers
deployed in the system.

On the other hand, the TDS nodes are entities that communicates to mobile devices useful information about the Topics
deployed in the system’s Brokers. In this regard, the device requests from the TDS nodes data about the Topics deployed
in one or several Brokers. Using this list of Brokers, the TDS nodes reply to the device with a list of Topics for each Broker,
including information about each of the Topics such as a set of Tags (describing the Topic), its name, etc. For this, two
services are identified:

• MQTT client: The first service identified is the MQTT client that uses the TDS and the underlying logic to communicate
with the device in question.

• DataBase client: Secondly, the client of the database where the TDS consults all the data related to the Topics of
each Broker is identified.

In addition to BDS, TDS code generated, the compilation of its code, the wrapping of it in a Docker, and its deployment
and integration with the rest of the system, must also be generated. In this sense, SimulateIoT-Mobile takes these issues
into account in the deployment script of the system.

To summarise, Simulate IoT model-to-text transformations have been extended to generate and integrate the BDS and
the TDS and each of their services in each Fog or Cloud node of the environment (i.e. on every Fog or Cloud node modelled
by the user in a model).

6.6. Security issues

Section 5.1.6 describes the extensions carried out to make possible the modelling of the Security services. Thus, in order
to secure mobile IoT environments and simulate the impact on the overall performance of the environment, a token-based
security system is included in SimulateIoT-Mobile, the TokenSecuritySystem (TSS). When the simulation starts, all devices
generated from the metamodel share a security token. This token is used by devices when they publish or subscribe to a
Topic, so if the Topic is named temperature, the device publishes or subscribes to /{token}/temperature. In this way, if an
external device tries to connect to the IoT environment, as it is not in possession of the security token, it will not be able
to obtain the data published in any Topic, and will not be able to publish false information in any Topic.

As for the TSS, it is a Fog node’s service and it is responsible for managing the tokens. In this way it gives them a
random lifespan, generates new tokens when they expire, communicates the new token to the devices, etc.

Therefore, SimulateIoT model-to-text transformations have been extended in this sense to generate and integrate this
TSS in all Fog or Cloud nodes of the environment (i.e. on every Fog or Cloud nodes modelled by the user in a model).

6.7. IoT environment generated from M2T transformations

For a better understanding of the extensions carried out in this work and their relationships or interactions, this
section describes the overall architecture generated from the M2T transformations from SimulateIoT-Mobile models. To
explain the generated architecture, it is divided into the three layers that can constitute an IoT environment defined with
SimulateIoT-Mobile: (A) Edge Layer; (B) Fog Layer; (C) Cloud Layer.
(A) Edge Layer

The Edge layer is composed of the set of sensors and actuators of the IoT environment. The architecture of an Edge
node is illustrated in Fig. 6. In terms of the main elements of the architecture (numbered with the numbers used in
Fig. 6):

13

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 6. Software architecture of a Edge node generated.

1. Topic Discovery Service Client: Embedded client in the Edge nodes that allows Edge nodes to interact with the Topic
Discovery Service offered by the Cloud or Fog nodes. The communication is done through the MQTT protocol (MQTT
client relationship) and, once the response is received from the Fog/Cloud node, it is transferred to the Connection
Manager component.

2. Broker Discovery Service Client: Embedded client in the Edge nodes to interact with the Broker Discovery Service of-
fered by the Cloud or Fog nodes. The communication is done through the MQTT protocol (MQTT client relationship)
and, once the response is received from the Fog/Cloud node, it is transferred to the Connection Manager component.

3. Token Security System Client: Embedded client in the Edge nodes that allows Edge nodes to interact with the Token
Security System offered by the Cloud or Fog nodes. The communication is done through the MQTT protocol (MQTT
client relationship) and, once the response is received from the Fog/Cloud node, it is transferred to the Connection
Manager component.

4. Intermediate Buffering Manager: Intermediate Buffer included in Edge nodes to avoid packet loss. This element is
related to: (a) The Connections Manager which informs when the connection is on or off, in order to start or stop
storing data. (b) The Synthetic Data Generation element, in order to know which data to store; (c) The MQTT client,
to publish the stored data when the connection is on.

5. Battery Simulation Module: Battery simulation module embedded in the Edge nodes to simulate the energy
consumption.

6. Synthetic Route Manager: It manages, generates or loads routes that Edge devices should follow. This component is
linked to the Connections Manager module by sending it the device location. Thus, the Connection Manager module
can use the device location to optimise the establishment of new connections.

7. Synthetic Data Generation: It manages, generates or uploads the publication of data made by an Edge device. It is
linked to the MQTT client, thus being able to publish the generated data. It is also related to the Intermediate Buffer
so that, in case of disconnection, it stores the generated data.

8. MQTT Client: It allows an Edge device to publish or subscribe to Topics on an MQTT. As can be observed in Fig. 6,
several components on the Edge node require to publish or subscribe to Topics by using the MQTT Client.

9. Connections Manager: It manages the connections among an Edge node with the rest of the nodes in the IoT
environment. It is related to the Topic Discovery Service, Broker Discovery Service, Token Security System and
the Synthetic Route Generation element with the aim of coordinating them when making requests, thus being able
to use the responses obtained from each of them to establish optimal connections.

10. Statistical Information Manager: It collects data from the device during the simulation in order to integrate them
and to produce statistics to be analysed at the end of the simulation for the analysis of the simulation.

(B) Fog Layer
The Fog layer is composed of the set of Fog nodes of the IoT environment. The architecture of a Fog Node is illustrated

in Fig. 7. In terms of the main elements of the architecture (numbered with the numbers used in Fig. 7):

1. Topic Discovery Service: Component that implements the Topic Discovery Service explained in Section 6.2. This
service is linked to the MQTT client in order to receive requests. In addition, it relates to the MongoDB Client to
obtain information about the Fog node Topics (response to requests from devices).

2. Broker Discovery Service: Component that implements the Broker Discovery Service explained in Section 6.2. This
service is linked to the MQTT client in order to receive requests from the Edge nodes.

14

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 7. Software architecture of a Fog node generated.

3. Token Security System: Component that implements the Topic Discovery Service explained in Section 6.2. This
service is linked to the MQTT client in order to receive requests from the Edge nodes. In addition, it relates to
the MongoDB Client to manage Tokens.

4. Complex Event Processing Engine: CEP engine that analyses and applies user-defined rules (modelled previously) to
data published in the Topics (it is related to MQTT Client). Besides is linked to the Notification Manager element to
which it sends its output.

5. Notification Manager: Component that collects the analyses carried out by the CEP engine (related to CEP Engine)
and publishes them in the Topics that the user has defined for this purpose during modelling phase (relation with
MQTT client).

6. MQTT Broker Mosquitto: MQTT Broker that supports communication by the MQTT protocol. It is related to the MQTT
client of the Fog node to allow it to communicate by using the MQTT protocol.

7. MQTT Client: It allows the Fog node to connect to its MQTT Broker and publish or subscribe to its Topics.
8. MongoDB: No-Sql database used for data storage on a Fog node. It is related to the MongoDB client as it is the client

that performs the queries.
9. MongoDB Client: MongoDB client that allows the Fog node to interact with the MongoDB database (related to

MongoDB).
10. Redirection Manager: Component that allows redirecting data (related to MongoDB Client) among Fog nodes and

Cloud nodes.
11. MongoDB Manager: Component that includes the necessary interactions with MongoDB (relation with MongoDB

Client) in order to ensure the correct performance of the Fog node.
12. Connections Manager: Module that manages the connections of a Fog node with the rest of the nodes in the IoT

environment.
13. REST API: REST API that provides information about the Fog node to external components. So, internal aspects of

the Fog node could be requested, for instance, data stored on MongoDB.
14. JitterController: Component that measures the jitter produced in the exchange of messages between the different

devices in the IoT environment. It has a relationship with the MQTTClient as it needs to subscribe to all Topics in
the environment in order to receive the messages published and thus measure the jitter of them.

To sum up, each Fog node exposes several interfaces based on different protocols: (a) REST API publish a REST API on
port 4000 based on request–response communication schema; and (b) MQTT Broker Mosquito exposes port 18XX that
could be used to interchange messages using MQTT protocol based on the well-know publish–subscribe communication
schema; (c) The MongoDB database which listens for requests on port 27017 from which queries can be made.
(C) Cloud Layer

The Cloud layer is composed of the set of Cloud nodes of the IoT environment. The architecture of a Cloud node is
the same as that of a Fog node, differing from it only in computational performance, where Cloud performance and store
capabilities are greater than Fog capabilities. This architecture is illustrated in Fig. 7.

7. Simulation outputs and analysis that can be obtained from the extensions

The main motivation for simulating an IoT system is to gain knowledge to optimise it. Therefore, the benefit that can
be derived from an IoT simulator is determined by its outputs. In this regard, SimulateIoT-Mobile provides several outputs
that allow to perform several analyses from which to gain knowledge. The main analyses that can be carried out with
SimulateIoT-Mobile are the following:

15

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

• Whether all messages have been successfully sent from sensors to gateways (ProcessNode elements). Data obtained
comparing sensors logs and MongoDB storage.

• How many mobile devices have reached the maximum local storage (Intermediate Buffer) due to they do not found
a gateway to send data during their routes. Data obtained from each IoT mobile device log.

• Check packet loss rate. Data obtained from each IoT mobile device log.
• Check the jitter produced in the environment during the exchange of messages. Data obtained from the jitter

controller component.
• To check the state of the battery of the IoT mobile devices simulated. Data obtained from each IoT mobile device

log.
• To check if the gateways deployed (FogNode elements) have been enough to attend the IoT mobile devices. Data

obtained from each IoT mobile device log and the FogNode elements database and logs.
• To check if the complex event processing rules defined have been executed suitable and the Actuator elements have

executed their actions. Data obtained from each complex event processing event engine log and the message sent
to Actuator elements.

• Visualise the data interchanged among the IoT mobile devices and the FogNode or CloudNode elements. Data can be
visualised using the view tool Compass associated with each FogNode or CloudNode element.

• To check if there are message bottlenecks on specific ProcessNode. It implies that a specific IoT node is a sink of
messages which is a potential system risk and a situation that should be avoided. This situation requires to analyse
what has been the percentage of messages that cross each ProcessNode identifying those which they have a high
message rate. Data obtained from different sources, such as the jitter produced at certain times, packet loss rate,
node downtime, etc.

• To check if the resources available on the EdgeNode, FogNode or CloudNode are enough to deploy suitable the IoT
system modelled. Data obtained from different sources, such as the jitter produced at certain times, packet loss rate,
node downtime, etc.

• To obtain several statistics related with the number of connections carried out by IoT mobile devices with the
gateways deployed (FogNode elements). Data obtained from each IoT mobile device log.

8. Case studies

Next, two case studies have been developed using the SimulateIoT-Mobile metamodel and M2T transformations
previously presented. The first one defines an IoT simulation of Animals tracking while the second one defines an IoT
simulation of Personal mobility devices (PMD) based on public bicycles .

Below is defined a synthesis of the methodology required to use SimulateIoT-Mobile and the processes carried out by
this tool to simulate these use cases in order to illustrate them more effectively.

1. Model definition: This step refers to the modelling of the IoT Environment that the user wants to deploy and simulate.
This model corresponds to the DSL and therefore can contain all the elements defined in it.

2. M2T transformations and deployment: Once the model has been defined, the source code of all the elements involved
can be generated from it. Sensors, Actuators, FogNodes, CloudNodes and all their sub-components and configuration
files will be ready for the deployment phase.

8.1. Case 1: Animal tracking

Animal movement can be the answer to many biological phenomena, whose understanding could be critical to
successfully address challenges such as climate change, species conservation, health and food [40]. Therefore, many IoT-
related studies focus their efforts on optimising the application of these systems in such environments. Moreover, many
of these studies corroborate and justify their results through the use of simulations [41–44].

For all these reasons, this first use case is focused on the simulation of an IoT system based on animal movement
tracking. So, modelling the behaviour of a system based on GPS devices on animals with MQTT communications
ProcessNode elements facilitates the animal tracking making it possible to analyse data.

In order to model this IoT system the following aspects are taken into account:

• Each animal has its own GPS devices which communicate with the gateways deployed on the area. So, several Sensor
elements with mobility capabilities should be included in the model.

• Each Sensor element has defined the route that they should follow, this route is a FogCloudRoute (Section 5.1.1) that
is shared, simulating a flock.

• There are defined several ProcessNode, specifically three FogNode elements which could be deployed on strategic
locations on the area, such as the lagoons where periodically animals should access to drink water.

• Each Sensor element (GPS devices) send storage data to the gateway represented by the FogNode elements deployed.
• Each FogNode element defined, that is the gateways deployed, notifies to a central CloudNode.

16

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 8. Case 1. Model simplified conforms to SimulateIoT-Mobile metamodel for animals tracking. Complete version in Fig. 15.

8.1.1. Model definition
Fig. 8 shows an excerpt from the animals tracking model. It also includes numerical references for each node which are

then used to describe the use case. Note that, for the sake of clarity this extract is simplified, including only one instance
of each possible type of relationship between components. The complete version of this model is shown in Fig. 15.

For the purpose of explaining the model, it is divided into three parts: (1) Edge Layer (Red nodes), (2) Fog Layer (Blue
nodes), (3) Cloud Layer (Green nodes).
(1) Edge Layer

The Edge layer contains the definition of the sensors (Fig. 8 label 3.1) and actuators (Fig. 8 label 3.2) of the simulation.
This sensor represents the GPS that has been incorporated into each animal. This GPS sensor monitors the different
locations of a animal throughout the day. On the other hand, the PDA actuator (Personal Digital Assistant) has been
modelled bearing in mind that there may be use cases where workers are in charge of keeping the integrity of the animals
safe, being the PDA the device where they receive notifications of danger. For instance, receiving notifications when an
animal is not in the area where it should be, such as outside of a hypothetical protected area where it might be at risk.
In addition to this PDA, notification could be also defined to send a message to user applications such as email.

GPS data is assigned by a synthetic data generation (Fig. 8 label 4) and a Route (Fig. 8 label 8). Regarding the publication
of the data, GPS could publish data in the Topic called GPS (Fig. 8 labels 5.1, 5.2, 5.3) located in the Fog nodes. On the
other hand, the PDA actuator (Fig. 8 label 3.2) subscribes to the Topic Notifications (Fig. 8 label 5.4) located in the Cloud
node (Fig. 8 label 2).

Note that for simulation purposes it is not necessary to re-model all elements of the above for each animal. Since
each GPS has a quantity attribute to specify how many times it should be generated in the M2T transformation phase.
Nevertheless, Route and the synthetic generation of data should be defined for each animal, otherwise, it will be the same
for each of them.

17

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 9. Case01. Simulation analysis: Intermediate buffer size and Packet loss rate.

Fig. 10. Case 1. Simulation analysis: Jitter variation during simulation according to the selected QoS (MQTT protocol).

(2) Fog Layer
Fog nodes ((Fig. 8 labels 1.1, 1.2, 1.3) are those that integrate the necessary services for the Edge nodes to carry out

their duties. Taking into account the example modelled, each Fog node could be located near watering places where the
animals live. For this case study, three Fog nodes have been defined.

The modelling of the Fog nodes is divided into Topics (Fig. 8 labels 5.1, 5.2, 5.3) and the CEP engine (Fig. 8 labels 7.1,
7.2, 7.3). In this use case study, each Fog node offers one Topic, GPS, where the GPS incorporated in each animal publishes
its location during the day. On the other hand, the CEP engine analyses the data published in these Topics and applies
a set of rules to detect anomalies. Specifically, the CEP engine defines two rules: a) AnomalyCoords rule, which analyses
the data published in the Topic GPS and identifies if the location of an animal is inappropriate; (b) Control rule, which
analyses the data published in the Topic GPS and identifies if an animal does not publish its location for too long a period
of time. If one of these rules is met, the CEP engine publishes a notification in the Topic Notifications (Fig. 8 label 5.4),
located in the Cloud node (Fig. 8 label 2), where the PDA actuator (Fig. 8 label 3.2) is subscribed.

Finally, the Fog nodes are related to the Cloud node. This relationship allows Fog nodes to forward all the data received
by their Topics to the Cloud node for storage and future analysis. Note that Fog nodes can also store data if they include
a database (Fig. 8 labels 6.1, 6.2, 6.3)
(3) Cloud Layer

As for the Cloud node (Fig. 8 label 2), in this use case it is necessary to model the relationship with the Fog nodes
(Fig. 8 labels 1.1, 1.2, 1.3). Thus, it is specified that the Cloud node will receive all the data published in their Topics.

On the other hand, the notifications of the CEP engines incorporated in each Fog node (Fig. 8 labels 7.1, 7.2, 7.3) are
sent directly to the Cloud node via MQTT, therefore, it is necessary to define a Topic in the Cloud node. This Topic is
Notifications (Fig. 8 label 5.4) and is where the PDA actuator is subscribed (Fig. 8 label 3.2), thus receiving any anomaly
regarding the animals.

Finally, it is also necessary to model a database to store the received data (Fig. 8 label 6.4).

8.1.2. Model-to-text transformation and deployment
Once the model has been defined, the model-to-text transformation is applied with the following goals: (i) to generate

Java, Python, NodeJs, etc. code that wraps each device behaviour; (ii) to generate configuration code to deploy all the
generated services, such as the message brokers necessary, including the topic configurations defined, the gateway
configurations, etc. (iii) to generate the code and deployment configuration files of the architecture that supports mobility
(Broker Discovery Service, Topic Discovery Service, Token Security System, etc.). (iv) to generate the configuration files and
scripts necessary to deploy the databases and stream processors defined; and finally, to generate the code necessary to
query the databases where the data will be stored; (v) to generate for each ProcessNode and EdgeNode a Docker container
which can be deployed throughout a network of nodes using Docker Swarm.

Consequently, each Edge node, Fog node and Cloud node is generated following the software architecture defined in
Section 6 where model-to-text transformation has been defined.

18

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

8.1.3. Simulation analysis
SimulateIoT-Mobile allows users to iteratively model, simulate (execute) and analyse their environment as many times

as necessary until the final version is achieved. So, having executed a simulation the users can analyse several data
(Section 7).

To exemplify the above mentioned, some experiments and analysis have been applied below on Case 01, Animals
Tracking. In this sense, the optimal size of the Intermediate Buffer in different situations, the battery behaviour of the
devices and the jitter produced in the message exchange are studied.

First, the packet loss rate is analysed. To carry out this analysis, in a first approximation of the model, it is specified that
the GPS incorporated in each animal publishes its data every three minutes. In addition, no Intermediate Buffer has been
included. The results after one day simulation (2 min real time - simulation accelerated) are 45.82% packet loss on average
per animal (Fig. 9-A). In order to reduce this packet loss rate, an Intermediate Buffer of 5 Kb (250 publications) is added
to the GPS of each animal. The results of this second approach are 0% packet loss rate (Fig. 9-B). Finally, a series of tests
are carried out to optimise the buffer size and keep the packet loss rate below 20% (hypothetical acceptable threshold).
The test results indicate that a buffer size of 1.2 Kb would be necessary to keep the packet loss rate below 20% (Fig. 9-C).

As for the battery, different valuable data can be extracted about its consumption. For example, in this use case when
the buffer size is set to 1.2 Kb, (around 20% packet loss) during one day each GPS was connected to the internet for an
average of 10.88 h, published a total of 340 messages on average, made 3 connections and disconnections of gateways,
etc.

On the other hand, it is also possible to analyse the jitter that occurs during the exchange of messages between devices.
Jitter can be measured from different perspectives, in this case, the jitter is measured during a normal exchange, ignoring
the increase produced by a handover period (gateway switch) or a disconnection period. In this sense, the results obtained
are an average jitter of 100.859 ms, a maximum of 102.831 ms and a minimum of 100.116 ms. Fig. 10-A shows the average
jitter of each simulated hour when QoS is set to 0 (this case).

One of the factors involved in the Jitter results is the quality of service offered. In this sense, MQTT has three QoS
levels. The above tests have been carried out with a QoS of 0 (minimum QoS allowed by MQTT). When using a QoS of
1 (intermediate QoS level in MQTT) the results are an average jitter of 105.280 ms, a maximum of 109.611 ms and a
minimum of 104.259 ms. Fig. 10-B shows the average jitter of each simulated hour when QoS is set to 1. Finally, if the
QoS is raised to its maximum level (QoS = 2), the results obtained are an average jitter of 109.614 ms, a maximum of
113.459 ms and a minimum of 105.981 ms. Fig. 10-C shows the average jitter of each simulated hour when QoS is set
to 2.

In short, with SimulateIoT-Mobile the users can analyse different aspects of the IoT environment in order to optimise
or adapt it to their requirements.

8.2. Case 2: Personal mobility device (PMD) based on public bicycles

In recent years, the presence of PMD’s such as bicycles or electric scooters has grown significantly in cities. In order
to manage these PMD’s and ensure the safety of their users, they can be equipped with several sensors that monitor the
status of the PMD in real-time [46,47]. Thus, our second case study presents the simulation of a city with a smart PMD
system.

In order to model this case study several assumptions should be taken into account:

• Each PMD includes the following sensors: (a) A GPS that publishes data related to its geolocation; (b) A Wheels
pressure sensor, that monitors wheels pressure; (c) A Timer, that monitors the time the PMD is used by a user. On
the other hand, the PMD incorporates an Actuator that notifies the user of anomalies, e.g. inadequate wheel pressure.

• The PMD route could be defined as CSV_Route based on specific routes defined on the map where the PMD and
gateways are deployed.

• Each gateway can be defined as a FogNode element that is able to manage the data available on each PMD that
reaches a gateway. Note that, from our point of view a FogNode element can act as gateway gathering data from
sensors or sending data to other FogNode, CloudNode or Actuator elements.

• Each FogNode element re-send data to a CloudNode element which is able to store and analyse all the data available.
• Each FogNode element deployed is able to analyse the data send from the PMD in order to automatically notify

the device if it has reached the lease term, the battery is low or the pressure of the wheel is not appropriate.
Consequently, PMD incorporates an Actuator element that is able to notify the user.

8.2.1. Model definition
Fig. 11 shows an excerpt from the PMD based on the public bicycles model. It also includes numerical references for

each node which are then used to describe the use case. Note that, for the sake of clarity, this model is simplified, including
only one instance of each possible type of relationship between components. The complete version of this model is shown
in Fig. 16 (Appendix B).

For the purpose of explaining the model, it is divided into three parts: (1) Edge Layer (Red nodes), (2) Fog Layer (Blue
nodes), (3) Cloud Layer (Green nodes).

19

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 11. Case 2. Model conforms to SimulateIoT-Mobile metamodel for Personal mobility device (PMD) based on public bicycles (Simplified version).
Complete version in Fig. 16 (Appendix B).

(1) Edge Layer
The Edge layer contains the sensors (Fig. 11 labels 3.1, 3.2, 3.3) and actuators (Fig. 11 label 3.4) of the simulation. This

set of devices is the one that has been incorporated into each PMD, thus representing a PMD.
These devices are three sensors and one actuator for each PDM: (a) A GPS (Fig. 11 label 3.1), which monitors the position

of the PMD; (b) A pressure sensor (Fig. 11 label 3.2), which monitors the pressure of the wheels; (c) A timer (Fig. 11 label
3.3), which monitors the time the user uses a PMD; (d) An anomaly notifier (Fig. 11 label 3.4), which notifies the user
when an anomaly occurs.

For simulation purposes each sensor has assigned a synthetic data generation (Fig. 11 labels 4.1, 4.2, 4.3) and a Route
(Fig. 11 label 8). Note that, all devices have assigned the same Route (Fig. 11 label 8), consequently, this is the PMD Route.

Finally, the sensors and the actuator are linked to several Topics (Fig. 11 label 5.1), where they will publish their data
or from where they will receive them respectively.
(2) Fog Layer

Fog nodes (Fig. 11 labels 1.1, 1.2, 1.3) are those that integrate the services necessary for the Edge nodes to carry out
their functions. For this case study, three Fog nodes have been defined although other numbers of Fog nodes could be
defined if needed.

Modelling of the Fog nodes is divided into Topics (Fig. 11 labels 5.1, 5.2, 5.3) and the CEP engine (Fig. 11 labels 7.1,
7.2, 7.3). In this use case, each Fog node offers five Topics: (a) GPS, where the GPS publishes the location of the PMD;
(b) WheelsPressure, where the Pressure sensor publishes the pressure of the wheels; (c) Battery, where the different Edge
nodes publish their remaining battery life; (d) AnomalyNotifications, where the actuator is subscribed for anomalies and
the CEP engine publishes the anomalies identified; (e) Timer, where the Timer publishes the remaining leasing time.

20

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 12. Case 2. Simulation analysis: Intermediate buffer size required to avoid Packet loss.

On the other hand, the CEP engine analyses the data published in the Topics and applies a set of rules to detect
anomalies. Specifically, the CEP engine defines three rules: (a) AnomalousWheelPressure, which analyses the data published
in the Topic WheelsPressure and identifies if the wheel pressure is not adequate; (b) LowBattery, which analyses the data
published in the Topic Battery and identifies if any device has a low battery; (c) ExceedTime, which analyses the data
published in the Topic Timer and identifies if the elapsed lease time has expired. If one of the rules is met, the CEP engine
publishes a notification in the Topic AnomalyNotifications.

Finally, the Fog nodes are related to the Cloud node. This relationship allows Fog nodes to forward all the data received
by their Topics to the Cloud node for storage and future analysis. Note that Fog nodes can also store data if they include
a database (Fig. 11 labels 6.1, 6.2, 6.3).
(3) Cloud Layer

Cloud node (Fig. 11 label 2) makes it possible to model a node with high capabilities to store and process data. In
this case study, the Cloud node (Figure) 11 label 2 stores all data produced in the IoT environment during the simulation
process. So, it is needed to model a database to store the received data (Fig. 11 label 6.4). Additionally, it is related to the
Fog nodes defined on the model which redirect their data to the cloud node. The Cloud node has defined a Topic named
Notification which receives all messages thrown several CEP rules defined at the Fog layer.

8.2.2. Model-to-text transformation and deployment
Once the model has been defined, the model-to-text transformation is applied with the same goals as in Case 01

(Section 8.1.2).
Consequently, each Edge node, Fog node and Cloud node is generated following the software architecture defined in

Section 6 where model-to-text transformation has been defined.

8.2.3. Simulation analysis
Section 8.1.3 describes and exemplifies some of the experiments and analyses that can be carried out with SimulateIoT-

Mobile. This subsection illustrates some additional experiments and analyses that the user could carry out in Case02, a
Personal mobility device (PMD). In particular, the impact of a Fog node downtime in terms of packet loss is studied.
Besides, the impact of switching brokers on jitter is analysed.

In this use case, the gateways are strategically distributed so that the devices in the environment do not suffer periods
of disconnection. Therefore, the use of the Intermediate Buffer is not necessary. However, it is interesting to study the
case where one of the Fog nodes goes down (including its gateway) and analyse the number of packets that could be lost
in this case.

For this experiment, a device that follows a route that frequents the area with no coverage due to the Fog node
downtime has been selected. This device publishes one publication per minute. The output logs of this device show a
result of 43.54% of packets lost (Fig. 12-A).

In a hypothetical IoT environment where this Fog node could be down on a regular basis, the user could choose to add
an Intermediate Buffer to the devices to avoid packet loss. In this use case, after several tests with SimulteIoTMobile, it
is concluded that a 9.84 Kb (492 publications) buffer is needed to avoid packet loss (Fig. 12-B).

On the other hand, this use case studies the impact of switching brokers on jitter. Thus, the jitter of the messages
published by a random device has been analysed during simulation execution. This device has switched Brokers
approximately 100 times. Each switch involves interacting with the TSS, TDS and BDS, as well as coordinating the requests
and responses of these components. The results of this study are an average jitter of 115.668 ms, a maximum of 824.735
ms and a minimum of 100.014 ms. Looking at the maximum jitter it is possible to state that during a Broker switch there
is an additional jitter of about 724 ms (worst case). These results may indicate to the user the need to re-model their
environment with a view to reducing the impact of jitter in their environment, e.g. critical section that requires a jitter
of fewer than 820 ms. Fig. 13 shows an extract of 140 delay measurements where three periods of handover or gateway
switching occur.

21

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 13. Case 2. Simulation analysis: Extract of 140 delay measurements where three periods of handover occur.

Fig. 14. Complete SimulateIoT-Mobile metamodel.

9. Discussion

In order to discuss the main facts reached by the proposal, the research questions previously defined will be answered.
In relation to RQ1, ‘‘How could mobility be managed in IoT systems where the MQTT protocol is used?’’, in order to

manage mobility in IoT systems based on MQTT protocol, several artefacts should be suitably generated (TSS, BDS, TDS)
to manage the data among IoT devices and the additional application layer interactions needed to manage IoT mobility
should be implemented. Consequently, as has been shown previously it is possible to manage mobility in IoT systems by
using MQTT protocol.

Regarding RQ2, ‘‘How might model-driven techniques be applied to model IoT systems with mobile nodes?’’, using
model-driven development helps to manage the complexity of heterogeneous technology as a success during an IoT
environment development. In this work the IoT systems with mobile nodes are modelled at high abstraction level by using
metamodeling techniques. In addition, models obtained could be validated by using OCL (Objects Constrain Language)
which guarantees that models are conformed to the metamodel proposed. The metamodel proposed makes it possible to
model the target IoT systems using common domain elements.

Concerning RQ3, ‘‘To what extent is it possible to generate the code needed to simulate an IoT system with mobile nodes from
a model of the system?’’, modelling IoT environments is a key activity for any IoT project making it possible to focus on the

22

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 15. Case 01. Model conforms to SimulateIoT-Mobile metamodel for animals tracking (complete version).

IoT domain in order to later on generate final code from the models defined. Additionally, modelling and simulating the
behaviour of the IoT environments including mobile devices facilitates analysing of several system complex aspects such
as battery behaviour, jitter, Intermediate Buffer, storage data, mobile communication protocols and so on. Code generate
from the models defined includes multiple artefacts (described in Section 6) which are suitably orchestrated to simulate
the IoT environment defined.

Finally, in relation to RQ4, ‘‘To what extent could simulations of mobile IoT systems be useful for optimising the real
system?’’, users are able to evaluate the system modifying their characteristics in order to find the better trade-off among
the devices and nodes deployed. Specifically, users can use DSL tools such as the Graphical Editor to model the system and
the model-to-text transformation to generate the code for deploying the simulation and checking the statistics generated
during the simulation.

On the other hand, although there are interesting advantages to using SimulateIoT-Mobile DSL, there are some issues
related to the mobility proposal presented.

Firstly, the publish/subscribe communication protocol used is based on MQTT protocol [10], although other pub-
lish/subscribe protocols can be used adding it to the model-to-text transformation. Secondly, model-to-text transforma-
tion, it has been defined for a concrete target based on microservices deployed on Docker containers which represent the
concrete IoT nodes defined on the model. Other technological targets could be defined which implies re-code the model-
to-text transformation. Thirdly, the routes of the IoT devices have been defined using common IoT mobility patterns, but
additional IoT mobility patterns could be defined. Consequently, it would imply including additional modelling elements
and including the new behaviours on the model-to-text transformation. Finally, current version of SimulateIoT-Mobile,
for the sake of simplicity, allows defining connected nodes by TCP/IP, and we assume that connectivity is guaranteed.

23

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Fig. 16. Case02. Model conforms to SimulateIoT-Mobile metamodel for Personal mobility device (PMD) based on public bicycles (complete version).

10. Conclusions

Model-driven development techniques are a suitable way to tackle the complexity of domains where heterogeneous
technologies are integrated. Initially, they focus on modelling the domain by using the well-known four-layer metamodel
architecture. Then, by using model-to-text transformations the code for specific technology could be generated.

The IoT simulation methodology and tools proposed in this work help users to think about the IoT system in general
and IIoT in particular, to propose several IoT alternatives and policies in order to achieve a suitable IoT architecture,
including modelling IoT mobile nodes. In this sense, several kinds of mobile devices and routes can be defined, allowing
defining realistic IoT environments. Finally, the IoT environments modelled can be deployed, simulated and analysed.

Future works include extending the metamodel and model-to-text transformation to model additional publish–
subscribe communication protocols such as JMS or AMQP; or request–response protocols such as REST. Both extensions
facilitate modelling IoT environments taking into account additional heterogeneity technology. Additionally, additional IoT
mobile behaviours and routes could be identified and modelled. Finally, the model-to-text transformation could make it
possible to generate Cloud support based on well-known Cloud providers such as AWS or Azure. It could open interesting
research areas for IoT simulation purposes.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

24

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

Data availability

No data was used for the research described in the article.

Acknowledgement

Appendix A

This Section shows in Fig. 14 the complete metamodel of SimulateIoT-Mobile. This metamodel is composed of the
SimulateIoT metamodel and the extension carried out (highlighted in blue). The description of the classes and relationships
that are not part of the extension (and that have not been addressed in this article), can be found in the article [17] Section
IV, subsection A.

Appendix B

This Section shows the complete version of the models shown in Figs. 8 (Case 01. Animal tracking) and 11 (Case02.
Personal mobility device (PMD) based on public bicycles) respectively in Figs. 15 and 16.

References

[1] E. Siow, T. Tiropanis, W. Hall, Analytics for the internet of things: A survey, ACM Comput. Surv. 51 (4) (2018) 74.
[2] S.M. Ghaleb, S. Subramaniam, Z.A. Zukarnain, A. Muhammed, Mobility management for IoT: a survey, EURASIP J. Wireless Commun. Networking

2016 (1) (2016) 1–25.
[3] K. Nahrstedt, H. Li, P. Nguyen, S. Chang, L. Vu, Internet of mobile things: Mobility-driven challenges, designs and implementations, in: 2016

IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), IEEE, 2016, pp. 25–36.
[4] H. Teng, Y. Liu, A. Liu, N.N. Xiong, Z. Cai, T. Wang, X. Liu, A novel code data dissemination scheme for internet of things through mobile vehicle

of smart cities, Future Gener. Comput. Syst. 94 (2019) 351–367.
[5] L. Nóbrega, A. Tavares, A. Cardoso, P. Gonçalves, Animal monitoring based on IoT technologies, in: 2018 IoT Vertical and Topical Summit on

Agriculture - Tuscany (IOT Tuscany), 2018, pp. 1–5.
[6] F. Almada-Lobo, The industry 4.0 revolution and the future of manufacturing execution systems (MES), J. Prod. Innov. Manage. 3 (4) (2015)

16–21.
[7] M.B. Yassein, S. Aljawarneh, W. Al-Sarayrah, Mobility management of internet of things: Protocols, challenges and open issues, in: 2017

International Conference on Engineering & MIS, ICEMIS, IEEE, 2017, pp. 1–8.
[8] J.E. Luzuriaga, J.C. Cano, C. Calafate, P. Manzoni, M. Perez, P. Boronat, Handling mobility in IoT applications using the MQTT protocol, in: 2015

Internet Technologies and Applications, ITA, IEEE, 2015, pp. 245–250.
[9] L. Farhan, S.T. Shukur, A.E. Alissa, M. Alrweg, U. Raza, R. Kharel, A survey on the challenges and opportunities of the internet of things (IoT),

in: 2017 Eleventh International Conference on Sensing Technology, ICST, IEEE, 2017, pp. 1–5.
[10] Oasis, Message queuing telemetry transport (MQTT) v5.0 oasis standard, 2019, URL https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.
[11] CoAP, The constrained application protocol (CoAP) - RFC 7252, 2014, https://datatracker.ietf.org/doc/html/rfc7252.
[12] S.-M. Cheng, P.-Y. Chen, C.-C. Lin, H.-C. Hsiao, Traffic-aware patching for cyber security in mobile IoT, IEEE Commun. Mag. 55 (7) (2017) 29–35.
[13] X. Liu, N. Ansari, Toward green IoT: Energy solutions and key challenges, IEEE Commun. Mag. 57 (3) (2019) 104–110.
[14] J.E. Luzuriaga, M. Perez, P. Boronat, J.C. Cano, C. Calafate, P. Manzoni, Improving mqtt data delivery in mobile scenarios: Results from a realistic

testbed, Mob. Inf. Syst. 2016 (2016).
[15] B. Selic, The pragmatics of model-driven development, IEEE Softw. 20 (5) (2003) 19–25.
[16] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling languages in industry 4.0: An extended systematic mapping study, Softw. Syst.

Model. 19 (1) (2020) 67–94.
[17] J.A. Barriga, P.J. Clemente, E. Sosa-Sánchez, A.E. Prieto, SimulateIoT: Domain specific language to design, code generation and execute IoT

simulation environments, IEEE Access 9 (2021) 92531–92552.
[18] M. Bouaziz, A. Rachedi, A survey on mobility management protocols in wireless sensor networks based on 6LoWPAN technology, Comput.

Commun. 74 (2016) 3–15.
[19] C.C. Sobin, A survey on architecture, protocols and challenges in IoT, Wirel. Pers. Commun. (ISSN: 1572-834X) 112 (3) (2020) 1383–1429, URL

https://doi.org/10.1007/s11277-020-07108-5.
[20] R. Silva, J.S. Silva, F. Boavida, A proposal for proxy-based mobility in WSNs, Comput. Commun. 35 (10) (2012) 1200–1216.
[21] R. Silva, J. Sa Silva, F. Boavida, Mobility in wireless sensor networks – Survey and proposal, Comput. Commun. (ISSN: 0140-3664) 52 (2014)

1–20, URL https://www.sciencedirect.com/science/article/pii/S0140366414001911.
[22] B. Bettoumi, R. Bouallegue, LC-DEX: Lightweight and efficient compressed authentication based elliptic curve cryptography in multi-hop

6LoWPAN wireless sensor networks in HIP-based internet of things, Sensors (ISSN: 1424-8220) 21 (21) (2021) URL https://www.mdpi.com/1424-
8220/21/21/7348.

[23] H.A. Al-Kashoash, H. Kharrufa, Y. Al-Nidawi, A.H. Kemp, Congestion control in wireless sensor and 6LoWPAN networks: toward the internet of
things, Wirel. Netw. 25 (8) (2019) 4493–4522.

[24] M.L. Miguel, E. Jamhour, M.E. Pellenz, M.C. Penna, SDN architecture for 6LoWPAN wireless sensor networks, Sensors 18 (11) (2018) 3738.
[25] R. Hamidouche, Z. Aliouat, A.M. Gueroui, A.A.A. Ari, L. Louail, Classical and bio-inspired mobility in sensor networks for IoT applications, J.

Netw. Comput. Appl. 121 (2018) 70–88.

25

J.A. Barriga, P.J. Clemente, M.A. Pérez-Toledano et al. Pervasive and Mobile Computing 89 (2023) 101751

[26] Y. Chen, T. Kunz, Performance evaluation of IoT protocols under a constrained wireless access network, in: 2016 International Conference on
Selected Topics in Mobile Wireless Networking (MoWNeT), 2016, pp. 1–7.

[27] J.E. Luzuriaga, J.C. Cano, C. Calafate, P. Manzoni, M. Perez, P. Boronat, Handling mobility in IoT applications using the MQTT protocol, in: 2015
Internet Technologies and Applications, ITA, 2015, pp. 245–250.

[28] S. Chun, J. Park, Mobile CoAP for IoT mobility management, in: 2015 12th Annual IEEE Consumer Communications and Networking Conference,
CCNC, 2015, pp. 283–289.

[29] C. Atkinson, T. Kuhne, Model-driven development: a metamodeling foundation, IEEE Softw. 20 (5) (2003) 36–41.
[30] S. Sendall, W. Kozaczynski, Model transformation: The heart and soul of model-driven software development, IEEE Softw. 20 (5) (2003) 42–45.
[31] C. Perkins, Mobile IP, IEEE Commun. Mag. 35 (5) (1997) 84–99.
[32] R. Wakikawa, Z. Zhu, L. Zhang, A survey of mobility support in the internet. RFC 6301, 2011, URL https://www.rfc-editor.org/info/rfc6301.
[33] R. Moskowitz, P. Nikander, P. Jokela, T. Henderson, Host Identity Protocol, Tech. rep., 2008.
[34] A.R. Sfar, E. Natalizio, Y. Challal, Z. Chtourou, A roadmap for security challenges in the internet of things, Digit. Commun. Netw. 4 (2) (2018)

118–137.
[35] C. Thomás Oliveira, R. Moreira, F. de Oliveira Silva, R. Sanches Miani, P. Frosi Rosa, Improving security on IoT applications based on the FIWARE

platform, in: 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications, AINA, 2018, pp. 686–693.
[36] E. Tuyishimire, A. Bagula, A. Ismail, Clustered data muling in the internet of things in motion, Sensors (ISSN: 1424-8220) 19 (3) (2019) URL

https://www.mdpi.com/1424-8220/19/3/484.
[37] A. Bagula, E. Tuyishimire, J. Wadepoel, N. Boudriga, S. Rekhis, Internet-of-things in motion: A cooperative data muling model for public

safety, in: 2016 Intl IEEE Conferences on Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
2016, pp. 17–24.

[38] O. Tsilomitrou, N. Evangeliou, A. Tzes, Mobile robot tour scheduling acting as data mule in a wireless sensor network, in: 2018 5th International
Conference on Control, Decision and Information Technologies (CoDIT), 2018, pp. 327–332.

[39] A. Ismail, E. Tuyishimire, A. Bagula, Generating dubins path for fixed wing uavs in search missions, in: International Symposium on Ubiquitous
Networking, Springer, 2018, pp. 347–358.

[40] R. Kays, M.C. Crofoot, W. Jetz, M. Wikelski, Terrestrial animal tracking as an eye on life and planet, Science 348 (6240) (2015) aaa2478, URL
https://www.science.org/doi/abs/10.1126/science.aaa2478.

[41] T.M. Behera, S.K. Mohapatra, U.C. Samal, M.S. Khan, Hybrid heterogeneous routing scheme for improved network performance in WSNs for
animal tracking, Internet Things (ISSN: 2542-6605) 6 (2019) 100047, URL https://www.sciencedirect.com/science/article/pii/S2542660518301914.

[42] F. Maroto-Molina, J. Navarro-García, K. Prí ncipe Aguirre, I. Gómez-Maqueda, J.E. Guerrero-Ginel, A. Garrido-Varo, D.C. Pérez-Marín, A low-
cost IoT-based system to monitor the location of a whole herd, Sensors (ISSN: 1424-8220) 19 (10) (2019) URL https://www.mdpi.com/1424-
8220/19/10/2298.

[43] Q.M. Ilyas, M. Ahmad, Smart farming: An enhanced pursuit of sustainable remote livestock tracking and geofencing using IoT and GPRS, Wirel.
Commun. Mob. Comput. (ISSN: 1530-8669) 2020 (2020) 6660733, URL https://doi.org/10.1155/2020/6660733.

[44] J.G. Panicker, M. Azman, R. Kashyap, A LoRa wireless mesh network for wide-area animal tracking, in: 2019 IEEE International Conference on
Electrical, Computer and Communication Technologies, ICECCT, 2019, pp. 1–5.

[45] P. Sadhukhan, An IoT-based E-parking system for smart cities, in: 2017 International Conference on Advances in Computing, Communications
and Informatics, ICACCI, 2017, pp. 1062–1066.

[46] F. Behrendt, Why cycling matters for smart cities. Internet of bicycles for intelligent transport, J. Transp. Geogr. (ISSN: 0966-6923) 56 (2016)
157–164, URL https://www.sciencedirect.com/science/article/pii/S0966692316300746.

[47] R. Sanchez-Iborra, L. Bernal-Escobedo, J. Santa, Eco-efficient mobility in smart city scenarios, Sustainability (ISSN: 2071-1050) 12 (20) (2020)
URL https://www.mdpi.com/2071-1050/12/20/8443.

[48] A. Dorri, S.S. Kanhere, R. Jurdak, P. Gauravaram, Blockchain for IoT security and privacy: The case study of a smart home, in: 2017 IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2017, pp. 618–623.

[49] Z. Ning, P. Dong, X. Kong, F. Xia, A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things,
IEEE Internet Things J. 6 (3) (2019) 4804–4814.

[50] Q. Fan, N. Ansari, Application aware workload allocation for edge computing-based IoT, IEEE Internet Things J. 5 (3) (2018) 2146–2153.
[51] H. Jayakumar, A. Raha, Y. Kim, S. Sutar, W.S. Lee, V. Raghunathan, Energy-efficient system design for IoT devices, in: 2016 21st Asia and South

Pacific Design Automation Conference (ASP-DAC), IEEE, 2016, pp. 298–301.
[52] N. Kaur, S.K. Sood, An energy-efficient architecture for the internet of things (IoT), IEEE Syst. J. 11 (2) (2015) 796–805.
[53] D.S. Kolovos, A. García-Domínguez, L.M. Rose, R.F. Paige, Eugenia: towards disciplined and automated development of GMF-based graphical

model editors, Softw. Syst. Model. (2015) 1–27.
[54] OMG, OMG Object Constraint Language (OCL), Version 2.3.1, 2012, URL http://www.omg.org/spec/OCL/2.3.1/.
[55] Obeo, Acceleo project , 2012,.

26

Chapter 7

SimulateIoT Towards the
Cloud-to-Thing Continuum
Paradigm for Task
Scheduling Assessments

“Never forget what you are, for
surely the world will not. Make
it your strength. Then it can
never be your weakness. Armour
yourself in it, and it will never
be used to hurt you.”

A Game of Thrones (1996)
Martin, George R. R.

Authors: José A. Barriga, José M. Chaves-González, Arturo Barriga, Pablo
Alonso, and Pedro J. Clemente
Title: Simulate IoT Towards the Cloud-to-Thing Continuum Paradigm for
Task Scheduling Assessments
Year: 2023
Journal: Journal of Object Technology

151

Quality (JCR): Q4
DOI: 10.5381/jot.2023.22.1.a6.

152

Journal of Object Technology | RESEARCH ARTICLE

José A. Barriga, José M. Chaves-González, Arturo Barriga, Pablo Alonso, and Pedro J. Clemente
University of Extremadura, Quercus Software Engineering Group (http://quercusseg.unex.es), Spain

ABSTRACT Aiming to optimise the performance of the computing layers of Internet of Things (IoT) systems, one of the most
widespread techniques is the well-known task scheduling. Not only to develop but also to put task scheduling techniques in
production, they have to be tested. Nevertheless, IoT systems are complex scenarios with high technological heterogeneity.
Thus, testing task scheduling methods in the IoT context involves an investment of money, time and effort in acquiring devices,
their configuration, deployment, etc. To avoid this, the system can be simulated and tests can be conducted through these
simulations. Moreover, the underlying technical complexity of IoT systems can be reduced by increasing the abstraction level
from which these systems are designed. Simulators based on model-driven development can help both to test and tackle the
technological complexity of IoT systems. In this paper, a Domain-Specific Language based on SimulateIoT is proposed for the
design, code generation and simulation of IoT systems for the assessment of task scheduling methods. Simulations include the
generation and offloading of workflow-based tasks, the components required to handle these tasks, as well as the required
resources to integrate the users’ task scheduling methods in the simulations. All this, while providing an infrastructure based on
the cloud-to-thing continuum paradigm on which to deploy and test these task scheduling environments, i.e., simulations can
include the mist, edge, fog and cloud layers and the federation between them. In addition, a case study focused on an Industrial
IoT (IIoT) system is illustrated to show the applicability of the proposed simulator.

KEYWORDS IoT, Model-driven development, Simulation, Task scheduling, Cloud-to-thing continuum.

1. Introduction
The Internet of Things (IoT) is being exploited in several areas
such as smart-cities, home environments, agriculture, industry,
intelligent buildings, etc.(Siow et al. 2018). In this regard,
IoT applications can be very different from each other and
therefore have different requirements and needs such as specific
Quality of Service (QoS) (Samann et al. 2021) or Service-Level-
Agreement (SLA) (Girs et al. 2020).

In order to satisfy these requirements, cloud computing
emerged. Thus, supporting the rapid growth of users and
applications, and providing them with elastic services such

JOT reference format:
José A. Barriga, José M. Chaves-González, Arturo Barriga, Pablo Alonso,
and Pedro J. Clemente. SimulateIoT Towards the Cloud-to-Thing
Continuum Paradigm for Task Scheduling Assessments. Journal of Object
Technology. Vol. 22, No. 1, 2023. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2023.22.1.a6

as Infrastructure-as-a-Service (IaaS), Platforms-as-a-Service
(PaaS), and Software-as-a-Service (SaaS) with minimum re-
source consumption (Qian et al. 2009; Rashid & Chaturvedi
2019). However, due to the rapid growth of the IoT and the
increasing demand for a better QoS, fog computing emerged
(H. & V. 2021). Nearer of the edge/mist computing, although
with fewer computing resources than the cloud (H. & V. 2021),
this computing layer is able to provide better QoS to specific
IoT applications and users such as IoV (Internet of Vehicles)
(Yu et al. 2018) or IIoT (Industrial Internet of Things) delay-
sensitive applications (Aazam et al. 2018). Thus, different
computing layers (cloud, fog, edge and mist) coexist in the IoT
providing different services to the system, from the cloud layer
to the end devices (mist/IoT layer). Furthermore, the nodes
that form each of these layers can be federated, acting as a
single entity instead of isolated nodes, including nodes that be-
long to different computing layers conforming cloud-fog-edge

An AITO publication

Simulate IoT Towards the Cloud-to-Thing Continuum
Paradigm for Task Scheduling Assessments

heterogeneous federations (Bittencourt et al. 2018; Kar et al.
2022; Mijuskovic et al. 2021). Consequently, the cloud-to-thing
continuum paradigm emerges, which could be defined as the
coordination of services and resources between the different
computing layers mentioned above. Allowing data flow across
cloud data centers, intermediary nodes like edge or fog nodes,
and end-user devices, facilitating more efficient, responsive, and
resilient computing solutions (Bittencourt et al. 2018).

While the IoT infrastructure was being developed and en-
hanced, different techniques for optimally managing their
resources were also developed and proposed. One of the
most widespread techniques is the well-known task scheduling
(Arunarani et al. 2019a; Alizadeh et al. 2020). Task scheduling
is often applied to distributed computing environments, such
as IoT systems that rely on an architecture based on the above
described cloud-to-thing continuum, where services are decom-
posed into a set of tasks which have to be processed by the
computing nodes of this federation (Singh et al. 2017; Hossein-
ioun et al. 2022). Note that in this communication, task refers
to an individual unit of work or a specific job that needs to be
performed. This can include data collection, data processing,
control commands, or other computational processes. In this
context, task scheduling proposals aim to schedule the process-
ing of these tasks, thus optimising the system and the use of
system resources from different perspectives, e.g., there are
proposals that aim at reducing the makespan (time required to
process a task) (S. Gupta et al. 2022; Al-Maytami et al. 2019),
optimising the system energy consumption (Ding et al. 2020;
Sandhu et al. 2021), the cost of task processing (Shu et al. 2021;
Gazori et al. 2020), etc.

However, testing is required during the development stage
of these proposals, besides these tests have to be isolated as
otherwise, they could affect the system in production. Fur-
thermore, novel task scheduling proposals are often compared
with existing ones in order to better determine the strengths
and limitations of these proposals. Consequently, this implies
an investment of money, time and effort in the acquisition of
devices, their configuration, deployment, etc. However, these
IoT systems can be simulated, and the task scheduling proposals
deployed, tested and analysed in these simulated systems, thus
avoiding the aforementioned costs in device acquisition, config-
uration, etc. For instance, the study (Hosseinioun et al. 2022)
reports that 90% of the task scheduling proposals applied to fog
computing environments use simulators for the aforementioned
purposes.

Note that in the context of this communication, simulation
refers to the procedure of creating and deploying a digital replica
of a real-world system, without having to materialise it phys-
ically. On the other hand, testing denotes the application of
specific scenarios or conditions to a software component or a
system. The purpose of these tests is to reproduce possible
situations the system might encounter and then observe and
analyse the responses of the system under these conditions.
Therefore, in this communication, the intention is to facilitate
the performing of these tests by means of simulations.

On the other hand, as described above, IoT systems present
a high technological heterogeneity and a complex infrastruc-

ture. However, increasing the abstraction level from which the
IoT systems are designed helps to tackle the underlying techno-
logical complexity. In this regard, model-driven development
(MDD) can help to both reduce the IoT application time to
market and tackle the technological complexity to develop IoT
applications (Barriga et al. 2023).

In this regard, SimulateIoT (Barriga et al. 2021) is a simulator
based on model-driven development that makes it possible to
design and simulate IoT systems. The IoT systems designed
with SimulateIoT can include different IoT nodes such as cloud,
fog, or edge nodes and multiple computing services such as
Complex Event Processing (CEP) services, publish/subscribe
services or storage services. However, SimulateIoT is not able
to simulate a suitable IoT infrastructure to test task scheduling
proposals.

In this communication, SimulateIoT (Barriga et al. 2021)
is extended towards the cloud-to-thing continuum paradigm
for task scheduling assessments. Thus, the simulator proposed
includes the main concepts of task scheduling (federations, tasks
generation and processing, etc.) to model, generate and simulate
IoT systems with the required infrastructure to support task
scheduling, allowing users to deploy, test, compare and analyse
their task scheduling proposals.

Note that the content described in this communication only
focuses on describing new contributions or features added as
part of the extension. Therefore, all the content in this commu-
nication is novel, although some references to SimulateIoT are
included where necessary to describe some aspects of the new
contributions.

The main work contributions are the following:

– The extension of the metamodel of SimulateIoT towards
task scheduling and the cloud-to-thing continuum. This
extension provides users with a metamodel that enables the
design of models based on IoT systems with task schedul-
ing capabilities. In addition, this extended metamodel
enables users to model cloud-to-thing continuum infras-
tructures on which to deploy and test these task scheduling
features.

– The extension of the model-to-text (M2T) transformations
of SimulateIoT towards the task scheduling and the cloud-
to-thing continuum. This extension ensures that the M2T
transformations required to generate and simulate the sys-
tems modelled conform to the extended metamodel.

– The extension of the concrete syntax of SimulateIoT to-
wards task scheduling and the cloud-to-thing continuum.
This extension enables users to design, in a graphical man-
ner, the IoT system models conform to the extended meta-
model.

– A case study to validate and show the applicability of the
proposal.

The rest of the paper is structured as follows. In Section
2, we give an overview of existing IoT simulation approaches
centred on both low-level and high-level IoT simulation envi-
ronments. Next, Section 3 gives a holistic view of the task
scheduling and cloud-to-thing continuum model envisaged and
the extended simulator. Next, Section 4 presents the extended

2 Jose A. Barriga et al.

simulator taking into account the design and implementation
stages including the new metamodel and the graphical editor. In
Section 5, the M2T transformations from the extended simulator
models to code are addressed. In Section 6 the simulation out-
puts, possible tests and assessments are illustrated. In Section 7,
a case study to show the applicability of the extended simulator
is presented. Finally, Section 8 concludes the paper.

2. Related Works

A large amount of IoT simulators are available in the literature.
However, only a few of them allow the simulation of IoT sys-
tems with task scheduling features. Below, those most relevant
to the proposal carried out in this communication are addressed.
Note that the review of these first related works is mainly fo-
cused on the task scheduling features that the simulators are
able to simulate.

iFogSim (H. Gupta et al. 2017) is one of the most popular
IoT simulators in literature. It is an extension of CloudSim
(Calheiros et al. 2011), although it is focused on the simulation
of the fog layer of the system. It is able to simulate the cloud, fog
and edge layer of an IoT system, simulating hardware features,
such as the CPU or memory of each device, network features
such as the delay and bandwidth between devices, federation
between the fog and the cloud nodes, etc. As for task scheduling,
it facilitates the design of workflows using DAGs (Directed
Acyclic Graphs), which are mathematical structures suitable for
representing them. Moreover, iFogSim allows the simulation of
the processing of tasks (those related to the above-mentioned
workflows). In this way, users can design applications and
specify the tasks they offload during the simulation. However,
this simulator does not provide knowledge about the availability
(status) of nodes, links between nodes or the tasks’ waiting time,
i.e. the time that a task needs to wait until its processing.

WorkflowSim (Chen & Deelman 2012) is another simula-
tor based on CloudSim, although it is focused on simulating
the workflow scheduling. In this way, this tool allows users to
simulate the processing of these workflows, including task pro-
cessing fails, to test several algorithms and policies (although it
does not include resources focused on allowing the integration
of users’ proposals), and all the elements included in CloudSim.
Although this tool is interesting because is mainly focused on
task scheduling purposes, it was published in 2012 and is no
longer maintained, so nowadays it is deprecated. Additionally,
it does not support current elements related to IoT systems such
as edge nodes, fog nodes, federations between nodes, etc.

YAFS (Lera et al. 2019) is a simulator whose main purpose
is to simulate the deployment and execution of applications in
a Cloud-fog IoT environment. In this way, users can analyse
which is the best allocation of applications and resources strate-
gies, the best network routing strategies for the offloaded data of
the deployed applications and also the best scheduling strategy.
In order to allow users to model the tasks that constitute an
application, DDFs (Distributed Data Flows) are used, which are
similar to workflows and DAGs. However, this simulator does
not include some relevant data about task processing such as
the time required to process a specific task or the status of the

links that inter-connect each node of the simulation.
ScSF (Rodrigo et al. 2018) is a simulation tool that focuses

only on task scheduling purposes. So, a positive aspect of this
tool is that it is not only focused on IoT systems but focuses
on any system with task scheduling needs, offering its utilities
to a broad spectrum of users. But on the contrary, without
offering specific concepts that could be found in an IoT system.
In this way, ScSF includes a set of modules that takes as input
a system model (processors) and the workflows to schedule.
Then, it reports as output the scheduling of each workflow in
the processor system taken as input.

These IoT simulators allow the simulation of IoT systems as
well as the performance analysis of task scheduling algorithms
running on top of these simulations. The most similar related
work to the proposal presented in this paper is WorkflowSim.
However, each simulator has its own advantages and disadvan-
tages for specific use cases. Consequently, a thorough analysis
tailored to the user’s specific needs is necessary to select the
most suitable simulator for their proposal.

So, in order to compare simulators several quality indicators
could be taken into account such as the range of features or the
types of environments it can simulate, its reliability, speed, flex-
ibility or its learning curve. Following, several distinguishing
features that set apart the proposal presented in this paper from
WorkflowSim and the other simulators discussed in this section
are highlighted.

1. The proposed simulator is a hybrid simulator/emulator,
i.e. it generates and deploys the real architecture of the
modelled IoT system (emulation), and simulates some pro-
cesses related to task scheduling such as the generation
of tasks, their offloading to the system or their processing.
The rest of the simulators described above base their re-
sults on mathematical models. Note that, with the term
mathematical model we refer to a set of algorithms that
simulate the behaviour of a concrete physical device or
system. However, they do not deploy real component
architectures on which to simulate and test task schedul-
ing processes. Although mathematical models have been
widely and successfully used over time, relying only on
mathematical models could affect the trustworthiness of
the simulation and testing results due to the inherent lim-
itations of these models in accurately reflecting reality,
especially when dealing with complex systems (Sterman
2002; Saltelli & Funtowicz 2014; Fisher et al. 2019). For
this reason, trustworthiness is one of the open challenges
in the field of IoT simulation (Mishra et al. 2012; Gluhak et
al. 2011; Chernyshev et al. 2018). However, by emulating
part of the IoT system this gap can be mitigated (McGregor
2002; Erazo & Liu 2013).

2. The proposed simulator is based on the MDD, addressing
the design of the simulations from a high level of abstrac-
tion. It focuses on the high-level concepts of the IoT and
task scheduling systems domain and their relationships,
rather than on low-level details.

3. The proposed simulator is updated to current simulation

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 3

and testing needs, e.g., it allows the federation of nodes
regardless of the computing layer they belong to. Thus,
allowing cloud-fog-edge federations (cloud-to-thing con-
tinuum infrastructure).

Finally, Table 1 shows a summary of the main features of
each related work included in this section together with the
proposed SimulateIoT extension. The meaning of each column
in Table 1 is described below.

– Simulator: Name of the simulation tool or framework.
– Task Modelling: Indicates the type of task modelling sup-

ported by the simulator (e.g., DAG-based workflows).
– Failure Modelling: Specifies if failure modelling is sup-

ported or not.
– Task Optimisation: Indicates if task optimisation tech-

niques are supported.
– Task Scheduling: Specifies if task scheduling capabilities

are available.
– Task Queueing: Indicates if task queueing is supported.
– Network Delay: Describes the model or type of network

delay that the simulator supports.
– Network Bandwidth Model: Specifies the model or ap-

proach used to simulate network bandwidth.
– Node Federation: Indicates if the simulator supports feder-

ations of edge, fog and/or cloud nodes.
– Underlying Simulation Model: Describes the underlying

simulation model or approach used.
– Provides Integration API: Specifies if the simulator pro-

vides an integration API for external systems such as user
proposals (e.g. task scheduling proposal).

– Focus: Describes the main focus or application domain of
the simulator.

– Case Use Definition: Specifies the format or method for
defining use cases in the simulator.

As for the notation used in Table 1, Limited means that the
simulator provides some options and does not allow the user to
integrate their own proposals. On the other hand, User-proposal
means that the simulator provides the flexibility to incorporate
user-suggested solutions or strategies. Note that these concepts,
i.e., Limited and User-proposal, are used in several columns,
where they mean the same but in the context of the respective
column.

Finally, some findings related to Table 1 are highlighted be-
low. Of the four simulators included, only YAFS, ScSF, and
SimulateIoT allow users to integrate their custom solutions in
terms of task scheduling or optimisation algorithms. The lack
of this feature significantly compromises the practical utility of
a simulator. Both SimulateIoT and iFogSim support the mod-
elling and simulation across the four computing layers: mist,
edge, fog, and cloud. Yet, SimulateIoT stands out as the only
one that enables federation among these layers, making it the
sole simulator capable of simulating the nuances of current
cloud-to-thing IoT system infrastructures. In terms of network
modelling, only iFogSim and SimulateIoT offer modelling of
delay, bandwidth, and unidirectional links. Note that such fea-
tures are key in any simulator oriented to the simulation of

IoT systems with task scheduling capabilities. In this context,
it should be noted that iFogSim is not specifically designed
for testing task scheduling systems (thus lacking several task
scheduling simulation capabilities). So, only SimulateIoT is
specifically oriented towards task scheduling testing and pro-
vides the capabilities to model these networking features.

3. The Cloud-to-Thing Continuum and Task
Scheduling Model, and the Resulting Sim-
ulator

This section aims to introduce the proposed simulator as well
as the systems that it can simulate. Furthermore, as this work
is an extension of SimulateIoT (Barriga et al. 2021), the aim of
this section is also to outline the new features added as part of
this extension. Thus, differentiating between what was previous
work (SimulateIoT) and what is new. Later, with the aim of
conveying a “big picture” of the work carried out in this com-
munication, the extended SimulateIoT capabilities based on this
model are shown by means of a generic simulation overview.

SimulateIoT and therefore the proposed simulator, are based
on the MDD, which is an emerging software engineering re-
search area that aims to develop software guided by models
based on the metamodeling technique. Metamodeling is de-
fined by four model layers (see Figure 1). Thus, a model (M1)
conforms to a metamodel (M2). Moreover, a metamodel con-
forms to a metametamodel (M3) which is reflexive (Atkinson
& Kuhne 2003). So, a metamodel defines the domain con-
cepts and relationships in a specific domain in order to model
partial reality. A model (M1) defines a concrete system that
conforms to a metamodel. Then, from these models, it is pos-
sible to generate totally or partially the application code (M0 -
code) by M2T transformations (Sendall & Kozaczynski 2003).
Thus, high-level definitions (models) can be mapped by M2T
transformations to specific technologies (target technology).
Consequently, the software code can be generated for a specific
technological platform, improving technological independence
and decreasing error proneness.

Therefore, in order to extend SimulateIoT towards the cloud-
to-thing continuum paradigm and to the task scheduling, it is
required to work in these metamodelling layers. Specifically, it
is required to extend: 1) The metamodel or abstract syntax (M2),
2) The graphical concrete syntax, the element that makes it
possible to graphically design models (M1) from the metamodel
(M2) and 3) model-to-text transformations, the element that
carries out the code generation (M0) from models (M1).

Nevertheless, prior to extending SimulateIoT (Barriga et al.
2021) towards the cloud-to-thing continuum and task schedul-
ing, it is crucial to identify the main concepts of these systems.
This characterisation results in a conceptual model, forming the
backbone of this study. Aiming to introduce the work carried
out in this communication, this model is subsequently intro-
duced. Moreover, an outline of the enhanced SimulateIoT, the
resulting simulator after extending it towards this model, is also
provided.

4 Jose A. Barriga et al.

Table 1 Feature summary of related works and presented proposal.

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 5

Figure 1 The four layers of metamodeling. In SimulateIoT
(Barriga et al. 2021): a) M3 is Ecore, b) M2 is SimulateIoT
Metamodel c) M1 is a model conforms to SimulateIoT Meta-
model and d) Code is generated using the M2T transforma-
tions defined in SimulateIoT approach.

3.1. The Proposed Cloud-to-Thing Continuum and Task
Scheduling Model

This section addresses the conceptual model on which the Sim-
ulateIoT extension is based. It provides an introduction to
the key concepts that constitute this model: Task, Task App,
Task Node, Networking Node, Task Processor and Task
Scheduler.

3.1.1. Task Task scheduling systems are based on tasks, i.e.
in this kind of environment, there are nodes that generate, of-
fload (to the rest of the system), schedule and process tasks. In
this communication, tasks are included by means of workflows
(Wu et al. 2015; Arunarani et al. 2019b), as is common in lit-
erature (Yao et al. 2021; Asghari et al. 2021; NoorianTalouki
et al. 2022; Ahmad et al. 2021). So, users can define tasks by
means of workflows that the nodes designed for these purposes
will generate, offload, schedule or process.

Figure 2 shows a graphical representation of a workflow.
This workflow represents four tasks, Task A, Task B, Task
C and Task D. In this workflow, each node (circle) represents
a task and each edge represents the dependency between these
tasks.

Concerning task dependency, a dependent task cannot be
processed until all other predecessor tasks have been processed,
e.g., in the workflow shown in Figure 2, Task B and Task
C cannot be processed until Task A has been processed. On
the other hand, Task D cannot be processed until Task B and
Task C have been processed. This is because once the tasks
are processed, they can generate results that may be required
by subsequent tasks in the processing pipeline. These results
are the basis of the dependency between tasks, represented as

Figure 2 Graphical representation of a workflow.

relationships (edges) between nodes (tasks) in workflows (see
Figure 2).

In terms of the attributes of a task, in this communica-
tion, each task has a name (e.g. Task A), an id and a size
(bytes). Besides, each edge has a source task, a target task and a
offloadSize which represent the size (bytes) of the data that
have to be transmitted from the source task, once processed,
to the target task, i.e. from the node that processes the source
task to the node that processes the target task. Note that the
offloadSize attribute represents the offload size (bytes) of the
processing results of a task.

3.1.2. Task App In task scheduling scenarios, it is common
to deploy applications that provide services at the fog and cloud
layers. These applications are the ones that generate and offload
tasks (the services they provide are decomposed into tasks or
sets of tasks, i.e. workflows). In this model, these applications
are included by means of the concept Task App, which can be
deployed in the different nodes of the fog and cloud layers.

3.1.3. Task Node Traditionally, the edge and mist layers
have had a different role than the fog and cloud layers. While
the fog and cloud layers have had a role of providing computing
resources or services to the end devices of the system (mist and
edge layers), the mist and edge layers were constrained in terms
of hardware and were limited to consuming these resources and
services.

However, there are currently some end devices that do not
face the aforementioned hardware constraints (such as mobile
phones, personal computers, etc.). Therefore, their use does not
have to be limited to consuming the services and resources of the
fog and cloud layers but can help these layers in the provision of
these services and resources to the rest of the system. Besides,

6 Jose A. Barriga et al.

in some situations it provides a better QoS than fog and cloud
layers, since these devices are in the mist or edge layer itself and
therefore close to the rest of the end devices. So, they are able
to provide better latency, request-response time, etc. This new
paradigm is called cloud-edge computing (Pan & McElhannon
2018).

In this context, the Task Node is designed to include in the
task scheduling model this new paradigm of federation between
computing layers. Thus, Task Nodes are conceived as nodes
that belong to the edge and mist layers of the system but can
be federated with cloud and fog nodes, thus providing task
execution services to Task Apps and being able to process the
tasks they generate.

On the other hand, as could be edge or mist devices that
generate tasks requiring their processing, as Task Apps, Task
Nodes are also designed to generate and offload tasks.

3.1.4. Networking Node Task scheduling is frequently im-
plemented in environments that operate on a cloud-to-thing
continuum infrastructure. In this kind of system, nodes can be
federated, acting as a single entity rather than isolated nodes.
Federations are addressed in this model by means of Links, i.e.
the connections between the different nodes that belong to a
federation.

The Networking Node is the component responsible for
managing these links. This model envisages a Networking
Node for each federated (linked) node. Thus, each Networking
Node handles the links whose source is the node where the
Networking Node is integrated. Moreover, links are designed
as unidirectional. Consequently, two links are needed to allow
two components to interact with each other.

On the other hand, SimulateIoT is a hybrid simulator/emu-
lator of IoT systems. So, SimulateIoT simulations have to be
deployed over a real (or virtualised) network. Thus, without
the need to simulate the latency and bandwidth of links. How-
ever, as aspects such as delay and bandwidth among nodes are
critical aspects in task scheduling systems (Jamil et al. 2022),
users could require, for testing purposes, specific latency and
bandwidth between nodes. Configuring the network where sim-
ulations will be deployed could be a tedious, error-prone and
costly task. Thus, this model also envisages the possibility to
specify the delay and bandwidth of the aforementioned links,
being the Networking Node the component which will ensure
that these networking aspects are met during simulation.

Finally, note that this model envisages fully connected feder-
ations, i.e. all nodes belonging to a federation are connected to
each other.

3.1.5. Task Processor The Task Processor is the com-
ponent that performs the processing of tasks. So, the Task
Processor node is integrated at the deployment (of the simu-
lation) stage into those edge (Task nodes), fog and cloud nodes
that are modelled by the user to provide task processing services
to the rest of the system.

Note that to suitably simulate the processing of tasks, this
model envisages the possibility of assigning hardware resources
to each node with processing capabilities, i.e. to the Task

Processors. Thus, users can model aspects related to the
hardware of each node, such as their CPU or RAM.

3.1.6. Task Scheduler This component is the most relevant
since it is where the simulator will integrate users’ task schedul-
ing proposals, as described in the following sections. Thus,
the Task Scheduler is the node that receives and schedules
(by means of the users’ task scheduling proposal), the tasks
offloaded to the system.

Since task scheduling algorithms can use several data sources
and data types as input to perform their schedules (Bansal et
al. 2022), this component is designed to provide users’ propos-
als with resources to request data from several nodes of the
simulation. Note that users’ proposals can interact with these
resources and therefore with the rest of the simulation by means
of a REST API (which belongs to the aforementioned provided
resources). Thus, the integration of users’ proposals with the
rest of the simulation is simplified.

This API allows users’ proposals to perform four main re-
quests: 1) request the offloaded tasks for their scheduling, 2)
request data such as the current delay or available bandwidth
between each node (links status), 3) request data related to the
hardware usage (CPU, RAM, etc.) of each node, and 4) request
the return of the scheduled tasks (once scheduled) to the system
for their processing.

Note that in this model, these requests are limited to the
nodes that belong to the same federation, i.e. those nodes
that belong to different federations can not interact. On the
other hand, this model envisages one Task Scheduler per
federation. However, the Task Scheduler of each federation
can integrate a different user scheduling proposal.

Thus, by extending SimulateIoT towards this task scheduling
model, users will be able to deploy, analyse, compare, etc. their
task scheduling proposals on a simulated IoT system without
the need for investment in device acquisition, configuration
and deployment. In Section 3.2 that follows, an overview of
the resulting simulator after extending it towards this model is
provided.

3.2. Overview of the Resulting Simulator
Figure 3, provides a representation of a generic simulation de-
ployment using the extended version of SimulateIoT. This figure
also distinguishes between the components developed in this
work (marked in red) and those inherited from the original Sim-
ulateIoT (marked in blue). The significant enhancements, those
related to the concepts belonging to the model defined in Sec-
tion 3, are explained below in the context of Figure 3. Note that
to facilitate referencing the concepts depicted in Figure 3 within
the text, the corresponding labels included in the figure will be
used (e.g. 1).

Firstly, tasks are generated and offloaded to the system by
the Task Nodes A and the Task Apps B . The offloading
of these tasks is represented in Figure 3 by 1.1 offloading per-
formed by Task Nodes to the fog layer; 1.2 and 1.3 offloading
performed by Task Apps deployed on fog nodes to the fog
layer; 1.4 offloading performed by Task Apps deployed on

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 7

Figure 3 A generic simulation generated by using M2T transformations from a model defined with the proposed simulator.

cloud nodes to the fog layer.
Note that in Figure 3 all the tasks are offloaded to the fog

layer as FogNode 1 is the node where the Task Scheduler
C is deployed.

Once tasks have been offloaded, they are scheduled by the
Task Scheduler C and sent back to the system for their process-
ing 2.1 , 2.2 and 2.3 .

Then, the Task Processor of each fog, cloud and Task
Node, which is not directly represented in Figure 3, carries out
the processing of each task and returns the result to the node
that is waiting for it due to the dependency between tasks 3.1 ,
3.2 and 3.3 .

Note that during the simulation, the generation, offloading,
scheduling, and processing of each task by each node occur
concurrently and adhere to the user-defined design (model).

Finally, it should be highlighted that the behaviour of each
node and the overall simulation exhibit a higher level of com-

plexity compared to what is depicted in this overview. For the
sake of clarity, there are interactions and concepts that, as in the
case of the Task Processor, are not directly depicted in Fig-
ure 3. For instance, the Networking Node or the interactions
between the Task Scheduler and the nodes belonging to its
federation D to gather/share their status (available CPU and
RAM).

Further details are addressed in following Sections 4 and 5.

4. Extensions of Metamodel and Concrete Syn-
tax

The proposed simulator, as an MDD approach, is composed
of three main elements: 1) metamodel or abstract syntax, 2)
graphical concrete syntax and 3) model-to-text transformations.
This section describes the proposed simulator metamodel and
concrete syntax.

8 Jose A. Barriga et al.

4.1. Metamodel Extensions
A Metamodel captures the concepts and relationships in a spe-
cific domain in order to model partially reality (Selic 2003).
Then, it is possible to design models conforming to this Meta-
model. These models can be used to generate the total or partial
application code. Thus, the software code could be generated for
a specific technological platform, improving its technological
independence and decreasing error proneness.

The SimulateIoT metamodel (Barriga et al. 2021) gathers
the core concepts and relationships related to the IoT domain,
including elements such as sensors, actuators, edge nodes, fog
nodes, cloud nodes, databases, complex-event processing ser-
vices, data definition, topics, message brokers, etc. However,
it has not enough expressiveness to simulate IoT systems with
task scheduling capabilities and with a cloud-to-thing contin-
uum infrastructure. Therefore, the metamodel of the proposed
simulator is an extension of the SimulateIoT metamodel with
enough expressiveness to define these kinds of IoT systems
(entities and services described in Section 3.1).

Figure 4 shows an excerpt of the proposed simulator meta-
model. Note that the new classes and relationships included are
numbered and highlighted in blue colour. Besides, note that Fig-
ure 11 (Appendix A) shows the complete metamodel, with the
elements relating to the extension carried out also highlighted
in blue.

This section does not aim to describe how these components
work internally, which is addressed in Section 5, where M2T
transformations are addressed. Finally, note that in this section,
to better describe the elements of the metamodel, the numerical
labels shown in Figure 4 are used below as references in the text.
These references are used by means of the expression [class
name] x , where x is the label associated with the [class] in
Figure 4.

In order to extend the SimulateIoT metamodel towards task
scheduling and the cloud-to-thing continuum, first of all, the
task generation related components, i.e. the Task Node and the
Task App, have been included in the metamodel by means of the
classes TaskNode 3 and TaskApp 2 respectively. The work-
flow concept has also been added by means of the Workflow
class 1 and related to the two previously mentioned classes
with the aim of allowing the user to model which workflow
will be generated by each modelled Task Node and Task App
during the simulation. Note that each workflow will be gen-
erated every period of time, which can be specified by the
generation_period (seconds) attribute.

To allow the user to model the different workflows that will
be generated, in addition to the Workflow class, the Task 1.1

and Edge 1.2 classes have also been included. Thus, the Task
class represents a workflow node and the Edge class represents
the dependency between these tasks. Note that in these classes
the user can also model the size of each task (size attribute) and
the size of the processing results of each task (offload_size
attribute).

On the other hand, the metamodel is extended from the
Hardware_specification 5 class to allow the user to model
in a more detailed manner the hardware resources of each mod-
elled node. To this end, this class is related to the CPU 5.1 and

RAM 5.2 classes, also included as part of this extension to allow
the user to model these hardware aspects for each node.

Finally, the metamodel is extended with the Federation
4 class, which allows the user to federate the different

nodes of the modelled system. To this end, federations are
composed of Links 4.1 , a class that allows modelling the
characteristics of the different links between the federated
nodes. Particularly, the classes Delay_specification 4.2

and Bandwidth_specification 4.3 allow the user to model
these characteristics for each link.

Extending the metamodel of SimulateIoT with these classes
and relationships, the concepts related to the task scheduling
model defined in 3.1 are gathered by the metamodel. Therefore,
the required expressiveness to model IoT systems with task
scheduling capabilities is achieved.

4.2. Graphical Concrete Syntax and Validator Extensions
Model-driven development allows designing models conform-
ing to a metamodel by means of concrete syntax. Concrete
syntax refers to the specific notation used to depict instances of
a model. The concrete syntax can visually or textually represent
the abstract notions and relationships that are defined within the
metamodel. It could be defined as graphical concrete syntax
(e.g. using GMF, Eugenia or Sirius) or textual concrete syntax
(e.g. using xText). In our approach the Eugenia tool (Kolovos et
al. 2015) is used and it makes it possible to generate a graphical
concrete syntax conforming to a metamodel.

A graphical syntax is often more intuitive and easier to com-
prehend at a glance, especially when dealing with complex
systems. It provides a high-level overview of a system, which
facilitates an understanding of the structure and relationships
within the system. However, graphical syntax can become more
difficult to manage in terms of automated processing.

In contrast, the textual syntax can be seamlessly processed
and integrated with other systems. However, a textual syntax
can be more difficult to understand and navigate, especially for
individuals who are not familiar with the specific language or
notation. It may require more time to interpret and does not
provide a visual overview of the system.

Although, both concrete syntax could be developed to define
models conform to the metamodel proposed.However, in view
of the above, given the complexity of the concepts to be repre-
sented, the models to be designed (IoT systems) and the nature
of the resulting tool (a simulator), it has been considered that a
graphical syntax is more appropriate than a textual one. In addi-
tion, the graphical concrete syntax generated for the proposed
simulator metamodel is an extension of the graphical concrete
syntax defined in SimulateIoT, which is based on Eclipse GMF
(Graphical Modeling Framework) and EMF (Eclipse Modeling
Tools). Figure 5 shows an excerpt from this graphical editor.

It helps users to improve their productivity allowing not only
defining models conforming to the proposed simulator meta-
model but also their validation. In this respect, metamodels can
be extended with constraints based on the Object Constraint
Language (OCL) (OMG 2012). OCL is a declarative language
developed by the Object Management Group (OMG) for describ-
ing rules applicable to the models designed by users conforming

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 9

Figure 4 Excerpt of the proposed simulator Metamodel focusing on the task scheduling concepts. The complete metamodel can
be found in Appendix A in Figure 11.

10 Jose A. Barriga et al.

Figure 5 Graphical editor based on Eclipse to graphically design models conforming to the metamodel proposed for the simulator.

to a metamodel. As an example, some of the OCL restrictions
defined are shown below.

1 context Task
2 invariant UniqueId: Task.allInstances ()−>forAll(

t1 , t2 | t1 <> t2 implies t1.id <> t2.id)

This OCL constraint ensures that each task has a unique ID.

1 context Delay_specification
2 invariant MaxDelayGreaterThanMinDelay: self.

max_delay >= self.minum_delay

This invariant ensures that the maximum delay (max_delay) is
always greater than the minimum delay (minum_delay) in each
Delay_specification instance.

1 context Bandwidth_specification
2 invariant ValidBandwidth: self.bandwidth <> null

and self.bandwidth > 0

This invariant ensures that the bandwidth specification is not
null and is greater than 0.

To sum up, the graphical concrete syntax developed offers a
suitable way to model and validate the IoT environment by using
the high-level concepts defined in the SimulateIoT metamodel
(Figure 4).

5. Extensions of M2T Transformations
Once the models have been defined and validated conforming
to the proposed simulator metamodel (example of a model in
Figure 10), a M2T transformation defined using Acceleo (Obeo
2012) can generate the IoT system modelled. This section de-
scribes the main extensions included in the M2T transformations
of SimulateIoT in order to generate IoT systems simulations
with task scheduling capabilities.

For the sake of clarity, this section is divided into the domain-
specific concepts identified in Section 3.1 (as in Section 4.1). In

Acronym Meaning

TApp Task App

NN Networking Node

TN Task Node

TP Task Processor

TS/TSN Task Scheduler Node

SSA System Status Agent

Table 2 Acronyms used in figures of Section 5.

this way, each subsection includes the contributions that make
it possible to generate the code of each component related to
these task scheduling concepts. However, there are no sections
dedicated to the Networking Node and the Task Processor.
This is because these components are subcomponents of other
elements, such as the Task Node. As a result, they are addressed
in the sections pertaining to these primary components.

Note that the descriptions of the components, from a high
level of abstraction, are already covered in Section 3 and 4.1.
Therefore, the current section omits this high-level description
and exclusively delves into the inner workings of the compo-
nents, offering a low-level perspective.

Finally, note that Table 2 summarises the acronyms used in
several of the figures included in this section.

5.1. Task
Section 4.1 describes the extensions carried out to make it pos-
sible to model the tasks that will be generated, offloaded and
processed by the IoT system. However, the task concept does
not become a concrete component or service but is integrated

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 11

as part of the logic of the rest of the components, e.g. in the
Task App or the Task Node, which need the logic to generate,
offload, receive or process tasks. Therefore, the transformations
related to this concept are addressed below, in the sections that
explore the M2T transformations of the components that are
related to tasks, such as the aforementioned.

However, since tasks are managed by these components
using the JSON notation, below are the different JSON codes
that can be exchanged between components during a simulation.

To illustrate how tasks are generated by the Task App or
the Task Node (components that can generate tasks), Listing 1
shows an example of the JSON code related to the set of tasks
that constitute the workflow shown in Figure 2. This JSON
code example includes all the necessary fields to represent this
workflow, such as the id and name of the workflow, the node
and the component that generate it (field "generatedBy"), the
tasks that constitute the workflow (field "nodes"), the edges
(field "edges") and all the data related to these elements. Note
that Appendix B, Listing 5, shows the Acceleo code related to
the M2T transformations of these tasks.

1 {
2 " workflow " : {
3 " i d " : 0 ,
4 " name " : " exampleWorkflow " ,
5 " g e n e r a t e d B y " : {
6 " nodeId " : " fogA0 " ,
7 " g e n e r a t o r I d " : " taskAppA0 " ,
8 " g e n e r a t i o n I d " : "0"
9 } ,

10 " nodes " : [{
11 " t a s k " : {
12 " name " : " TaskA " ,
13 " i d " : "0" ,
14 " s i z e " : "586"
15 }
16 } , {
17 " t a s k " : {
18 " name " : " TaskB " ,
19 " i d " : "1" ,
20 " s i z e " : "344"
21 }
22 } , {
23 " t a s k " : {
24 " name " : " TaskC " ,
25 " i d " : "2" ,
26 " s i z e " : "719"
27 }
28 } , {
29 " t a s k " : {
30 " name " : " TaskD " ,
31 " i d " : "3" ,
32 " s i z e " : "412"
33 }
34 }
35] ,
36 " edges " : [{
37 " edge " : {
38 " i d " : "0" ,
39 " s o u r c e T a s k I d " : "0" ,
40 " t a r g e t T a s k I d " : "1" ,
41 " o f f l o a d S i z e " : "128"
42 }
43 } , {
44 " edge " : {
45 " i d " : "1" ,
46 " s o u r c e T a s k I d " : "0" ,
47 " t a r g e t T a s k I d " : "2" ,
48 " o f f l o a d S i z e " : "96"
49 }
50 } , {
51 " edge " : {
52 " i d " : "2" ,
53 " s o u r c e T a s k I d " : "1" ,
54 " t a r g e t T a s k I d " : "3" ,
55 " o f f l o a d S i z e " : "49"

56 }
57 } , {
58 " edge " : {
59 " i d " : "3" ,
60 " s o u r c e T a s k I d " : "2" ,
61 " t a r g e t T a s k I d " : "3" ,
62 " o f f l o a d S i z e " : "223"
63 }
64 }] }}

Listing 1 JSON code to represent a workflow. Specifically,
the workflow illustrated in Figure 2.

On the other hand, workflows are sent to the Task
Scheduler for scheduling purposes. In this regard, the Task
Scheduler decomposes the workflow to schedule the process-
ing of its tasks. Listing 2 shows the JSON code related to the
scheduling of Task C, which belongs to the workflow shown
in Figure 2 and in Listing 1.

Among the fields of this JSON code, there are data related
to the task itself (id, name, size, offloadSize), data related to
the node that generated it (generatedBy), as well as data related
to the scheduling of the task (schedulingData). Data relating
to the scheduling of the task includes the node that has to pro-
cess it (processAt) and at what time its processing has to be
performed (processAt). Furthermore, since the task scheduling
model (Section 3.1) envisages dependency between tasks, this
JSON code also includes to which node the processing results
have to be sent (resultsTo) and also whether the task depends on
the processing results of another task (waitForResults).

1 {
2 " s c h e d u l e d T a s k " : {
3 " i d " : "2" ,
4 " name " : " TaskC " ,
5 " s i z e " : "719" ,
6 " o f f l o a d S i z e " : "49" ,
7 " g e n e r a t e d B y " : {
8 " nodeId " : " fogA0 " ,
9 " g e n e r a t o r I d " : " taskAppA0 " ,

10 " g e n e r a t i o n I d " : "0"
11 } ,
12 " s c h e d u l i n g D a t a " : {
13 " p r o c e s s I n " : " TaskNodeA " ,
14 " p r o c e s s A t " : "2023 −1 −25 11 : 29 : 52" ,
15 " r e s u l t s T o " : " fogC " ,
16 " w a i t F o r R e s u l t s " : {
17 " t a s k I d " : "1" ,
18 " taskName " : " TaskA "
19 }
20 }}}

Listing 2 JSON code related to the scheduling of TaskC of
the workflow illustrated in Figure 2.

Once a node performs the processing of a task, it includes in
its JSON code some fields related to the results of its processing.
Listing 3 shows the JSON code fields added to Task C after
its processing. Among these fields, there is the time at the task
reached the Task Processor (arrivedToTaskProcessorAt), the
time at the processing of the task started (processingStartedAt)
and the time at the processing of the task finished (process-
ingFinishedAt). In short, it includes data that could be useful
for the user in the analysis stage.

1 {
2 .
3
4 " p r o c e s s i n g R e s u l t s " : {
5 " a r r i v e d T o T a s k P r o c e s s o r A t " : "2023 −1 −25 11 : 28 : 38"
6 " p r o c e s s i n g S t a r t e d A t " : "2023 −1 −25 11 : 29 : 54" ,

12 Jose A. Barriga et al.

7 " p r o c e s s i n g F i n i s h e d A t " : "2023 −1 −25 11 : 29 : 57"
8 }
9 .

10 }

Listing 3 JSON code excerpt that shows the fields related to
the processing results of TaskC of the workflow illustrated in
Figure 2.

As discussed above, since the task scheduling model (Sec-
tion 3.1) envisages dependency between tasks, once a task is
processed, the processing results are sent to the node that is
waiting for them, i.e. the node that has to process a task that
depends on these results.

Thus, when a node receives processing results, it includes
them in the JSON code of the task that is waiting for them.
In this way, the exit (last) task of a workflow will include the
processing results of the rest tasks of the workflow. Note that
this JSON code is the processing result that is returned to the
node that generated and offloaded the workflow to the system
for its processing (Task App or Task Node).

Listing 4 shows the JSON code fields related to the process-
ing results of the predecessors of Task C (in this example, Task
A). The data included in this case are the received results re-
lated to the processing of the task together with its id and name.
Note that, if a task includes results related to the processing
of another task (as is the case in this example where Task C
contains the results of Task A) when offloading its processing
results, it also includes the results of its predecessors. So, in
this example, Task C will offload its processing results together
with the processing results of Task A.

1 {
2 .
3
4 " p r e d e c e s s o r s P r o c e s s i n g R e s u l t s " : [{
5 " t a s k " : {
6 " i d " : "0" ,
7 " name " : " TaskA " ,
8 " p r o c e s s e d I n " : "FogA"
9 " a r r i v e d T o T a s k P r o c e s s o r A t " : "2023 −1 −25 11 : 26 :

18" ,
10 " p r o c e s s i n g S t a r t e d A t " : "2023 −1 −25 11 : 28 : 34" ,
11 " p r o c e s s i n g F i n i s h e d A t " : "2023 −1 −25 11 : 28 : 47"
12 }
13 }]
14
15 .
16 }

Listing 4 JSON excerpt that shows the fields related to the
processing results of the predecessor tasks of Task C of the
workflow illustrated in Figure 2.

5.2. Task App
Figure 6 shows a generic Task App node B (represented by
a red box) and its main component (element within the red
box), the Workflow Generator C . Figure 6 also shows
how the Task App is deployed on a fog/cloud node and the
interactions that its component could perform with other
artefacts of the fog/cloud node and with the rest of the IoT
system. Below, the Task App node is illustrated by describ-
ing its component and its interactions with the rest of the system.

Figure 6 Task App component.

Workflow Generator C As described in Section 3.1.2,
the Task App can generate tasks by means of workflows
and offload them to the rest of the system. The Workflow
Generator is the component of the Task App whose aim is to
generate and offload 1 the workflows modelled by the users in
the modelling of the system stage.

The Task App is not composed of additional components.
However, to provide a comprehensive understanding of its role
and impact within the entire system, a description of the com-
ponents associated with the Task App is presented below.

Networking Node G This component simulates the net-
work aspects related to the bandwidth and delay modelled by
users for each Link, i.e. the unidirectional connection between
two federated nodes. So, as the workflows generated have to be
offloaded to the system through a Link, the Networking Node
applies to these workflows the bandwidth and delay constraints
modelled for the Link through which they have to be offloaded.
Note that the Networking Node is described in more depth in
Appendix C.

MQTT Client D The MQTT Client is the component that
allows publish/subscribe communication between the compo-
nents of the system through the MQTT protocol. In this context,
it is implied in the offloading of the generated workflows to the
rest of the system (interactions 2 and interactions 3) and in the
reception of the processing results of the tasks (interactions 4
and 5).

MongoDB F and MongoDB Client E To provide data stor-
age services to the IoT systems simulations, seamlessly to the
user, a MongoDB database F is deployed on each modelled
fog/cloud node during the deployment stage of the simulation.
In the same way, a MongoDB Client E is also deployed to

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 13

carry out the needed interaction between this database and the
task scheduling components. In this context, these two compo-
nents are employed to store the processing results of the tasks
(interactions 4 , 5 and 6).

5.3. Task Node
Figure 7 shows a generic Task Node B (represented by a red
box) and all its components (elements within the red box) and
their interactions. The main components of the Task Node
are the Workflow Generator E , the Task Processor F ,
the Networking Node D and the MQTT Client C . Besides,
Figure 6 also shows how the Task Node is deployed as part
of the mist/edge layer and the interactions that its components
could perform among them and with other artefacts of the
system. Note that in this case, components such as the
Networking Node or the MQTT Client are part of the Task
Node. In contrast to the Task App, the Task Node is not
deployed on a fog/cloud node (which provides with a MQTT
Client, etc. to the Task App), the Task Node is a device
itself belonging to the edge layer. Below, the Task Node is
illustrated by describing each of its components and their
interactions with the rest of the system.

Figure 7 Task Node components.

Workflow Generator E , Networking Node D and
MQTT Client C As the Task App, the Task Node also gen-
erates and offloads workflows to the rest of the system. In this
context, the behaviour of these components (interactions 1 , 2 ,
3 and 4) is the same as the behaviour already explained in the
Task App section (Section 5.2).

Task Processor F Task Nodes B belong to the
edge/mist layer, however, they can be part of the comput-

ing power of a federation, thus being able to process tasks.
The Task Processor is the component of the Task Node
that performs the processing of tasks. In this way, the Task
Scheduler could schedule workflows and assign the process-
ing of its tasks to a Task Node (interaction 5). As these sched-
uled tasks are offloaded via MQTT protocol, the first to re-
ceive them is the MQTT Client of the Task Node (interaction
5). Next, the MQTT Client forwards these tasks to the Task
Processor (interaction 6), which performs their processing.
Once processed, the Task Processor returns the processing
results of these tasks to the MQTT Client, which sends them to
their target nodes, i.e. the nodes waiting for the results of the
processed tasks (specified by the field resultsTo of the JSON
code illustrated in Listing 2). Note that as outgoing data, net-
work constraints are also applied in this context. This flow of
data is represented by the interactions 7 , 2 and 8 . Finally,
note that the behaviour of the Task Processor is described in
more depth in Appendix D.

5.4. Task Scheduler
Figure 8 shows a generic Task Scheduler B (represented
by a red box), all its components (elements within the red
box) and the interaction between them. The main components
of the Task Scheduler are the Workflow Buffer D , the
System Status Agent G , the Task Scheduler API E
and the Task Scheduling Proposal F . Besides, Figure 8
also shows how the Task Scheduler is deployed on a fog
or cloud node A and the interactions that these components
could perform with other artefacts of the fog/cloud node and
with the rest of the IoT system. Below, the Task Scheduler
is illustrated by describing each of its components and their
interactions.

Workflow Buffer B The Task Apps and the Task
Nodes generate and offload workflows to the system. The Task
Scheduler B is the component that first receives these work-
flows 1 with the aim of scheduling the processing of these tasks.
In this context, the Workflow Buffer holds these incoming
workflows 2 . Hence, when the Task Scheduler Proposal
F is ready to schedule the processing of a workflow, it retrieves
it from this buffer by means of the Task Scheduler API (in-
teractions 3 , 4 , 5 and 12).

System Status Agent D The System Status Agent
aims to gather the status of both the nodes that belong to the
same federation as the Task Scheduler and the network of
the federation. In this context, first, the Task Scheduling
Proposal requests this data to the System Status Agent by
means of the Task Scheduler API 1 (interactions 3 and
6). Then, the System Status Agent component requests
the status of the federation network (Links that connect the
nodes of the federation) to the Network Status Reporter
component of each Networking Node (see Appendix C, Fig-
ure 12). Moreover, the System Status Agent also requests
to the Task Processor Status Reporter component (see
Appendix D, Figure 13) the status related to the hardware us-
age of each Task Processor (i.e. Task Nodes and other
fog/cloud nodes) that belong to the same federation that the

14 Jose A. Barriga et al.

Figure 8 Task Scheduler components.

Task Scheduler. These two aforementioned requests are rep-
resented by the interactions 7 and 8 . When the status data
is received 9 , the System Status Agent provides this data
to the Task Scheduling Proposal 11 and 12 . Thus, the
Task Scheduling Proposal can use this data as input for
task scheduling purposes.

Task Scheduler API E The Task Scheduling
Proposal is the task scheduling approach that the user can de-
ploy into the simulation for testing and analysis purposes. The
Task Scheduler API has been conceived as a middleware
service to integrate the Task Scheduling Proposal with the
simulated system. Thus, the Task Scheduler API is able to
1) gather key data about the status of the simulated system and
provide it to the Task Scheduling Proposal, 2) provide the
Task Scheduling Proposal with the workflows that have
been offloaded to the Task Scheduler B and 3) return the

tasks of a workflow scheduled to the system for their processing.
Note that the request/response interactions related to 1) and 2)
(3 , 4 , 5 , 6 , 11 , 12) have been already addressed through
the explanation of the Workflow Buffer D and the System
Status Agent G . Hence, with the offloaded workflows and
the status of each node and link of the federation, the Task
Scheduling Proposal can perform the schedule of each
task. Once the Task Scheduling proposal has finished
the schedule, returns the tasks scheduled to the system for
their processing, also by means of the Task Scheduler API
(interaction 13 , 14 and 15).

Task Scheduling Proposal E The Task Scheduling
Proposal implements the task scheduling approach that the
user can deploy into the simulation for testing and analysis
purposes. The aim of the Task Scheduling Proposal is

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 15

to schedule the offloaded workflows. The Task Scheduling
Proposal only interacts with the Task Scheduler API E .
This is because the Task Scheduling Proposals is devel-
oped by the user, and will not necessarily have been devel-
oped to be tested in the simulator proposed in this communica-
tion. Therefore, to facilitate their integration with the simula-
tor, the Task Scheduler API E is used as an interoperability
layer. By means of a series of requests, the Task Scheduling
Proposal can interact with the simulated system receiving the
offloaded workflows, gathering data related to the status of the
system to carry out the schedule of each task and return them
scheduled to the system for their processing. Note that all these
interactions have been described above.

5.5. Deployment Infrastructure
The deployment of simulations is carried out through container
orchestration. Thus, the system components are wrapped in
Docker (Merkel 2014) containers as shown in Figure 9, and
subsequently deployed in different clusters (orchestration). Re-
garding the wrapping of the components, Figure 9 uses the
Docker logo within the represented boxes to indicate that said
component or set of components is wrapped in a Docker con-
tainer.

On the other hand, the default supported orchestrator is
Docker Swarm, although since the deployment is carried out us-
ing Docker-Compose, it is possible to perform the deployment
on Kubernetes (Kubernetes Documentation 2023) by automati-
cally generating the deployment files for this orchestrator using
the Kompose tool (Kompose 2023).

As for communication between containers, it is carried out
through DNS (name + id of the component, specified in the
modelling stage). Communication through DNS is supported by
the overlay network that is generated to support the deployment.

Finally, orchestration takes into account the fog and cloud
nodes modelled as part of the system. In this way, a "cluster" is
generated for each fog or cloud node modelled. Subsequently,
all the Docker containers related to the fog or cloud node are de-
ployed on this "cluster", as well as those components belonging
to the mist or edge layer that interact with it (e.g. Task Nodes).

Note that all these specifications are low-level specifications
that, although not previously mentioned, are part of the simula-
tor, in this case of the files generated through M2T transforma-
tions to perform the simulation deployment.

6. Simulation Outputs, Tests and Assessments
The primary motivation for the simulation and testing of an IoT
system is to derive valuable insights, enabling the assessment
of its behaviour or the optimisation of its performance. Conse-
quently, the advantages that can be drawn from an IoT simulator
rely on the variety and depth of tests and evaluations it supports.
The SimulateIoT extension carried out in this communication
facilitates several options for conducting tests and evaluations
from a task scheduling perspective. The most significant tests
and assessments that can be performed are listed below.

– Task distribution: How, in general, the task scheduling
proposal distributes tasks among devices.

Figure 9 Deployment infrastructure of the extended version
of SimulateIoT.

– Overload avoidance: The task scheduling proposal’s ability
to prevent any single device from becoming overloaded
with tasks.

– Dynamic load balancing: How the task scheduling pro-
posal can adjust task distribution as the load changes.

– Task prioritisation: If included in the policies of the task
scheduling proposal, how it balances the load while con-
sidering task priorities.

– Response time load balancing: If included in the policies of
the task scheduling proposal, how it can maintain uniform
response times by effectively balancing the load.

– Queue length: The task scheduling proposal’s ability to
maintain balanced queue lengths across all devices.

– Task rebalancing: How effectively the task scheduling
proposal can rebalance tasks when new devices join or
existing devices leave the system.

– Network load variation: How the task scheduling proposal
balances the load under varying network conditions.

16 Jose A. Barriga et al.

– Workflow response time: The elapsed time from when a
workflow is generated by a device, processed by the system,
to the delivery of the processing results back to the device.
This can also be applied in the context of tasks.

– Workflow processing rate: The number of workflows pro-
cessed by a device over a specific period of time. This can
also be applied in the context of tasks.

– Workflow processing throughput: The maximum number
of workflows a device can process in a given time frame.
This can also be applied in the context of tasks.

– Hardware consumption: How the system or a device uses
its resources (CPU, memory, etc.) during the whole simu-
lation or at a specific time.

– Resource allocation: Whether the resource allocation strat-
egy followed during the design stage of the system was
appropriate.

– Bottleneck identification: Finding points in the system
where bottlenecks occur that could limit the system’s per-
formance.

– Workflow response time, processing rate and throughput
scalability: Evolution of these parameters as the workload
on the system is increased or reduced.

– Device scalability: How the system handles an increasing
number of IoT devices to check if the system can maintain
performance as the network grows.

– Network traffic scalability: How the system performs under
different levels of network traffic.

– Fault tolerance: How the system behaves, in general, when
faced with hardware or software faults. Note that this pro-
posal does not include a specific model to induce failures
during simulations. However, a simple script can stop
(and redeploy later if required) the components of the sim-
ulated system (Docker containers). Thus, thanks to the
components notifying the status of each node to the Task
Scheduler, it can notice if a device is available or not
(lacked response when stopped) and take it into account.

– Fault recovery: How the system handles recovery pro-
cesses in the event of a failure, ensuring no task or data
loss.

– Fault tolerance load balancing: The task scheduling pro-
posal’s ability to redistribute tasks when a device fails or
becomes unavailable.

– Power consumption: The power consumed by the IoT
system during a simulation or in a specific period of time.
Note that a model related to the power consumption of
devices has not been included in this work, however, it can
be assessed from the hardware consumption.

– Workflow-specific energy consumption: The amount of
energy consumed for each specific workflow.

– Device-specific energy consumption: The energy consump-
tion of individual devices under different task loads.

As can be seen, the extension developed for SimulateIoT
in this study provides users with a wide spectrum of testing
and analysis opportunities for their task scheduling proposals.
Thus, providing users with a holistic understanding of their IoT
systems design and their task scheduling proposals performance.

7. Case Study: An IIoT System Applied to the
Steel Industry for Predictive Maintenance

In this section, a study case focused on the IIoT applied to the
steel industry for predictive maintenance is illustrated.

7.1. Motivation
Task scheduling techniques can be applied to any IoT system
to optimise the processing of their tasks (Potluri & Rao 2020).
However, their application is particularly appealing in the so-
called critical IoT systems, i.e. IoT systems on which the safety
of users depends and IoT systems on which specific response
times, fault tolerance, etc. have to be met in order to perform
suitably. Some of these critical IoT systems could be those fo-
cused on healthcare, traffic safety and control (IoV) or industry
(IIoT) (Andersson et al. 2016).

In industry, optimal maintenance of production equipment
and facilities is one of the keys to global competitiveness and
survival (Zhao et al. 2022). Over time, different maintenance
strategies, such as corrective and preventive maintenance, have
been developed and applied (Lie & Chun 1986; Hao et al. 2010).
Nowadays, with the possibility of continuous monitoring of
equipment and facilities provided by the IoT and machine learn-
ing, a new maintenance strategy is being developed and im-
plemented, predictive maintenance (Çınar et al. 2020; Cheng
et al. 2020). This type of maintenance is based on predicting
equipment failures or breakdowns, allowing maintenance work
to be carried out before the equipment suffers further damage
and causes a more negative impact on production (Carvalho et
al. 2019).

In this context, electric motors are one of the most widely
used tools in industry (Cakir et al. 2021). Their applications
are varied, primarily including blowers, turbines, pumps, com-
pressors, alternators, rolling mills, movers, etc. Thus, for the
reasons outlined above, proper maintenance of these engines is
crucial for companies to be competitive.

Given the need for predictive maintenance of electric mo-
tors, as well as the suitability of the application of IoT and task
scheduling to achieve this purpose, it has been considered ap-
pealing to show the application of the proposed simulator in this
context. Thus, this case study illustrates how the proposed sim-
ulator can assist in the design, development and implementation
of an IoT system for monitoring and predicting the failure of
electric motors in a steel company.

7.2. Overview
The use case presented in this Section is based on those works
referenced in the above Section 7.1. The aim of the modelled
system (using the metamodel presented in this communica-
tion) shown in Figure 10 is to provide a steel company with
the capability to perform predictive maintenance on their elec-
tric engines. On the other hand, the aim of the use case is to
test whether the system identifies and stops faulty engines be-
low a time threshold. For example, if at any point during the
entire simulation, the system takes no more than 10 seconds
(hypothetical time threshold) from the moment an engine starts
malfunctioning until the system identifies this situation and

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 17

stops the engine. Note that these time thresholds can not be
specified as part of the system as it is not supported by the DSL
proposed. Instead, the user is who has to model the system and
later, analyse the logs of the simulation to check the behaviour
of the system. Continuing with the proposed example, check
whether the time threshold is met during the entire simulation.

For this purpose, a set of sensors has been included in the
edge layer of the system (red-coloured components) in order to
continuously monitor each electric engine. Two Task Nodes
have also been added to the edge layer, a gateway, which carries
out the aggregation of the publishing data for each sensor (note
that this is a task included in the simulation by means of a work-
flow), and a computer, which is used only to provide support
for the processing of the tasks to be carried out in the system.
In addition, an actuator has also been included in the edge layer
to stop the operation of those engines whose failure has been
predicted.

As for the fog layer, the modelled system includes several fog
nodes that provide the different deployed edge nodes with topics
for subscribing or publishing their data. Besides, these fog
nodes also perform two tasks in the system, the pre-processing
of the received data (aggregated by the gateway) and the failure
prediction of each monitored engine (from this pre-processed
data). Note that these two tasks have been also included in the
simulation by means of workflows.

Furthermore, a cloud node has been added to the system.
This cloud node aims to provide additional hardware resources
to the system if needed.

Finally, note that the simulation related to this use case has
been deployed on a personal computer with the following spec-
ifications: Model: MSI GP63 Leopard 8RE; CPU: Intel Core
i7-8750H; Graphics: GeForce GTX 1060 with 6GB GDDR5;
RAM Memory: 16GB DDR4-2400.

7.3. Model Definition
Figure 10 shows an excerpt of the IIoT system model. For
the purpose of explaining this model, it includes numerical
references for each node, which are referenced below when
describing each component of the case study. Besides, for the
sake of clarity, note that the description of the case study is
divided into three parts: 1) edge layer (red nodes), 2) fog layer
(blue nodes), and 3) cloud layer (green nodes).

7.3.1. Edge Layer The edge layer of the IIoT system mod-
elled for this case study is comprised of three kinds of devices:
sensors (S.X), actuators (A.X) and Task Nodes (T.X). The

sensors included are accelerometers (S.1 , S.4 and S.7), ther-
mometers (S.2 , S.5 and S.8) and (magnetic) Hall sensors (S.3 ,
S.6 and S.9). The accelerometers gather vibration data, i.e. the
vibration that the bearings of the engine produce, the thermome-
ters gather the temperature of the engine, and 3) the (magnetic)
Hall sensors collect data related to the rotational speed of the
engines. Note that these sensors and the data they collect are
often used to predict failures in electric engines (Cakir et al.
2021).

These sensors collect this data and publish it on the topics

To.X provided by the fog nodes F.X for further use. Accelerom-
eters publish their data in the topic x/.../engines/vibration, ther-
mometers in the topic x/.../engines/temperature and (magnetic)
Halls sensors in the topic x/.../engines/rotationspeed. Note that
the data gathered and published by these sensors has been mod-
elled by the user with the expressiveness already provided by
the previous version of SimulateIoT.

The actuators included A.X aim to stop the operation of those
engines whose failure has been predicted. Thus, they subscribe
to the topic x/.../engines/prediction, where the nodes that carry
out the prediction (fog F.X and Cloud C.X nodes) of the failure
of the engines publish their predictions. In this way, when an
engine failure prediction is published in this topic, the actuators
receive it and stop the operation of the engine.

Finally, two Task Nodes Tn.X have been mod-

elled. On the one hand, a gateway Tn.1 , which has a

Hardware_specification H.5 where the CPU and RAM
of the device have been modelled. This device has been
modelled to take advantage of its hardware for task scheduling
purposes. Moreover, this Task Node performs a task, the data
aggregation T.7 of the data published by the modelled sensors.
In this way, when the data reach the topics and the fog nodes, it
is already aggregated. Note that this task has been modelled by
means of a Workflow in the properties of this component. On
the other hand, a personal computer has been added as a Task
Node of the system, being part of the edge layer and providing
the rest of the system with more computing power. This Task
Node have also a Hardware_specification H.6 .

Note that each sensor, actuator and Task Node have an at-
tribute named quantity (included in the previous version of
SimulateIoT) where the user can specify the quantity of each
node. In this case study, the quantity attribute is ten for sen-
sors, three for actuators, three for the gateway Task Node and
one for the computer Task Node.

7.3.2. Fog Layer The fog layer of the IIoT sys-
tem modelled for this case study is comprised
of three fog nodes, FogNode_rolling_mill F.1 ,
FogNode_power_plant_ventilation_system F.2 and
FogNode_lathes F.3 . The FogNode_rolling_mill
is the fog node deployed near the rolling mill, the
FogNode_power_plant_ventilation_system is the
fog node deployed near the ventilation system of the power
plant of the company, and the FogNode_lathes represents the
fog node deployed near the lathes of the company. The aim of
these fog nodes is to provide services to the rest of the system.

In this regard, the FogNode_rolling_mill provides topics
To.1 to subscribe or publish data to those sensors installed on the
engines of the FogNode_rolling_mill of the company. Be-
sides, this node carries out two tasks, 1) the data pre-processing
T.1 of the received data (already aggregated by the gateway
Task Node) to send this data in a suitable way to the machine
learning model of the system, which use it as input to make
predictions, and 2) The fault prediction T.2 of the engines of the

18 Jose A. Barriga et al.

Figure 10 Model conforms to the proposed simulator metamodel. An IIoT system applied to the steel industry for predictive
maintenance of electric engines.

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 19

rolling mill. These predictions are later published in the topic
x/.../engines/prediction where the actuators responsible to stop
the engines are subscribed. Note that these tasks have been mod-
elled by means of Workflows in the properties of these com-
ponents. This fog node has also a hardware_specification
H.1 and a mongo database Db.1 .

The other two fog nodes, the
FogNode_power_plant_ventilation_system and the
FogNode_lathes have a similar configuration to the
FogNode_rolling_mill. The differences are 1) The
Workflows modelled in the tasks defined in each of them are
different 2) Each fog node represents the implementation of the
fault prediction system in the electric engines of the different
equipment and facilities of the company.

7.3.3. Cloud Layer The cloud layer has been included with
one aim, to provide hardware resources to the rest of the system.
Thus, one cloud node has been modelled C.1 . In this regard,
this cloud node has a hardware_specification greater than
the hardware_specification of the fog nodes, and a Mongo
database Db.4 .

7.3.4. Cloud-Fog-Edge Federation Although the cloud-

fog-edge Federation Fd.1 is not a layer, it allows each cloud,
fog and edge node modelled to operate as a single entity instead
of isolated nodes. This component has been modelled federating
each fog, cloud and Task Node modelled. Thus, all the nodes
with computing power (a hardware_specification) can co-
operate for task scheduling purposes. Note that in the prop-
erties of this component, the features of each Link that inter-
connects the nodes belonging to the Federation (bandwidth
and delay) have been modelled.

Finally, note that although in this case study has not been
modelled, additional nodes could be defined to build other fed-
erations.

7.4. M2T Transformations
Once the model has been defined, the M2T transformations are
applied with the following goals:

– i) to generate Java, Python, NodeJs, etc. code that wraps
each device behaviour.

– ii) to generate configuration code to deploy all the gen-
erated services, such as the message brokers necessary,
including the topic configurations defined, the gateway
configurations, etc.

– iii) to generate the code and deployment configuration
files of the architecture that supports task scheduling
(Task Apps, Task Nodes, Networking Nodes, Task
Processors and the Task Schedulers).

– iv) to generate the code and deployment configuration of
the users’ task scheduling proposal and their integration
with the simulation.

– v) to generate the configuration files and scripts necessary
to deploy the databases and stream processors defined;
and finally, to generate the code necessary to query the
databases where the data will be stored.

– vi) to generate for each cloud, fog and edge node a Docker
container which can be deployed throughout a network of
nodes using Docker Swarm.

Consequently, each edge node, fog node and cloud node and
their related components are generated following the software
architecture defined in Section 5 where the M2T transformations
have been defined.

Finally, note that to generate a part of the code in a target
language/infrastructure different from the one supported, users
will need to make the following efforts: 1) Understand the
metamodel or the concepts related to the component/s they wish
to update; 2) Understand the M2T transformations related to the
component/s to be modified; 3) Develop the code from scratch
in their target language; 4) Integrate it into Acceleo; 5) Conduct
sufficient tests and trials to confirm the successful update of the
component/s.

7.5. Simulation Analysis
The benefits that can be obtained from a simulator come from
the outputs, data, etc. from the simulations and tests performed.
In this section, a set of simulations and different tests based
on the model described above are carried out, illustrating the
possibilities and benefits provided by the proposed simulator.
To carry out these simulations and tests, the HEFT algorithm
(Topcuoglu et al. 2002), one of the most widely used and ex-
tended algorithms in the field of task scheduling, on which some
recent algorithms are based (Ojha et al. 2020; Divyaprabha et al.
2018; Faragardi et al. 2020), has been integrated into the sim-
ulator. Consequently, the Task Scheduler applies the afore-
mentioned task scheduling algorithm (HEFT) to process the
workflows during simulations. Note that the M2T transforma-
tions only need the task scheduling proposal (in this case the
HEFT algorithm) to be on the same path as the generated com-
ponents (by the M2T transformations) in order to automatically
integrate it into the simulation.

As for the test, first is desired to determine the average and
maximum time that the modelled IIoT system needs to predict
the failure of an engine. This involves the time it requires to
aggregate and pre-process the data related to each engine and
the time it requires to carry out the prediction (failure or not).

For this purpose, the simulation was run for 120 seconds.
Once completed, the average time reported to predict the failure
of an engine (any engine) is 4.391 seconds, and the maximum
time is 6.384 seconds. The maximum time was related to the en-
gines of the rolling mill. This was expected since the workflows
related to failure prediction for this kind of engine are more
complex (higher amount of bytes to process and to offload) than
for the others.

At this point, the user has to determine whether this response
time satisfies his performance needs i.e., if the response time is
lower than expected, the user could reduce the hardware of the
designed system, thus saving costs. If, on the other hand, the
response time exceeds the estimated time to avoid severe engine
damage, the system has to be upgraded, either by software or
hardware.

In this use case, it has been determined to carry out a software
upgrade. The HEFT algorithm includes an insertion policy, i.e.,

20 Jose A. Barriga et al.

the idle slots of each processor (time in which the processor is
not used between processing each task) can be used to process
tasks. However, in the previous test, a modified HEFT algorithm
was used in which the use of idle slots had been restricted. The
simulation is then re-deployed with the HEFT algorithm and its
insertion policy enabled.

For this purpose, again, the simulation was run for 120 sec-
onds. Once completed, the average time reported to predict
the failure of an engine (any engine) is 3.637 seconds, and the
maximum time 6.314 seconds. Although the average execution
time has improved (4.391 to 3.637), the maximum execution
time has remained the same. This is because, due to the number
of nodes in the federation, their hardware configuration and the
workflows related to the tasks to be processed in the system, at
a specific time, the insertion policies cannot be applied as there
are no idle slots available.

Thus, in order to reduce the maximum processing time for
the failure prediction of the engines of the rolling mill, this
software improvement is not enough, so it is determined to
double the computational capacity of the fog nodes. After this
improvement, the maximum processing time has been reduced
to 3.259 seconds, about half.

Analysing why the processing of worst-case tasks is reduced
a half, the simulator logs reported that the worst case (maximum
execution time) occurs at an instant when the tasks (related to
the worse case) are processed by fog nodes. Specifically for the
fog node deployed near the rolling mills. Thus, by doubling its
computing power, the processing of these tasks is reduced by
about half.

These are some of the tests that the proposed simulator allows
to carry out. These tests allow users to analyse the performance
of their IoT systems and re-design them until reaching an opti-
mal configuration that satisfies their performance requirements
In this case study, users could have tested the impact of other
adjustments, such as the modification of the system architecture
(adding or subtracting nodes), modifying the workflows of each
task, the features of the links that inter-connects each node to
the federation, etc.

8. Conclusions and Future Work
Model-driven development (MDD) offers an effective solution
for dealing with the technological complexity of domains where
diverse technologies are used. The key of MDD lies in its em-
phasis on the creation of abstractions of the application domain
using the four-layer metamodel architecture. This architecture
facilitates a structured approach towards system design.

Once these models are established, we can proceed to the
model-to-text (M2T) transformation stage, where the developed
models are transformed into executable code specific to the
technology in use. This approach effectively mitigates the risks
and challenges of manual coding, enhancing productivity and
reducing the margin for error.

This paper proposes an extension of the SimulateIoT domain-
specific language (DSL) towards IoT simulation in the context
of task scheduling and the cloud-to-thing continuum paradigm.
This DSL extension aids users in conceptually framing their task

scheduling proposals within their IoT system designs based on
the cloud-to-thing continuum paradigm. By using this language,
users can propose, simulate, and evaluate various IoT system
designs and task scheduling solutions, thereby working towards
a system that fulfils their specific requirements, such as Quality
of Service (QoS) or Service Level Agreements (SLAs).

The system design’s components can include a variety of ele-
ments including cloud, fog, edge, and mist nodes. These nodes
can be federated to create an integrated system. Additionally, de-
vices and applications that generate and offload workflow-based
tasks can be incorporated, along with the necessary architecture
for processing these tasks. This broad range of possibilities al-
lows users to model realistic IoT systems where task scheduling
plays a pivotal role.

Finally, once the IoT system is modelled and simulated, the
simulation’s outputs can be gathered, analysed, and leveraged
for the purpose of system refinement and optimisation. This it-
erative process of design, simulation, deployment, and analysis
serves as a feedback loop, enabling continuous improvement of
the system in line with the user’s evolving needs and technolog-
ical advancements. This process, founded on the principles of
the MDD, ensures a systematic, rigorous approach to designing
and test task scheduling proposals and complex IoT systems
based on the cloud-to-thing continuum paradigm.

Regarding the limitations of our extension, there are several
points to consider. While we offer valuable logs pertaining to the
energy consumption of the simulated IoT system, the extension
does not encompass a comprehensive model that directly indi-
cates the system’s energy usage. Given the emphasis on energy
efficiency in the current climate change scenario and the rising
trend of energy-awareness task scheduling algorithms (green
IoT) (Ghafari et al. 2022), this absence is a notable limitation of
our tool.

Additionally, although our extension provides logs concern-
ing the hardware consumption of each simulated component,
potentially allowing for cost inference for deploying these com-
ponents on private clouds like AWS or Google Cloud, it does
not furnish a full-fledged pricing model. As many contemporary
task scheduling algorithms consider the costs associated with
IoT system deployments (Shu et al. 2021; Yuan et al. 2020), this
omission is another significant limitation.

Moreover, since SimulateIoT emulates the infrastructure of
modelled IoT systems rather than merely simulating it, the
hardware demands for running a simulation are higher than
for simulators reliant solely on mathematical models. This
increases the hardware requirements to run simulations, which
can pose challenges for scalability, especially when simulating
large IoT systems.

Lastly, while SimulateIoT is designed to simplify the process
of integrating and testing user task scheduling proposals, manual
effort is still required to carry out this integration.

As for future work, there are several extensions that could be
interesting to develop:

– Mobility: The proposed simulator does not support device
mobility. Currently, some works in the literature focus
on the study of the federation of an edge layer composed

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 21

of mobile devices, the mobile edge computing paradigm
(Mao et al. 2017; Maray & Shuja 2022). In this computing
paradigm, mobile nodes belonging to the edge layer can
leave or join the federation. This dynamic property of the
edge layer requires an architecture to support it and the
corresponding software to handle it. Thus, the inclusion of
this paradigm in the simulator could be an advantage for
work that focuses on the development of task scheduling
techniques for this kind of system (Ma et al. 2021; Wang
et al. 2021).

– Energy consumption: Currently, many task scheduling
proposals focus on the sustainable development of the IoT,
thus prioritising energy consumption optimisation over the
makespan of the tasks to be processed (Ghafari et al. 2022).
Introducing the concept of devices’ batteries or system
energy consumption to the proposed simulator could help
those users who require test their task scheduling proposals
for energy optimisation.

– Cost of use: Given that several cloud platforms offer their
services for a certain price and also that energy has a mone-
tary cost, in literature there are several task scheduling pro-
posals focused on optimising the use of system resources
(Shu et al. 2021; Yuan et al. 2020). Integrating the concept
of resources cost or the model of pay-as-you-use could be
interesting to allow these users to test their proposals.

– A textual concrete syntax will be developed in order to
facilitate the modelling of this kind of system by using a
textual notation.

– Taking into account that currently users have to manage the
QoS and SLAs manually, it could be interesting to consider
an extension of the proposed metamodel to define QoS and
SLAs. Thus, facilitating users the modelling and handling
of such concepts for each model.

Acknowledgments
This work was funded by project TED2021-129194B-I00
funded by MCIN/ AEI/ 10.13039/501100011033 and for Euro-
pean Union NextGenerationEU/ PRTR; the Government of Ex-
tremadura, Council for Economy, Science and Digital Agenda
under the grant GR21133 and the projects IB20058, and by the
European Regional Development Fund (ERDF).

References
Aazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying

fog computing in industrial internet of things and industry
4.0. IEEE Transactions on Industrial Informatics, 14(10),
4674-4682. doi: 10.1109/TII.2018.2855198

Ahmad, Z., Jehangiri, A. I., Ala’anzy, M. A., Othman, M.,
Latip, R., Zaman, S. K. U., & Umar, A. I. (2021). Scientific
workflows management and scheduling in cloud computing:
taxonomy, prospects, and challenges. IEEE Access, 9, 53491–
53508.

Alizadeh, M. R., Khajehvand, V., Rahmani, A. M., & Akbari,
E. (2020). Task scheduling approaches in fog computing: A
systematic review. International Journal of Communication
Systems, 33(16), e4583.

Al-Maytami, B. A., Fan, P., Hussain, A., Baker, T., & Liatsis, P.
(2019). A task scheduling algorithm with improved makespan
based on prediction of tasks computation time algorithm for
cloud computing. IEEE Access, 7, 160916–160926.

Andersson, M. A., Özçelikkale, A., Johansson, M., Engström,
U., Vorobiev, A., & Stake, J. (2016). Feasibility of ambient
rf energy harvesting for self-sustainable m2m communica-
tions using transparent and flexible graphene antennas. IEEE
Access, 4, 5850-5857. doi: 10.1109/ACCESS.2016.2604078

Arunarani, A., Manjula, D., & Sugumaran, V. (2019a). Task
scheduling techniques in cloud computing: A literature sur-
vey. Future Generation Computer Systems, 91, 407-415. Re-
trieved from https://www.sciencedirect.com/science/article/
pii/S0167739X17321519 doi: https://doi.org/10.1016/
j.future.2018.09.014

Arunarani, A., Manjula, D., & Sugumaran, V. (2019b). Task
scheduling techniques in cloud computing: A literature sur-
vey. Future Generation Computer Systems, 91, 407–415.

Asghari, A., Sohrabi, M. K., & Yaghmaee, F. (2021). Task
scheduling, resource provisioning, and load balancing on sci-
entific workflows using parallel sarsa reinforcement learning
agents and genetic algorithm. The Journal of Supercomputing,
77, 2800–2828.

Atkinson, C., & Kuhne, T. (2003). Model-driven development:
a metamodeling foundation. IEEE software, 20(5), 36–41.

Bansal, S., Aggarwal, H., & Aggarwal, M. (2022). A system-
atic review of task scheduling approaches in fog computing.
Transactions on Emerging Telecommunications Technologies,
e4523.

Barriga, J. A., Clemente, P. J., Pérez-Toledano, M. A., Jurado-
Málaga, E., & Hernández, J. (2023). Design, code gen-
eration and simulation of iot environments with mobility
devices by using model-driven development: Simulateiot-
mobile. Pervasive and Mobile Computing, 89, 101751. Re-
trieved from https://www.sciencedirect.com/science/article/
pii/S1574119223000093 doi: https://doi.org/10.1016/j.pmcj
.2023.101751

Barriga, J. A., Clemente, P. J., Sosa-Sánchez, E., & Prieto, A. E.
(2021). Simulateiot: Domain specific language to design,
code generation and execute iot simulation environments.
IEEE Access, 9, 92531-92552. doi: 10.1109/ACCESS.2021
.3092528

Bittencourt, L., Immich, R., Sakellariou, R., Fonseca, N.,
Madeira, E., Curado, M., . . . Rana, O. (2018). The in-
ternet of things, fog and cloud continuum: Integration and

22 Jose A. Barriga et al.

challenges. Internet of Things, 3, 134–155.
Cakir, M., Guvenc, M. A., & Mistikoglu, S. (2021). The experi-

mental application of popular machine learning algorithms on
predictive maintenance and the design of iiot based condition
monitoring system. Computers & Industrial Engineering,
151, 106948. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0360835220306252 doi: https://doi.org/
10.1016/j.cie.2020.106948

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A.,
& Buyya, R. (2011). Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Practice and
experience, 41(1), 23–50.

Carvalho, T. P., Soares, F. A., Vita, R., Francisco, R. d. P., Basto,
J. P., & Alcalá, S. G. (2019). A systematic literature review of
machine learning methods applied to predictive maintenance.
Computers & Industrial Engineering, 137, 106024.

Chen, W., & Deelman, E. (2012). Workflowsim: A toolkit for
simulating scientific workflows in distributed environments.
In 2012 ieee 8th international conference on e-science (p. 1-
8). doi: 10.1109/eScience.2012.6404430

Cheng, J. C., Chen, W., Chen, K., & Wang, Q. (2020). Data-
driven predictive maintenance planning framework for mep
components based on bim and iot using machine learning
algorithms. Automation in Construction, 112, 103087.

Chernyshev, M., Baig, Z., Bello, O., & Zeadally, S. (2018).
Internet of things (iot): Research, simulators, and testbeds.
IEEE Internet of Things Journal, 5(3), 1637-1647. doi: 10
.1109/JIOT.2017.2786639

Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O.,
Asmael, M., & Safaei, B. (2020). Machine learning in predic-
tive maintenance towards sustainable smart manufacturing in
industry 4.0. Sustainability, 12(19), 8211.

Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., & Zeng, J.
(2020). Q-learning based dynamic task scheduling for energy-
efficient cloud computing. Future Generation Computer
Systems, 108, 361–371.

Divyaprabha, M., Priyadharshni, V., & Kalpana, V. (2018).
Modified heft algorithm for workflow scheduling in cloud
computing environment. In 2018 second international con-
ference on inventive communication and computational tech-
nologies (icicct) (p. 812-815). doi: 10.1109/ICICCT.2018
.8473237

Erazo, M. A., & Liu, J. (2013). Leveraging symbiotic relation-
ship between simulation and emulation for scalable network
experimentation. In Proceedings of the 1st acm sigsim con-
ference on principles of advanced discrete simulation (pp.
79–90).

Faragardi, H. R., Saleh Sedghpour, M. R., Fazliahmadi, S.,
Fahringer, T., & Rasouli, N. (2020). Grp-heft: A budget-
constrained resource provisioning scheme for workflow
scheduling in iaas clouds. IEEE Transactions on Parallel
and Distributed Systems, 31(6), 1239-1254. doi: 10.1109/
TPDS.2019.2961098

Fisher, A., Rudin, C., & Dominici, F. (2019). All models
are wrong, but many are useful: Learning a variable’s im-
portance by studying an entire class of prediction models

simultaneously. J. Mach. Learn. Res., 20(177), 1–81.
Gazori, P., Rahbari, D., & Nickray, M. (2020). Saving time

and cost on the scheduling of fog-based iot applications using
deep reinforcement learning approach. Future Generation
Computer Systems, 110, 1098–1115.

Ghafari, R., Kabutarkhani, F. H., & Mansouri, N. (2022). Task
scheduling algorithms for energy optimization in cloud envi-
ronment: a comprehensive review. Cluster Computing, 25(2),
1035–1093.

Girs, S., Sentilles, S., Asadollah, S. A., Ashjaei, M., & Mubeen,
S. (2020). A systematic literature study on definition and
modeling of service-level agreements for cloud services in
iot. IEEE Access, 8, 134498–134513.

Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., &
Razafindralambo, T. (2011). A survey on facilities for ex-
perimental internet of things research. IEEE Communica-
tions Magazine, 49(11), 58-67. doi: 10.1109/MCOM.2011
.6069710

Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R.
(2017). ifogsim: A toolkit for modeling and simulation of
resource management techniques in the internet of things,
edge and fog computing environments. Software: Practice
and Experience, 47(9), 1275–1296.

Gupta, S., Iyer, S., Agarwal, G., Manoharan, P., Algarni, A. D.,
Aldehim, G., & Raahemifar, K. (2022). Efficient prioritiza-
tion and processor selection schemes for heft algorithm: A
makespan optimizer for task scheduling in cloud environment.
Electronics, 11(16), 2557.

H., S., & V., N. (2021). A review on fog com-
puting: Architecture, fog with iot, algorithms and re-
search challenges. ICT Express, 7(2), 162-176. Re-
trieved from https://www.sciencedirect.com/science/article/
pii/S2405959521000606 doi: https://doi.org/10.1016/j.icte
.2021.05.004

Hao, Q., Xue, Y., Shen, W., Jones, B., & Zhu, J. (2010). A de-
cision support system for integrating corrective maintenance,
preventive maintenance, and condition-based maintenance.
In Construction research congress 2010: Innovation for re-
shaping construction practice (pp. 470–479).

Hosseinioun, P., Kheirabadi, M., Kamel Tabbakh, S. R., &
Ghaemi, R. (2022). atask scheduling approaches in fog
computing: A survey. Transactions on Emerging Telecommu-
nications Technologies, 33(3), e3792. Retrieved from https://
onlinelibrary.wiley.com/doi/abs/10.1002/ett.3792 (e3792
ETT-19-0285.R1) doi: https://doi.org/10.1002/ett.3792

Jamil, B., Ijaz, H., Shojafar, M., Munir, K., & Buyya, R. (2022).
Resource allocation and task scheduling in fog computing
and internet of everything environments: A taxonomy, review,
and future directions. ACM Computing Surveys (CSUR).

Kar, B., Yahya, W., Lin, Y.-D., & Ali, A. (2022). A survey
on offloading in federated cloud-edge-fog systems with tra-
ditional optimization and machine learning. arXiv preprint
arXiv:2202.10628.

Kolovos, D. S., García-Domínguez, A., Rose, L. M., & Paige,
R. F. (2015). Eugenia: towards disciplined and automated de-
velopment of GMF-based graphical model editors. Software
& Systems Modeling, 1–27.

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 23

Kompose. (2023). https://kompose.io/. ([Online; accessed
09-Oct-2023])

Kubernetes Documentation. (2023). https://kubernetes.io/docs/
home/. ([Online; accessed 09-Oct-2023])

Lera, I., Guerrero, C., & Juiz, C. (2019). Yafs: A simulator for
iot scenarios in fog computing. IEEE Access, 7, 91745-91758.
doi: 10.1109/ACCESS.2019.2927895

Lie, C. H., & Chun, Y. H. (1986). An algorithm for preventive
maintenance policy. IEEE Transactions on Reliability, 35(1),
71-75. doi: 10.1109/TR.1986.4335352

Ma, X., Zhou, A., Zhang, S., Li, Q., Liu, A. X., & Wang, S.
(2021). Dynamic task scheduling in cloud-assisted mobile
edge computing. IEEE Transactions on Mobile Computing.

Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017).
A survey on mobile edge computing: The communication
perspective. IEEE communications surveys & tutorials, 19(4),
2322–2358.

Maray, M., & Shuja, J. (2022). Computation offloading in
mobile cloud computing and mobile edge computing: survey,
taxonomy, and open issues. Mobile Information Systems,
2022.

McGregor, I. (2002). The relationship between simulation
and emulation. In Proceedings of the winter simulation
conference (Vol. 2, p. 1683-1688 vol.2). doi: 10.1109/
WSC.2002.1166451

Merkel, D. (2014). Docker: lightweight linux containers
for consistent development and deployment. Linux Journal,
2014(239), 2.

Mijuskovic, A., Chiumento, A., Bemthuis, R., Aldea, A., &
Havinga, P. (2021). Resource management techniques for
cloud/fog and edge computing: An evaluation framework and
classification. Sensors, 21(5). Retrieved from https://www
.mdpi.com/1424-8220/21/5/1832 doi: 10.3390/s21051832

Mishra, S., Mishra, S., Kayal, A., & Chudi, S. R. (2012).
Simulation in wireless sensor networks. International Journal
of Electronics Communication and Computer Technology
(IJECCT), 2(4), 176.

NoorianTalouki, R., Shirvani, M. H., & Motameni, H. (2022). A
heuristic-based task scheduling algorithm for scientific work-
flows in heterogeneous cloud computing platforms. Journal
of King Saud University-Computer and Information Sciences,
34(8), 4902–4913.

Obeo. (2012). Acceleo project http://www.acceleo.org.
Ojha, S. K., Rai, H., & Nazarov, A. (2020). Enhanced modified

heft algorithm for task scheduling in cloud environment. In
2020 2nd international conference on advances in computing,
communication control and networking (icacccn) (p. 866-
870). doi: 10.1109/ICACCCN51052.2020.9362975

OMG. (2012, January). OMG Object Constraint Language
(OCL), Version 2.3.1. Retrieved from http://www.omg.org/
spec/OCL/2.3.1/

Pan, J., & McElhannon, J. (2018). Future edge cloud and
edge computing for internet of things applications. IEEE
Internet of Things Journal, 5(1), 439-449. doi: 10.1109/
JIOT.2017.2767608

Potluri, S., & Rao, K. S. (2020). Optimization model for
qos based task scheduling in cloud computing environment.

Indonesian Journal of Electrical Engineering and Computer
Science, 18(2), 1081–1088.

Qian, L., Luo, Z., Du, Y., & Guo, L. (2009). Cloud computing:
An overview. In Cloud computing: First international con-
ference, cloudcom 2009, beijing, china, december 1-4, 2009.
proceedings 1 (pp. 626–631).

Rashid, A., & Chaturvedi, A. (2019). Cloud computing charac-
teristics and services: a brief review. International Journal
of Computer Sciences and Engineering, 7(2), 421–426.

Rodrigo, G. P., Elmroth, E., Östberg, P.-O., & Ramakrishnan,
L. (2018). Scsf: A scheduling simulation framework. In
D. Klusáček, W. Cirne, & N. Desai (Eds.), Job schedul-
ing strategies for parallel processing (pp. 152–173). Cham:
Springer International Publishing.

Saltelli, A., & Funtowicz, S. (2014). When all models are
wrong. Issues in Science and Technology, 30(2), 79–85.

Samann, F. E. F., Zeebaree, S. R., & Askar, S. (2021). Iot
provisioning qos based on cloud and fog computing. Journal
of Applied Science and Technology Trends, 2(01), 29–40.

Sandhu, M. M., Khalifa, S., Jurdak, R., & Portmann, M. (2021).
Task scheduling for energy-harvesting-based iot: A survey
and critical analysis. IEEE Internet of Things Journal, 8(18),
13825–13848.

Selic, B. (2003). The pragmatics of model-driven development.
IEEE software, 20(5), 19–25.

Sendall, S., & Kozaczynski, W. (2003). Model transformation:
The heart and soul of model-driven software development.
IEEE software, 20(5), 42–45.

Shu, W., Cai, K., & Xiong, N. N. (2021). Research on strong
agile response task scheduling optimization enhancement
with optimal resource usage in green cloud computing. Future
Generation Computer Systems, 124, 12–20.

Singh, P., Dutta, M., & Aggarwal, N. (2017, Jul 01). A review
of task scheduling based on meta-heuristics approach in cloud
computing. Knowledge and Information Systems, 52(1), 1-51.
Retrieved from https://doi.org/10.1007/s10115-017-1044-2
doi: 10.1007/s10115-017-1044-2

Siow, E., Tiropanis, T., & Hall, W. (2018). Analytics for
the internet of things: A survey. ACM Computing Surveys
(CSUR), 51(4), 74.

Sterman, J. D. (2002). All models are wrong: reflections on
becoming a systems scientist. System Dynamics Review: The
Journal of the System Dynamics Society, 18(4), 501–531.

Topcuoglu, H., Hariri, S., & Wu, M.-Y. (2002). Performance-
effective and low-complexity task scheduling for heteroge-
neous computing. IEEE transactions on parallel and dis-
tributed systems, 13(3), 260–274.

Wang, W., Lu, B., Li, Y., Wei, W., Li, J., Mumtaz, S., & Guizani,
M. (2021). Task scheduling game optimization for mobile
edge computing. In Icc 2021-ieee international conference
on communications (pp. 1–6).

Wu, F., Wu, Q., & Tan, Y. (2015). Workflow scheduling in cloud:
a survey. The Journal of Supercomputing, 71(9), 3373–3418.

Yao, F., Pu, C., & Zhang, Z. (2021). Task duplication-based
scheduling algorithm for budget-constrained workflows in
cloud computing. IEEE Access, 9, 37262–37272.

Yu, C., Lin, B., Guo, P., Zhang, W., Li, S., & He, R. (2018).

24 Jose A. Barriga et al.

Deployment and dimensioning of fog computing-based inter-
net of vehicle infrastructure for autonomous driving. IEEE
Internet of Things Journal, 6(1), 149–160.

Yuan, H., Liu, H., Bi, J., & Zhou, M. (2020). Revenue and
energy cost-optimized biobjective task scheduling for green
cloud data centers. IEEE Transactions on Automation Science
and Engineering, 18(2), 817–830.

Zhao, J., Gao, C., & Tang, T. (2022). A review of sustain-
able maintenance strategies for single component and mul-
ticomponent equipment. Sustainability, 14(5). Retrieved
from https://www.mdpi.com/2071-1050/14/5/2992 doi:
10.3390/su14052992

About the authors
José A. Barriga obtained his BSc degree in 2018 at the Univer-
sity of Extremadura and his MSc degree in 2019 at the Interna-
tional University of La Rioja. Currently, he is a PhD student
at the University of Extremadura. He has been working for
five years in the areas of IoT systems simulation, model-driven
development applied to the IoT and machine learning applied
to agriculture. You can contact the author at jose@unex.es.

José M. Cháves-González Jose M. Cháves-González is an As-
sociate Professor of the Computer Science Department at the
University of Extremadura (Spain). He received his BSc in
Computer Science from the University of Extremadura in 2005
and a PhD in Computer Science in 2011. His research activ-
ity focuses on problem solving in the field of bioinformatics,
the design and development of evolutionary and bio-inspired
algorithms, multi-objective optimisation and the optimisation
of algorithms using parallelism techniques. You can contact the
author at jm@unex.es.

Arturo Barriga is a junior researcher in the Quercus Software
Engineering Group at the University of Extremadura. He ob-
tained his BSc degree from the University of Extremadura,
Spain, 2022. Currently, he is a MSc student at the International
University of La Rioja. His research focuses on the fields of
digital twins and machine learning applied to agriculture. You
can contact the author at arturobc@unex.es.

Pablo Alonso is a junior researcher in the Quercus Software
Engineering Group at the University of Extremadura. He ob-
tained his BSc degree in computer science from the University
of Extremadura, Spain, in 2022. Currently, his research fo-
cuses on the fields of digital twins and simulation of Internet
of Things (IoT) environments. You can contact the author at
pabloap@unex.es.

Pedro J. Clemente is an Associate Professor of the Computer
Science Department at the University of Extremadura (Spain).
He received his BSc in Computer Science from the University
of Extremadura in 1998 and a PhD in Computer Science in
2007. He has published numerous peer-reviewed papers in in-
ternational journals, workshops, and conferences. His research
interests include component-based software development, as-
pect orientation, service-oriented architectures, business process

modelling, and model-driven development. He is involved in
several research projects. He has participated in many work-
shops and conferences as speaker and member of the program
committees. You can contact the author at pjclemente@unex.es
.

A. Appendix: The complete metamodel of the
proposed simulator

This Section shows in Figure 11 the complete metamodel of the
proposed simulator. This metamodel is composed of the Simu-
lateIoT metamodel and the extension carried out (highlighted
in blue). The description of the classes and relationships that
are not part of the extension (and that have not been addressed
in this article), can be found in the article (Barriga et al. 2021)
Section IV, subsection A.

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 25

Figure 11 Complete SimulateIoT metamodel with the extension concepts and relationships included.

26 Jose A. Barriga et al.

B. Appendix: Acceleo M2T example

1 [t e m p l a t e p u b l i c gene ra t eWork f low (anEnvi ronment : Envi ronment)]
2 [comment @main /]
3 [f o r (t n o d e : TaskNode | anEnvi ronment . node −> f i l t e r (EdgeNode) −> f i l t e r (TaskNode))]
4 [f o r (workf low : Workflow | t n o d e . workflow)]
5 [f i l e (’ / ’ + t n o d e . name + t n o d e . i d + ’ / s r c / main / r e s o u r c e s / wflows / wflow ’ + workflow . i d + ’ . j son ’ , f a l s e , ’UTF−8 ’)]
6

7 {
8 " workflow " : {
9 " i d " : " [workflow . i d /] " ,

10 " name " : " [workflow . name /] " ,
11 " g e n e r a t e d B y " : {
12 " nodeId " : " TaskNode [t n o d e . name + t n o d e . i d /] " ,
13 " g e n e r a t o r I d " : " [t n o d e . name + t n o d e . i d /] " ,
14 " g e n e r a t i o n I d " : " " / / Th i s ID a c t s a s a c o u n t e r w i t h i n t h e component r e s p o n s i b l e f o r g e n e r a t i n g workf lows ,

and i s added d u r i n g s i m u l a t i o n s .
15 } ,
16 " nodes " :
17 [f o r (t a s k : Task | workf low . t a s k) b e f o r e (’ [’) s e p a r a t o r (’ , ’) a f t e r (’] ’)]
18 {
19 " t a s k " : {
20 " name " : " [t a s k . name /] " ,
21 " i d " : " [t a s k . i d /] " ,
22 " s i z e " : " [t a s k . s i z e /] "
23 }
24 }
25 [/ f o r]
26 [i f (workf low . edge −> s i z e () >0)]
27 " edges " :
28 [/ i f]
29 [f o r (edge : Edge | workf low . edge) b e f o r e (’ [’) s e p a r a t o r (’ , ’) a f t e r (’] ’)]
30 {
31 " edge " : {
32 " i d " : " [edge . i d /] " ,
33 " s o u r c e T a s k I d " : " [edge . s o u r c e . i d /] " ,
34 " t a r g e t T a s k I d " : {
35 [f o r (t a r g e t : Task | edge . t a r g e t) s e p a r a t o r (’ , ’)]
36 " t a r g e t [i /] " : " [edge . i d /] "
37 [/ f o r]
38 } ,
39 " o f f l o a d S i z e " : " [edge . o f f l o a d _ s i z e /] "
40 }
41 }
42 [/ f o r]
43 }
44 }
45 [/ f i l e]
46 [/ f o r]
47 [/ f o r]
48 [/ t e m p l a t e]
49

Listing 5 M2T developed in Acceleo for the generation of the workflows that the Task Nodes will offload to the system during the
simulation.

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 27

C. Networking Node

Figure 12 shows a generic Networking Node B (represented
by a red box), all its components (elements within the red
box) and the interaction between them. The main components
of the Networking Node are the Delay Controller C ,
the Synthetic Delay Generator D , the Bandwidth
Controller E and the Network Status Reporter G .
Besides, Figure 12 also shows how the Networking Node is
deployed on an edge (Task Node), fog or cloud node A and
the interactions that these components could perform with other
artefacts of the edge/fog/cloud node and with the rest of the
IoT system. Below, the Networking Node is illustrated by
describing each of its components and their interactions.

Delay Controller C The Delay Controller aims to
apply the delay of the Links that connect the nodes belonging
to a federation. The delay is applied from the source node to
the target node, i.e. the Delay Controller applies the delay
constraints modelled to the outgoing traffic. Note that, as there
is one Networking Node per node belonging to a federation,
the Delay Controller applies the delay modelled to those
Links whose source node is the edge/fog/cloud node where it
is deployed.

In this regard, tasks are transmitted by means of workflows
in JSON format (Listing 1). This JSON code has among its
fields the target node of the workflow (Listing 1, field gener-
atedBy), i.e. where the workflow has to be sent. In this way,
when the Delay Controller receives an outgoing workflow
(interaction 1), it is able to identify the Link through which
the workflow has to be sent. This also applies to the outgoing
tasks processed in the node where the Networking Node is
integrated (interaction 2).

Thus, with this information, the Delay Controller
request to the Synthetic Delay Generator D the current
delay of the Link (interaction 3). Note that the delay is
generated synthetically following user modelling. Once the
response is received (interaction 4), the Delay Controller
holds tasks during the received delay, thus simulating it. Finally,
when the delay has been simulated, the traffic is forwarded to
the Bandwidth Controller E (interaction 5).

Synthetic Delay Generator D Users can model the de-
lay of each Link (average, minimum, maximum, etc.) that con-
nects each node in a federation. Thus, the aim of the Synthetic
Delay Generator is to generate the delay of each Link during
simulation.

Thus, the Synthetic Delay Generator interacts with
the Delay Controller C and with the Network Status
Reporter G of the same Networking Node. In this way,
when any of these components need to know the delay of
a specific Link, they request it to the Synthetic Delay
Generator (interaction 3 and 10). Then, the Synthetic
Delay Generator responds to them with the delay of the
Link requested (interaction 4 and 11).

Bandwidth Controller E The Bandwidth

Controller aims to apply the bandwidth constraints of
the Links that connect the nodes belonging to a federation.
Thus, the bandwidth is applied from source to target, i.e. the
Bandwidth Controller applies the bandwidth constraints
modelled to the outgoing traffic. Note that, as in the case of
delay, the Bandwidth Controller applies the bandwidth
modelled from source, to target.

Thus, the Bandwidth Controller receives traffic (work-
flows or results related to a processed task) from the Delay
Controller (interaction 5). If traffic ti is received and no traf-
fic is being transmitted, the Bandwidth Controller holds the
traffic ti for the time resulting from applying the mathematical
Expression 1. Thus, simulating the time that the traffic would
have needed to be transmitted in a real environment.

TTti =
TSti

LBti

(1)

Where TTti is the transmission time (seconds) required to
send a traffic ti of a specific size TSti (bytes) through a Link
with a bandwidth LBti (bytes/seconds).

On the other hand, if a traffic tn arrives at the Bandwidth
Controller, but there are n − 1 workflows or processed tasks
(traffic) being transmitted or pending to be transmitted through
the same Link over which the traffic tn has to be transmitted,
traffic tn is queued in a FIFO (First In First Out) traffic queue.
So, in this case, the transmission time of the traffic tn can be
determined by the Expression 2. Thus, simulating the time
that the traffic tn would have needed to be transmitted in a real
environment.

TTtn =

(
n

∑
i=1

TSti

LBti

)
+

RTt0

LBti

(2)

Where a) TTtn is the transmission time required to send
a traffic tn with a size of TStn bytes through a Link with a
bandwidth of LBti bytes, b) over which a workflow or processed
task (traffic) t0 is being transmitted and RTt0 bytes of this traffic
remain to be transmitted (when tn arrives), and c) a set of
n − 1 workflows or processed tasks (traffic) are pending to be
transmitted (queued before tn).

Thus, once the delay and bandwidth constraints are
applied, the traffic is sent to the MQTT Client (interaction 6),
which forwards it to its target node (interaction 7). Finally,
note that for the sake of clarity, interactions 12 and 13 are
described below as part of the Network Status Reporter
G description.

Network Status Reporter G The Task Scheduler of
a federation could need to request the status of the Links (de-
lay and bandwidth use) of the federation. Thus, it can use this
data as input to perform the scheduling of the offloaded tasks.
In this regard, the Network Status Reporter of each node
belonging to a federation is the node that receives this request
and responds to it with the current delay and available band-
width of each Link. Note that, as there is one Networking
Node per node belonging to a federation, the Network Status
Reporter responds with the delay and bandwidth of those

28 Jose A. Barriga et al.

Figure 12 Networking Node component.

Links whose source node is the edge/fog/cloud node where it
is deployed.

Since the Task Scheduler carries out these requests
through the MQTT protocol, the MQTT Client F is the first to
receive them (interaction 8). Then, the MQTT Client forwards
these requests to the Network Status Reporter. Following,
the Network Status Reporter requests the current delay of
each Link to the Synthetic Delay Generator (interactions
10 and 11) and the current use of bandwidth of each Link
to the Bandwidth Controller E (interactions 12 and
13). Once the Network Status Reporter has gathered
all the requested data, it sends this data to the MQTT Client
(interaction 14), which finally forwards the data to the Task
Scheduler.

D. Task Processor
Figure 13 shows a generic Task Processor B (represented
by a red box), all its components (elements within the red box)

and the interaction between them. The main components of
the Task Processor are the Task Manager D , the Task
Performer E and the Task Processor Status Reporter
F . Moreover, Figure 13 also shows how the Task Processor
is deployed on an edge (Task Node), fog or cloud node A
and the interactions that these components could perform with
other artefacts of the edge/fog/cloud node and with the rest of
the IoT system. Below, the Task Processor is illustrated by
describing each of its components and their interactions.

Task Manager D The Task Manager aims to ensure that
the schedule performed by the Task Scheduler of a federa-
tion is followed by the Task Processors that belong to the
federation. Note that, as there is one Task Processor per
node (with computing power) belonging to a federation, the
Task Manager ensures that the schedule performed by the
Task Scheduler is followed by the edge/fog/cloud node A
where it is deployed.

Thus, when tasks reach the Task Processors, as the tasks

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 29

Figure 13 Task Proccessor components.

are sent through the system using the MQTT protocol, the
first component that they reach is the MQTT Client C of the
computing nodes (interaction 1). Later, the MQTT Client
forwards these tasks to the TaskManager (interaction 2).

The Task Manager D receives, stores (buffer) and sends
these tasks (following the schedule performed by the Task
Scheduler) to the Task Performer E (interaction 3), which
performs their processing.

The Task Manager also handles the interdependency
among tasks. Consequently, 1) the Task Manager holds depen-
dent tasks until the arrival of the processing results of the tasks
on which these tasks depend, 2) when these results arrive, the
Task Manager includes in the task the processing results of the
tasks on which it depended 3) Finally, following the schedule
the Task Manager sends the task to the Task Performer for
its processing (interaction 3).

Finally, note that for the sake of clarity, interactions 8 and
9 are described below, in the section reserved for the Task
Processor Status Reporter F .

Task Performer E The Task Performer is the compo-
nent of the Task Processor B which performs the processing
of the tasks. The Task Performer simulates the processing of

the tasks holding them the time that would be required for their
processing in a real environment. For this purpose, the Task
Performer applies the expression 3.

PTti =
TSti

CFci /CCBci

(3)

Where PTti is the time (seconds) required to process the
task ti which has a size of TSti bits on a CPU ci with CCBpi
cycles per bit (i.e the cycles that the CPU needs to process a bit)
and a frequency of CFci (i.e. cycles that the CPU can perform
per second). Note that the parameters of the CPU are the CPU
attributes that the user can specify to model the CPU of each
node.

Once a task is processed, as transmitted in JSON, the Task
Performer includes in it fields data such as the timestamp re-
lated to the start of the processing of the task and the timestamp
related to the end of the processing of the task.

Then, the Task Performer sends the processed task to the
MQTT Client (interaction 4), which forwards the processed
task to their next target node. For the sake of clarity, interactions
10 and 11 are described below in the section reserved for the
Task Processor (TP) Status Report F .

30 Jose A. Barriga et al.

Task Processor Status Reporter F The Task
Scheduler of the federation could need to know the status of
the task processing, i.e. CPU use of each Task Processor B
and the tasks pending of processing. So, the Task Processor
Status Reporter has the same aim that the Network
Status Reporter of the Networking Node (Section C),
although in the context of the Task Processor. Thus, in this
case, the data that is reported is related to the use of the CPU
and RAM of the Task Processor (by the Task Performer
E) and the status of the Task Manager D (Tasks pending
to be processed). Thus, the Task Scheduler can use this
data as input to perform the scheduling of the offloaded tasks.

The Task Scheduler sends these requests through the
MQTT protocol, so the MQTT Client C is the first to receive
them (interaction 6). Then, the MQTT Client forwards these
requests to the Task Processor Status Reporter (interac-
tion 7). Once the Task Processor Status Reporter re-
ceives a request, it requests the tasks pending to be processed
(their size, estimated queue time, etc.) to the Task Manager D
(interaction 8), and the status of the use of the CPU and RAM
to the Task Performer E , (interaction 10).

When these components receive the requests from the Task
Processor Status Reporter, they respond to it with the
requested data (interactions 9 and 11). So, once the Task
Processor Status Reporter gathers all the CPU, RAM
and task processing related data, it forwards this data to the
MQTT Client (interaction 12), which sends it to the Task
Scheduler (interaction 13).

SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments 31

184

Chapter 8

Discussion, Conclusion and
Future Works

“All we have to decide is what to
do with the time that is given to
us.”

The Fellowship of the Ring
(1954)

Tolkien, J. R. R.

8.1 Discussion

This section is dedicated to discussing the results obtained (see Chapter
2) through this Ph.D. Thesis. The discussion is structured around the
RQs defined in Section 1.3, which are the foundation of this dissertation.
Thereby, for each RQ, the discussion explores the extent to which the
different contributions provide answers and insights to these questions. The
discussion can be found below.

RQ1. To what extent are MDD techniques appropriate for
developing tools and languages that can tackle effectively the com-
plexity of IoT systems?

185

8.1. DISCUSSION

Through the first contribution, the first release of SimulateIoT was
delivered [2]. This first release captures in a metamodel the primary
concepts and components of current IoT systems, such as sensors, actuators,
cloud, and fog nodes among others. Conform to this metamodel, users are
enabled to model IoT systems. Then, from these models, using the defined
model-to-text transformations users can generate the code of the system,
including the code to deploy and simulate it. Thus, this contribution proved
the feasibility of tackling IoT systems’ complexity using MDD techniques.

However, this first release encompasses only some of the primary compo-
nents of IoT systems. Therefore, further research is required to conclusively
state that MDD techniques are adequately suited to address the complexity
of any IoT system effectively.

To this end, the domain of the IoT should be captured by SimulateIoT.
Nevertheless, it is not feasible to cover the whole domain of IoT systems
in a DSL due to its broad and ever-evolving nature [135]. For this reason,
following the positive insights provided by the first contribution, it was
considered to answer this RQ by extending SimulateIoT towards different
and diverse IoT domains. Namely, the second contribution was focused on
including FIWARE [3]. This was followed by a further extension to encom-
pass IoT mobility in the third contribution [4]. The fourth contribution
marked the integration of task scheduling functionalities into SimulateIoT
[5]. Finally, in collaboration with the University of Aveiro, the system was
further developed to include Big Data systems.

Between these extensions, the second one, the incorporation of FIWARE
into SimulateIoT, should be highlighted. This is because this extension
replaces the components of SimulateIoT, developed by the author of this
Ph.D. Thesis, with third-party components from the FIWARE catalog. This
is particularly insightful for this RQ given that these FIWARE components
are real components that can be used in real IoT systems and not only in
simulations. Moreover, they are not tailored to any IoT system in particular.
So, its successful integration within SimulateIoT as target technology shows
to what extent MDD can handle the heterogeneous technology of IoT
systems, not only modeling but also generating, configuring, and deploying
IoT systems.

In summary, the answer to RQ1 reveals the applicability of MDD
techniques in the field of IoT systems. The progressive development and

186

CHAPTER 8. DISCUSSION, CONCLUSION AND FUTURE WORKS

extension of SimulateIoT, through various contributions, have underscored
the potential of MDD in capturing and managing the heterogeneous nature
of IoT systems. While the initial version of SimulateIoT demonstrated the
feasibility of using MDD to model and generate primary IoT components, i.e.
the foundation of IoT systems, subsequent enhancements have expanded its
scope, incorporating diverse IoT domains such as FIWARE, IoT mobility,
task scheduling, and Big Data systems. So, these advancements collec-
tively suggest that MDD techniques hold significant promise in effectively
addressing the complexities inherent in IoT systems.

RQ2. To what degree are MDD techniques adequately suited
for generating the simulation code necessary to simulate an IoT
system?

The first contribution of this Ph.D. Thesis outcome is an MDD-based
simulator, SimulateIoT, able to handle the complexity of IoT systems.
With SimulateIoT, it is possible to model IoT systems and generate the
code of their components through the model-to-text transformation de-
fined. Moreover, these model-to-text transformations can not only generate
the necessary code to develop each component of the IoT system mod-
eled but also can generate the required code to deploy and simulate it.
For instance, synthetic sensor data generation modules simulate the data
collection process.

However, similar to the limitations acknowledged in the previous RQ,
the initial version of SimulateIoT addresses only a subset of the primary
concepts inherent in IoT systems. This limitation underscores the need
for ongoing research to conclusively determine the effectiveness of MDD
techniques in generating simulation code capable of simulating any IoT
system.

To expand upon this research question, the approach taken mirrors
that of RQ1. Thus, SimulateIoT was extended to cover additional IoT
domains, including the FIWARE IoT platform, IoT mobility, task scheduling,
and Big Data systems within the IoT context. These extensions have
been instrumental in illustrating the versatility of MDD techniques in
generating comprehensive simulation code across diverse IoT domains,
thereby reinforcing the validity of MDD techniques for this specific purpose.

In short, the answer to this RQ highlights the significant capability
of MDD techniques in generating code to simulate IoT systems. The

187

8.1. DISCUSSION

development of SimulateIoT, evolving through various stages and extensions,
has not only addressed the primary concepts of IoT systems but also
demonstrated the adaptability of MDD in diverse IoT domains. Thus,
underscoring the potential of MDD in effectively creating comprehensive
simulation code, a crucial aspect for testing IoT systems, which contributes
to the advancement and practical application of IoT technologies.

RQ3. In what measure are MDD techniques effective in devel-
oping IoT simulation tools that not only offer adaptive integration
capabilities and a user-friendly learning curve but also ensure
agility in designing IoT systems and cost-efficiency in testing and
validating them?

Firstly, regarding the learning curve of the proposed simulator, note
that SimulateIoT is a simulator based on MDD. MDD facilitates a focus on
the high-level abstract concepts of the IoT, thereby simplifying the com-
plexity associated with designing and conceptualizing these systems [136].
Additionally, MDD supports graphical modeling, which further reduces
the intricacy of system design [136]. Consequently, SimulateIoT features a
user-friendly learning curve, making it accessible to users. However, it is
essential for users to have a foundational understanding of key IoT concepts
and familiarity with MDD tools to fully leverage the simulator’s capabilities.

Furthermore, models of IoT systems within SimulateIoT can be ef-
fortlessly modified, validated, generated, and simulated. Excluding the
modification process, which depends on the user’s skills and the extent of
the modification, the remaining actions are almost instantaneous. This
enables a swift and agile process in testing and redesigning, aiming to
optimize the IoT system according to user requirements. This process
is outlined in the methodology presented in the first contribution and is
evidenced through the subsequent extensions applied to SimulateIoT.

In light of the above, it can be stated that SimulateIoT is a cost-efficient
simulator for validating and testing IoT systems. However, it is important to
note that this cost-efficiency may be comparatively lower in testing stages
than other simulators. This is attributed to the fact that SimulateIoT
predominantly relies on real components for conducting simulations, which
results in higher hardware consumption costs than simulators based solely
on mathematical models.

188

CHAPTER 8. DISCUSSION, CONCLUSION AND FUTURE WORKS

Lastly, regarding SimulateIoT’s adaptative integration capabilities, its
extension concerning task scheduling is strategically designed to allow users
to incorporate their own task-scheduling algorithms. This feature positions
SimulateIoT as an advantageous platform for users to thoroughly test
their task-scheduling algorithms and compare them against other existing
solutions. The primary requirement for users in this context is to acquire
the input for their algorithms from SimulateIoT via API requests. Of
course, this methodology is potentially applicable to other domains different
from task scheduling. So, it can be stated that SimulateIoT presents high
adaptative integration capabilities, as with this method, it can include even
users’ proposals that are not documented in the literature.

In conclusion, the simulation tools offered by SimulateIoT, which are
based on MDD, provide a user-friendly learning curve for the simulation of
IoT systems. Additionally, these tools offer agility and cost-effectiveness
in both the design and testing stages, despite the potential for higher
testing costs compared to alternative simulators. Furthermore, SimulateIoT
demonstrates considerable adaptive integration capabilities, particularly
shown through the task-scheduling extension. It is therefore possible to
respond positively to this RQ in all the aspects it encompasses.

RQ4. To what extent is it feasible for a methodological ap-
proach grounded in MDD-based simulators to achieve an optimal
IoT system design in terms of users’ specific needs?

Through the initial version of SimulateIoT, delivered through the first
contribution, a methodology was developed that defines each step required to
use SimulateIoT. Note that this methodology is derived primarily from MDD
principles, rather than specific features or functionalities of SimulateIoT
itself. In terms of methodological steps, it should be noted that MDD
approaches enable domain-specific modeling and the generation of text,
as code, from model-to-text transformations. SimulateIoT, as an MDD
approach to simulate IoT systems, allows modeling these systems and
generating all their related code. Moreover, given the nature of the generated
code, it also allows deploying and simulating these systems. Thus, this
methodology is based on these three stages and allows modeling, generating,
and simulating IoT systems through SimulateIoT.

Thereby, this methodology helps users to use SimulateIoT to model,
generate, and simulate IoT systems. In addition, it is also useful when

189

8.2. CONCLUSION

redesigning IoT systems to optimize them if considered after analyzing the
results of previous simulations. This is because the process is the same in
this case, i.e., redesign (modeling), generate, and simulate. So, it is feasible
to use this methodology iteratively until the system design that satisfies user
requirements is achieved. Note that, although it is not explicitly specified
in each of the use cases carried out in the works included in Chapters 4, 5,
6, 7, this methodology has been applied in each of them. Thus, showing its
effectiveness.

So, in light of the results achieved, it is possible to answer positively to
this RQ.

8.2 Conclusion

The Internet of Things (IoT) is characterized by its complex ecosystems.
Firstly, these systems are complex because they comprise a wide array
of heterogeneous technologies [135, 137]. Moreover, this complexity is
heightened by the ever-evolving nature of the IoT, which leads to the
ongoing introduction of new technologies, entailing even wider technological
diversity [135, 138]. In addition, the lack of universally accepted standards
for the development of these systems further complicates this scenario
[139, 138], leading to a landscape where the development of IoT systems
can become a major challenge.

Given this context, testing IoT systems designs before putting them into
production is a suitable strategy to ensure the system behaves as expected.
However, testing IoT systems is a costly and time-consuming process due
to several reasons, such as device acquisition, device configuration, and
system deployment among others. To avoid these shortcomings, simulation
tools capable of simulating IoT systems are used to test them [125, 140].
Nevertheless, the simulation tools documented in literature often tackle
simulations from a low-level abstraction, leading to simulators with a
prominent learning curve coupled with low agility regarding designing and
simulating IoT systems processes. Moreover, these simulators usually offer
closed simulation capabilities, i.e. low integration adaptability, making
it difficult for users to comprehensively test their systems or own IoT
proposals.

190

CHAPTER 8. DISCUSSION, CONCLUSION AND FUTURE WORKS

Model-driven development (MDD) provides a set of techniques that
enables elevating the level of abstraction, focusing on the high-level ab-
stract concepts of a specific domain and on their relationships rather than
on low-level details. In this work, an MDD-based IoT simulator called
SimulateIoT has been proposed. This simulator takes advantage of the
MDD to tackle IoT simulations from a high level of abstraction. With
its metamodel, SimulateIoT enables modeling IoT systems and validate
them. With its model-to-text transformations, it enables the generation
of the code of each modeled component, together with the configuration
files and deployment scripts required to set up the system and simulate it.
Moreover, a methodology to facilitate and conduct these processes has been
also developed.

SimulateIoT offers a comprehensive platform for simulating IoT systems,
encompassing a broad spectrum of components such as foundational IoT
elements, FIWARE architectures, mobile devices, task-scheduling nodes,
processes, and big data within the IoT context. This versatility underscores
the potential of MDD techniques not only in managing the inherent com-
plexity of IoT systems through detailed modeling and validation capabilities
but also in generating the simulation code required to simulate the modeled
systems. Leveraging MDD principles, SimulateIoT approaches simulations
with a high level of abstraction, significantly easing the learning curve for
users to conduct such simulations. Rising the level of abstraction not only
simplifies initial engagement with the tool but also enhances flexibility in
the redesign and testing processes, pivotal for refining and achieving optimal
IoT system designs. Besides, the developed methodology defines each step
to conduct this process properly. Moreover, SimulateIoT presents a high
adaptability to integration, particularly evidenced by its task scheduling
extension. This extension was strategically designed to foster integration
adaptability, enabling users to not only engage with existing simulation
parameters but also to test and incorporate their own proposals within the
SimulateIoT environment.

Thus, SimulateIoT shows to what extent MDD can be applied and
leveraged for the simulation of IoT systems. Essentially, by elevating the
level of abstraction, MDD enables SimulateIoT to address the complexity of
IoT systems and to bridge the gaps often present on IoT simulators. Thus,
delivering a set of simulation tools that enables testing IoT systems without

191

8.3. FUTURE WORK

the costs and efforts usually associated with this process.

8.3 Future work

Numerous promising research directions exist where SimulateIoT could be
further expanded and explored. They are listed below:

• Extend mobility simulation capabilities: Firstly, as SimulateIoT is
a simulator, it could be interesting to further improve its current
domains of application. For instance, it could be interesting to extend
the mobile capabilities by adding mobile sinks [141]. Mobile sinks
are devices that move through IoT environments gathering the data
collected by stationary sensors. Thus, sensors do not have to publish
their data and therefore keep a connection with any device for that
purpose, which are some of the most energy-consuming actions of
these devices [141]. Measuring the energy savings led by these mobile
sinks could be interesting to determine if it is suitable to use them in
a specific IoT system.

• Extend task-scheduling simulation capabilities: Another interesting
extension could be to enhance the task-scheduling capabilities of
SimulateIoT. Currently, SimulateIoT enables users to test their own
task-scheduling approaches. Nevertheless, it does not allow testing
the policies that could govern some aspects of the task-scheduling
environment [142], such as the priority in handling the results of a
task once processed.

• Simulation of Digital Twins: On the other hand, different research
directions such as Digital Twins could be also explored [143, 144].
SimulateIoT already simulates the infrastructure on which Digital
Twins relies for their functioning, such as the sensors from which they
gather data, the fog and cloud nodes where they deploy their intelligent
systems, and the database systems they could use to communicate
each of their layers. So, the simulation capabilities of SimulateIoT
could be leveraged to test Digital Twins before putting them into
production.

192

CHAPTER 8. DISCUSSION, CONCLUSION AND FUTURE WORKS

• Inclusion of blockchain simulation capabilities : It could be interesting
to include blockchain technology within the SimulateIoT framework to
explore its potential to enhance IoT security and data integrity [145].
Blockchain technology, with its decentralized and immutable ledger
system, offers a robust solution for secure, transparent transactions
and data sharing across IoT networks [145]. By integrating blockchain
simulations, SimulateIoT could provide a valuable platform for re-
searchers and developers to investigate the scalability, performance,
and security implications of blockchain within IoT ecosystems. This
integration could facilitate the testing of smart contracts, peer-to-peer
transactions, and decentralized applications in simulated IoT environ-
ments, thereby offering insights into optimal blockchain configurations
and protocols for IoT.

Therefore, the future development of SimulateIoT encompasses a broad
spectrum of promising enhancements and explorations into new domains.
Note that the outlined future directions not only seek to extend Simu-
lateIoT’s utility but also to contribute to the evolution of IoT technologies,
ensuring a more efficient and sustainable future for IoT systems.

8.4 Reflections and Personal Insights

Toward the end of my Software Engineering degree, whispers of Ph.D. theses
and esteemed doctors began to permeate my academic circles. Initially, it
seemed like a pursuit reserved for the smartest ones, distant from my own
aspirations.

Upon completing my undergraduate studies, the idea of pursuing a
Master’s in computer science surfaced. It felt premature to depart from
the university environment after just four years, especially considering that
the time passed very quickly. During my Master’s, I had the privilege of
working closely with my Thesis Director, Professor Pedro José Clemente,
who introduced me to the world of research, expanding my knowledge about
the University and the kinds of things that people who work there do.

Thus began my journey into research. Over time, and after finishing my
Master’s, almost imperceptibly, I found myself immersed in my university’s

193

8.4. REFLECTIONS AND PERSONAL INSIGHTS

Ph.D. program in Information Technologies. It dawned on me that a Ph.D.
wasn’t solely reserved for the academic elite, it was also for those who have
a great passion for what they do every day, and for those who do not mind
struggling as much as necessary to achieve their goals.

So, my journey has been one of struggling for almost four years, the
time it took to complete my thesis. But also one of passion, because I have
loved what I have done. It’s been a path where I have tried to play my part
in society’s progress. For me, that meant diving into IoT simulations, with
the goal of aiding IoT researchers and practitioners in making their own
contributions to the field. It may be a small effort in the bigger picture,
but as Mother Teresa once said, ”We ourselves feel that what we are doing
is just a drop in the ocean. But the ocean would be less because of that
missing drop.” So, with this thesis, my hope is that people involved in the
IoT field can benefit from my small contribution to the vast ocean of IoT
possibilities.

194

Appendix A

SimulateIoT: A model-driven
approach to simulate IoT
systems*

Authors: José A. Barriga and Pedro J. Clemente
Title: SimulateIoT: A model-driven approach to simulate IoT systems*
Year: 2022
Conference: Doctoral Consortium in Computer Science (JIPII)
Nature: International

195

SimulateIoT: A model-driven approach to
simulate IoT systems⋆

José A. Barriga1[0000−0001−8377−1860] and Pedro J.
Clemente1[0000−0001−5795−6343]

Quercus Software Engineering Group. http://quercusseg.unex.es. Department of
Computer Science. University of Extremadura, Av. Universidad s/n, 10003, Cáceres

(Spain)
{jose,pjclemente}@unex.es

Abstract. Developing, deploying and testing IoT projects require high
investments on devices, fog nodes, cloud nodes, analytic nodes, hard-
ware and software. However, in order to decrease the cost associated to
develop and test the IoT system it can be previously simulated. In this
regard, designing IoT simulation environments has been tackled focusing
on low level aspects such as networks, motes and so on more than focus-
ing on the high level concepts related to IoT environments. Model-driven
development aims to develop the software systems from domain mod-
els which capture at high level the domain concepts and relationships,
generating from them the software artefacts by using code-generators.
In this paper, a model-driven development approach, SimulateIoT, is
proposed to define, generate code and deploy IoT systems simulations.
The IoT simulation environment generated from each model includes the
sensors, actuators, fog nodes, cloud nodes and analytical characteristics.
Additionally, a case study, focused on an Industrial IoT environment is
presented to show the simulation expressiveness.

Keywords: IoT systems · IoT simulation · model-driven development ·
model to text transformation.

1 Introduction

The development of IoT systems requires the management and integration of
conveniently heterogeneous technologies such as devices, actuators, databases,
communication protocols, stream processing engines, etc. As a consequence, in
order to implement, deploy and test the IoT systems a high investment must be
made in time, money and effort.

Simulating IoT systems is one way to decrease this initial investment because
the users can measure and resize the artefacts needed to deploy and interconnect

⋆ This work was funded by the Government of Extremadura, Council for Economy,
Science and Digital Agenda under the grant GR21133 and the project IB20058 and
by the European Regional Development Fund (ERDF); and Cátedra Telefónica de
la Universidad de Extremadura (Red de Cátedras Telefónica).

Actas de las II Jornadas de Investigación Predoctoral en Ingenieŕıa Informática

29

2 José A. Barriga and Pedro J. Clemente

the systems. Some of the most relevant simulators are: Contiki-Cooja [10], OM-
NeT++ [13], IoT-Lab [9], CupCarbon [5] or IoTSim-Edge [3]. However, although
there are several simulation environments for wireless sensor networks (WSN),
there is a lack of IoT simulator tools for designing IoT environments at a high
level that enable modeling this kind of systems by using the domain concepts
and relationships.

Model-Driven Development (MDD) [11] is an emerging software engineering
research area that aims to develop software guided by models based on Meta-
modeling technique. In MDD, a MetaModel defines the domain concepts and
relationships in a specific domain in order to model partial reality. A Model
defines a concrete system conform to a Metamodel. Then, from these models
it is possible to generate totally or partially the application code by model-to-
text transformations [12]. Thus, high level definition (models) can be mapped
by model-to-text transformations to specific technologies (target technology).
Consequently, the software code can be generated for a specific technological
platform, improving the technological independence and decreasing error prone-
ness.

So, MDD is proposed to tackle this heterogeneous technology (devices, actua-
tors, complex event processing engines, notification technology, publish-subscribe
communication protocol, etc.) by increasing the abstraction level where the soft-
ware is implemented, focusing on the domain concepts and their relationships.

The main contributions of this paper include:

– Evidence that Model-Driven Development techniques are suitable to develop
tools and languages to tackle successfully the complexity of heterogeneous
technologies in the context of IoT simulation environments.

– A Model-Driven solution for researchers and practitioners that allows them
to design and simulate IoT systems by defining a SimulateIoT metamodel, a
graphical concrete syntax (graphical editor) to define models and a model-to-
text transformation towards the code generation for specific IoT simulation
environment. It includes the code generation to execute the IoT simulation.
Furthermore, the IoT system generated can be deployed.

– The application of SimulateIoT to one case study focused on a generic In-
dustrial IoT system (IIoT).

The rest of the paper is structured as follows. In Section 2, we present Sim-
ulateIoT, including the SimulateIoT metamodel, the graphical editor and the
model-to-text transformation developed. In Section 3 an Industrial IoT case
study is presented. Finally, Section 4 concludes the paper.

2 SimulateIoT Overview

SimulateIoT [1] is a model-driven approach to design, generate code and execute
IoT simulations. The main components of SimulateIoT are: a) The Abstract
Syntax or Metamodel; b) The Concrete Syntax or Graphical editor; and c) The
Model-to-Text Transformations.

Actas de las II Jornadas de Investigación Predoctoral en Ingenieŕıa Informática

30

SimulateIoT: A model-driven approach to simulate IoT systems 3

A) SimulateIoT Metamodel: In the context of Model-Driven Develop-
ment, a MetaModel defines the concepts and relationships in a specific domain
in order to model partially reality [11]. Later, Models conform to the Meta-
Model could be defined and they could be used to generate total or partially the
application code. The software code could be generated for a specific technolog-
ical platform, improving its technological independence and decreasing the error
proneness.

The SimulateIoT metamodel (available in [2]) includes concepts related to
sensors, actuators, databases, fog and cloud nodes, data generation, communi-
cation protocols, stream processing, and deploying strategies, among others.

B) SimulateIoT Graphical Concrete Syntax and Validator: In order
to facilitate modelig IoT environments, a Graphical Concrete Syntax (Graphi-
cal editor) has been generated using the Eugenia tool [4]. The Graphical Con-
crete Syntax generated from SimulateIoT metamodel is based on Eclipse GMF
(Graphical Modeling Framework) and EMF (Eclipse Modeling Tools). Conse-
quently, models (EMF and OCL (Object Constraint Language) [8] based) can
be validated against the defined metamodel (EMF and OCL based). Figure 1
B shows an example of model defined by using the Graphical Concrete Syntax
generated.

C) SimulateIoT Model to Text Transformations: Once the models
have been defined and validated conforming to the SimulateIoT metamodel, a
model-to-text transformation defined using Acceleo [7] can generate several arte-
facts. Thus, the generated software includes, MQTT messaging broker (based on
MQTT protocol [6]), device infrastructure, databases, a graphical analysis plat-
form, a stream processor engine, docker container, etc.

Figure 1 A shows the deployment of the architecture of a generic IoT en-
vironment where the above mentioned artefacts and their interactions can be
observed. Note that the deployment of the architecture is carried out by run-
ning the deployment script that is included in the model-to-text transformations
(script that includes all the configurations defined in the previous system mod-
elling).

3 Case study. Industrial IoT

In this section, an Industrial IoT environment is modeled and simulated by using
SimulateIoT tools. It defines an IIoT where a supplier and its customers manage
both product orders and shipments. This is a generic use case, i.e. the proposed
environment could represent any type of industrial environment where a supplier
delivers products to its customers or where a specific sensor triggers an alert to
act.

3.1 Case study. Model definition

– Each industrial placement (customer) is provided with a set of devices (Sen-
sor node, Figure 1 B, label 3.1) which is capable of measuring the stock of
their products (i.e. the level of a concrete fluid).

Actas de las II Jornadas de Investigación Predoctoral en Ingenieŕıa Informática

31

4 José A. Barriga and Pedro J. Clemente

Fig. 1. A) Example of deploy diagram. B) Case study. A generic Industrial IoT system
model.

– Each industrial placement (customer) is provided with a Fog node (Figure
1 B, label 1.1) capable of analysing (Figure 1 B, label 7) the data published
by the stock devices (Sensor) nodes. In case of stock shortage (defined by
a set of rules), the Fog node informs the supplier.

– The supplier has a series of warehouses, all of them equipped with Fog nodes
(Figure 1 B, label 1.2) capable of receiving (Figure 1 B, label 5.2) and pro-
cessing the information supplied by the industrial placements (stock status).

– Each warehouse also has an Actuator node (Figure 1 B, label 3.2) that
receives the information related to the customer’s stock and manages them
(stock status to orders).

– Finally, the provider has a Cloud node (Figure 1 B, label 2) through which
it is able to receive all the information from the environment (Fog nodes)
and store them (Figure 1 B, label 6).

3.2 Case study. Code generation and deployment

Once the model has been defined, the model-to-text transformation is applied
with the following goals: i) to generate Java code which wraps each device be-
haviour; ii) to generate configuration code to deploy the message brokers nec-
essary, including the topic configurations defined; iii) to generate the configura-
tion files and scripts necessary to deploy the databases and stream processors
defined; and finally, to generate the code necessary to query the databases where
the data will be stored; iv) to generate for each ProcessNode and EdgeNode a
Docker container which can be deployed throughout a network of nodes using
Docker Swarm.

Thus, executing the simulation modelled and later on deploying it, makes
it possible to analyse the final IoT environment before it is implemented and
deployed.

Actas de las II Jornadas de Investigación Predoctoral en Ingenieŕıa Informática

32

SimulateIoT: A model-driven approach to simulate IoT systems 5

4 Conclusions

The MDD approach proposed in this paper, SimulateIoT, shows that Model-
driven development techniques are a suitable way to tackle the complexity of
domains where heterogeneous technologies are integrated. Besides, SimulateIoT
helps users to design, generate, deploy, analyse, and optimise their IoT systems,
streamlining the process of IoT systems development and saving costs.

References

1. Barriga, J.A., Clemente, P.J., Sosa-Sánchez, E., Prieto, E.: Simulateiot: Domain
specific language to design, code generation and execute iot simulation environ-
ments. IEEE Access 9, 92531–92552 (2021)

2. Barriga Corchero, J.A., Clemente, P.J.: “simulateiot metamodel”, mendeley data,
v1 (2022). https://doi.org/10.17632/4mmgv82k2c.1

3. Jha, D.N., Alwasel, K., Alshoshan, A., Huang, X., Naha, R.K., Battula, S.K., Garg,
S., Puthal, D., James, P., Zomaya, A., et al.: Iotsim-edge: A simulation framework
for modeling the behavior of internet of things and edge computing environments.
Software: Practice and Experience 50(6), 844–867 (2020)

4. Kolovos, D.S., Garćıa-Domı́nguez, A., Rose, L.M., Paige, R.F.: Eugenia: towards
disciplined and automated development of GMF-based graphical model editors.
Software & Systems Modeling pp. 1–27 (2015)

5. Mehdi, K., Lounis, M., Bounceur, A., Kechadi, T.: Cupcarbon: A multi-agent and
discrete event wireless sensor network design and simulation tool. In: 7th Inter-
national ICST Conference on Simulation Tools and Techniques, Lisbon, Portugal,
17-19 March 2014. pp. 126–131. Institute for Computer Science, Social Informatics
and Telecommunications Engineering (ICST) (2014)

6. Oasis: Message queuing telemetry transport (mqtt) v5.0 oasis standard (2019),
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (Retrieved: 2022-06-
13)

7. Obeo: Acceleo project (2012), http://www.acceleo.org (Retrieved: 2022-06-13)
8. OMG: OMG Object Constraint Language (OCL), Version 2.3.1 (January 2012),

http://www.omg.org/spec/OCL/2.3.1/ (Retrieved: 2022-06-13)
9. Papadopoulos, G.Z., Beaudaux, J., Gallais, A., Noel, T., Schreiner, G.: Adding

value to WSN simulation using the IoT-LAB experimental platform. International
Conference on Wireless and Mobile Computing, Networking and Communications
pp. 485–490 (2013)

10. Sehgal, A.: Using the Contiki Cooja simulator. Computer Science, Jacobs Univer-
sity Bremen Campus Ring, Technical Report (2013)

11. Selic, B.: The pragmatics of model-driven development. IEEE software 20(5), 19–
25 (2003)

12. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE software 20(5), 42–45 (2003)

13. Varga, A., Hornig, R.: An overview of the omnet++ simulation environment. In:
Proceedings of the 1st international conference on Simulation tools and techniques
for communications, networks and systems & workshops. p. 60. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering)
(2008)

Actas de las II Jornadas de Investigación Predoctoral en Ingenieŕıa Informática

33

Appendix B

Designing and simulating IoT
environments by using a
model-driven approach*

Authors: José A. Barriga and Pedro J. Clemente
Title: Designing and simulating IoT environments by using a model-driven
approach*
Year: 2022
Conference: Iberian Conference on Information Systems and Technologies
(CISTI)
Nature: International

201

2022 17th Iberian Conference on Information Systems and Technologies (CISTI)
22 – 25 June 2022, Madrid, Spain
ISBN: 978-989-33-3436-2

* This work was funded by the Government of Extremadura, Council for
Economy, Science and Digital Agenda under the grant GR21133 and the project
IB20058 and by the European Regional Development Fund (ERDF); and Cátedra
Telefónica de la Universidad de Extremadura (Red de Cátedras Telefónica).

Designing and simulating IoT environments by using
a model-driven approach*

José A. Barriga and Pedro J. Clemente
Quercus Software Engineering Group. http://quercusseg.unex.es

Department of Computer and Telematic Systems Engineering. Universidad de Extremadura (ROR:https://ror.org/0174shg90)
Cáceres, Spain

e-mail: {jose, pjclemente}@unex.es

Abstract — Developing, deploying and testing IoT projects require
high investments on devices, fog nodes, cloud nodes, analytic
nodes, hardware and software. However, in order to decrease the
cost associated to develop and test the IoT system it can be
previously simulated. In this regard, designing IoT simulation
environments has been tackled focusing on low level aspects such
as networks, motes and so on more than focusing on the high level
concepts related to IoT environments. Model-driven development
aims to develop the software systems from domain models which
capture at high level the domain concepts and relationships,
generating from them the software artefacts by using code-
generators. In this paper, a model-driven development approach
is applied to define, generate code and deploy IoT systems
simulations. The IoT simulation environment generated from each
model includes the sensors, actuators, fog nodes, cloud nodes and
analytical characteristics. Additionally, a case study, focused on an
Industrial IoT environment is presented to show the simulation
expressiveness.

Keywords - IoT systems; IoT simulation; model-driven
development; model to text transformation.

I. INTRODUCTION
The Internet of Things (IoT) is widely applied in several

areas such as smart-cities, home environments, agriculture,
industry, intelligent buildings, etc. [19]. The development of IoT
systems requires the management and integration of
conveniently heterogeneous technologies such as devices,
actuators, databases, communication protocols, stream
processing engines, etc. As a consequence, in order to
implement, deploy and test the IoT systems a high investment
must be made in time, money and effort.

Simulating IoT environments is one way to decrease this
initial investment because the users can measure and resize the
artefacts needed to deploy and interconnect the systems.
However, although there are several simulation environments
for wireless sensor networks (WSN), there is a lack of IoT
simulator tools for designing IoT environments at a high level
that enable modeling this kind of systems by using the domain
concepts and relationships.

Model-Driven Development (MDD) is an emerging
software engineering research area that aims to develop software
guided by models based on Metamodeling technique.
Metamodeling is defined by four model layers (see Figure 1).
Thus, a Model (M1) is conform to a MetaModel (M2).
Moreover, a Metamodel conforms to a MetaMetaModel (M3)
which is reflexive [1]. The MetaMetaModel level is represented

by well-known standards and specifications such as Meta-
Object Facilities (MOF) [10], ECore in EMF [21] and so on. A
MetaModel defines the domain concepts and relationships in a
specific domain in order to model partial reality. A Model (M1)
defines a concrete system conform to a Metamodel. Then, from
these models it is possible to generate totally or partially the
application code (M0 - code) by model-to-text transformation
[17]. Thus, high level definition (models) can be mapped by
model-to-text transformations to specific technologies (target
technology). Consequently, the software code can be generated
for a specific technological platform, improving the
technological independence and decreasing error proneness.

So, MDD is proposed to tackle this heterogeneous
technology (devices, actuators, complex event processing
engines, notification technology, publish-subscribe
communication protocol, etc.). Model-Driven Development [5],
[7], [15], [16] increases the abstraction level where the software
is implemented, focusing on the domain concepts and their
relationships. These domain concepts (sensors, actuators, fog
nodes, cloud nodes, etc.) and their relationships are defined by a
model (M1), conform to a metamodel (M2), which can be
analysed and validated using MDD techniques. Besides, the IoT
environment code, including all the artefacts needed, can be

Figure 1. Model-Driven Development. Four layers
of metamodeling.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on March 12,2024 at 12:34:19 UTC from IEEE Xplore. Restrictions apply.

generated from a model (M1) using model-to-text
transformations, decreasing error proneness and increasing the
user’s productivity.

The main contributions of this paper include:

 This work shows that using Model-Driven
Development techniques are suitable to develop tools
and languages to tackle successfully the complexity of
heterogeneous technologies in the context of IoT
simulation environments.

 A Model-Driven solution that allows to design and
simulate IoT environments by defining a SimulateIoT
metamodel (M2), a graphical concrete syntax
(graphical editor) to define models (M1) and a model-
to-text transformation towards the code generation for
specific IoT simulation environment (M0 - code). It
includes the code generation to execute the IoT
simulation. Furthermore, the IoT system generated can
be deployed.

 The application of SimulateIoT to one case study
focused on a Smart building IoT System.

The rest of the paper is structured as follows. In Section II,
we give an overview of existing IoT simulation approaches
focused on high level IoT simulation environments. In Section
III, we present SimulateIoT, including the SimulateIoT
metamodel, the graphical editor and the model-to-text
transformation developed. In Section IV an Industrial IoT case
study is presented. Finally, Section V concludes the paper.

II. RELATED WORKS
This section review several works related to high level

modeling IoT environments such as COMFIT [4], IoTSuite [14],
[20] and CupCarbon [9].

COMFIT [4] was a cloud environment to develop the
Internet of Things system. It used model-driven techniques
included in the Model-Driven Architecture (MDA) specification
[6]. For instance, a model-to-text transformation towards code
generation for specific operating system targets (for instance,
Contiki or TinyOS operating systems) was implemented. It
defined several UML Profiles such as PIM:UML Profile and
PSM:UML Profile, a model to model transformation from PIM
models to PSM models, and a model-to-text transformation. So,
authors used well-known UML tools to model the IoT Systems,
however they did not define an ad-hoc metamodel for IoT, but
used UML diagrams such as detailed activity diagrams.

On the other hand, IoTSuite [14], [20] defined a high level
domain specific language in order to model IoT environments
including concepts such as regions, sensors, actuator, storage,
request, action, etc. Thus, it joined computational services with
spatial information related to regions such as buildings or floors.
Several modelling languages were defined to model these kinds
of systems: Srijan Vocabulary Language (SVL), Srijan
Architecture Language (SAL) and Srijan Deployment Language
(SDL). Then, a code generation process allows generating the
application code. Although IoTSuite makes it possible to define
IoT environments, it isn’t an IoT simulator.

Other approaches focus on simulating IoT systems
proposing specific tools [3], [9], [18]. Thus, CupCarbon [9]
defined an IoT Simulator environment which allows users to
describe IoT contexts using a graphical editor. For instance, a
mote could be added on a map like Google Maps, taking into
account parameters such as action radio. It implements an ad-
hoc language to manage the sensor’s communication and the

business logic. It can execute simulations including the reactions
to random events. So, although this approach allows describing
IoT simulation issues, it does not allow describing the storage
information or the complex communication protocols such as
publish/subscribe using messages brokers.

III. SIMULATEIOT OVERVIEW
SimulateIoT [2] is a model-driven approach to design,

generate code and execute IoT simulations. It has been applied
on SmartBuildings and SmartAgro areas. In this section, how
use SimulateIoT for modeling Industrial IoT environments is
described.

In this regard, in order to offer a self-contained paper in this
section SimulateIoT is briefly described. For this purpose, the
main components of SimulateIoT are described: a) The Abstract
Syntax or Metamodel; b) The Concrete Syntax or Graphical
editor; and c) The Model-to-Text Transformations.

A. SimulateIoT Metamodel
In the context of Model-Driven Development, a MetaModel

defines the concepts and relationships in a specific domain in
order to model partially reality [16]. Later, Models conform to
the MetaModel could be defined and they could be used to
generate total or partially the application code. As
aforementioned, the software code could be generated for a
specific technological platform, improving its technological
independence and decreasing the error proneness.

Figure 2 shows the SimulateIoT metamodel including
concepts related to sensors, actuators, databases, fog and cloud
nodes, data generation, communication protocols, stream
processing, and deploying strategies, among others. Below, the
main classes and relationships of the metamodel are described.

In this regard, the abstract class Node allows defining nodes
to the IoT environment. These nodes can be of two types: a)
nodes belonging to the Edge layer (EdgeNode abstract class)
such as sensors and actuators (Sensor and Actuator classes); or
b) processing nodes belonging to the Fog layer and the Cloud
layer (FogNode and CloudNode classes).

The main objective of an EdgeNode is to publish data
(Sensor class) or to subscribe to data (Actuator class). The
publication and subscription of data is carried out through
Topics (Topic class). Regarding the data publication by sensors,
several aspects can be modelled (Data class), such as the source
of the data (DataSource class), the type of synthetic data
generation (DataGeneration class), etc.

On the other hand, the processing nodes, Fog and Cloud
nodes, are responsible for supporting the IoT architecture for
data processing. In this sense, both the Fog and Cloud nodes
focus on offer several services: Topics to the Edge nodes, data
persistence service (DataBase class), data analysis service
through CEP (Complex Event Processing) engines (Process
Engine abstract class), notification service (Notification class),
etc.

B. SimulateIoT Design and Implementation phase. Graphical
Concrete Syntax and Validator
In order to facilitate modelling IoT environments, a

Graphical Concrete Syntax (Graphical editor) has been
generated using the Eugenia tool [8]. The Graphical Concrete
Syntax generated from SimulateIoT metamodel is based on
Eclipse GMF (Graphical Modeling Framework) and EMF
(Eclipse Modeling Tools).

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on March 12,2024 at 12:34:19 UTC from IEEE Xplore. Restrictions apply.

Figure 2. SimulateIoT Metamodel.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on March 12,2024 at 12:34:19 UTC from IEEE Xplore. Restrictions apply.

 Consequently, models (EMF and OCL (Object Constraint
Language) [13] based) can be validated against the defined
metamodel (EMF and OCL based). Figure 4 shows an example
of model defined by using the Graphical Concrete Syntax
generated.

C. SimulateIoT Design and Implementation phase. Model to
Text Transformations
Once the models have been defined and validated

conforming to the SimulateIoT metamodel, a model-to-text
transformation defined using Acceleo [12] can generate several
artefacts. Thus, the generated software includes, MQTT
messaging broker (based on MQTT protocol [11]), device
infrastructure, databases, a graphical analysis platform, a stream
processor engine, docker container, etc. Later, during
deployment phase all the artefacts generated from the models are
deployed. So, several software artefacts such as the MQTT
messaging broker, device infrastructure, databases, graphical
analysis platform, etc. are configured and deployed.

Figure 3 shows the deployment of the architecture of a
generic IoT environment where the above mentioned artefacts
and their interactions can be observed.

IV. CASE STUDY. INDUSTRIAL IOT
In this section, an Industrial IoT environment is modeled and

simulated by using SimulateIoT tools.

It defines an IIoT where a supplier and its customers manage
both product orders and shipments. This is a generic use case,
i.e. the proposed environment could represent any type of
industrial environment where a supplier delivers products to its
customers or where a specific sensor triggers an alert to act.

In order to model this IoT system the following aspects are
considered:

 Each industrial placement (customer) is provided with a
set of devices (Sensor node) which is capable of
measuring the stock of their products (i.e. the level of a
concrete fluid).

 Each industrial placement (customer) is provided with a
Fog node capable of analysing the data published by the
stock devices (Sensor) nodes. In case of stock shortage
(defined by a set of rules), the Fog node informs the
supplier.

 The supplier has a series of warehouses, all of them
equipped with Fog nodes capable of receiving and
processing the information supplied by the industrial
placements (stock status).

 Each warehouse also has an Actuator node that receives
the information related to the customer’s stock and
manages them (stock status to orders).

 Finally, the provider has a Cloud node through which it
is able to receive all the information from the
environment (Fog nodes) and store them.

A. Case study. Model definition
Figure 4 shows an excerpt from the IoT model. It also

includes numerical references for each node which are then used
to describe the use case.

First, the architecture modelled for the customers, in
particular their Edge layer, is analysed. As mentioned above,
each industrial placement (customer) has a number of devices
capable of measuring the stock of their products. This device is
modelled by the Sensor node called Inventory control device
(Figure 4, label 3.1). Note that for simplicity, only the modelling
of one device is shown in the model, however, depending on the
complexity of a real customer’s product stock, there could be
dozens or hundreds of such devices (measuring different kinds

Figure 3. Example of deploy diagram. The main components are identified by numbers in the figure.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on March 12,2024 at 12:34:19 UTC from IEEE Xplore. Restrictions apply.

of stock). On the other hand, the Inventory control device is
related to a synthetic data generation (Figure 4, label 4) which
represents and simulates the stock of a product. This synthetic
data generation uses a CSV file as its data source. It will be the
data from this CSV that the sensor will publish during the
execution of the simulation.

Each industrial placement (customer) are also provided with
a Fog layer represented by a Fog node in the model (Figure 4,
label 1.1). Note that, for simplicity’s sake, only one Fog node (a
customer) is shown. Also, note that depending on the complexity
of the customer, more than one Fog node may be needed. Next,
the Fog node presents a Topic node called Inventory (Figure 4,
label 5.1). This Topic is offered to stock devices, so that they can
publish their stock data here. As in the previous cases, there
could be more than one Topic node of this kind, so that different
stock devices could publish their data in the most appropriate
one. For instance, in a hypothetical agricultural holding, the
stock of grain could be published in one Topic, the stock of water
in a different one, etc. Finally, each Fog node is provided with a
CEP engine which is able to analyse the stock data (Figure 4,
label 7). In case the stock falls below a certain threshold, the CEP
engine sends a notification to the supplier. In the modelled use
case, it sends the notification to the Fog node implemented in
the supplier’s warehouse assigned (for order management) to
this customer.

As for the provider architecture, a Fog node called Supplier’s
warehouse1 Fog node is shown in the model (Figure 4, label
1.2). This Fog node is the one related to the warehouse assigned
to the modelled customer. This warehouse Fog node receives the
stock notifications from its assigned customers through the
Topic Store1 Inventory notification (Figure 4, label 5.2). Again,
in this warehouse Fog node several topics could coexist, for
example, one for each customer assigned to this warehouse.
Following the description of the supplier’s architecture, the
model shows the Actuator Store1 Order Manager (Figure 4,
label 3.2), which receives the customer’s stock notifications (by

subscription to the Topic) and manages the orders or shipments
of products

Finally, the Provider defines a Cloud node (Figure 4, label
2) that receives all the information from the Fog nodes of the
architecture. In this use case, this information is processed and
stored in this Cloud node for further use (the database where the
information is stored is shown in Figure 4, label 6).

B. Case study. Code generation and deployment
Once the model has been defined, the model-to-text

transformation is applied with the following goals: i) to generate
Java code which wraps each device behaviour; ii) to generate
configuration code to deploy the message brokers necessary,
including the topic configurations defined; iii) to generate the
configuration files and scripts necessary to deploy the databases
and stream processors defined; and finally, to generate the code
necessary to query the databases where the data will be stored;
iv) to generate for each ProcessNode and EdgeNode a Docker
container which can be deployed throughout a network of nodes
using Docker Swarm.

Executing the simulation modelled and later on deploying it,
makes it possible to analyse the final IoT environment before it
is implemented and deployed. Thus, each EdgeNode and
ProcessNode element carries out its own functions such as
sending messages, processing and storing messages, acting from
messages, etc. Consequently, the code generated can be reused
on the final system deployed. For instance, the EdgeNode
elements can be replaced by physical devices (both sensors and
actuators), and the ProcessNode can be deployed as Docker
containers either on premise or on cloud. Not only is the
simulation code generated, but also the final IoT system code is
partially generated.

V. CONCLUSIONS
Model-driven development techniques are a suitable way to

tackle the complexity of domains where heterogeneous
technologies are integrated. Initially, they focus on modelling

Figure 4. Case study. A generic Industrial IoT system. The main components are identified by numbers in the figure.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on March 12,2024 at 12:34:19 UTC from IEEE Xplore. Restrictions apply.

the domain by using the well-known four-layer metamodel
architecture. Then, by using model-to-text transformations the
code for specific technology could be generated. Thus, in this
paper, we are tackling the IoT simulation domain allowing users
to define and validate models conforming to the SimulateIoT
metamodel. Then, a model-to-text transformation generates
code to deploy the IoT simulation model defined.

The IoT simulation methodology and tools proposed in this
work help users to think about the Industrial IoT system (IIoT),
to propose several IoT alternatives and policies in order to
achieve a suitable IIoT architecture. Finally, the IIoT systems
modelled can be deployed and analysed.

ACKNOWLEDGMENT
This work was funded by the Government of Extremadura,

Council for Economy, Science and Digital Agenda under the
grant GR21133 and the project IB20058 and by the European
Regional Development Fund (ERDF); and Cátedra Telefónica
de la Universidad de Extremadura (Red de Cátedras Telefónica).

REFERENCES

[1] Atkinson, Colin, and Thomas Kuhne. 2003. “Model-Driven

Development: A Metamodeling Foundation.” IEEE Software 20 (5): 36–
41.

[2] Barriga, José A., Pedro J. Clemente, Encarna Sosa-Sánchez, and Álvaro
E. Prieto. 2021. “SimulateIoT: Domain Specific Language to Design,
Code Generation and Execute Iot Simulation Environments.” IEEE
Access 9: 92531–52.
https://doi.org/10.1109/ACCESS.2021.3092528Error! Hyperlink
reference not valid.

[3] Bevywise. 2018. “Bevywise Iot Simulator.
Https://Www.bevywise.com/Iot-Simulator/.”

[4] Farias, Claudio M De, Italo C Brito, Luci Pirmez, Flávia C Delicato, Paulo
F Pires, Taniro C Rodrigues, Igor L Santos, Luiz F R C Carmo, and Thais
Batista. 2016. “COMFIT: A development environment for the Internet of
Things.” Future Generation Computer Systems, no. i.
https://doi.org/10.1016/j.future.2016.06.031.X

[5] France, Robert, and Bernhard Rumpe. 2007. “Model-Driven
Development of Complex Software: A Research Roadmap.” In 2007
Future of Software Engineering, 37–54. IEEE Computer Society.

[6] Group, Object Management. 2014. “MDA Guide Revision.”
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.X

[7] Hailpern, Brent, and Peri Tarr. 2006. “Model-Driven Development: The
Good, the Bad, and the Ugly.” IBM Systems Journal 45 (3): 451–61.

[8] Kolovos, Dimitrios S, Antonio Garcıá-Domıńguez, Louis M Rose, and
Richard F Paige. 2015. “Eugenia: Towards Disciplined and Automated
Development of GMF-Based Graphical Model Editors.” Software &
Systems Modeling, 1–27.

[9] Mehdi, Kamal, Massinissa Lounis, Ahcène Bounceur, and Tahar Kechadi.
2014. “Cupcarbon: A Multi-Agent and Discrete Event Wireless Sensor
Network Design and Simulation Tool.” In 7th International Icst
Conference on Simulation Tools and Techniques, Lisbon, Portugal, 17-19
March 2014, 126–31. Institute for Computer Science, Social Informatics;
Telecommunications Engineering (ICST).

[10] Meta Object Facility (MOF). 2016. Meta Object Facility (MOF) Core
Specification Version 2.5.1. OMG Available Specification. Object
Management Group. http://www.omg.org/spec/MOF/2.5.1/.X

[11] Oasis. 2019. “Message Queuing Telemetry Transport (Mqtt) V5.0 Oasis
Standard.” https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.X

[12] Obeo. 2012. “Acceleo Project Http://Www.acceleo.org.”
[13] OMG. 2012. “OMG Object Constraint Language (OCL), Version 2.3.1.”

Object Management Group; Object Management Group.
http://www.omg.org/spec/OCL/2.3.1/.X

[14] Patel, Pankesh, and Damien Cassou. 2015. “Enabling High-Level
Application Development for the Internet of Things.” Journal of Systems
and Software 103: 62–84.

[15] Schmidt, Douglas C. 2006. “Model-Driven Engineering.” COMPUTER-
IEEE COMPUTER SOCIETY- 39 (2): 25.

[16] Selic, Bran. 2003. “The Pragmatics of Model-Driven Development.”
IEEE Software 20 (5): 19–25.

[17] Sendall, Shane, and Wojtek Kozaczynski. 2003. “Model Transformation:
The Heart and Soul of Model-Driven Software Development.” IEEE
Software 20 (5): 42–45.

[18] Siafu. 2007. “Siafu. An Open source context simulator.
http://siafusimulator.org/.”

[19] Siow, Eugene, Thanassis Tiropanis, and Wendy Hall. 2018. “Analytics
for the Internet of Things: A Survey.” ACM Computing Surveys (CSUR)
51 (4): 74.

[20] Soukaras, Dimitris, Pankesh Patel, Hui Song, and Sanjay Chaudhary.
2015. “IoTSuite: A Toolsuite for Prototyping Internet of Things
Applications.” In The 4th International Workshop on Computing and
Networking for Internet of Things (Comnet-Iot), Co-Located with 16th
International Conference on Distributed Computing and Networking
(Icdcn), 6.

[21] Steinberg, David, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
2009. EMF: Eclipse Modeling Framework 2.0. 2nd ed. Addison-Wesley
Professional.

Authorized licensed use limited to: Biblioteca de la Universidad de Extremadura. Downloaded on March 12,2024 at 12:34:19 UTC from IEEE Xplore. Restrictions apply.

208

Appendix C

SimulateIoT: Domain
Specific Language to design,
code generation and execute
IoT simulation environments
(Summary)*

Authors: José A. Barriga, Pedro J. Clemente, Encarna Sosa-Sánchez and
Álvaro E. Prieto
Title: SimulateIoT: Domain Specific Language to design, code generation
and execute IoT simulation environments (Summary)*
Year: 2022
Conference: Jornadas de Ingenieŕıa de Ciencia e Ingenieŕıa de Servicios
(JCIS)
Nature: National

209

SimulateIoT: Domain Specific Language to
design, code generation and execute IoT
simulation environments (Summary)⋆

Jose A. Barriga1[0000−0001−8377−1860], Pedro J. Clemente1[0000−0001−5795−6343],
Encarna Sosa-Sánchez1[0000−0002−0267−5875], and Álvaro E.

Prieto1[0000−0002−2312−4589]

Quercus Software Engineering Group. http://quercusseg.unex.es. Department of
Computer Science. University of Extremadura, Av. Universidad s/n, 10003, Cáceres

(Spain)
{jose, pjclemente, esosa, aeprieto}@unex.es

Summary of the Contribution

Developing, deploying and testing IoT projects require high investments on de-
vices, fog nodes, cloud nodes, analytic nodes, hardware and software. However,
in order to decrease the cost associated to develop and test the IoT system it can
be previously simulated. Designing IoT simulation environments has been tack-
led focusing on low level aspects such as networks, motes and so on more than
focusing on the high level concepts related to IoT environments. Model-driven
development aims to develop the software systems from domain models which
capture at high level the domain concepts and relationships, generating from
them the software artefacts by using code-generators. In this paper, a model-
driven development approach, SimulateIoT, is proposed to define, generate code
and deploy IoT systems simulations. Additionally, two case studies, focused on
smart building and agriculture IoT systems, are presented to show the simulation
expressiveness.

Keywords: IoT systems · IoT simulation · fog computing · model-driven de-
velopment · model to text transformation · data analysis

Acknowledgements

This work was funded by the Ministry of Science and Innovation (MCI), for the
State Research Agency (AEI) - Project RTI2018- 098652-B-I00; the Government
of Extremadura, Council for Economy, Science and Digital Agenda under the
grant GR18112 and the project IB20058 and by the European Regional Develop-
ment Fund (ERDF); and Cátedra Telefónica de la Universidad de Extremadura
(Red de Cátedras Telefónica).
⋆ This work has been published in IEEE Access, vol. 9, year. 2021 JCR 2020: 3.367,
58/223, Q2. https://doi.org/10.1109/ACCESS.2021.3092528

Appendix D

Simulating IoT Systems from
High-Level Abstraction
Models for Quality of Service
Assessment

Authors: José A. Barriga
Title: Simulating IoT Systems from High-Level Abstraction Models for
Quality of Service Assessment
Year: 2022
Conference: International Conference on Service-Oriented Computing
(ICSOC)
Nature: International

211

Simulating IoT Systems from High-Level
Abstraction Models for Quality of Service

Assessment

José A. Barriga(B)

Quercus Software Engineering Group, Department of Computer and Telematic
Systems Engineering, University of Extremadura, Av. Universidad s/n, 10003

Cáceres, Spain
jose@unex.es

http://quercusseg.unex.es

Abstract. In the context of IoT systems, the use of services is a key ele-
ment in managing system complexity. Concepts such as service-oriented
computing/architecture or quality of service (QoS) are present in many
IoT systems and are the aim of several studies. However, the analysis and
assessment of the behaviour of these concepts requires the deployment
of the IoT system, implying high investments in hardware and software.
Thus, in order to decrease these costs, the system can be simulated.
In this regard, IoT simulations have been tackled focusing on low level
aspects such as networks, motes, etc. rather than on high-level concepts,
such as services or computing layers. In this proposal, a model-driven
development approach named SimulateIoT is proposed to model, gen-
erate code and deploy IoT systems simulations from a high abstraction
level (from models). Besides of modeling the IoT environment call gen-
eration, the IoT system could be simulated. From these simulations it is
possible to assess QoS-related aspects such as the delay or jitter between
two nodes, the variation of delay or jitter over time, the use of band-
width, the packet loss, the variation of these parameters as the system
changes (e.g. increase of sensors), check whether Service level agreements
(SLA) are met, etc. In order to show the proposal, a case study, focused
on an Internet of Vehicles (IoV) system is presented.

Keywords: IoT systems · IoT simulation · Model-driven
development · Quality of service · Service-oriented computing

This work was funded by the Government of Extremadura, Council for Economy, Sci-
ence and Digital Agenda under the grant GR21133 and the project IB20058 and by
the European Regional Development Fund (ERDF); and Cátedra Telefónica de la Uni-
versidad de Extremadura (Red de Cátedras Telefónica).
Supervised by Pedro J. Clemente [0000-0001-5795-6343], Quercus Software Engineering
Group, Department of Computer and Telematic Systems Engineering, University of
Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain, pjclemente@unex.es

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Troya et al. (Eds.): ICSOC 2022 Workshops, LNCS 13821, pp. 314–319, 2023.
https://doi.org/10.1007/978-3-031-26507-5_26

SimulateIoT 315

1 Introduction

An IoT system involves different devices and services belonging to the Mist,
Edge, Fog or Cloud layers. Handling the technological heterogeneity underlying
IoT systems requires overcoming a learning curve and investing time and money
in system development and hardware acquisition.

For this reason, in the literature, around 90% of studies that need to cor-
roborate or test their proposals in an IoT system use simulators [4]. How-
ever, although there are several simulators in the literature (Contiki-Cooja [11],
OMNeT++ [14], CupCarbon [7] or IoTSim-Edge [5]), they generally focus on
modeling the system at a low level of abstraction rather than focusing on the
high level IoT domain concepts and their relationships.

Model-Driven Development (MDD) [12] is an emerging software engineering
research area that aims to develop software guided by models based on Meta-
modeling technique. In MDD, a MetaModel defines the domain concepts and
relationships in a specific domain in order to model partial reality. A Model
defines a concrete system conform to a Metamodel. Then, from these models
it is possible to generate totally or partially the application code by model-to-
text transformations [13]. Thus, high level definition (models) can be mapped
by model-to-text transformations to specific technologies (target technology).
Consequently, the software code can be generated for a specific technological
platform, improving the technological independence and decreasing error prone-
ness.

So, MDD is proposed to tackle the technological heterogeneity underlying IoT
systems by increasing the abstraction level where the software is implemented,
focusing on the domain concepts and their relationships.

The main contributions of this paper include:

– Evidence that Model-Driven Development techniques are suitable to develop
tools and languages to tackle successfully the complexity of heterogeneous
technologies in the context of IoT simulation environments.

– A Model-Driven solution for researchers and practitioners that allows them
to design and simulate IoT systems from a high abstraction level.

– A simulator from which gain knowledge about the IoT system and its services,
such as QoS-related parameters (delay, packet loss, jitter variation, SLAs
compliance, etc.).

– The application of SimulateIoT to one case study focused on the Internet of
Vehicles (IoV).

The rest of the paper is structured as follows. In Sect. 2, we present Sim-
ulateIoT, including the SimulateIoT metamodel, the graphical editor and the
model-to-text transformation developed. In Sect. 3 an IoV case study is pre-
sented. Section 4 outlines the future works. Finally, Sect. 5 concludes the paper.

2 SimulateIoT Overview

SimulateIoT [1,2] is a model-driven approach to design, generate code and exe-
cute IoT simulations. The main components of SimulateIoT are: a) The Abstract

316 J. A. Barriga

Syntax or Metamodel; b) The Concrete Syntax or Graphical editor; and c) The
Model-to-Text Transformations.

A) SimulateIoT Metamodel: In the context of Model-Driven Development,
a MetaModel defines the concepts and relationships in a specific domain in
order to model partially reality [12]. Later, Models conform to the Meta-
Model could be defined and they could be used to generate total or par-
tially the application code. The software code could be generated for a spe-
cific technological platform, improving its technological independence and
decreasing the error proneness.

The SimulateIoT metamodel (available in [3]) includes concepts related to
sensors, actuators, databases, fog and cloud nodes, synthetic data genera-
tion, communication protocols, stream processing, and deploying strategies
(such as deployment on Fiware platform), among others.

B) SimulateIoT Graphical Concrete Syntax and Validator: In order to
facilitate modeling IoT environments, a Graphical Concrete Syntax (Graph-
ical editor) has been generated using the Eugenia tool [6]. The Graphical
Concrete Syntax generated from SimulateIoT metamodel is based on Eclipse
GMF (Graphical Modeling Framework) and EMF (Eclipse Modeling Tools).
Consequently, models (EMF and OCL (Object Constraint Language) [10]
based) can be validated against the defined metamodel (EMF and OCL
based). Figure 1B shows an example of model defined by using the Graphi-
cal Concrete Syntax generated.

C) SimulateIoT Model to Text Transformations: Once the models have
been defined and validated conforming to the SimulateIoT metamodel, a
model-to-text transformation defined using Acceleo [9] can generate several
artefacts. Thus, the generated software includes, MQTT messaging broker
(based on MQTT protocol [8]), device infrastructure, databases, a graphical
analysis platform, a stream processor engine, docker container specification,
configuration files for each component, a deploy script, etc.

Figure 1A shows the deployment of the architecture of a generic IoT envi-
ronment where the above mentioned artefacts and their interactions can
be observed. Note that the deployment of the architecture is carried out
by running the deployment script that is generated by the model-to-text
transformations (script that includes all the configurations defined in the
previous system modeling).

3 Case Study. Internet of Vehicles

IoV is an emerging area where delay plays a key role [15]. This is because some
critical services, such as those focused on passenger safety, are delay-sensitive ser-
vices that require specific QoS and SLAs [15]. With the aim of verifying whether
the services comply with the specified QoS and SLAs before being deployed in

SimulateIoT 317

Fig. 1. A) Example of deploy diagram. B) Case study. A delay-sensitive IoV model.
Note that Figure B has been developed with SimulateIoT’s concrete syntax, however,
the size of the name of each element has been increased to provide a better readability.

production, the system can be simulated. Thus, in this section, an Internet of
Vehicles delay-sensitive system is modeled and simulated by using SimulateIoT
tools.

3.1 Case Study. Model Definition

This model defines an IoV system in which several IoT devices are integrated
into a vehicle and cooperate to assist the driver in the event of a tyre blowout.
In this sense, a wheel pressure sensor (Fig. 1B, label 2.1) is integrated in each
vehicle’s wheel, which monitors the pressure of the wheels in real time. These
sensors publish the wheel pressure data (Fig. 1B, label 3) in a Topic (Fig. 1B,
label 4.1) deployed by a Fog node (Fig. 1B, label 1). A Complex event processing
(CEP) (Fig. 1B, label 5) service deployed on this Fog node analyses the data and,
in case of a tyre blowout detection, notifies the event (Fig. 1B, label 4.2) to the
Actuator (Fig. 1B, label 2.2) in charge of assisting the driver.

3.2 Case Study. Code Generation and Deployment

Once the model has been defined, the model-to-text transformation is applied
with the following goals: i) to generate code (Java, Python, Node, etc.) which
wraps each device behaviour; ii) to generate configuration code to deploy the
message brokers necessary, including the topic configurations defined; iii) to
generate the configuration files and scripts necessary to deploy the databases
and stream processors defined; and finally, to generate the code necessary to
query the databases where the data will be stored; Later on, the systems can
be deployed using specific scripts generated ad-hoc to improve the user produc-
tivity. iv) to generate for each ProcessNode and EdgeNode a Docker container
which can be deployed throughout a network of nodes using Docker Swarm;

318 J. A. Barriga

Thus, executing the simulation modelled and later on deploying it, makes it
possible to analyse the final IoT system before it is implemented and deployed.

4 Future Work

With the aim of increasing the scope and usability of SimulateIoT, some addi-
tional concepts have been identified in the literature and will be included to
SimulateIoT in future works:

– Mobile nodes. Node mobility is one of the key concepts in many IoT systems.
Therefore, giving SimulateIoT the ability to simulate node movement would
allow many users to observe, analyse and optimise the behaviour of their
mobile nodes by simulating them. This future work is particularly interesting
for service-oriented computing as mobility directly affects the specified QoS
and SLAs, since, for instance, a gateway switch could be a critical event where
the specified QoS and SLAs may not be met.

– Task scheduling. Task scheduling is a concept that has gained relevance in the
IoT area due to its potential to increase the QoS of IoT systems. Including this
concept in SimulateIoT is interesting as users could test their task scheduling
architectures or algorithms. Thus, being able to test if they are effective,
in which situations they are more or less effective, how much they improve
QoS with respect to other proposals, etc. Note that this future work is of
special interest for service-oriented computing, as task scheduling techniques
are aimed at optimising the QoS of the services deployed in an IoT system.

5 Conclusions

The Model-driven development (MDD) approach proposed in this paper, Sim-
ulateIoT, shows that MDD techniques are a suitable way to tackle the com-
plexity of domains where heterogeneous technologies are integrated. Besides,
SimulateIoT helps users to design, generate, deploy, analyse, and optimise their
IoT systems, streamlining the process of IoT systems development and saving
costs. Especially, in those IoT systems involving critical services that cannot
be deployed in production until it has been verified that they comply with the
specified QoS and SLAs.

Acknowledgment. This work was funded by the Government of Extremadura, Coun-
cil for Economy, Science and Digital Agenda under the grant GR21133 and the project
IB20058 and by the European Regional Development Fund (ERDF); and Cátedra
Telefónica de la Universidad de Extremadura (Red de Cátedras Telefónica).

SimulateIoT 319

References

1. Barriga, J.A., Clemente, P.J., Hernández, J., Pérez-Toledano, M.A.: SimulateIoT-
FIWARE: domain specific language to design, code generation and execute IoT
simulation environments on FIWARE. IEEE Access 10, 7800–7822 (2022). https://
doi.org/10.1109/ACCESS.2022.3142894

2. Barriga, J.A., Clemente, P.J., Sosa-Sánchez, E., Prieto, E.: SimulateIoT: domain
specific language to design, code generation and execute IoT simulation environ-
ments. IEEE Access 9, 92531–92552 (2021)

3. Corchero, J.A.B., Clemente, P.J.: SimulateIoT metamodel. Mendeley Data, v1
(2022). https://doi.org/10.17632/4mmgv82k2c.1

4. Hosseinioun, P., Kheirabadi, M., Kamel Tabbakh, S.R., Ghaemi, R.: aTask schedul-
ing approaches in fog computing: a survey. Trans. Emerg. Telecommun. Technol.
33(3), e3792 (2022). https://doi.org/10.1002/ett.3792, https://onlinelibrary.wiley.
com/doi/abs/10.1002/ett.3792. e3792 ETT-19-0285.R1

5. Jha, D.N., et al.: IoTSim-edge: a simulation framework for modeling the behavior
of internet of things and edge computing environments. Softw. Pract. Experience
50(6), 844–867 (2020)

6. Kolovos, D.S., Garćıa-Domı́nguez, A., Rose, L.M., Paige, R.F.: Eugenia: towards
disciplined and automated development of GMF-based graphical model editors.
Softw. Syst. Model. 16(1), 229–255 (2015). https://doi.org/10.1007/s10270-015-
0455-3

7. Mehdi, K., Lounis, M., Bounceur, A., Kechadi, T.: Cupcarbon: a multi-agent and
discrete event wireless sensor network design and simulation tool. In: 7th Inter-
national ICST Conference on Simulation Tools and Techniques. Lisbon, Portugal,
17–19 March 2014, Institute for Computer Science, Social Informatics and Telecom-
munications Engineering (ICST), pp. 126–131 (2014)

8. Oasis: Message queuing telemetry transport (MQTT) v5.0 Oasis Standard (2019).
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. Accessed 13 June
2022

9. Obeo: Acceleo project (2012). http://www.acceleo.org. Accessed 13 June 2022
10. OMG: OMG Object Constraint Language (OCL), Version 2.3.1 (2012). http://

www.omg.org/spec/OCL/2.3.1/. Accessed 13 June 2022
11. Sehgal, A.: Using the Contiki Cooja simulator. Jacobs University Bremen Campus

Ring, Technical report, Computer Science (2013)
12. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25

(2003)
13. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-

driven software development. IEEE Softw. 20(5), 42–45 (2003)
14. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment.

In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks And Systems & Workshops, ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering),
p. 60. (2008)

15. Xu, W., et al.: Internet of vehicles in big data era. IEEE/CAA J. Autom. Sinica
5(1), 19–35 (2018). https://doi.org/10.1109/JAS.2017.7510736

218

Appendix E

SimulateIoT-FIWARE:
Domain Specific Language to
Design, Code Generation and
Execute IoT Simulation
Environments on FIWARE

Authors: José A. Barriga, Pedro J. Clemente, Juan Hernández and Miguel
A. Pérez-Toledano
Title: SimulateIoT-FIWARE: Domain Specific Language to Design, Code
Generation and Execute IoT Simulation Environments on FIWARE
Year: 2023
Conference: Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
Nature: National

219

This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” license.

SimulateIoT-FIWARE: Domain Specific
Language to Design, Code Generation and
Execute IoT Simulation Environments on

FIWARE⋆

José A. Barriga[0000−0001−8377−1860], Pedro J. Clemente[0000−0001−5795−6343],
Juan Hernández[0000−0002−6343−7395], and Miguel A.

Pérez-Toledano[0000−0002−9417−9974]

Quercus Software Engineering Group. http://quercusseg.unex.es. Department of
Computer Science. University of Extremadura, Av. Universidad s/n, 10003, Cáceres

(Spain)
{jose, pjclemente, juanher, toledano}@unex.es

Keywords: Model-driven development, Internet of Things, IoT simulation, Services-
oriented, FIWARE
Published in: IEEE Access, Vol. 10, pp. 7800 - 7822, 2022
Impact Factor: JCR 3.48 - Q2 - Position: 79/164 - Area: Computer Science / Infor-
mation Systems
DOI: https://doi.org/10.1109/ACCESS.2022.3142894

Abstract. Given the complexity of IoT systems, several IoT platforms
have emerged to optimise their development. FIWARE, an open-source
platform fostered by the European Union, makes IoT simpler by means
of driving key standards for breaking the information silos, transform-
ing Big Data into knowledge, enabling data economy and ensuring data
sovereignty. On the other hand, tools such as SimulateIoT, an IoT sim-
ulator, address the complexity of IoT systems by increasing the level
of abstraction from which they are approached through the applica-
tion of Model-Driven development. In this communication, with the
aim of further optimising the development of IoT systems, SimulateIoT
has been extended towards FIWARE. The resulting tool, SimulateIoT-
FIWARE, tackles the complexity of IoT systems by using FIWARE to-
gether with Model-Driven development, thus simplifying and optimising
several stages involved in the IoT system development life-cycle, such as
their design, testing (simulations), code generation, deployment, etc. In
addition, two case studies focused on a smart building and an agricultural
IoT system are presented to show the applicability of the tool.

⋆ This work was supported by the Ministerio de Ciencia e Innovación (MCI) through
the Agencia Estatal de Investigación (AEI) under Project RTI2018-098652-B-I00; by
the Government of Extremadura, Council for Economy, Science and Digital Agenda,
under Grant GR21133 and Grant IB20058; by the European Regional Development
Fund (ERDF); and by the Cátedra Telefónica de la Universidad de Extremadura
(Red de Cátedras Telefónica).

Appendix F

SimulateIoT- Federations:
Domain Specific Language
for designing and executing
IoT simulation environments
with Fog and Fog-Cloud
federations

Authors: José A. Barriga, Pedro J. Clemente
Title: SimulateIoT-Federations: Domain Specific Language for designing
and executing IoT simulation environments with Fog and Fog-Cloud federa-
tions (Poster)
Year: 2022
Conference: International Workshop on MDE for Smart IoT Systems
(MeSS)
Nature: International

221

SimulateIoT-Federations: Domain Specific Language
for designing and executing IoT simulation
environments with Fog and Fog-Cloud federations
(Poster)
José A. Barriga1, Pedro J. Clemente1

1Quercus Software Engineering Group. http://quercusseg.unex.es. Department of Computer and Telematic Systems
Engineering. University of Extremadura, Av. Universidad s/n, 10003, Cáceres (Spain)

The Internet of Things (IoT) is being applied to areas such as smart-cities, home environment,
agriculture, industry, etc. These application areas are very different from each other, thus
requiring IoT systems with specific performance in terms of quality of service (QoS), delay,
bandwidth or energy consumption. For instance, new IoT paradigms such as the Internet of
Vehicles (IoV), or classic IoT systems such as healthcare, are latency sensitive application areas
that need ultra-low latency infrastructure to make the application of IoT feasible. On the other
hand, applications such as video analytics, or massively multiplayer online gaming involves high
bandwidth requirements and an efficient management of the network [1]. In this context Cloud
Computing is the common Computing paradigm applied, however it could be a bottleneck and a
single point of failure. As part of the solution to these challenges and issues, fog computing has
taken on a major role. Fog computing is defined by the OpenFog Consortium as “a horizontal
system-level architecture that distributes computing, storage, control and networking functions
closer to the users along a cloud-to-thing continuum”. As a layer located between the Cloud
layer and the Edge layer, it is closer to the end-devices than the Cloud, thus reducing latency,
increasing bandwidth, enabling greater energy savings, better management of network load
balancing, in short, offering greater QoS at an affordable cost [2].

However, the IoT is constantly evolving. According to the International Data Corporation,
by 2025 the number of devices connected to the Internet will be around 42 billion, and a total
of 80 zettabytes of data will be generated in the same year. The rapid growth of internet-
connected things, and thus the increase in data generated, brings new opportunities but also
new challenges (e.g. IoV). Therefore, even though Fog computing has helped a number of
organisations and corporations to meet their IoT goals, further progress is needed in the
development of infrastructures capable of meeting these new challenges. In this sense, both

MeSS 2022: International Workshop on MDE for Smart IoT Systems, Nantes, France, July, 2022
*Corresponding author: José A. Barriga
†
This work was funded by the Government of Extremadura, Council for Economy, Science and Digital Agenda
under the grant GR21133 and the project IB20058 and by the European Regional Development Fund (ERDF). These
authors contributed equally.

$ jose@unex.es (J. A. Barriga); pjclemente@unex.es (P. J. Clemente)
� 0000-0001-8377-1860 (J. A. Barriga); 0000-0001-5795-6343 (P. J. Clemente)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

corporations and academia are focusing their efforts on the development of new computing
paradigms, such as Edge-Cloud computing, Cloudlet computing, Mobile Cloud Computing or
Mobile Ad-hoc Cloud computing [1]. These efforts are also being focused on the improvement of
existing computing paradigms, such as Fog or Cloud computing (e.g. Fog Federations, Fog-Cloud
federations, task scheduling or offloading algorithms and policies improvements). To do this, IoT
systems need to be developed, deployed and tested, requiring high investments on devices, fog
nodes, cloud nodes, analytic nodes, hardware and software. However, in order to decrease the
cost associated with developing and testing the system, the IoT system can be simulated. Thus,
simulating environments help to model the system, reasoning about it, and take advantage of
the knowledge obtained to optimise it. Designing IoT simulation environments has been tackled
focusing on low level aspects such as networks, motes and so on more than focusing on the high
level concepts related to IoT environments. Additionally, the simulation users require high IoT
knowledge and usually programming capabilities in order to implement the IoT environment
simulation [3]. The concepts to manage in an IoT simulation includes the common layers of an
IoT environment including Edge, Fog and Cloud computing and heterogeneous technology.

Model-driven engineering is an emerging software engineering area which aims to develop
the software systems from domain models which capture at high level the domain concepts
and relationships, generating from them the software artefacts by using code-generators. In
this respect, SimulateIoT [3] is a model-driven engineering approach to define, generate code
and deploy IoT systems simulations. In this paper, SimulateIoT has been extended taking into
account the requirements and new challenges of current IoT systems.

In this sense, the first contribution is based on the addition of the federated Fog concepts to
the IoT domain and SimulateIoT metamodel. The federation of Fogs allows the different fog
nodes to act as one entity rather than as isolated nodes. In this way, the user has the possibility
to analyse the impact (usually on delay) of the application of new task scheduling or offloading
algorithms and policies, using geographic distributions of Fog nodes, the addition or subtraction
of certain nodes, etc.

The second contribution is based on the concept of Fog-Cloud federation. IoT systems are
heterogeneous in infrastructure as a response to the heterogeneity (requirements) of their tasks
and processes. In this respect, the cooperation between the different layers of an IoT system is
essential to optimise the system, and a current research area. For instance, there are tasks that
may be computationally complex and also have latency requirements in some parts of their
processes, or applications that generate several kinds of tasks, such as delay sensitive tasks
and complex computational tasks (e.g. a stream processing application). In order to achieve
optimal execution of such tasks, federation between the Cloud layer and the Fog layer is a key
element. In this way, the Fog layer should carry out the latency-sensitive processes, and the
Cloud layer should carry out the computationally complex ones. In this sense, and as in the first
contribution, end-users will be able to test the impact of algorithms and policies that manage
the orchestration between Fog and Cloud in terms of performance in the execution of this kind
of tasks.

The third contribution is carried out as a complement to the previous ones. The possibility of
modelling IoT applications is added. IoT applications are the ones that generate different tasks
and processes (with different requirements), thus making use of the new infrastructure included
and allowing end-users to test their task scheduling algorithms, offloading policies, etc.

The last contribution focuses on the need to create a feasible latency model for the end-user of
the simulator. SimulateIoT allows the Cloud and Fog nodes to be deployed on different machines,
thus emulating a real system, otherwise the simulation results would not be realistic in terms of
delay. To this end, we have included the possibility to model the latency that each Edge node or
IoT application would hypothetically experience when interacting with the Fog/Cloud layers.
In this way, the end-user can model the maximum and minimum latency, as well as the latency
distribution (e.g. Gaussian) that each of the nodes might experience when interacting with each
other.

In short, these extensions allow the modelling of a federated Fog and Cloud layer that can
support critical applications with critical requirements for QoS, latency (e.g. ultra-low latency),
bandwidth, energy consumption etc. Thus, end-users of the simulator can design, test, analyse
and optimise IoT systems according to current and future IoT scenarios in terms of infrastructure
and services requirements.

Keywords: IoT IoT systems simulation Model-driven Engineering Fog federation Fog-Cloud
federation

References

[1] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, J. P.
Jue, All one needs to know about fog computing and related edge computing paradigms:
A complete survey, Journal of Systems Architecture 98 (2019) 289–330, ISSN 1383-7621,
doi:\let\@tempa\bibinfo@X@doihttps://doi.org/10.1016/j.sysarc.2019.02.009, URL https://
www.sciencedirect.com/science/article/pii/S1383762118306349.

[2] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the internet of things,
in: Proceedings of the first edition of the MCC workshop on Mobile cloud computing, 13–16,
2012.

[3] J. A. Barriga, P. J. Clemente, E. Sosa-Sánchez, A. E. Prieto, SimulateIoT: Domain Specific Lan-
guage to Design, Code Generation and Execute IoT Simulation Environments, IEEE Access
9 (2021) 92531–92552, doi:\let\@tempa\bibinfo@X@doi10.1109/ACCESS.2021.3092528.

Bibliography

[1] A. Hevner, S. Chatterjee, A. Hevner, and S. Chatterjee, “Design sci-
ence research in information systems,” Design research in information
systems: theory and practice, pp. 9–22, 2010.

[2] J. A. Barriga, P. J. Clemente, E. Sosa-Sánchez, and Á. E. Prieto,
“SimulateIoT: Domain Specific Language to design, code generation
and execute IoT simulation environments,” IEEE Access, vol. 9,
pp. 92531–92552, 2021.

[3] J. A. Barriga, P. J. Clemente, J. Hernández, and M. A. Pérez-Toledano,
“SimulateIoT-FIWARE: Domain Specific Language to Design, Code
Generation and Execute IoT Simulation Environments on FIWARE,”
IEEE Access, vol. 10, pp. 7800–7822, 2022.

[4] J. A. Barriga, P. J. Clemente, M. A. Pérez-Toledano, E. Jurado-
Málaga, and J. Hernández, “Design, code generation and simulation
of IoT environments with mobility devices by using model-driven
development: SimulateIoT-Mobile,” Pervasive and Mobile Computing,
vol. 89, p. 101751, 2023.

[5] J. A. Barriga, J. M. Chaves-González, A. Barriga, P. Alonso, and P. J.
Clemente, “Simulate IoT Towards the Cloud-to-Thing Continuum
Paradigm for Task Scheduling Assessments,” 2023.

[6] S. Madakam, V. Lake, V. Lake, V. Lake, et al., “Internet of Things
(IoT): A literature review,” Journal of Computer and Communications,
vol. 3, no. 05, p. 164, 2015.

225

BIBLIOGRAPHY

[7] A. A. Laghari, K. Wu, R. A. Laghari, M. Ali, and A. A. Khan, “A
review and state of art of Internet of Things (IoT),” Archives of
Computational Methods in Engineering, pp. 1–19, 2021.

[8] W. Li, T. Yigitcanlar, I. Erol, and A. Liu, “Motivations, barriers and
risks of smart home adoption: From systematic literature review to
conceptual framework,” Energy Research & Social Science, vol. 80,
p. 102211, 2021.

[9] G. Halegoua, Smart cities. MIT press, 2020.

[10] S. Razdan and S. Sharma, “Internet of medical things (IoMT):
Overview, emerging technologies, and case studies,” IETE technical
review, vol. 39, no. 4, pp. 775–788, 2022.

[11] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (IIoT): An analysis framework,” Computers in
industry, vol. 101, pp. 1–12, 2018.

[12] M. S. Farooq, S. Riaz, A. Abid, T. Umer, and Y. B. Zikria, “Role
of IoT technology in agriculture: A systematic literature review,”
Electronics, vol. 9, no. 2, p. 319, 2020.

[13] Y. Kabalci, E. Kabalci, S. Padmanaban, J. B. Holm-Nielsen, and
F. Blaabjerg, “Internet of things applications as energy internet in
smart grids and smart environments,” Electronics, vol. 8, no. 9, p. 972,
2019.

[14] K. N. Qureshi, S. Din, G. Jeon, and F. Piccialli, “Internet of vehicles:
Key technologies, network model, solutions and challenges with future
aspects,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 3, pp. 1777–1786, 2020.

[15] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things
(iot): Research, simulators, and testbeds,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1637–1647, 2017.

[16] G. D’Angelo, S. Ferretti, and V. Ghini, “Simulation of the Internet
of Things,” in 2016 International Conference on High Performance
Computing & Simulation (HPCS), pp. 1–8, IEEE, 2016.

226

BIBLIOGRAPHY

[17] B. Selic, “The pragmatics of model-driven development,” IEEE soft-
ware, vol. 20, no. 5, pp. 19–25, 2003.

[18] S. N. Swamy and S. R. Kota, “An Empirical Study on System Level
Aspects of Internet of Things (IoT),” IEEE Access, vol. 8, pp. 188082–
188134, 2020.

[19] S. Ahdan, E. R. Susanto, and N. R. Syambas, “Proposed Design and
Modeling of Smart Energy Dashboard System by Implementing IoT
(Internet of Things) Based on Mobile Devices,” in 2019 IEEE 13th
International Conference on Telecommunication Systems, Services,
and Applications (TSSA), pp. 194–199, IEEE, 2019.

[20] Z. A. Khan, I. A. Aziz, N. A. B. Osman, and I. Ullah, “A Review on
Task Scheduling Techniques in Cloud and Fog Computing: Taxonomy,
Tools, Open Issues, Challenges, and Future Directions,” IEEE Access,
vol. 11, pp. 143417–143445, 2023.

[21] FIWARE Foundation, “FIWARE Catalogue.” https://www.fiware.

org/catalogue/, 2024. Accessed: 2024-01-16.

[22] FIWARE Foundation, “FIWARE: Open Source Platform for Our
Smart Digital Future.” https://www.fiware.org/, 2024. Accessed:
2024-01-16.

[23] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand
challenges in model-driven engineering: an analysis of the state of the
research,” Software and Systems Modeling, vol. 19, pp. 5–13, 2020.

[24] C. Atkinson and T. Kuhne, “Model-driven development: a metamod-
eling foundation,” IEEE software, vol. 20, no. 5, pp. 36–41, 2003.

[25] OMG, “Meta object facility (mof) core specification,” 2014.

[26] D. Steinberg, F. Budinsky, and M. Paternostro, “Merks Ed (2008)
EMF: eclipse modeling framework 2.0,” 2008.

[27] S. Sendall and W. Kozaczynski, “Model transformation: The heart
and soul of model-driven software development,” IEEE software,
vol. 20, no. 5, pp. 42–45, 2003.

227

https://www.fiware.org/catalogue/
https://www.fiware.org/catalogue/
https://www.fiware.org/

BIBLIOGRAPHY

[28] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal,
vol. 22, no. 7, pp. 97–114, 2009.

[29] R. Hassan, F. Qamar, M. K. Hasan, A. H. M. Aman, and A. S. Ahmed,
“Internet of Things and its applications: A comprehensive survey,”
Symmetry, vol. 12, no. 10, p. 1674, 2020.

[30] S. Ketu and P. K. Mishra, “Cloud, fog and mist computing in IoT:
an indication of emerging opportunities,” IETE Technical Review,
vol. 39, no. 3, pp. 713–724, 2022.

[31] J. Han, A. J. Chung, M. K. Sinha, M. Harishankar, S. Pan, H. Y.
Noh, P. Zhang, and P. Tague, “Do You Feel What I Hear? Enabling
Autonomous IoT Device Pairing Using Different Sensor Types,” in
2018 IEEE Symposium on Security and Privacy (SP), pp. 836–852,
2018.

[32] A. K. Sikder, G. Petracca, H. Aksu, T. Jaeger, and A. S. Uluagac,
“A survey on sensor-based threats to internet-of-things (iot) devices
and applications,” arXiv preprint arXiv:1802.02041, 2018.

[33] M. Nazari Jahantigh, A. Masoud Rahmani, N. Jafari Navimirour, and
A. Rezaee, “Integration of internet of things and cloud computing: a
systematic survey,” IET Communications, vol. 14, no. 2, pp. 165–176,
2020.

[34] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed,
A. S. Sami, and R. R. Zebari, “IoT and Cloud computing issues,
challenges and opportunities: A review,” Qubahan Academic Journal,
vol. 1, no. 2, pp. 1–7, 2021.

[35] A. Razzaq, “A systematic review on software architectures for iot
systems and future direction to the adoption of microservices archi-
tecture,” SN Computer Science, vol. 1, no. 6, p. 350, 2020.

[36] S. Dilek, K. Irgan, M. Guzel, S. Ozdemir, S. Baydere, and C. Charn-
sripinyo, “QoS-aware IoT networks and protocols: A comprehensive
survey,” International Journal of Communication Systems, vol. 35,
no. 10, p. e5156, 2022.

228

BIBLIOGRAPHY

[37] J. L. Herrera, P. Bellavista, L. Foschini, J. Galán-Jiménez, J. M.
Murillo, and J. Berrocal, “Meeting stringent qos requirements in
iiot-based scenarios,” in GLOBECOM 2020-2020 IEEE Global Com-
munications Conference, pp. 1–6, IEEE, 2020.

[38] S. Abbasi, A. M. Rahmani, A. Balador, and A. Sahafi, “Internet
of Vehicles: Architecture, services, and applications,” International
Journal of Communication Systems, vol. 34, no. 10, p. e4793, 2021.

[39] Y. Zhai, W. Sun, J. Wu, L. Zhu, J. Shen, X. Du, and M. Guizani,
“An Energy Aware Offloading Scheme for Interdependent Applications
in Software-Defined IoV With Fog Computing Architecture,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 6,
pp. 3813–3823, 2021.

[40] F. E. F. Samann, S. R. Zeebaree, and S. Askar, “IoT provisioning
QoS based on cloud and fog computing,” Journal of Applied Science
and Technology Trends, vol. 2, no. 01, pp. 29–40, 2021.

[41] Google Cloud, “Google Cloud Locations.” https://cloud.google.

com/about/locations?hl=es, 2024. Accessed: [2024].

[42] I. Stojmenovic, “Fog computing: A cloud to the ground support for
smart things and machine-to-machine networks,” in 2014 Australasian
telecommunication networks and applications conference (ATNAC),
pp. 117–122, IEEE, 2014.

[43] Cisco, “IoT: From Cloud to Fog Computing.” https://blogs.cisco.

com/perspectives/iot-from-cloud-to-fog-computing, 2024. Ac-
cessed: 2024.

[44] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and M. Ne-
mirovsky, “Key ingredients in an IoT recipe: Fog Computing, Cloud
computing, and more Fog Computing,” in 2014 IEEE 19th Interna-
tional Workshop on Computer Aided Modeling and Design of Com-
munication Links and Networks (CAMAD), pp. 325–329, IEEE, 2014.

[45] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of things journal, vol. 3, no. 6, pp. 854–
864, 2016.

229

https://cloud.google.com/about/locations?hl=es
https://cloud.google.com/about/locations?hl=es
https://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing
https://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing

BIBLIOGRAPHY

[46] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE internet of things journal, vol. 3, no. 5,
pp. 637–646, 2016.

[47] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture, ad-
vances and challenges,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 4, pp. 2462–2488, 2020.

[48] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
“A survey on the edge computing for the Internet of Things,” IEEE
access, vol. 6, pp. 6900–6919, 2017.

[49] H. Elazhary, “Internet of Things (IoT), mobile cloud, cloudlet, mobile
IoT, IoT cloud, fog, mobile edge, and edge emerging computing
paradigms: Disambiguation and research directions,” Journal of
Network and Computer Applications, vol. 128, pp. 105–140, 2019.

[50] J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez,
and P. Boronat, “Handling mobility in IoT applications using the
MQTT protocol,” in 2015 Internet Technologies and Applications
(ITA), pp. 245–250, 2015.

[51] H. Hayashi, T. Sasatani, Y. Narusue, and Y. Kawahara in 2019
IEEE 90th Vehicular Technology Conference (VTC2019-Fall), ti-
tle=Design of Wireless Power Transfer Systems for Personal Mobility
Devices in City Spaces, year=2019, volume=, number=, pages=1-5,
doi=10.1109/VTCFall.2019.8891268.

[52] S. Ramnath, A. Javali, B. Narang, P. Mishra, and S. K. Routray, “IoT
based localization and tracking,” in 2017 International Conference
on IoT and Application (ICIOT), pp. 1–4, IEEE, 2017.

[53] V. Sharma, I. You, K. Andersson, F. Palmieri, M. H. Rehmani, and
J. Lim, “Security, Privacy and Trust for Smart Mobile- Internet of
Things (M-IoT): A Survey,” IEEE Access, vol. 8, pp. 167123–167163,
2020.

230

BIBLIOGRAPHY

[54] J. Ding, M. Nemati, C. Ranaweera, and J. Choi, “IoT Connectivity
Technologies and Applications: A Survey,” IEEE Access, vol. 8,
pp. 67646–67673, 2020.

[55] S. M. Ghaleb, S. Subramaniam, Z. A. Zukarnain, and A. Muhammed,
“Mobility management for IoT: a survey,” EURASIP Journal on
Wireless Communications and Networking, vol. 2016, pp. 1–25, 2016.

[56] I. Ali, S. Sabir, and Z. Ullah, “Internet of things security, de-
vice authentication and access control: a review,” arXiv preprint
arXiv:1901.07309, 2019.

[57] K. Bierzynski, A. Escobar, and M. Eberl, “Cloud, fog and edge:
Cooperation for the future?,” in 2017 Second International Conference
on Fog and Mobile Edge Computing (FMEC), pp. 62–67, IEEE, 2017.

[58] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira,
M. Curado, L. Villas, L. DaSilva, C. Lee, and O. Rana, “The internet
of things, fog and cloud continuum: Integration and challenges,”
Internet of Things, vol. 3, pp. 134–155, 2018.

[59] X. Wei, C. Tang, J. Fan, and S. Subramaniam, “Joint Optimization
of Energy Consumption and Delay in Cloud-to-Thing Continuum,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2325–2337, 2019.

[60] M. R. Alizadeh, V. Khajehvand, A. M. Rahmani, and E. Akbari,
“Task scheduling approaches in fog computing: A systematic review,”
International Journal of Communication Systems, vol. 33, no. 16,
p. e4583, 2020.

[61] M. Z. Hasan and H. Al-Rizzo, “Task scheduling in Internet of Things
cloud environment using a robust particle swarm optimization,” Con-
currency and Computation: Practice and Experience, vol. 32, no. 2,
p. e5442, 2020.

[62] M. M. Sandhu, S. Khalifa, R. Jurdak, and M. Portmann, “Task
scheduling for energy-harvesting-based IoT: A survey and critical
analysis,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 13825–
13848, 2021.

231

BIBLIOGRAPHY

[63] X.-Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E.-N.
Huh, “A cost-and performance-effective approach for task scheduling
based on collaboration between cloud and fog computing,” Inter-
national Journal of Distributed Sensor Networks, vol. 13, no. 11,
p. 1550147717742073, 2017.

[64] X. Cai, S. Geng, D. Wu, J. Cai, and J. Chen, “A Multicloud-
Model-Based Many-Objective Intelligent Algorithm for Efficient Task
Scheduling in Internet of Things,” IEEE Internet of Things Journal,
vol. 8, no. 12, pp. 9645–9653, 2021.

[65] Azure, “Azure IoT Hub.” https://azure.microsoft.com/es-es/

products/iot-hub, 2024. Accessed: 2024-01-16.

[66] ThingSpeak, “ThingSpeak - IoT Analytics.” https://thingspeak.

com/, 2024. Accessed: 2024-01-16.

[67] ThingWorx, “ThingWorx Industrial IoT Platform.” https://www.

ptc.com/en/products/thingworx, 2024. Accessed: 2024-01-16.

[68] The Things Network, “The Things Network,” 2024. Accessed: 2024-
02-14.

[69] L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac,
“A survey on IoT platforms: Communication, security, and privacy
perspectives,” Computer Networks, vol. 192, p. 108040, 2021.

[70] J. Conde, A. Munoz-Arcentales, Alonso, S. López-Pernas, and J. Sal-
vachúa, “Modeling Digital Twin Data and Architecture: A Building
Guide With FIWARE as Enabling Technology,” IEEE Internet Com-
puting, vol. 26, no. 3, pp. 7–14, 2022.

[71] J. A. Barriga and P. J. Clemente, “SimulateIoT: A model-driven
approach to simulate IoT systems,” Predoctoral en Ingenierıa In-
formática, p. 29, 2022.

[72] G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Computing Surveys
(CSUR), vol. 44, no. 3, pp. 1–62, 2012.

232

https://azure.microsoft.com/es-es/products/iot-hub
https://azure.microsoft.com/es-es/products/iot-hub
https://thingspeak.com/
https://thingspeak.com/
https://www.ptc.com/en/products/thingworx
https://www.ptc.com/en/products/thingworx

BIBLIOGRAPHY

[73] R. A. Light, “Mosquitto: server and client implementation of the
MQTT protocol,” Journal of Open Source Software, vol. 2, no. 13,
p. 265, 2017.

[74] Open Mobile Alliance, NGSI Context Management. Open Mobile
Alliance, May 2012.

[75] F. Cirillo, G. Solmaz, E. L. Berz, M. Bauer, B. Cheng, and E. Ko-
vacs, “A standard-based open source IoT platform: FIWARE,” IEEE
Internet of Things Magazine, vol. 2, no. 3, pp. 12–18, 2019.

[76] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A survey
of LoRaWAN for IoT: From technology to application,” Sensors,
vol. 18, no. 11, p. 3995, 2018.

[77] A. Lavric, A. I. Petrariu, and V. Popa, “Sigfox communication proto-
col: The new era of iot?,” in 2019 international conference on sensing
and instrumentation in IoT Era (ISSI), pp. 1–4, IEEE, 2019.

[78] C. S. Lai, Y. Jia, Z. Dong, D. Wang, Y. Tao, Q. H. Lai, R. T. Wong,
A. F. Zobaa, R. Wu, and L. L. Lai, “A review of technical standards
for smart cities,” Clean Technologies, vol. 2, no. 3, pp. 290–310, 2020.

[79] C. Stolojescu-Crisan, C. Crisan, and B.-P. Butunoi, “An IoT-based
smart home automation system,” Sensors, vol. 21, no. 11, p. 3784,
2021.

[80] J. Al Dakheel, C. Del Pero, N. Aste, and F. Leonforte, “Smart build-
ings features and key performance indicators: A review,” Sustainable
Cities and Society, vol. 61, p. 102328, 2020.

[81] V. K. Quy, N. V. Hau, D. V. Anh, N. M. Quy, N. T. Ban, S. Lanza,
G. Randazzo, and A. Muzirafuti, “IoT-enabled smart agriculture:
architecture, applications, and challenges,” Applied Sciences, vol. 12,
no. 7, p. 3396, 2022.

[82] H. Jaidka, N. Sharma, and R. Singh, “Evolution of iot to iiot: Appli-
cations & challenges,” in Proceedings of the international conference
on innovative computing & communications (ICICC), 2020.

233

BIBLIOGRAPHY

[83] B. Rana, Y. Singh, and P. K. Singh, “A systematic survey on internet
of things: Energy efficiency and interoperability perspective,” Trans-
actions on Emerging Telecommunications Technologies, vol. 32, no. 8,
p. e4166, 2021.

[84] J.-A. Jiang, J.-C. Wang, H.-S. Wu, C.-H. Lee, C.-Y. Chou, L.-C. Wu,
and Y.-C. Yang, “A novel sensor placement strategy for an IoT-based
power grid monitoring system,” IEEE Internet of Things Journal,
vol. 7, no. 8, pp. 7773–7782, 2020.

[85] G. Manogaran and B. S. Rawal, “An Efficient Resource Allocation
Scheme With Optimal Node Placement in IoT-Fog-Cloud Architec-
ture,” IEEE Sensors Journal, vol. 21, no. 22, pp. 25106–25113, 2021.

[86] M. Ghobaei-Arani and A. Shahidinejad, “A cost-efficient IoT ser-
vice placement approach using whale optimization algorithm in fog
computing environment,” Expert Systems with Applications, vol. 200,
p. 117012, 2022.

[87] J. L. Herrera, J. Galán-Jiménez, J. Berrocal, and J. M. Murillo,
“Optimizing the response time in sdn-fog environments for time-strict
iot applications,” IEEE Internet of Things Journal, vol. 8, no. 23,
pp. 17172–17185, 2021.

[88] J. L. Herrera, J. Galán-Jiménez, L. Foschini, P. Bellavista, J. Berrocal,
and J. M. Murillo, “QoS-aware fog node placement for intensive IoT
applications in SDN-fog scenarios,” IEEE Internet of Things Journal,
vol. 9, no. 15, pp. 13725–13739, 2022.

[89] A. K. M. Al-Qurabat and A. Kadhum Idrees, “Data gathering and
aggregation with selective transmission technique to optimize the
lifetime of Internet of Things networks,” International Journal of
Communication Systems, vol. 33, no. 11, p. e4408, 2020.

[90] Y. Liu, H.-N. Dai, Q. Wang, M. Imran, and N. Guizani, “Wireless pow-
ering Internet of Things with UAVs: Challenges and opportunities,”
IEEE Network, vol. 36, no. 2, pp. 146–152, 2022.

234

BIBLIOGRAPHY

[91] I. Farris, L. Militano, M. Nitti, L. Atzori, and A. Iera, “MIFaaS: A
mobile-IoT-federation-as-a-service model for dynamic cooperation of
IoT cloud providers,” Future Generation Computer Systems, vol. 70,
pp. 126–137, 2017.

[92] N. Medhat, S. Moussa, N. Badr, and M. F. Tolba, “Testing techniques
in IoT-based systems,” in 2019 Ninth International Conference on
Intelligent Computing and Information Systems (ICICIS), pp. 394–
401, IEEE, 2019.

[93] J. Esquiagola, L. C. de Paula Costa, P. Calcina, G. Fedrecheski, and
M. Zuffo, “Performance Testing of an Internet of Things Platform.,”
in IoTBDS, pp. 309–314, 2017.

[94] S. K. Datta, C. Bonnet, H. Baqa, M. Zhao, and F. Le-Gall, “Approach
for Semantic Interoperability Testing in Internet of Things,” in 2018
Global Internet of Things Summit (GIoTS), pp. 1–6, 2018.

[95] G. White, A. Palade, C. Cabrera, and S. Clarke, “IoTPredict: collabo-
rative QoS prediction in IoT,” in 2018 IEEE International Conference
on Pervasive Computing and Communications (PerCom), pp. 1–10,
IEEE, 2018.

[96] S. Noureddine and B. Meriem, “ML-SLA-IoT: an SLA Specification
and Monitoring Framework for IoT applications,” in 2021 Interna-
tional Conference on Information Systems and Advanced Technologies
(ICISAT), pp. 1–12, 2021.

[97] X. Li and L. Da Xu, “A review of Internet of Things—Resource
allocation,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 8657–
8666, 2020.

[98] X. Liu and N. Ansari, “Toward Green IoT: Energy Solutions and
Key Challenges,” IEEE Communications Magazine, vol. 57, no. 3,
pp. 104–110, 2019.

[99] A. Sinha, D. Das, V. Udutalapally, M. K. Selvarajan, and S. P.
Mohanty, “iThing: Designing Next-Generation Things with Battery
Health Self-Monitoring Capabilities for Sustainable IoT in Smart
Cities,” arXiv preprint arXiv:2106.06678, 2021.

235

BIBLIOGRAPHY

[100] Y. Ramzanpoor, M. Hosseini Shirvani, and M. Golsorkhtabaramiri,
“Multi-objective fault-tolerant optimization algorithm for deployment
of IoT applications on fog computing infrastructure,” Complex &
Intelligent Systems, vol. 8, no. 1, pp. 361–392, 2022.

[101] S. Zhou, K.-J. Lin, J. Na, C.-C. Chuang, and C.-S. Shih, “Supporting
Service Adaptation in Fault Tolerant Internet of Things,” in 2015
IEEE 8th International Conference on Service-Oriented Computing
and Applications (SOCA), pp. 65–72, 2015.

[102] B. Pourghebleh and V. Hayyolalam, “A comprehensive and systematic
review of the load balancing mechanisms in the Internet of Things,”
Cluster Computing, vol. 23, pp. 641–661, 2020.

[103] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms,” Software: Practice and experience, vol. 41, no. 1, pp. 23–
50, 2011.

[104] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopou-
los, and R. Ranjan, “IOTSim: A simulator for analysing IoT ap-
plications,” Journal of Systems Architecture, vol. 72, pp. 93–107,
2017.

[105] J. P. Dias, F. Couto, A. C. Paiva, and H. S. Ferreira, “A brief
overview of existing tools for testing the internet-of-things,” in 2018
IEEE international conference on software testing, verification and
validation workshops (ICSTW), pp. 104–109, IEEE, 2018.

[106] M.-W. Tian, S.-R. Yan, W. Guo, A. Mohammadzadeh, and E. Ghader-
pour, “A New Task Scheduling Approach for Energy Conservation in
Internet of Things,” Energies, vol. 16, no. 5, p. 2394, 2023.

[107] M. R. Raju and S. K. Mothku, “Delay and energy aware task schedul-
ing mechanism for fog-enabled IoT applications: A reinforcement
learning approach,” Computer Networks, vol. 224, p. 109603, 2023.

236

BIBLIOGRAPHY

[108] M. S. Kumar and G. R. Karri, “Eeoa: cost and energy efficient task
scheduling in a cloud-fog framework,” Sensors, vol. 23, no. 5, p. 2445,
2023.

[109] J. F. Nunamaker Jr, M. Chen, and T. D. Purdin, “Systems devel-
opment in information systems research,” Journal of management
information systems, vol. 7, no. 3, pp. 89–106, 1990.

[110] V. K. Vaishnavi, Design science research methods and patterns: inno-
vating information and communication technology. Auerbach Publica-
tions, 2007.

[111] M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren,
“Action design research,” MIS quarterly, pp. 37–56, 2011.

[112] R. Baskerville, J. Pries-Heje, and J. Venable, “Soft design science
methodology,” in Proceedings of the 4th international conference
on design science research in information systems and technology,
pp. 1–11, 2009.

[113] M. Bilandzic and J. Venable, “Towards participatory action design
research: adapting action research and design science research methods
for urban informatics,” Journal of Community Informatics, vol. 7,
no. 3, 2011.

[114] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems research,”
Journal of management information systems, pp. 45–77, 2007.

[115] J. R. Venable, J. Pries-Heje, and R. L. Baskerville, “Choosing a design
science research methodology,” 2017.

[116] J. A. Barriga and P. J. Clemente, “Designing and simulating IoT
environments by using a model-driven approach,” in 2022 17th Iberian
Conference on Information Systems and Technologies (CISTI), pp. 1–
6, IEEE, 2022.

[117] J. A. Barriga Corchero, P. J. Clemente Mart́ın, E. Sosa Sánchez, and
A. E. Prieto Ramos, “SimulateIoT: Domain Specific Language to
design, code generation and execute IoT simulation environments,”

237

BIBLIOGRAPHY

[118] J. A. Barriga, “Simulating IoT Systems from High-Level Abstrac-
tion Models for Quality of Service Assessment,” in International
Conference on Service-Oriented Computing, pp. 314–319, Springer,
2022.

[119] J. A. Barriga Corchero, P. J. Clemente Mart́ın, J. M. Hernández Núñez,
and M. A. Pérez Toledano, “SimulateIoT-FIWARE: Domain Specific
Language to Design, Code Generation and Execute IoT Simulation
Environments on FIWARE,”

[120] F. Wu, Q. Wu, and Y. Tan, “Workflow scheduling in cloud: a survey,”
The Journal of Supercomputing, vol. 71, no. 9, pp. 3373–3418, 2015.

[121] A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling tech-
niques in cloud computing: A literature survey,” Future Generation
Computer Systems, vol. 91, pp. 407–415, 2019.

[122] J. A. Barriga and P. J. Clemente, “SimulateIoT-Federations: Do-
main Specific Language for designing and executing IoT simulation
environments with Fog and Fog-Cloud federations (Poster),” 2022.

[123] K. Alwasel, R. N. Calheiros, S. Garg, R. Buyya, M. Pathan, D. Geor-
gakopoulos, and R. Ranjan, “BigDataSDNSim: A simulator for ana-
lyzing big data applications in software-defined cloud data centers,”
Software: Practice and Experience, vol. 51, no. 5, pp. 893–920, 2021.

[124] M. Salama, Y. Elkhatib, and G. Blair, “IoTNetSim: A modelling
and simulation platform for end-to-end IoT services and networking,”
in Proceedings of the 12th IEEE/ACM International Conference on
Utility and Cloud Computing, pp. 251–261, 2019.

[125] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things
(iot): Research, simulators, and testbeds,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1637–1647, 2018.

[126] Eclipse Foundation, “Eclipse Packages,” 2024. Accessed: 2024-01-19.

[127] Docker, Inc., “Docker: Empowering App Development for Developers,”
2024. Accessed: 2024-01-19.

238

BIBLIOGRAPHY

[128] MongoDB, Inc., “MongoDB: La base de datos para aplicaciones
modernas,” 2024. Accessed: 2024-01-19.

[129] Eclipse Foundation, “Eclipse Mosquitto.” https://mosquitto.org/,
2024. Accessed: 2024-01-17.

[130] EsperTech Inc., “EsperTech - Complex Event Processing,” 2024.
Accessed: 2024-01-17.

[131] FIWARE Foundation, “Orion Context Broker Documentation,” 2024.
Accessed: 2024-01-19.

[132] FIWARE Foundation, “Orion Context Broker Database Administra-
tion Documentation,” 2024. Accessed: 2024-01-19.

[133] FIWARE Foundation, “Perseo Front-End Documentation,” 2024.
Accessed: 2024-01-19.

[134] FIWARE Foundation, “IoT Agent Node.js Library Documentation,”
2024. Accessed: 2024-01-19.

[135] S. H. Shah and I. Yaqoob, “A survey: Internet of things (iot) tech-
nologies, applications and challenges,” 2016 IEEE Smart Energy Grid
Engineering (SEGE), pp. 381–385, 2016.

[136] A. Pal, A. Mukherjee, and B. P, “Model-driven development for inter-
net of things: Towards easing the concerns of application developers,”
in Internet of Things. User-Centric IoT: First International Summit,
IoT360 2014, Rome, Italy, October 27-28, 2014, Revised Selected
Papers, Part I, pp. 339–346, Springer, 2015.

[137] R. Dautov and H. Song, “Towards iot diversity via automated fleet
management.,” in MDE4IoT/ModComp@ MoDELS, pp. 47–54, 2019.

[138] J. Saleem, M. Hammoudeh, U. Raza, B. Adebisi, and R. Ande,
“Iot standardisation: Challenges, perspectives and solution,” in Pro-
ceedings of the 2nd international conference on future networks and
distributed systems, pp. 1–9, 2018.

239

https://mosquitto.org/

BIBLIOGRAPHY

[139] S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim, and S. R.
Chaudhry, “Iot architecture challenges and issues: Lack of standard-
ization,” in 2016 Future technologies conference (FTC), pp. 731–738,
IEEE, 2016.

[140] G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, and R. Ranjan, “Mod-
elling and simulation challenges in internet of things,” IEEE cloud
computing, vol. 4, no. 1, pp. 62–69, 2017.

[141] V. Agarwal, S. Tapaswi, and P. Chanak, “A survey on path planning
techniques for mobile sink in iot-enabled wireless sensor networks,”
Wireless Personal Communications, vol. 119, no. 1, pp. 211–238, 2021.

[142] T. Bu, Z. Huang, K. Zhang, Y. Wang, H. Song, J. Zhou, Z. Ren, and
S. Liu, “Task scheduling in the internet of things: challenges, solutions,
and future trends,” Cluster Computing, vol. 27, no. 1, pp. 1017–1046,
2024.

[143] J. C. Kirchhof, L. Malcher, and B. Rumpe, “Understanding and
improving model-driven iot systems through accompanying digital
twins,” in Proceedings of the 20th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences,
pp. 197–209, 2021.

[144] M. Segovia and J. Garcia-Alfaro, “Design, modeling and implementa-
tion of digital twins,” Sensors, vol. 22, no. 14, p. 5396, 2022.

[145] A. Reyna, C. Mart́ın, J. Chen, E. Soler, and M. Dı́az, “On blockchain
and its integration with iot. challenges and opportunities,” Future
generation computer systems, vol. 88, pp. 173–190, 2018.

240

	Introduction
	Research Context
	Model-Driven Development
	The Internet of Things From a Multi-Layered Computing Perspective
	Mobility in the IoT
	Task Scheduling in the Cloud-to-Thing Continuum Paradigm
	IoT Platforms: FIWARE, an IoT Platform for Developing and Deploying IoT Environments

	Problem Statement
	Aims and Research Questions
	Research Methodology
	Summary of Contributions
	Simulating the Foundation of the IoT from a High Level of Abstraction
	Simulating the foundation of the IoT Powered by FIWARE
	IoT Simulations Toward Mobility Assessments: Mobile-Driven Design and Functionality
	IoT Simulations Toward Task-Scheduling Assessments: Task-Driven Design and Functionality
	Collaboration: SimulateIoT toward Big Data assessments

	Structure of the Thesis

	Results
	Simulating the Foundation of the IoT from a High Level of Abstraction
	Simulating the Foundation of the IoT Powered by FIWARE
	IoT Simulations Towards Mobility Assessments: Mobile-Driven Design and Functionality
	IoT Simulations Towards Task-Scheduling Assessments: Task-Driven Design and Functionality

	Publications Overview
	Core Compendium Publications
	Supplementary Publications

	SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments
	SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments on FIWARE
	Design, code generation and simulation of IoT environments with mobility devices by using model-driven development: SimulateIoT-Mobile
	SimulateIoT Towards the Cloud-to-Thing Continuum Paradigm for Task Scheduling Assessments
	Discussion, Conclusion and Future Works
	Discussion
	Conclusion
	Future work
	Reflections and Personal Insights

	SimulateIoT: A model-driven approach to simulate IoT systems*
	Designing and simulating IoT environments by using a model-driven approach*
	SimulateIoT: Domain Specific Language to design, code generation and execute IoT simulation environments (Summary)*
	Simulating IoT Systems from High-Level Abstraction Models for Quality of Service Assessment
	SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments on FIWARE
	SimulateIoT- Federations: Domain Specific Language for designing and executing IoT simulation environments with Fog and Fog-Cloud federations
	Bibliography

