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Abstract

In 1996, it was published the seminal work of Rochberg “Higher order estimates in complex
nterpolation theory” (Rochberg, 1996). Among many other things, the paper contains a new

ethod to construct new Banach spaces having an intriguing behaviour: they are simultaneously
nterpolation spaces and twisted sums of increasing complexity. The fundamental idea of Rochberg
s to consider for each z ∈ S the space formed by the arrays of the truncated sequence of the
aylor coefficients of the elements of the Calderón space. What was probably unforeseen is that the
ochberg constructions would lead to a deep theory connecting Interpolation theory, Homology,
perator Theory and the Geometry of Banach spaces. This work aims to synthetically present

uch connections, an up-to-date account of the theory and a list of significative open problems.
2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In 1996, it was published the seminal work of Rochberg “Higher order estimates
n complex interpolation theory” [97]. Among many other things, the paper contains

new method to construct new Banach spaces having an intriguing behaviour: they are
imultaneously interpolation spaces and twisted sums of increasing complexity. From
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this point of view we can think of the whole process of construction of Rochberg spaces
unfolding at different levels: At level 0 (no derivatives involved) we have plain complex
interpolation. More precisely, given a suitable pair of Banach spaces (X0, X1), if one
onsiders the usual Calderón space C(X0, X1) of X0 + X1-valued analytic functions then
he interpolation space (X0, X1)θ = { f (θ ) : f ∈ C(X0, X1)} is the space R1 of values of
he functions at θ . At level 1 (one derivative involved) one would think of the space R2
f pairs of values ( f ′(θ ), f (θ )) as f ∈ C(X0, X1). In general, at level n (n derivatives
nvolved) one would consider the space

Rn+1(X0, X1)θ =

{( 1
n!

f (n)(θ ), . . . , f ′(θ ), f (θ )
)

: f ∈ C(X0, X1)
}

f truncated sequences of Taylor coefficients of elements of C(X0, X1) at θ . These spaces
ill be endowed with the quotient norm, referred to as Rochberg spaces and, unless it

s required to specify (X0, X1) or θ , denoted Rn . The display and study of properties of
ochberg spaces is the main topic of this survey.

It turns out that many concepts, properties and results occurring in classical inter-
olation theory (level 0) have close analogues at higher levels. Other phenomena can
nly occur at higher levels. The following table depicts some of the analogies and
orrespondences:

Calderón space C(X0, X1)
Level 0 Level n

• Interpolation space (X0, X1)θ • Rochberg space Rn(X0, X1)θ
• Evaluations f (θ ) • Taylor Coefficients(

1
(n−1)! f (n−1)(θ ), . . . , f (θ )

)
• Interpolation property for operators • Commutator Theorem
• Identity (X0, X1)θ → (X0, X1)θ • Differentials �k,l : Rl → Rk for

k + l = n
• Reiteration Theorem • Reiteration theorem for differential

maps

The aim of this survey is to present an up-to-date account of the theory of Rochberg
spaces. We will focus on two scenarios: Rochberg spaces generated by complex in-
terpolation for pairs of spaces and Rochberg spaces generated by a family of abstract
interpolators. We have strived to give proper credits and sources for all the results, while
those unassigned are presented here for the first time. In some cases the results are in
the literature but the proofs presented here are original. We will provide explicit proofs
for the fundamental results, and the main ideas plus informal discussions for the rest.

We now explain the organization of the paper. For all unexplained terminology and
concepts see the corresponding sections (or the end of this introduction). We assume that
the reader has some acquaintance with Banach space theory, for which three authoritative
references are [2,79,80], and the basics of complex interpolation as can be seen in [6,73].

The overall organization of the paper is: first, what occurs at level 0 (interpolation);
then, what occurs at level 1 (twisted sums) and then what occurs at higher levels. In the
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three cases combining the complex interpolation and the abstract frame. Accordingly,
in Section 2 we deal with the basics of complex interpolation for pairs: definitions,
constructions, the reiteration theorem, Lozanovskii factorization and several examples
including the Hilbert space, which is central to the theory in many regards. The 0 level
is also considered from the abstract point of view through the concept of interpolator.
In Section 3 we deal with level 1 and introduce the fundamental ideas of the theory
of twisted sums, exact sequences of Banach spaces and the necessary homological
techniques. We thus show how level 0 results can be generalized to level 1 using the
previously introduced homological ideas. The central concept at this level 1 is that of
differential associated to an interpolation scale. The mirroring of ideas between the two
levels establishes, for instance, that Hilbert spaces correspond to twisted Hilbert spaces,
that reiteration results from interpolation theory transform into reiteration results for
differentials, etc. In Section 4 we formally introduce Rochberg spaces Rn for the complex
interpolation method as the space formed by truncated sequences of Taylor coefficients of
functions in the corresponding Calderón space. Rochberg spaces can also be generated by
certain higher order differentials �m,n . In turn, these differentials induce exact sequences
that can be entwined in commutative diagrams of the form

Rk Rk⏐⏐↓ ⏐⏐↓
Rn −−−−→ Rn+m −−−−→ Rm⏐⏐↓ ⏐⏐↓ 
Rn−k −−−−→ Rn+m−k −−−−→ Rm

The discussion about the Rochberg spaces associated to a sequence of abstract
nterpolators points out specific properties of the interpolators associated to complex
nterpolation. Those specific properties crystallize in the notion of compatibility studied
n Section 4.3. The rest of the Section contains a generalized form of the Commutator
heorem and its consequences, an exposition of the inversion process and a few additional
onsideration about the effect on Rochberg spaces of reiteration and multiplication by
calars.

Sections 5 to 9 are devoted to present concrete examples. First, the case of weighted
ilbert spaces. This is the simplest situation since the associated differentials are all

inear, and therefore all Rochberg spaces are isomorphic to ℓ2. Then, Section 6 is devoted
o the case of ℓp spaces, arguably the most important example. The associated Rochberg
paces are strange creatures: for instance, when fixed at 1/2 the Rochberg space Rn

s a Banach space isomorphic to its dual, which has exactly n different types of basic
equences, has no complemented subspace with G.L-lust., has a non-trivial symplectic
tructure and every operator T : Rn → X is strictly singular or invertible on some
omplemented subspace isomorphic to Rn . Section 7 treats the non-atomic L p spaces,
ection 8 deals with Orlicz spaces and Section 9 considers Tsirelson-like spaces, with
articular interest in the 2-convexified Tsirelson space that produces new weak-Hilbert
paces [106].
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The two final sections are devoted to (1) briefly discuss advanced topics closely related
o Rochberg spaces: Stability, Homology and Nonlinear classification and (2) list open
roblems.

The following notation will be consistently used throughout the paper: X = Y means
that the two spaces X, Y coincide, X ∼ Y that they are isometric and X ≃ Y that they
re isomorphic. Given two real valued functions f and g, by f ∼ g means that there

exist positive constants C and C ′ such that C ′g(x) ≤ f (x) ≤ Cg(x) for all x .

. Complex interpolation for pairs of Banach spaces

In its essence, an interpolation method is a method to, given a pair (X0, X1) of Banach
paces and a parameter θ , produce an intermediate space Xθ = (X0, X1)θ . The meaning
f “intermediate” depends on the interests one has.

(1) From the point of view of convex analysis, the question of how is it possible to
“continuously” transform a (convex) set C0 into another C1. Readers interested
in this approach would largely benefit from the reading of [18], where a natural
structure of normed space is placed on the space of quasinorms Q defined on a
finite dimensional space Kn . Then, consider, given the unit balls C0, C1 of two
quasinorms, a continuous path H : [0, 1] −→ Q such that H (0) = C0 and
H (1) = C1. If one sets X0 = (Kn, C0) and X1 = (Kn, C1) then each space
At = (Kn, H (t)) can be considered an intermediate space between X0 and X1.

(2) The classical operator theory point of view is rather interested in obtaining spaces
Xθ with the following property: if one has another pair (B0, B1) and an operator
T that is linear and continuous as an operator Ai → Bi for i = 0, 1 then it is also
continuous as an operator Xθ → Bθ . Spaces with this property are usually called
interpolated spaces.

(3) The “differential equation” point of view considers interpolation methods as a
kind of Banach valued forms of Dirichlet’s problem for Laplace’s equation: Given
a function f that has values everywhere on the boundary of a region in Kn ,
find a continuous function F twice continuously differentiable in the interior
and continuous on the boundary, such that F is harmonic in the interior and
F = f on the boundary. Now, place at each point ω of the boundary of a
domain D of the complex plane a normed space Xω (say, a norm Nω defined
on a prefixed Kn) instead of a scalar (one can think of this scalar as ∥1∥ω)
and determine a way to assign to each point z ∈ D a norm Nz with some
additional continuity or regularity properties. Details about this approach can be
followed at [52,96,102]. The papers [50,51] presented solutions for the so-called
(sub-) interpolation families (in dimension one, the family of norms ∥ · ∥z is
a (sub-) interpolation family when log ∥1∥z is (subharmonic) harmonic, so that
what one is asking for is the solution for the Dirichlet problem for the equation
1 log ∥1∥z = 0); this lead to what is called nowadays the interpolation method
for families. The case of pairs can be recovered placing, without giving too many
details now, X0 and X1 on equally distributed arcs on the boundary of D. The case
of families is much more sophisticated and delicate than the case of pairs (X0, X1)
since the relative distribution and positions of the spaces along the boundary have

impact on the interpolated space one obtains.
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(4) The differential geometry point of view attempts to think of the intermediate spaces
{H (t) : t ∈ [0, 1]} as conforming a geodesic, in a sense to be determined, between
X0 and X1. See [102].

Moreover, the many methods (for pairs, for families, . . . ) appeared in the literature
ave led diverse unification attempts and from that to what could be called “abstract
nterpolation methods”.

.1. The abstract setting

As we have just said, there are many interpolation methods in the literature: in some
f them the parameter θ is a complex number, in some θ is a pair, or three or four, real
umbers, or a point in a prefixed Banach space, etc. At the abstract level, θ is just an
lement of the space D of parameters and most interpolation method adopt the following
orm: assign to each suitable pair (X0, X1) of Banach spaces a certain Banach space H of
unctions D → 6 from D to a given ambient Banach space 6 (see below for additional
omments about the role of the ambient space) such that for each θ ∈ D the evaluation
ap δθ : H → 6 is continuous. In this way, for each parameter θ one can form the space

Xθ = { f (θ ) : f ∈ H}. Since δθ is a bounded operator, Xθ = δθ [H] is a Banach space
hen endowed with the quotient topology [32] and Xθ = H/ ker δθ . Judicious choices of
will make the intermediate space Xθ to be an interpolation space in the sense of (2)

bove. Abstract methods make their entrance when one replaces δθ by a more general
nterpolator 8; namely, a suitable operator 8 : H → 6 such that X8 = 8[H] (endowed
ith the quotient norm) is an interpolation space. See the general setting for this abstract

pproach in [32] and the categorical approach in [85].
In this survey we will focus, half of the time at least, on Calderón complex interpola-

ion method for pairs of Banach spaces [6,19] combined with Schechter’s approach [99].
certain bias towards abstract methods and some occasional appreciations of what other
ethods could yield, or even what could happen when families (instead of pairs) are

onsidered, will be either desirable or unavoidable.

.2. The basics of complex interpolation

Let us briefly describe the complex interpolation method for couples, following a
ombination of [6,73]. Let S denote the open strip {z ∈ C : 0 < Re(z) < 1} in the
omplex plane and let S be its closure. A pair (X0, X1, ı, ȷ ) of complex Banach spaces
ogether with injective operators ı : X0 −→ 6 and ȷ : X1 −→ 6 into some ambient
anach space 6 will be an interpolation pair. We will identify both X0, X1 with their
ontinuous images in 6 without further mention. The Calderón space C(X0, X1) is the
pace of continuous bounded functions f : S −→ 6 that are holomorphic on S and

satisfy the following boundary condition: For k = 0, 1, f (k + i t) ∈ Xk for each t ∈ R
and supt ∥ f (k + i t)∥Xk < ∞. The Calderón space C(X0, X1) is complete under the norm

f ∥ = sup{∥ f (k + i t)∥Xk : k = 0, 1; t ∈ R} The evaluation map δz : C(X0, X1) −→ 6

s continuous for all z ∈ S. Given θ ∈ (0, 1), the interpolation space X = (X , X ) is
θ 0 1 θ
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defined as the Banach space

Xθ = {x ∈ 6 : x = f (θ ) for some f ∈ C(X0, X1)} = C(X0, X1)/ ker δθ

ndowed with the quotient norm ∥x∥Xθ
= inf

{
∥ f ∥ : x = f (θ ), f ∈ C(X0, X1)

}
.

Assume now that (X0, X1) and (Y0, Y1) are pairs of Banach spaces continuously
njected in ambient spaces 6 and 6′, respectively. The fundamental property of inter-
olation spaces already mentioned at the beginning of this section is the following: if

T : 6 → 6′ is a bounded operator such that T |X0 : X0 → Y0 and T |X1 : X1 → Y1
re bounded, then T : Xθ → Yθ is bounded for any θ ∈ (0, 1). In [37, Section 3] it is
xplained a method so that, without loss of generality, one can assume that 6 = 6′.

.3. Examples

A few examples are of paramount importance for this survey, and all of them lie
nside the category of Köthe spaces: Given a measure space (6, µ) we denote by L0
he space of all µ-measurable functions. A Köthe space X is an L∞-submodule of L0
in particular, a vector subspace X such that if g ∈ L0 and ∥g∥X < ∞ then g ∈ X )
ontaining the characteristic functions of measurable sets, and endowed with a norm
uch that if f, g ∈ X and | f | ≤ |g| then ∥ f ∥X ≤ ∥g∥X . To develop more sophisticated
ssues about twisted sums of Köthe spaces it will be needed, according to [71, p. 482],
o additionally ask to X the existence of strictly positive functions h, k ∈ L0 such
hat ∥h f ∥1 ≤ ∥ f ∥X ≤ ∥k f ∥∞ for every f ∈ L0. In particular, Banach spaces with a
-unconditional basis with their associated ℓ∞-module structure are Köthe spaces.

Let X, Y be two Köthe spaces on the same base space and let 0 < θ < 1. We can
orm the following quasi Banach spaces:

• X θ
= { f ∈ L0 : | f |

1/θ
∈ X} endowed with the norm ∥x∥θ = ∥|x |

1/θ
∥

θ .
• XY = { f ∈ L0 : f = xy for some x ∈ X, y ∈ Y } endowed with the quasinorm

∥ f ∥XY = inf{∥x∥X∥y∥Y : f = xy, x ∈ X, y ∈ Y }. According to [12, Lemma 2],
if X, Y are Banach spaces then XY is (isomorphic to) a 1/2-Banach space.

• If X, Y are Banach spaces, the Banach space X1−θ Y θ is therefore formed by the
functions f ∈ L0 such that f = ab for some a ∈ X1−θ , b ∈ Y θ , so that
| f | = |x |

1−θ
|y|

θ for x = a1/1−θ and y = b1/θ . The space is thus endowed with
the norm ∥ f ∥ = inf{∥x∥

1−θ
X ∥y∥

θ
Y : x ∈ X, y ∈ Y, | f | = |x |

1−θ
|y|

θ
}.

The pair (X0, X1) will be called regular in the terminology of Cwikel, if X0 ∩ X1
s dense in both X0 and X1. Shestakov proved in [103] that [X0, X1]θ = X0 ∩ X1 ⊂

X1−θ
0 X θ

1 and Kalton [71, formula (3.2)] already observed that complex interpolation for
regular couples and factorization are the same, thanks to Lozanovskii decomposition
formula (see [73, Theorem 4.6]); precisely,

(X0, X1)θ = X1−θ
0 X θ

1 . (1)

A fundamental example appears when one considers the regular pair (L∞, L1):

(L∞, L1)θ = Lθ−1 .

his is, in its complex interpolation version, the classical Riesz–Thorin theorem [6,
heorem 1.1.1], consequence of the Three-lines theorem [6, Lemma 1.1.2]. Still, this
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example can be seen as follows. Recall that the p-convexification of a Köthe function
space X is defined by to be the space X (p) endowed with the norm |||x ||| = ∥|x |

p
∥

1/p.
Conversely, when X is p-convex, the p-concavification of X is given by |||x ||| =

∥|x |
1/p

∥
p. Thus, if 0 < θ < 1, 1 < p < ∞ and X is a Köthe space then

(L∞(µ), X )θ = X (θ−1) (2)

s the θ−1-convexification of X . Conversely if X is p-convex and X (p) is the p-
concavification of X then X = (L∞(µ), X (p))1/p.

To present our second basic example, recall that a weight w is a positive function in
L0(µ). Given a Köthe function space X of µ-measurable functions, we denote by X (w)
the space of all measurable scalar functions f such that w f ∈ X , endowed with the
norm ∥x∥w = ∥wx∥X . We get [6, Theorem 5.4.1] that if X is a Köthe space with the

adon–Nikodym property and w0, w1 are two weights then, for 0 < θ < 1, one has

(X (w0), X (w1))θ = X (w1−θ
0 wθ

1 ) (3)

Still intermediate between the special case of L p-spaces and the general one of Köthe
paces is the case of Orlicz spaces (see [57,79,81,86] for details and the general theory).
ecall that an N -function is a map ϕ : [0, ∞) → [0, ∞) which is strictly increasing,
ontinuous, ϕ(0) = 0, ϕ(t)/t → 0 as t → 0, and ϕ(t)/t → ∞ as t → ∞.
n N -function ϕ satisfies the 12-property if there exists a number C > 0 such that
(2t) ≤ Cϕ(t) for all t ≥ 0. When an N -function ϕ satisfies the 12-property, the
rlicz space is Lϕ(µ) = { f ∈ L0(µ) : ϕ(| f |) ∈ L1(µ)}. endowed with the norm
f ∥ = inf{r > 0 :

∫
ϕ(| f |/r )dµ ≤ 1}. It was proved in [63] (see also [20]) that if

0 and ϕ1 are two N -functions satisfying the 12-property, and let 0 < θ < 1, then the
ormula ϕ−1

=
(
ϕ−1

0

)1−θ(
ϕ−1

1

)θ defines an N -function ϕ satisfying the 12-property, and(
Lϕ0 (µ), Lϕ1 (µ)

)
θ

= Lϕ(µ). (4)

Observe that the function ϕ(t) = t p for 1 < p < ∞ defines an N -function satisfying
he 12-property and the corresponding Orlicz spaces are the usual L p and ℓp spaces.

On the farthest shore of Banach spaces with unconditional basis we encounter the
amily of Schreier-like and Tsirelson-like Banach spaces. The Schreier space [101] is
onstructed as follows: call a finite subset A ⊂ N admissible if |A| ≤ min A and
onsider the family A ⊂ {0, 1}

N of all finite admissible subsets of N. Given A ∈ A
nd x = (xn)n a sequence with finite support, denote by Ax the sequence formed by the
lements of x having coordinates on A. The space S is the completion of the space of
nitely supported sequence under the norm ∥x∥S = supA∈A ∥Ax∥1. The canonical unit
ectors form a shrinking basis for S. The Tsirelson space T [109] was the first example
f reflexive Banach space with no copies of c0 or ℓp for 1 ≤ p < ∞. A comprehensive
reatment of Tsirelson space can be found in [27]. Given any finite subsets E, F ⊂ N
enote by E < F that max E < min F , and define as before Ex =

∑
n∈E xn for any

x =
∑

x ∈ c . The norm of Tsirelson space is defined inductively: one fixes x ∈ c
n k 00 00
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and consider the following sequence of norms (∥ · ∥m)∞m=0⎧⎪⎪⎨⎪⎪⎩
∥x∥0 = ∥x∥c0

∥x∥m+1 = max
{
∥x∥m, 1

2 max
[∑k

j=1 ∥E j x∥m

]}
, for m ≥ 0,

(5)

where the inner maximum is defined over all possible choices of finite subsets E1, . . . , Ek

such that k ≤ E1 < E2 < · · · < Ek .
The norms thus defined are increasing in m, ∥x∥m+1 ≥ ∥x∥m , and bounded above

by the ℓ1 norm. Therefore the limit ∥x∥T := limm→∞ ∥x∥m exists for every x ∈ c00

and defines a norm on the space of finitely supported sequences. The Tsirelson space T
is the completion of c00 with the norm ∥ · ∥T . It is customary to say that, in fact, this
definition is due to Figiel and Johnson [61] and describes the dual space of the original
space obtained by Tsirelson. The canonical unit vectors form a 1-unconditional basis for
T . Moreover, the norm ∥ · ∥T satisfies the following equation:

∥x∥T = max
{
∥x∥c0 ,

1
2

sup
[ k∑

j=1

∥E j x∥T

]}
, (6)

where the supremum is taken over all choices k ≤ E1 < · · · < Ek with k ∈ N. Thus, in
contrast to all spaces considered up to this point, the norm of Tsirelson space is implicitly
defined – it has been recently proved [25] that an explicit finitary definition is not possible
–. The importance of Tsirelson space extends beyond these considerations. As Casazza
and Shura state already in the preface of [27] about T : “His example opened a Pandora’s
box of pathological variations, and has had a tremendous effect upon the study of Banach
spaces”. And such it is indeed the case: its fruitful modifications include, among others,
the Schlumprecht space [100], which is the first arbitrarily distortable space that led to
the discovery of Hereditarily Indecomposable spaces by Gowers and Maurey [62].

What is important for us is that due to reasons to be explained in the next section

(S,S∗)1/2 = ℓ2

(T , T ∗)1/2 = ℓ2.

Tsirelson and Schreier spaces admit, of course, p-convexifications, and we will be
especially interested in their 2-convexifications T2 and S2. Another interesting variation
is the symmetrization of Tsirelson space. Recall that given a Banach space X with a basis
(en)n there is a standard procedure to construct another Banach space having (en)n as a
symmetric basis. Such space is defined, for any finitely supported vector x =

∑
n anen ,

as the completion of c00 under the norm

∥x∥S(X ) = sup
σ∈σ∞

∑
n

|an|eπ (n)


X

where σ∞ denotes the set of all permutations of N. The symmetrization of T2, denoted
T s

2 , was constructed by Casazza and Nielsen in [26] and is a reflexive Banach space with
s s ∗
symmetric basis that contains neither ℓp nor c0 [26,27]. One still has (T2 , (T2 ) )1/2 = ℓ2.



J.M.F. Castillo and R. Pino / Expo. Math. 41 (2023) 333–397 341

a

M
d
s
A
o
c
H

P

p

2.4. Hilbert spaces

As we see, ℓ2, the space of sequences x = (xn) of scalars such that ∥x∥ =
(∑

|xn|
2)1/2

plays an important role in interpolation affairs. This is, up to isometries, the only infinite-
dimensional separable Hilbert space. A Hilbert space is a complete normed space whose
norm ∥ · ∥ comes induced by an inner product (·, ·) in the form ∥x∥ = (x, x)1/2.
The orthogonal projection (which should not be linear, but it is) provides a contractive
projection onto every closed subspace. Infinite dimensional Hilbert spaces enjoy the
following properties: They are reflexive, ℓ2-saturated and isomorphic to its dual; they have
type and cotype 2, all its subspaces are complemented, have a (generalized) unconditional
basis and they only admit one type of basic sequence. Moreover, they are symplectic,
in the following sense: A real Banach space X is said to be symplectic if there is

continuous alternating bilinear map ω : X × X → R such that the induced map
Lω : X → X∗ given by Lω(x)(y) = ω(x, y) is an isomorphism onto. A symplectic
Banach space is necessarily isomorphic to its dual and reflexive. The simplest symplectic
structure is the obvious one on Y ⊕2 Y ∗ for Y a reflexive space; namely

ωY [(z, z∗), (w, w∗)] = w∗(z) − z∗(w).

A symplectic Banach space (X, ω) is said trivial if there exist a reflexive Banach space
Y and an isomorphism T : X → Y ⊕ Y ∗ such that ω(x, y) = ωY (T x, T y) for every
x, y ∈ X . Thus, Hilbert spaces admit a symplectic but trivial structure.

Hilbert spaces are easily obtainable by complex interpolation and, in particular, ℓ2
is easily obtainable by complex interpolation of Banach spaces with basis. The general
idea is that complex interpolation between a Banach space and its dual gives, in many
cases, a Hilbert space (see e.g., the comments at [95, around Theorem 3.1]). More
precisely, Watbled shows [38,110] that if X is a Köthe function space on a complete
σ -finite measure space S and we assume both that X ∩ X∗ is dense in X and that
L1(S)∩ L∞(S) ⊂ X ∩ X∗

⊂ L2(S) ⊂ X + X∗
⊂ L1(S)+ L∞(S) then (X, X∗)1/2 = L2(S).

ore precisely, given a Banach space X , we denote by X
∗

its anti-dual, namely, the
ual space X∗ endowed with the conjugate scalar multiplication α · x = αx . There are
everal results that yield a Hilbert space H as interpolated space of two Banach spaces.

typical situation occurs when H ↪→ X is continuously and densely embedded in X
r, conversely, if X ↪→ H embeds continuously and densely in H (see [49,110]). In this
ase, (X, X

∗
)1/2 = H , i.e, the interpolation of X and its anti-dual in 1/2 produces the

ilbert space H . We state this explicitly (cf. [38, Prop. 6.1]):

roposition 2.1. Let X be a Banach space and H a Hilbert space. Suppose that either
X ↪→ H or H ↪→ X define a densely continuous embedding. Then (X, X

∗
)1/2 = H. In

articular, if X is a Banach space with a monotone and shrinking basis then (X, X
∗
)1/2 =

ℓ2 with equality of norms.

2.5. Reiteration for the complex method

We need to recall the classical reiteration theorem for the complex method, since it
will play an important role in our exposition.
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Proposition 2.2. Let (X0, X1) be a pair of Banach spaces and consider, for 0 ≤ α ≤

≤ 1, the interpolated spaces (X0, X1)α and (X0, X1)β . Then, for any α ≤ θ ≤ β, the
nterpolation identity (

(X0, X1)α, (X0, X1)β
)

θ
= (X0, X1)(1−θ )α+θβ (7)

olds with equality of norms.

This was proved by Calderón in [19, 32.3] under supplementary hypothesis (see
lso [6, Th. 4.6.1]) and in full generality by Cwikel [54].

. Exact sequences of Banach spaces and complex interpolation

For background on the theory of twisted sums and diagrams and their interaction with
odern Banach space theory we refer to [8].

.1. Exact sequences of Banach spaces

An exact sequence 0 → A → B → C → 0 of Banach spaces and continuous
perators is a diagram in which the kernel of each arrow coincides with the image
f the preceding one. The simplest exact sequence is obtained taking B = A ⊕∞ C
ith embedding y → (y, 0) and quotient map (y, x) → x . Two exact sequences
→ A → B1 → C → 0 and 0 → A → B2 → C → 0 are said to be equivalent

f there exists an operator T : B1 → B2 such that the diagram

0 −−−−→ A
ı

−−−−→ B1
ρ

−−−−→ C −−−−→ 0 ⏐⏐↓T


0 −−−−→ A −−−−→ B2 −−−−→ C −−−−→ 0

is commutative. The classical algebraic 3-lemma (see [8]) shows that T must always be
n isomorphism. An exact sequence is said to be trivial, or that it splits, if it is equivalent
o 0 → A → A ⊕∞ C → C → 0. An exact sequence 0 → A → B → C → 0 splits if
nd only if ı[A] is complemented in B.

Given an exact sequence 0 → A → B → C → 0 and an operator τ : A → A′ one
an form a commutative diagram

0 −−−−→ A
ı

−−−−→ B
ρ

−−−−→ C −−−−→ 0

τ

⏐⏐↓ ⏐⏐↓ 
0 −−−−→ A′

−−−−→
ı

PO −−−−→
ρ

C −−−−→ 0

in which PO = (A′
⊕1 B)/1 with 1 = {(τa, −ıa) : a ∈ A} is the pushout space,

(a′) = (a′, 0) + 1 and ρ((a′, b) + 1) = ρb. Since PO is a categorical object, any
iagram having the form

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0⏐⏐↓ ⏐⏐↓ 

0 −−−−→ A′

−−−−→ B ′
−−−−→ C −−−−→ 0
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is actually a pushout diagram, with the meaning that the lower sequence is equivalent
o the pushout lower sequence in the diagram

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0⏐⏐↓ ⏐⏐↓ 
0 −−−−→ A′

−−−−→ PO −−−−→ C −−−−→ 0

Two equivalent sequences yield equivalent pushout sequences.

.2. Twisted sums of Banach spaces

A twisted sum of two Banach spaces Y , X is a quasi-Banach space Z having a closed
ubspace isomorphic to Y and such that the quotient Z/Y is isomorphic to X . Therefore,

twisted sum Z of Y and X yields an exact sequence 0 → Y → Z → X → 0
nd, conversely, the open mapping theorem yields that the middle space Z in an exact
equence 0 → Y → Z → X → 0 is a twisted sum of Y and X .

Kalton [68] developed first a theory of twisted sums of quasi Banach spaces through
quasi-linear maps and later [70,71,75] for twisted sums for Köthe spaces through a
special type of quasi-linear maps called centralizers (see below their definition). We
briefly outline the fundamentals of the dictionary: A map � : X → Y is called quasi-
linear if it is homogeneous and there is a constant M such that ∥�(u+v)−�(u)−�(v)∥ ≤

M∥u + v∥ for all u, v ∈ X . A quasi-linear map � : X → Y induces the exact sequence
0 → Y

ȷ
→ Y ⊕� X

π
→ X → 0 in which Y ⊕� X denotes the vector space Y × X endowed

with the quasi-norm ∥(y, z)∥� = ∥y − �(z)∥ + ∥z∥. The embedding is ȷ (y) = (y, 0)
while the quotient map is π (y, z) = z. Exact sequences 0 → Y → Z → X → 0 of
Banach spaces correspond to a special type of quasi-linear maps, called z-linear [14] or
1-linear [8], which are those satisfying ∥�(

∑n
i=1 ui ) −

∑n
i=1 �(ui )∥ ≤ M

∑n
i=1 ∥ui∥ for

all finite sets u1, . . . , un ∈ X . Thus, when F is z-linear, the quasinorm above is equivalent
to a norm [39, Chapter 1]. On the other hand, the process to obtain a z-linear map out
from an exact sequence 0 → Y

ı
→ Z

ρ
→ X → 0 of Banach spaces is as follows: obtain a

homogeneous bounded selection b : X → Z for π and then a linear selection ℓ : X → Z
for ρ. Then � = b − ℓ is a z-linear map. The commutative diagram

0 −−−−→ Y
ı

−−−−→ Z
ρ

−−−−→ X −−−−→ 0 ⏐⏐↓T


0 −−−−→ Y −−−−→

ȷ
Y ⊕ω X −−−−→

π
X −−−−→ 0

is obtained by setting T : Z → Y ⊕ω X as T (x) = (x − ℓρx, ρx).
Two quasi-linear maps F, F ′

: X → Y are said to be equivalent, something that will
be denoted F ≡ G, if the difference F − F ′ can be written as B + L , where B : X → Y
is a homogeneous bounded map (not necessarily linear) and L : X → Y is a linear map
(not necessarily bounded). Of course two quasi-linear maps are equivalent if and only if

the associated exact sequences are equivalent.
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Let X be a Köthe function space. A centralizer on X is a homogeneous map � :

X → L0(µ) for which there is a constant C(�) such that, given f ∈ L∞(µ) and x ∈ X ,
( f x) − f �(x) ∈ X and ∥�( f x) − f �(x)∥X ≤ C(�)∥ f ∥∞∥x∥X . A centralizer � on

X generates an exact sequence

0 −−−−→ X
ȷ

−−−−→ X ⊕� X
π

−−−−→ X −−−−→ 0

where X ⊕� X = {( f, x) ∈ L0 × X : f − �x ∈ X} endowed with the quasi-
orm ∥( f, x)∥� = ∥ f − �x∥X + ∥x∥X , with inclusion ȷ (y) = (y, 0) and quotient
ap π ( f, x) = x . A centralizer is trivial if the exact sequence its induces is trivial.
amely, a centralizer � : X → L0(µ) is trivial if and only if there exists a linear map

L : X → L0(µ) such that � − L is a bounded map from X to X . Two centralizers �

nd �′ defined on X are boundedly equivalent if � − �′ is bounded as map from X to
X .

.3. Differentials of interpolation processes

Interpolation methods do not provide by themselves twisted sums, in general, since
here is not much that can be done with just one interpolator. One needs at least two
nevertheless, standard interpolation methods do not just provide one interpolator, but
wo or infinitely many). In [32] we developed an abstract theory to cover that case, and
e briefly reproduce it here. Let (9, 8) be a couple of interpolators defined on a space
obtained from a pair of spaces (X0, X1). We consider them in that order: first 8, then

. So we first consider the interpolation space 8[H]. Then, we can form the pushout
iagram

0 −−−−→ ker 8 −−−−→ H 8
−−−−→ 8[H] −−−−→ 0

9

⏐⏐↓ ⏐⏐↓ 
0 −−−−→ 9[ker 8] −−−−→ PO −−−−→ 8[H] −−−−→ 0

(8)

in which we see that PO is a twisted sum of 9[ker 8] and 8[H]. Precisely, if B8 denotes
a homogeneous bounded selection for 8 then the lower sequence is generated by the
quasilinear map �9,8 = 9 B8 so that PO = 9[ker 8] ⊕�9,8

8[H].

Definition 3.1. The map �9,8 will be called the differential of the interpolation process
generated by the two interpolators (9, 8), and the space d�9,8 = 9[ker 8]⊕�9,8

8[H]
will be called the associated derived space.

The following problem is simultaneously deep and fuzzy:

Problem 1. Does an interpolation method provide derived twisted sum spaces?

3.4. Differentials of complex interpolation processes

If we focus on the complex interpolation method for pairs as described above (in
which H = C(X0, X1) is the associated Calderón space), the first interpolator is the
evaluation map δ : C(X , X ) −→ 6 and δ [C(X , X )] = X . Schechter [99] observed
θ 0 1 θ 0 1 θ
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that the evaluation of the nth derived function map δ
(n)
θ : C(X0, X1) −→ 6 provided new

ignificative interpolators. The meaning of “significative” here can be condensed in the
ollowing cornerstone result (see [22]):

roposition 3.2. δ′

θ : ker δθ −→ Xθ is bounded and onto for 0 < θ < 1.

roof. The crucial property we require from C(X0, X1) is that if ϕ : S −→ D is a
onformal equivalence vanishing at θ , then ker δθ = ϕ · C(X0, X1), in the sense that
very f ∈ C(X0, X1) vanishing at θ has a factorization f = ϕ g, with g ∈ C(X0, X1)
nd ∥g∥ = ∥ f ∥. If f ∈ ker δθ and we write f = ϕ g then f ′

= ϕ′g + ϕg′ and therefore
′

θ ( f ) = ϕ′(θ )δθ (g), hence ∥δ′

θ : ker δθ −→ Xθ∥ ≤ |ϕ′(θ )|. That δ′

θ maps ker δθ onto
Xθ is also clear: if x ∈ Xθ , then x = g(θ ) for some f ∈ C(X0, X1) and x is then the
erivative of ϕ(θ )−1ϕ f at θ . □

Consequently, for each θ ∈ (0, 1) there is a pushout diagram

0 →→ ker δθ

δ′
θ

↓↓

→→ C(X0, X1)

↓↓

δθ →→ Xθ
→→ 0

0 →→ Xθ
→→ PO →→ Xθ

→→ 0

(9)

and therefore whenever X is isomorphic to a space Xθ = (X0, X1)θ obtained by
omplex interpolation applied to a pair (X0, X1) there is always an exact sequence
0 →→ X →→ Z →→ X →→ 0 , more precisely

0 →→ Xθ
→→ Xθ ⊕δ′

θ Bθ
Xθ

→→ Xθ
→→ 0 (10)

where Bθ is a homogeneous bounded selection for δθ . The exact sequence is or not trivial
epending on whether the quasilinear map �θ = δ′

θ Bθ can be approximated by a linear
ap.

.5. Twisted Hilbert spaces

A twisted Hilbert space is a Banach space that is a twisted sum of two Hilbert spaces.
amely, the middle space Z in an exact sequence 0 →→ H →→ Z →→ H ′ →→ 0

n which H and H ′ are Hilbert spaces. Things turn out spicy when it was shown
hat there exist twisted Hilbert spaces not isomorphic to Hilbert spaces. This was first
roved by Enflo, Lindenstrauss and Pisier [58], with the following construction: they
btain quasi-linear map gn : ℓn

2 → ℓ2n

2 increasingly (in n) far from linear maps.
ith these, they constructed the (finite dimensional) spaces ℓ2n

2 ⊕gn ℓn
2 to then form the

pace ℓ2
(
ℓ2n

2 ⊕gn ℓn
2

)
. Thus, ELP = ℓ2(N, Fn) for certain finite dimensional spaces Fn .

owever, the construction of paramount importance to our purposes is that of the Kalton–
eck space Z2 presented in [75]. And it is so because the space Z2 was constructed
btaining a quasi-linear maps KP : ℓ2 → ℓ2 that cannot be approximated by linear maps.
his map, called the Kalton–Peck map, is

KP(x) = 2x log
|x |
∥x∥
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The maverick argument that makes all that work is that, since KP(en) = 0, the only
linear map that can be close to KP is one having the form L(en) = λnen for a certain
bounded sequence (λn): The idea is averaging an arbitrary linear map L that is at finite
distance from � to get a new linear map L ′ at the same distance from � as L and such
that L ′(εx) = εL ′(x) for every ε ∈ {−1, +1}

N. It is straightforward that a linear map
with that property must have the form L ′(x) = (λn xn) for some sequence λ (see [8,22] or
else [38] for details). Done that, the rest is simple: ∥KP(

∑N en) − L(
∑N en)∥ ≤ M

√
N

is mandatory for some M < +∞: but ∥L(
∑N en)∥ = ∥

∑
λnen∥ ≤ C

√
N since (λn) is

bounded while ∥KP(
∑N en)∥ ∼ N

√
N so no bound M is possible.

Why this map is interesting? Because is the differential map that corresponds to the
pair (ℓ∞, ℓ1). Indeed, a selector for the interpolator δ1/2 acting on the pair (ℓ∞, ℓ1) can

e easily given as follows: assume x is positive and ∥x∥2 = 1 and define B(x)(z) =

x2z
∈ C(ℓ∞, ℓ1). Therefore, an associated differential is B(x)′(1/2) = 2x log x which,

fter suitable homogenization, yields �(x) = KP(x).
Observe that an exact sequence 0 →→ ℓ2 →→ Z →→ ℓ2 →→ 0 splits if and

only if Z is a Hilbert space. Equivalently, ℓ2 ⊕F ℓ2 is (isomorphic to) a Hilbert space if
and only if F is at finite distance from a linear map. Thus, a way for obtaining nontrivial
sequences as above is to show that Z is not a Hilbert space. This makes important
to determine which properties twisted Hilbert spaces enjoy. Are twisted Hilbert spaces
similar to Hilbert spaces in some sense or can they be very different? Both. Obviously,
all 3-space properties enjoyed by Hilbert spaces, such as superreflexivity, near Hilbert etc
(see [39]) are shared by all twisted Hilbert spaces. On the other hand, there are obvious
properties that no twisted Hilbert space can have: those implying that copies of ℓ2 are
omplemented, such as Maurey extension property. In between, one encounters

• Properties of Hilbert spaces that some nontrivial twisted Hilbert enjoy but that we do
not know whether every twisted Hilbert space enjoys, such as: (1) to be isomorphic
to its dual, (2) to be isomorphic to its square; (3) to be isomorphic to its hyperplanes;
(4) to admit complex structures [34]; (5) to be a weak Hilbert space; (6) to be
ergodic [60].

• Properties that we do not know if can be possessed by a nontrivial non-Hilbert
twisted Hilbert space, such as to have GL-l.u.st. [72] (see below) or to be prime
(i.e. isomorphic to its infinite dimensional complemented subspaces).

• Properties P for which it is known that a twisted Hilbert space with P must be
Hilbert, such as to have unconditional basis (proved by Kalton [72]); to have type
2 or to have cotype 2 in either case the canonical copy of ℓ2 is complemented by
Maurey extension theorem.

For instance, the Kalton–Peck space Z2 has properties (1, 2, 4) [34,75] but not (5) [39,
pp. 95]; whether Z2 has property (3) is a long-standing problem (see Section 6.6). The
Enflo–Lindenstrauss–Pisier space has property (3), not (5) and we do not know about
the rest. The twisted Hilbert constructed by Suárez in [106] has property (5) and, thus,
has (6) by a result of Anisca [4]. We shall review this example in Section 9. Kalton
and Swanson [76] solved the problem raised by Weinstein [111] by showing Z2 is
a symplectic space with a nontrivial structure and we shall return later to this topic.

We shall explain later that all twisted Hilbert spaces generated with a centralizer are
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isomorphic to their duals. More precisely: if X is a Köthe space and (X, X∗)1/2 = H is
Hilbert space with associated differential �1/2 then the twisted Hilbert space H ⊕�1/2 H

s isomorphic to its dual.

roblem 2. Is every twisted Hilbert space isomorphic to its dual?

The space ELP is the only twisted Hilbert space in sight for which we do not know
f it can be generated with a centralizer, so it makes sense to ask:

roblem 3. Is ELP isomorphic to its dual?

We refer the reader to [24] for an authoritative account of approximation properties
n Banach spaces. We will need the Bounded Approximation Property (BAP), the Finite
imensional Decomposition (FDD) (there exist a sequence of closed subspaces (Xn)n of

X such that any x ∈ X can be represented uniquely as x =
∑

∞

n=1 xn , where xn ∈ Xn for
all n ∈ N) and the basis; as well as their unconditional variations: Unconditional Finite
Dimensional Decomposition (UFDD) if, for every x ∈ X , the expansion x =

∑
∞

n=1 xn
in the FDD converges unconditionally and the notion of unconditional basis. Note that
a (unconditional) basis for X is just an (unconditional) FDD where dim(Xn) = 1 for all
n ∈ N.

All twisted Hilbert spaces generated with a centralizer have an unconditional 2-FDD
formed by the subspaces Fn = [(en, 0), (0, en)] (in [106] is already observed that the
ectors (0, en)n form an unconditional basis for its closed span): pick a finite sequence
f elements fn = (un, vn) ∈ Fn and pick εn ∈ {−1, +1}. One has:∑ εnλn fn

 =

(∑ εnλnun,
∑

εnλnvn

)
=

∑ εnλnunen − �
(∑

εnλnvnen

)+

∑ εnλnvnen


=
∑ εnλnunen − (εn) · �(

∑
λnvnen)

+(εn) · �(
∑

λnvnen) − �
(

(εn) · (
∑

λnvnen)
) 

+

∑ λnvnen


≤

(εn) ·

∑
λnunen − (εn) · �(

∑
λnvnen)


+

(εn) · �(
∑

λnvnen) − �
(

(εn) · (
∑

λnvnen)
)

+

∑ λnvnen


≤

∑ λnunen − �(
∑

λnvnen)
+ C(�)

∑ λnvnen


+

∑ λnvnen


≤ (C(�) + 1)

∑ λn fn

 .

Consequently, twisted Hilbert spaces generated with a centralizer have a basis (in
particular, Z2 has a basis [75]). The space ELP has BAP since ELP = ℓ2(N, Fn). It
makes once again sense to ask:
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Problem 4. Does every twisted Hilbert space have the BAP?

3.6. Derived spaces and differentials

We are ready to resume the construction of the derived space (cf. [22, Proposition 7.2]
and [38, Proposition 3.2]).

Proposition 3.3.

d�θ
Xθ = Xθ ⊕�θ

Xθ

= {(w, x) ⊂ 6 × Xθ : w − �θ x ∈ Xθ }

≃ {( f ′(θ ), f (θ )) : f ∈ C(X0, X1)}.

roof. Keep in mind that �θ = δ′

θ Bθ . Given f ∈ C(X0, X1), since f −Bθ ( f (θ )) ∈ ker δθ ,
y Proposition 3.2 we have

f ′(θ ) − �θ ( f (θ )) = δ′

θ ( f − Bθ ( f (θ ))) ∈ Xθ ,

ence
(

f ′(θ ), f (θ )
)

∈ Xθ ⊕�θ
Xθ . Conversely, if (w, x) ∈ Xθ ⊕δ′

θ Bθ
Xθ then Bθ x ∈

(X0, X1). Since w − �θ x ∈ Xθ , there exists g ∈ ker δθ such that w − �θ x = g′(θ ).
hus, picking f = Bθ x + g we obtain f (θ ) = x and f ′(θ ) = w. To prove the
quivalence of quasinorms, pick (w, x) ∈ Xθ ⊕�θ

Xθ and f ∈ C(X0, X1) with ∥ f ∥ ≤

dist( f, ker δθ ∩ ker δ′

θ ) such that w = f ′(θ ) and x = f (θ ). Then ∥x∥Xθ
= dist( f, ker δθ )

nd
∥w − �θ x∥Xθ

= ∥δ′

θ ( f − Bθ x)∥Xθ
.

ince f − Bθ x ∈ ker δθ , we get

∥(w, x)∥d ≤ ∥δ′

θ | ker δθ
∥(1 + ∥Bθ∥)∥ f ∥ + ∥ f ∥

≤ 2(∥δ′

θ | ker δθ
∥(1 + ∥Bθ∥) + 1)dist( f, ker δθ ∩ δ′

θ ),

nd there exists a constant C so that dist( f, ker δθ ∩δ′

θ ) ≤ C∥(w, x)∥ by the open-mapping
heorem. □

And since ideas are more powerful that realizations, any Banach space X such that
X, X∗)1/2 is a Hilbert space generates a differential �1/2 and then a twisted Hilbert
pace. The following problem is a little less ambitious than Problem 2:

roblem 5. Let X be a Banach space such that (X, X∗)1/2 = H is a Hilbert space with
ssociated differential �. Is H ⊕� H isomorphic to its dual?

Let us transport these ideas to the abstract setting.

.7. The abstract setting

The abstract setting is sometimes clearer than any specific case. Let (9, 8) be a
air of interpolators on a space H, let ⟨9, 8⟩ : H → 6 × 6 be the map defined

y ⟨9, 8⟩ f = (9 f, 8 f ), and let us write X8 = 8[H] and X9,8 = ⟨9, 8⟩[H] =
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{(9( f ), 8( f )) : f ∈ H}, both endowed with the respective quotient norms. One thus
has the following commutative diagram with exact rows and columns:

0 0⏐⏐↓ ⏐⏐↓
ker 9 ∩ ker 8 ker⟨9, 8⟩⏐⏐↓ ⏐⏐↓

0 −−−−→ ker 8 −−−−→ H 8
−−−−→ X8 −−−−→ 0

9

⏐⏐↓ ⏐⏐↓⟨9,8⟩


0 −−−−→ 9[ker 8] −−−−→

ı
X9,8 −−−−→

π
X8 −−−−→ 0⏐⏐↓ ⏐⏐↓

0 0

(11)

As we know, the differential associated to the pair (9, 8) is the quasilinear map
9,8 = 9 B8, where B8 is a homogeneous bounded selection for 8. We have the

following generalization of Proposition 3.3 (cf. [32]):

d�9,8 = {(w, x) ∈ 6 × X8 : w − �9,8x ∈ 9[ker 8]}

≃ {(9( f ), 8( f )) : f ∈ H}

= X9,8

(with equivalence of quasinorms).

3.8. Reiteration results for differential maps

The reiteration formula (7) for the complex method has the following counterpart for
differential maps:

�θ = (β − α)�(1−θ)α+θβ .

In [38, Prop. 3.7] there is a proof via factorization for Köthe spaces. We cover now the
general case.

Proposition 3.4. Let (X0, X1) be a pair of Banach spaces and α < θ < β. Denote
by �t the differential associated to (X0, X1)t and �̂t the differential associated to(

(X0, X1)α, (X0, X1)β
)

t
. If (X0, X1)(1−θ )α+βθ =

(
(X0, X1)α, (X0, X1)β

)
θ

then

�̂θ = (β − α)�(1−θ)α+θβ .

roof. Denote by Xα = (X0, X1)α and Xβ = (X0, X1)β and note that given f ∈

(X0, X1), the operator C : C(X0, X1) → C(Xα, Xβ) given by

C( f )(z) = f
(
(1 − z)α + zβ

)
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is bounded with ∥C( f )∥ ≤ ∥ f ∥ (see [19, 32.3]). Consider now a homogeneous
bounded selection B : X (1−θ )α+βθ → C(X0, X1) for the evaluation operator δ(1−θ )α+βθ :

(X0, X1) → X (1−θ )α+βα . Taking into account the reiteration identity X (1−θ )α+βθ =

Xα, Xβ)θ , we conclude that the map C B : (Xα, Xβ)θ → C(Xα, Xβ), defined for each
x ∈ X (1−θ)α+βθ by

C B(x)(z) = B(x)
(
(1 − z)α + βz

)
,

s a homogeneous bounded selection for the evaluation map δ̂θ : C(Xα, Xβ) → (Xα, Xβ)θ .
herefore, the differential map �̂θ is defined, for each x ∈ (Xα, Xβ)θ , by:

�̂θ (x) = δ̂′

θC B(x)(z) = δ̂′

θ B(x)
(
(1 − z)α + βz

)
= B ′(x)

(
(1 − z)α + βz

)
(−α + β)|z=θ

= (β − α)δ′

((1−θ )α+βθ ) B(x)(z)

= (β − α)�(1−θ)α+βθ . □

.9. Differentials for p-convexifications

This especially interesting situation was treated from the interpolation side in 1.3.
e obtain now the associated differential. Since the p-convexified space X (p) of a
öthe space X can be identified with the interpolated space (ℓ∞, X )1/p, we have

hat any positive and normalized x ∈ X (p) admits a factorization of the form x =

0(x)1−1/pa1(x)1/p, where a0(x) = 1supp(x) ∈ ℓ∞ is the indicator function on the
upport of x and a1(x) = x p

∈ X (see [38, Prop. 3.6] for details). In particular,
x∥1/p = ∥a0(x)∥1−1/p

ℓ∞
∥a1(x)∥1/p

X = ∥x p
∥

1/p
X = ∥x∥X(p) . Thus, for normalized and

ositive x ∈ X (p) the map B(x)(z) = a0(x)1−za1(x)z is an homogeneous bounded
election for the evaluation map on 1/p, hence

�(p)(x) = δ′

1/p B(x)(z) = x log
a1(x)
a0(x)

= x log x p
= px log x .

For general x ∈ X (p) we may define the selection B̂(x)(z) = sign(x)∥x∥(p) B( |x |

∥x∥(p)
)(z),

which yields the associated differential

�(p)(x) = px log
(

|x |

∥x∥X(p)

)
.

3.10. The butterfly lemma

The formula for the differential associated to a p-convexification is a particular case
f a phenomenon called in [44] “the butterfly lemma” that we explain now. We assume
e are dealing with a Köthe space X such that (X, X

∗
)1/2 = ℓ2. We have, by reiteration,

he following interpolation identities

(X (p), X∗

(p))1/2 =

(
(ℓ∞, X )1/p, (ℓ1, X∗)1/p

)
1/2

=

(
(X, X∗)1/2, (ℓ∞, ℓ1)1/2

)
1/p

= ℓ2

et us consider the interaction between the associated differentials to the three scales
nvolved:
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• Let �X be the differential associated to the scale (X, X
∗
) at 1/2.

• Let �(p) be the differential associated to the scale (X (p), X∗

(p)) at 1/2.
• And, as always, let KP be the differential associated to the scale (ℓ∞, ℓ1) at 1/2.

The Butterfly Lemma [44, Prop. 8] states that then

�(p) = (1 −
1
p

)�X +
1
p

KP. (12)

The Butterfly Lemma can be regarded as a reiteration formula for differential maps
f interpolation scales (see [44, Lemma 3]).

. The Rochberg spaces

The paper [19] of Calderón established in its point 1 the foundations for abstract
nterpolation. The foundations were expanded by Schechter in [99] since he considers
s interpolators distributions with compact support; in particular the evaluation of the
th-derivative. Still, compatibility conditions between several interpolators and their
onnection with exact sequences and twisted sums did not begin to emerge until [55].
n that paper are posed questions about the existence of the associated differential,
f the derived space and its representations. For instance, the problem of whether
roposition 3.3 (or its generalized abstract form) was true appears formulated in [55,
roblem VIII.6]. The work of Kalton, mostly [70,71], pushed hard in the right direction:

he mysterious �-operator of [55] is the associated differential to the interpolation
roblem and a quasilinear map that generates a twisted sum that is the derived space.
he paper [22] articulated these ideas in the notion of compatible interpolators, obtained
roposition 3.3 in [22, Proposition 7.2] and showed that the standard interpolation
ethods (K- and J- real method, complex method) fitted into this scheme. The setting

eached cruising speed with the work of Rochberg [97], who introduced the successive
ifferentials and their associated derived spaces, from now on called Rochberg spaces.

.1. Rochberg spaces for the complex method

The fundamental idea of Rochberg [97] is to consider for each z ∈ S the space formed
y the arrays of the truncated sequence of the Taylor coefficients of the elements of
(X0, X1), namely

Rn = Rn(X0, X1)z =

{(
f (n−1)(z)
(n − 1)!

, . . . , f (1)(z), f (z)
)

: f ∈ C(X0, X1)
}

ndowed with the natural quotient norm. We will omit the pair (X0, X1) and the point
z from now on unless there is absolute necessity. In this form, the space R1 of arrays
f length one is the space of the values of the functions of C(X , X ) at z, namely,
0 1
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the interpolated space X z and the space R2 of arrays of length two at z constitutes the
derived space d�z .

Fix z. An idea, implicit in [97] and explicit in [17], about the spaces Rn is that they
can be arranged into exact sequences in a very natural way. Indeed, if for 1 ≤ n, k < m
we denote by ın,m : 6n

→ 6m the inclusion on the left given by ın,m(xn, . . . , x1) =

(xn, . . . , x1, 0 . . . , 0) and by πm,k : 6m
→ 6k the projection on the right given by

m,k(xm, . . . , xk, . . . , x1) = (xk, . . . , x1), then πm,k restricts to an isometric quotient map
of Rm onto Rk and ın,m is an isomorphic embedding of Rn into Rm [17, Proposition

(a)], which is even an isometric space when the base domain is the complex unit circle
instead of the unit strip [97, Proposition 3.1]. Let us rescue here Rochberg’s original

roof.

ochberg’s proof. For the reasons we have just explained, we have to set as base
omain the complex unit circle D. Let T = ∂D be the unit sphere. Consider the arcs

A0 = {eiθ
: 0 < θ < π} and A1 = {eiθ

: π < θ < 2π} and set Xk on Ak , k = 0, 1, so
hat ∥ · ∥θ = ∥ · ∥k when θ ∈ Ak . Fix 6 as ambient space and then form the Calderón
pace D(X0, X1) of holomorphic functions f : D −→ 6 having radial boundary values
nd such that

∥ f ∥ = sup{∥ f (eiθ )∥θ : eiθ
∈ T} < ∞

long this proof we will consider the associated Rochberg spaces

Rn =

{(
f (n−1)(0)
(n − 1)!

, . . . , f (1)(0), f (0)
)

: f ∈ D(X0, X1)
}

ow, it is enough to show that if (x, 0, . . . , 0) ∈ Rn+1 then x ∈ R1 with ∥x∥R1 =

(x, 0, . . . , 0)∥Rn+1 . To this end, pick f ∈ D(X0, X1) such that f (k)(0) = 0 for k < n
nd f (n)(0) = n!x . This f has a zero of order n − 1 at 0 and therefore f = zn−1g for
ome g ∈ D(X0, X1) with ∥g∥D(X0,X1) = ∥ f ∥D(X0,X1). We are thus done since

x =
1
n!

f (n)(0) =
n!

n!
g(0) = g(0). □

The proof at any other z ∈ D only requires ad-hoc modifications. However, if one
ttempts to perform this same proof on an arbitrary point z of either S (as in [17, lemma
]) or an unbounded domain U of the complex plane then multiplication by zn is not
llowed and one has to use a conformal mapping ϕ : U → D such that ϕ(z) = 0. The
roof goes then smoothly except that a coefficient ϕ′(z)n appears. This is why, in general,
mbeddings Rk −→ Rn for k < n are not isometric. In [9, Section 6.4] the reader can
ound the general change of variable formulae from a domain U to D, something that is,
n its essence, a combination of Chain and Leibnitz rule.
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All together, see [17, Theorem 4], for each n, k ∈ N there is an exact sequence of
Banach spaces and operators

0 −−−−→ Rn
ın,n+k

−−−−→ Rn+k
πn+k,k

−−−−→ Rk −−−−→ 0 (13)

This sequence can be described via its associated differential. If 1k denotes the
nterpolator 1k =

1
k!

δk and B(k−1,...,0) is a homogeneous bounded selector for the
nterpolator ⟨1k−1, . . . ,10⟩ then the differential associated to the sequence (13) is, as

usual, the map Rk −→ 6n defined as

�k,n = ⟨1n+k−1, . . . ,1k⟩B(k−1,...,0).

e can reformulate this construction: let us set the map τ(n,0]( f ) =

(
f (n−1)

(n−1)! , . . . , f
)

. Fix
∈ (0, 1) and, for each x = (xk−1, . . . , x0) in Rk , select fx in the Calderón space such

that x = τ(k,0] fx (z) with ∥ fx∥ ≤ (1 + ε)∥x∥ – something we will call a (1 + ε)-extremal
for x , or just an extremal if no confusion arises –. Let us do that in such a way that fx

depends homogeneously on x . Thus,

�k,n(x) = τ(n+k,k] fx (z).

It is clear that this map depends on the choice of fx , but different choices of fx only
produce bounded perturbations of the same map. The map �k,n defined in this way is a
quasilinear Rk ↷ Rn and defines the twisted sum space

Rn ⊕�k,n Rk =
{
(y, x) ∈ 6n+k

: y − �k,n(x) ∈ Rn, x ∈ Rk
}
,

endowed with the quasinorm

∥(y, x)∥�k,n =
y − �k,n(x)


Rn

+ ∥x∥Rk . (14)

We arrived thus far to show:

Proposition 4.1. Rn ⊕�k,n Rk = Rn+k with equivalent quasinorms.

Proof. Assume one is working at point z ∈ S. Fix a conformal mapping ϕ : S −→ D
such that ϕ(z) = 0. Pick (y, x) = (yn−1, . . . , y0, xk−1, . . . , x0) ∈ Rn+k . Since x ∈ Rk

nd (�k,n(x), x) ∈ Rn+k we get that (y, x) − (�k,n(x), x) = (y − x, �k,n(x), 0) ∈ Rn+k

nd therefore y − �k,n(x) ∈ Rn . Moreover

∥y − �k,n(x)∥Rn ≤ ∥ın,n+k∥(∥(y, x)∥Rn+k − ∥(�k,n(x), x)∥Rn+k )

≤ (∥ın,n+k∥ + 1)∥(y, x)∥Rn+k .
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Hence ∥(y, x)∥�k,n ≤ (∥ın,n+k∥ + 2)∥(y, x)∥Rn+k . As for the other containment, pick
(y, x) ∈ Rn ⊕�k,n Rk . Let f ∈ C(X0, X1) be a (1 + ε)-extremal for x so that we
may assume �k,n(x) = τ(n+k,k] fx (z) and let g ∈ C(X0, X1) be a (1 + ε)-extremal for
y − �k,n(x) ∈ Rn . We have that if Sk

−
: C −→

⋂k−1
j=0 ker 1 j is the shift map from

roposition 4.5 and (y, x) ∈ Rn+k then (y, x) is the list of Taylor coefficients of f +Sk
−

(g)
nd for some M > 0 we have

∥(y, x)∥Rn+k ≤ ∥ f + Sk
−

(g)∥C(X0,X1) ≤ (1 + ε)
(
M∥y − �k,n(x)∥Rn + ∥x∥Rk

)
. □

The Rochberg sequences (13) can be, in turn entwined in commutative diagrams [17,
heorem 4] (we omit the initial and final 0′s from now on)

Rk Rk⏐⏐↓ ⏐⏐↓
Rn −−−−→ Rn+m −−−−→ Rm⏐⏐↓ ⏐⏐↓ 
Rn−k −−−−→ Rn+m−k −−−−→ Rm

(15)

as one can readily check. The attentive reader will not leave unnoticed that the
equences of Rochberg spaces appear in different positions. For instance, in the simplest
ase

R1 R1⏐⏐↓ ⏐⏐↓
R2 −−−−→ R3 −−−−→ R1

π2,1

⏐⏐↓ ⏐⏐↓ 
R1 −−−−→

ı1,2
R2 −−−−→ R1

(16)

the sequence 0 →→ R1 →→ R2 →→ R1 →→ 0 appears both as the lowest
ow and as the left column. To know how exactly their associated differentials are related,
bserve that the lower row appearance has associated differential π2,1�1,2, while the
eft column appearance has �2,1ı1,2. The identity π2,1�1,2 = �1,1 follows from the
efinition. But knowing �2,1ı1,2 requires to know �2,1, which, in turn, requires to know a
omogeneous bounded selection B for ⟨1 , 1 ⟩. There is however another way around:
1,0 1 0
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drawing. Observe the commutative 3D diagram:

ker⟨11, 10⟩

→→

↓↓

·

↓↓

↓↓
ker 10 →→

↘↘

↓↓

H

↓↓

↓↓

→→ R1

11[ker 10] →→ R2 →→ R1

12[ker⟨11, 10⟩]

→→

·

↓↓
⟨12, 11⟩[ker 10] →→

↘↘

R3

↓↓

→→ R1

11[ker 10] →→ R2 →→ R1

Since

• 11[ker 10] = R1

• 12[ker⟨11, 10⟩] = 12[ker 11 ∩ ker 10] = R1

it becomes

ker 11 ∩ ker 10

→→

↓↓

·

↓↓

↓↓
ker 10 →→

↘↘

↓↓

H

↓↓

↓↓

→→ R1

R1 →→ R2 →→ R1

R1

→→

·

↓↓
⟨12, 11⟩[ker 10] →→

↘↘

R3

↓↓

→→ R1

→→ →→

\ 

\ --
\ ' 
R1 R2 R1
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Thus, the left column we wanted to identify is the pushout sequence in the diagram

ker 11 ∩ ker 10 −−−−→ ker 10
11

−−−−→ R1

12

⏐⏐↓ ⏐⏐↓ 
R1 −−−−→ ⟨12, 11⟩[ker 10] −−−−→ R1

and therefore we can calculate its associated quasilinear map finding a homogeneous

ounded selection V1 for ker 10
11 →→ R1 and setting 12V1. This selection, by the

magic of Proposition 3.2 (later called “compatibility”) is considerably easier than finding

a homogeneous bounded selection for H
11 →→ 11[H] . Indeed, simply realize that

V1(x) = ϕB0(x) works, and therefore V1(x)′ = ϕB ′

0 + ϕ′ B0 and then V1(x)′′ =

B ′′

0 + ϕ′ B ′

0 + ϕ′ B ′

0 + ϕ′′ B0. When evaluated at θ one gets

�(x) = 2ϕ′(θ )�1,1(x) + ϕ′′(θ )x .

amely, � is a multiple of �1,1 plus a linear map and thus � is equivalent to �1,1.
ee the examples in Sections 5–7 for more details. We cannot resist the temptation of
oncluding this section pointing out that the following question is uncharted:

roblem 6. Obtain a generalized Butterfly lemma for higher order differentials.

.2. Rochberg space for Abstract sequences of interpolators

Diagrams (15) and (11) are, from a homological bird’s eye view, identical. The process
o clarify this issue has been long and winding, starting in [17], passing through [9,31–
3], up to arrive to [85]. In its abstract formulation, let H be the space on which one
as defined a sequence (8n)n of interpolators, namely, operators 8n : H −→ 6. The
ssociated Rochberg space Rn is

Rn = ⟨8n, . . . , 81⟩[H] = {(x j ) ∈ 6n
: ∃ f ∈ H : 8 j ( f ) = x j 1 ≤ j ≤ n}

ndowed with its natural quotient norm. Alternatively, given n, k ∈ N and a finite number
f interpolators 8i : H → 6 (i = 1, . . . , n + k), consider the new interpolators
= ⟨8k+n, . . . 8k+1⟩ : H → 6n and 8 = ⟨8k, . . . 81⟩ : H → 6k to set

Rn+k = ⟨9, 8⟩[H]

The elegant simplicity of the theory developed in this way has a shortcoming, though:
he associated exact sequences are more awkward to describe, let us see why. Diagram
11) is now

ker 82 ∩ ker 81 ker⟨82, 81⟩⏐⏐↓ ⏐⏐↓
ker 81 −−−−→ H 81

−−−−→ R1

82

⏐⏐↓ ⏐⏐↓⟨82,81⟩


(17)
82[ker 81] −−−−→ R2 −−−−→ R1
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and therefore the first sequence is 0 →→ 82[ker 81] →→ R2 →→ R1 →→ 0 in-
tead of 0 →→ R1 →→ R2 →→ R1 →→ 0 . If one picks now three interpolators

83, 82, 81 and forms the cubic diagram

ker⟨83, 82, 81⟩

↓↓

ker⟨83, 82, 81⟩

↓↓

ker⟨83, 82, 81⟩

↓↓

ker⟨83, 82, 81⟩

↓↓

ker⟨82, 81⟩

↘↘

↓↓

ker⟨82, 81⟩

↓↓

↘↘
ker 81 →→

↘↘

↓↓

H

↘↘

↓↓

→→ R1

82[ker 81] →→ R2 →→ R1

83[ker⟨82, 81⟩]

↘↘

83[ker⟨82, 81⟩]

↘↘
⟨83, 82⟩[ker 81] →→

↘↘

R3

↘↘

→→ R1

82[ker 81] →→ R2 →→ R1

hen we observe that the bottom diagram for m = k = 1 and n = 2 is

83[ker⟨82, 81⟩] 83[ker⟨82, 81⟩]⏐⏐↓ ⏐⏐↓
⟨83, 82⟩[ker 81] −−−−→ R3 −−−−→ R1⏐⏐↓ ⏐⏐↓ 

82[ker 81] −−−−→ R2 −−−−→ R1

(18)

nstead of (15). The lesson to be learnt from this is the fact already underlined in [17]
hat the mystery in the entwined exact sequences lies in the embedding, not in the
uotient map. In particular, we overlooked the fact, suggested by the first sequence
0 →→ 82[ker 81] →→ R2 →→ R1 →→ 0 , that Rm could not be a subspace of
Rn when m < n, as it occurs when the interpolators are compatible. The comparison
between diagrams (15) and (18) makes this more evident, as the beautiful symmetry
present in (15) – say, R3 is simultaneously a twisted sum of R1 and R2 and of R2 and
R – disappears in (18). If we reproduce the cubic diagram working with the interpolators
1
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⟨84, 83⟩ and ⟨82, 81⟩ then we get⋂4
j=1 ker 8 j

↓↓

⋂4
j=1 ker 8 j

↓↓

⋂4
j=1 ker 8 j

↓↓

⋂4
j=1 ker 8 j

↓↓

⋂3
j=1 ker 8 j

↘↘

↓↓

⋂3
j=1 ker 8 j

↓↓

↘↘
ker⟨82, 81⟩ →→

↘↘

↓↓

H

↘↘

↓↓

→→ R2

83[ker⟨82, 81] →→ R3 →→ R2

84[
⋂3

j=1 ker 8 j ]

↘↘

84[
⋂3

j=1 ker 8 j ]

↘↘
⟨84, 83⟩[ker⟨82, 81⟩] →→

↘↘

R4

↘↘

→→ R2

83[ker⟨82, 81⟩] →→ R3 →→ R2

whose bottom face is

84[
⋂3

j=1 ker 8 j ] 84[
⋂3

j=1 ker 8 j ]⏐⏐↓ ⏐⏐↓
⟨84, 83⟩[ker⟨82, 81⟩] −−−−→ R4 −−−−→ R2⏐⏐↓ ⏐⏐↓ 

83[ker⟨82, 81⟩] −−−−→ R3 −−−−→ R2

(19)

The diagrams for n = m + k and m = u + v are

⟨8m+k , . . . , 81+v+k⟩

[⋂v+k
j=1 ker 8 j

]
⟨8m+k , . . . , 81+v+k⟩

[⋂v+k
j=1 ker 8 j

]
⏐⏐↓ ⏐⏐↓

⟨8m+k , . . . , 81+k⟩

[⋂k
j=1 ker 8 j

]
−−−−−−→ Rm+k −−−−−−→ Rk⏐⏐↓ ⏐⏐↓ 

⟨8v+k , . . . , 81+k⟩

[⋂k
j=1 ker 8 j

]
−−−−−−→ Rv+k −−−−−−→ Rk

(20)

which, as we see, are much more intricate than (15) and, probably, hide a good number

of unexpected symmetries (see [31] for an appetizer). The lesson, however, to be kept in
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e

mind that explains our interest in this abstract approach is that all the exact sequences

0 →→ ⟨8m+k, . . . , 81+k⟩

[⋂k
j=1 ker 8 j

]
→→ Rm+k →→ Rk →→ 0

are actually the lower sequence in diagram (11)
0 0⏐⏐↓ ⏐⏐↓

ker 9 ∩ ker 8 ker⟨9, 8⟩⏐⏐↓ ⏐⏐↓
0 −−−−→ ker 8 −−−−→ H 8

−−−−→ X8 −−−−→ 0

9

⏐⏐↓ ⏐⏐↓⟨9,8⟩


0 −−−−→ 9[ker 8] −−−−→ X9,8 −−−−→ X8 −−−−→ 0⏐⏐↓ ⏐⏐↓

0 0

(21)

and therefore all differentials �k,n are of the form �9,8.

4.3. Compatibility conditions

What do we need to restore this last diagram to a manageable diagram (15)? Just
ask the sequence (8n) of interpolators to be compatible. Compatibility conditions were
introduced by Carro, Cerda and Soria in [22], who strived to put in sound mainland some
of the ideas of [55]: A pair of interpolators (9, 8) defined on the same space is called
almost compatible when 9[ker 8] ⊂ X8, and it is called compatible when 9[ker 8] =

X8. After that, the identity X9,8 = d�9,8 appears in [22, Prop. 7.2] for compatible pairs
of interpolators, answering the question 6 of [55]. Our diagrammatic approach yields
that if we want the sequence 0 →→ 82[ker 81] →→ R2 →→ R1 →→ 0 to be
0 →→ R1 →→ R2 →→ R1 →→ 0 , the first compatibility condition to impose is
82[ker 81] = X81 = 81[H]. To do the same when more interpolators are involved, [23]
they say that a family of interpolators (8n, . . . , 81) is compatible if for each j ≥ 1 and
ach k ≥ 0 each subset (8k+ j , . . . , 8k+1, 8k) one has 8k+ j [ker 8k ∩ . . . ker 8k+ j−1] =

8k[H]. However, as remarked in [85] this is not enough to turn all diagrams (20) into
(15). To amend this, Moreno and Simões introduce in [85] the following notion:

Definition 4.2. The family of interpolators (8n, . . . , 81) is called compatible if:

(1) For each n ≥ 1 and each k ≥ 0 such that n + k ≤ N one has

⟨8k+n, . . . , 8k+1⟩ : ker⟨8k, . . . , 81⟩ −−−−→ ⟨8n, . . . , 81⟩[H]

is linear continuous and surjective (i.e, the pair (9, 8) of multi-interpolators
9 = ⟨8 , . . . ,8 ⟩ and 8 = ⟨8 , . . . ,8 ⟩ is compatible in the sense of [22]).
k+n k+1 k 1
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(2) Given n, k, m ∈ N such that n + k + m ≤ N , if Bn is a homogeneous bounded
selector for

⟨8n, . . . , 81⟩ : H −→ ⟨8n, . . . , 81⟩[H]

and Vn,k is a homogeneous bounded selector for

⟨8k+n, . . . , 8k+1⟩ :

k⋂
j=1

ker 8 j −→ ⟨8k+n, . . . , 8k+1⟩

⎡⎣ k⋂
j=1

ker 8 j

⎤⎦
= ⟨8n, . . . , 81⟩[H]

then

⟨8k+n+m, . . . , 8k+n+1⟩Vn,k ≡ ⟨8n+m, . . . , 8n+1⟩Bn

and show in [85, Proposition 6.1] that the family of Schechter interpolators is compatible.
Observe, however, that compatibility conditions always refer to an ordered sequence. For
instance, (9, 8) can be compatible but (8, 9) not. In fact, one has [32, Lemma 6.2] that
f the two pairs (9, 8) and (8, 9) are compatible then X8 = X9 and both �9,8 and

8,9 are bounded. But this Pandora’s box also contains a gem at its bottom since it is
mpossible not to ask, as it was done in [32] about the symmetric pairs (9, 8) and (8, 9).

part of the beautiful theory that emerged is explained in the next section. Before that,
et us dig an extra mile into the compatibility condition.

efinition 4.3. A family of interpolators (8n, . . . , 81) is called strongly compatible if:

(1) For any n, k ∈ N, there exist a bounded linear operator Sk
−

: H →
⋂k

j=1 ker 8 j

such that the following diagram is commutative

H

⟨8n ,...,81⟩
↘↘

Sk
− →→ ⋂k

j=1 ker 8 j

⟨8n+k ....,8k+1⟩

↓↓
⟨8n, . . . , 81⟩(H)

In particular, given f ∈ H we have that

⟨8n+k . . . . , 8k+1⟩(Sk
−

( f )) = ⟨8n, . . . , 81⟩( f ).

(2) For any n, k ∈ N, there exist a bounded linear operator Sk
+

:
⋂k

j=1 ker 8 j → H
such that the following diagram is commutative

H

⟨8n ,...,81⟩
↘↘

⋂k
j=1 ker 8 j

Sk
+←←

⟨8n+k ....,8k+1⟩

↓↓
⟨8n, . . . , 81⟩(H)

In particular, given f ∈ we have that

⟨8 . . . . ,8 ⟩( f ) = ⟨8 , . . . ,8 ⟩(Sk ( f )).
n+k k+1 n 1 +
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The maps Sk
+

and Sk
−

will be referred to as the shift maps. Note that in the abstract
etting, these shift maps are not necessarily the inverse of the other, but in most natural
ases they will be.

roposition 4.4. Every strongly compatible family is compatible.

roof. Let n ≥ 1 and k ≥ 0 be fixed and f ∈
⋂k

j=1 ker 8 j . Since the family is strongly
ompatible, there exist g ∈ H such that g = Sk

+
( f ) and

(8n+k, . . . , 8k+1)( f ) = ⟨8n, . . . , 81⟩(g) ∈ ⟨8n, . . . , 81⟩(H).

oundedness follows by the inequality ∥g∥ = ∥Sk
+

f ∥ ≤ C∥ f ∥. To show that such map
s surjective we use the other shift: given x = (xn, . . . , x1) ∈ ⟨8n, . . . , 81⟩(H) there exist
f ∈ H such that ⟨8n, . . . , 81⟩( f ) = x . Then Sk

−
( f ) ∈

⋂k
j=1 ker 8 j and

⟨8n+k . . . . , 8k+1⟩(Sk
−

( f )) = ⟨8n, . . . , 81⟩( f ) = x .

o prove the second condition just take Bn : ⟨8n, . . . , 81⟩[H] → H and Vn,k :

8n+k, . . . , 8k+1⟩[H] →
⋂k

j=1 ker 8 j bounded homogeneous selections of the maps
⟨8n, . . . , 81⟩ and ⟨8n+k, . . . , 8k+1⟩|⋂k

j=1 ker 8 j
, respectively. Then note that Sk

−
(Bn) is

an homogeneous bounded selection of

⟨8n+k, . . . , 8k+1⟩ :

k⋂
j=1

ker 8 j → ⟨8n, . . . , 81⟩[H] (22)

since given x ∈ ⟨8n, . . . , 81⟩[H] one has

⟨8n+k . . . . , 8k+1⟩(Sk
−

(Bn(x))) = ⟨8n, . . . , 81⟩(Bn(x)) = x .

Moreover, considering the family (8m+n, . . . , 81) we have

⟨8n+m+k, . . . , 8k+1⟩(Sk
−

(Bn(x))) = ⟨8m+n, . . . , 81⟩(Bn(x))

which means that 8l+k(Sk
−

(Bn(x))) = 8l(Bn(x)) for all n + 1 ≤ l ≤ n + m, and thus

⟨8k+n+m, . . . , 8k+n+1)Sk
−

(Bn(x)⟩ = ⟨8n+m, . . . , 8n+1⟩Bn(x).
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Since any two bounded homogeneous selections of the map (22) define boundedly
equivalent quasilinear maps, the result follows:(8k+n+m, . . . ,8k+n+1)Vn,k(x) − (8k+n+m, . . . , 8k+n+1)(Sk

−
(Bn(x)))


m

= ∥(8k+n+m, . . . , 8k+n+1)(Vn,k − Sk
−

(Bn))(x)∥m

≤ ∥(8k+n+m, . . . , 8k+n+1)|
∩

k
j=0 ker 8 j

∥(∥Vn,k∥ + ∥Bn∥)∥x∥n. □

Now, the proof of [85] actually yields:

roposition 4.5. The Schechter interpolators (1n)n are strongly compatible.

Indeed, the key to prove the result lies in the following lemma of [17]:

emma 4.6. Let ϕ : S → D a conformal mapping vanishing at θ . Then given m and
≤ k ≤ m there exist a polynomial Pk of degree at most m such that 1i (Pk(ϕ)) = δi,k

or every 0 ≤ i ≤ m.

Set now the following linear bounded operators:

• Sk
−

: C −→
⋂k−1

j=0 ker 1 j given by Sk
−

( f ) = Pk(ϕ) f .
• Sk

+
:
⋂k−1

j=0 ker 1 j → C given by Sk
+

( f ) = Sk
+

(ϕk g) =
∑n−1

j=0 1k+ j (ϕk)Pj (ϕ)g.

nd check following [85] that they have the desired properties. The fact that the family of
chechter interpolators is strongly compatible together with the fact that the generalized
KMR method [56] implies that most methods (with the remarkable exception of Orbits
ethod) are based on the Schechter sequence of interpolators suggests both a specific

echnical not overwhelmingly interesting question and a woozy but quite important one:

roblem 7. Is every compatible family of interpolators strongly compatible?

roblem 8. Do there appear non-strongly compatible families of interpolators in nature?

Under compatibility, the Rochberg space associated to (8n, . . . , 81) remains unaltered
o matter which representation one chooses:

n =

{
(xn, . . . , x1) :

{
x1 ∈ 81[H]
(xn, . . . , x2) − �⟨8n ,...,82⟩,⟨81⟩(x1) ∈ Rn−1,

}

=

{
((xn, . . . , x3), (x2, x1)) :

{
(x2, x1) ∈ R2,

(xn, . . . , x3) − �⟨8n ,...,83⟩,⟨82,81⟩(x2, x1) ∈ Rn−2,

}
· · ·

= {
(
(xn, . . . , x j+1), (x j , . . . , x1)

)
:{

(x j , . . . , x0) ∈ R j ,

(xn, . . . , x j+1) − �⟨8n ,...,8 j+1⟩,⟨8 j ,...,81⟩(x j , . . . , x1) ∈ Rn− j ,
}

Moreover, as it is remarked in [85], compatibility conditions pay off making the
unch of spaces appearing in the diagrams generated by a sequence (8 , . . . ,8 ) of
n 1
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n interpolators reduce to just the n Rochberg spaces R j for 1 ≤ j ≤ n spaces. We will
see in Sections 5 and 6 that these spaces can be all isomorphic, as it occurs with the scale
of weighted ℓ2-spaces, or all non-isomorphic, as it is the case of the scale of ℓp-spaces.

4.4. Domains, ranges and inverses

The seminal question is simple: if a compatible pair (9, 8) generates the exact
sequence

0 −−−−→ R1 −−−−→ R2 −−−−→ R1 −−−−→ 0
what occurs with (8, 9), who is no longer compatible? And we keep fresh in our

fronthead the example of the pair (δ′

1/2, δ1/2) applied to the pair (ℓ∞, ℓ1) that yields the
equence

0 −−−−→ ℓ2 −−−−→ Z2 −−−−→ ℓ2 −−−−→ 0

The beautiful theory of symmetries in Rochberg diagrams surfaces crawling through
he papers [11,22,55,75] to see daylight in [32]. In the first of those papers Kalton
nd Peck observe that in the particular case of the differential KP associated to pair
δ′

1/2, δ1/2) applied to the pair (ℓ∞, ℓ1) the space {x ∈ ℓ2 : KP(x) ∈ ℓ2} endowed
ith the quasi-norm ∥x∥ = ∥KPx∥2 + ∥x∥2 is isomorphic to the Orlicz space ℓ f1
enerated by the function f1(t) = t2 log2 t . In [55] the notions of Domain and Range
or the so-called �-operator generated by some interpolation method (a precursor of
ur differential �9,8) defined on the space X appear introduced as Dom� = {x ∈

X : �(x) ∈ X} endowed with the quasi-norm ∥x∥Dom = ∥�x∥X + ∥x∥X . The range
f � is defined as Ran� = {�(x) ∈ 6 : x ∈ X} endowed with the quasi-norm
w∥Ran = inf{∥x∥X : w = �(x)}. This definition, reproduced in [22], is however a
rong one since, as [22] remarks, Ran� is not necessarily a vector space. The right
efinition is given in [11]: Ran� = {w ∈ 6 : ∃x ∈ X : w − �(x) ∈ X} endowed
ith ∥w∥Ran = inf{∥w − �(x)∥X + ∥x∥X : x ∈ X, w − �(x) ∈ X}. All this yields
omKP = ℓ f1 is a subspace of Z2 and, as identified in [11], Z2/ℓ f ≃ ℓ∗

f1
= RanKP,

hich yields another representation of Z2 as a twisted sum

0 −−−−→ ℓ f1 −−−−→ Z2 −−−−→ ℓ∗

f1
−−−−→ 0

This sequence is generated by the non-compatible pair of interpolators (δ1/2, δ
′

1/2)
ecause, as it show in [32], that is what always happens:

efinition 1. Let (9, 8) be a pair of interpolators on H. The domain and range of
9,8 are defined as follows:

Dom�9,8 = {x ∈ X8 : �9,8(x) ∈ 9[ker 8]}

ndowed with the quasi-norm ∥x∥Dom = ∥�9,8x∥9|ker 8
+ ∥x∥8 and

Ran�9,8 = {w ∈ 6 : ∃x ∈ X8, w − �9,8(x) ∈ 9[ker 8]}

ndowed with ∥w∥Ran = inf{∥w − �9,8(x)∥9|ker 8
+ ∥x∥8 : x ∈ X8, w − �9,8(x) ∈

(ker 8)}.
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Thus, everything is clear now: the maps ȷ x = (0, x) and Q(w, y) = w define an exact
equence

0 −−−−→ Dom�9,8

ȷ
−−−−→ R2

Q
−−−−→ Ran�9,8 −−−−→ 0.

and one therefore has two perfectly symmetric representations of the space R2

0

X9 = Ran�9,8

↑↑

0 →→ 9[ker 8] = Dom�8,9
→→ R2

↑↑

→→ X8 = Ran�8,9
→→ 0

8[ker 9] = Dom�9,8

↑↑

0

↑↑

(23)

These ideas can in turn be generalized as it has been done in [40]: let � : X −→ 6

e a quasilinear map X ↷ Y generating an exact sequence
0 →→ Y →→ Z →→ X →→ 0 and let us call �−1 the quasilinear map generat-

ing the “inverse” sequence

0 →→ Dom� →→ Z →→ Ran� →→ 0 .

Beyond the fact already proved in [32, Proposition 3.5] that �−1
9,8 = �8,9 the

symmetries do not end here since duality is also involved. In [40] it is proved that
(�∗)−1

= (�−1)∗, under rather acceptable conditions. A forerunner for this formula is in
[55, Corollary 3.2.1].

4.5. Commutator theorems

Let A, B be two maps (not necessarily linear or continuous). Their commutator
is defined to be the map [A, B] = AB − B A provided that all terms make sense.
Commutators are important regarding actions of groups on exact sequences since they are
derivations on the group; they are also important regarding interpolation affairs as tools to
produce operators on Rochberg spaces. This is how: Let (X0, X1) be an interpolation pair

ith ambient space 6. An operator τ : 6 −→ 6 is said to act on the interpolation scale
enerated by the pair (X0, X1), or to be an operator on the scale, if it acts continuously
s an operator X0 → X0 and X1 → X1. The following generalized commutator theorem

has been obtained in [43] and has a technical and tedious proof:

Theorem 4.7 (Generalized Commutator Theorem). Let τ be an operator acting on the
cale generated by the pair (X , X ) and fix θ ∈ (0, 1) and n ∈ N. Then
0 1
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(1) The diagonal operator

τn =

⎛⎜⎜⎜⎝
τ 0

τ

. . .

0 τ

⎞⎟⎟⎟⎠
acting as τn(x1, . . . , xn) = (τ x1, . . . , τ xn) is bounded on the Rochberg space Rn .

(2) For any k, m ∈ N such that k + m = n, there exist C > 0 so thatτk�m,k(x) − �m,k(τm x)

Rk

≤ C∥x∥Rm .

Observe that the case n = 1 is just the interpolation property for operators mentioned
at the end of Section 2.2: any operator τ : 6 → 6 such that τ [X0] ⊂ X0 and τ [X1] ⊂ X1
oundedly, satisfies that τ : R1 → R1 is bounded, i.e., the operator τ : Xθ → Xθ is
ounded; and the case n = 2 is the classical Commutator Theorem of Rochberg and
eiss [98].
However, the key to prove Theorem 4.7 is the simple observation that if τ is an

operator on the scale (X0, X1) then it induces an operator T : H −→ H defined by
T ( f )(z) = τ ( f (z)) for f ∈ C(X0, X1) and these operators makes the diagrams

H
10 →→

T

↓↓

6

τ

↓↓
H

10 →→ 6

H
⟨1n ,...,10⟩ →→

T

↓↓

6n

Tn

↓↓
H

⟨1n ,...,10⟩ →→ 6n

commute. From the pictorial point of view, the Commutator Theorem asserts the
ommutativity of the diagrams:

0 →→ Rk →→

τk

↓↓

Rn →→

τn

↓↓

Rm →→

�m,k

↙↙

τm

↓↓

0

0 →→ Rk →→ Rn →→ Rm →→

�m,k

↖↖ 0

From the hard analysis point of view, Commutator theorems are interesting since they
provide the hard-to-obtain estimate (2) above. Just to give an example, in the case of the
scale of ℓp spaces in which �m,k = KPm,k have been already computed [9,31] one hasτkKPm,k(x) − KPm,k(τm x)


Rk

≤ C∥x∥Rm .

1 1 

~ 
- - - -

1 1 1 
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Other unexpected consequences of the Commutator Theorem can be presented too:

roposition 4.8.

• Dom�1,n−1 is an interpolation space for the pair (X0, X1).
• Ran�n−1,1 is an interpolation space for the pair (X0, X1)

roof. If x ∈ Dom�1,n−1 then �1,n−1(x) ∈ Rn−1 by definition, and we must show that
T x ∈ Dom�1,n−1, namely, that �1,n−1(T x) ∈ Rn−1. By the Commutator Theorem 4.7

e have Tn−1�1,n−1(x) − �1,n−1(T x)

Rn−1

≤ C∥x∥R1

nd thus we deduce that

�1,n−1(T x) = �1,n−1(T x) − Tn−1�1,n−1(x) + Tn−1�1,n−1(x) ∈ Rn−1.

The proof of the statement for range spaces is similar: Given x ∈ Ran�n−1,1 there
xist y ∈ Rn−1 so that x − �n−1,1 y ∈ R1. Then T (x) ∈ R1 since, by the Commutator
heorem

T (x) − �n−1,1(Tn−1 y) = T (x) − �n−1,1(Tn−1 y) + T (�n−1,1 y) − T (�n−1,1 y) ∈ R1. □

Since Domain and Range spaces behave as interpolation spaces with respect to the
riginal pair (X0, X1) it makes sense to ask

roblem 9. Do Domains and Ranges form interpolation scales on their own?

This is, we admit, a slightly vague question. We would probably mean to find out
hether (DomKPp, DomKPp∗ )1/2 = DomKP2 or rather (DomKPp, DomKPp∗ )1/2 = ℓ2.

n the light of [9], probably both things are true.

.6. Harmless and lethal variations of Rochberg spaces

The abstract approach makes impossible to avoid the following question: Does it
ake any difference to work with the sequence of interpolators (δn) instead of (1n)?
amely, what occurs if instead of using the Taylor coefficients of a function one simply
ses the successive values of the derivatives? This phenomenon is invisible when only
ne interpolator is considered, since the interpolation space 8[H] and λ8[H] are “the
ame”. In general, things depend on the representation one has in mind for Rochberg
paces. If one considers Rn = H/ ker⟨8n, . . . , 81⟩ it is clear that replacing (8n) by
λn8n) yields the same spaces. If, however, one considers, say, R2 = {(82x, 81x) :

x ∈ H} = {(w, x) ∈ 6 × 81[H] : w − 82 B81 x ∈ 82[ker 81]} then (82, 81)
nd (82, −81) can provide different Rochberg spaces since it can perfectly occur that
w, x) ∈ R2 but (w, −x) /∈ R2. The Rochberg spaces are, however, clearly isomorphic
nd the isomorphisms are “natural”:
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Proposition 4.9. Let (λn)n be a sequence of non null scalars. The Rochberg spaces
associated to a sequence (8n) of interpolators and those associated to the sequence of
interpolators (λn8n) are isomorphic.

roof. Let us show first that the Rochberg space R2 associated to the pair (82, 81)
nd the Rochberg space R2(λ2, λ1) associated to (λ282, λ181) are isomorphic. If B1 is a
omogeneous bounded selection for 81 then λ−1

1 B1 is a homogeneous bounded selection
or λ181. Therefore, if the differential associated to the couple (82, 81) is � = 82 B1,
he associated differential corresponding to the pair (λ282, λ181) is λ2λ

−1
1 �. Since there

s a commutative diagram

0 →→ 82[ker 81]

λ2

↓↓

→→ 82[ker 81] ⊕� X81

↓↓

→→ X81
→→

λ1

↓↓

0

0 →→ λ282[ker λ181] →→ λ282[ker λ181] ⊕
λ2λ−1

1 �
Xλ181

→→ X81
→→ 0

and both the left and right downward arrows are isomorphisms, the 3-lemma implies
that the middle arrow is also an isomorphism, and thus

R2 = 82[ker 81] ⊕� X81 ≃ λ282[ker λ181] ⊕
λ2λ−1

1 �
Xλ181 = R2(λ2, λ1).

We will call (λ2, λ1) that middle arrow isomorphism (w, x) → (λ2w, λ1x). Let us
how next that the Rochberg space R3 associated to (83, 82, 81) and the Rochberg space

3(λ3, λ2, λ1) associated to (λ383, λ282, λ181) are isomorphic. Recall from diagram
18) that R3 is generated in the exact sequence
0 →→ ⟨83, 82⟩[ker 81] →→ R3 →→ R1 →→ 0 , therefore the commutativity of

the diagram

0 →→ ⟨83, 82⟩[ker 81]

(λ3,λ2)
↓↓

→→ R3

↓↓

→→ R1 →→

λ1
↓↓

0

0 →→ ⟨λ383, λ282⟩[ker λ181] →→ R3(λ3, λ2, λ1) →→ R1(λ1) →→ 0

plus the 3-lemma makes the middle vertical arrow an isomorphism. The proof goes on
inductively on n. □

These considerations are necessary to see that reiteration for the complex method
yields isomorphic Rochberg spaces. More precisely, pick a pair (X0, X1). Let us set
Xa = (X0, X1)a and Xb = (X0, X1)b. Assume that Xθ = (Xa, Xb)η. It follows from
ropositions 3.4 and 4.9 that

roposition 4.10. The Rochberg spaces, Rn(Xθ ) and Rn((Xa, Xb)η) are isomorphic.

Let us make it explicit: the sequences of interpolators are (1k)n−1
k=0 and (λk1k)n−1

k=0 yield
somorphic spaces R (X ) and R ((X , X ) ) and if T is an operator acting on the scale

1 

- -
n θ n a b η
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it follows from the Commutator Theorem the commutativity of the diagram

Rn(Xθ )
(λn ,...,λ1) →→

Tn

↓↓

Rn((Xa, Xb)η)

Tn

↓↓
Rn(Xθ )

(λn ,...,λ1)
→→ Rn((Xa, Xb)η)

since (λnT xn, . . . , λ1T x1) = Tn(λn xn, . . . , λ1x1).
There is a third way: looking at Rn as pushout spaces. It can be shown by plain

ategorical arguments that one still obtains isomorphic spaces. The fact that the Rochberg
paces obtained from, say, (8n, . . . , 81) and from (λn8n, . . . , λ181) are isomorphic,
r even isometric, but not the same spaces is however lethal for some considerations
ince making pushout respects equivalence of sequences but not isomorphic equivalence.
ee in [9] the muddy waters into which the confusion of equal and isometric spaces
isembogue.

. Rochberg spaces for the scale of weighted ℓ2-spaces

Let w be a weight sequence, a term to describe [79, 4.e.1] a non-increasing sequence
f positive numbers such that lim wn = 0 and

∑
wn = ∞. We denote by ℓ2(w) the space

f all sequences x such that w · x ∈ ℓ2 endowed with the norm ∥x∥w = ∥wx∥2. We set
0 = w−1 and w1 = w and let us consider the interpolation pair (ℓ2(w−1), ℓ2(w)),

or which it is well known [6, Chapter 5] that (ℓ2(w0), ℓ2(w1))θ = ℓ2(w1−θ
0 wθ

1 ). To
implify the notation we will focus when θ = 1/2 because in this case we have ℓ2
sometrically as interpolated space. A homogeneous bounded selector for 10 is given
y B(x)(z) = w2z−1x since 10 B(x) = x , and therefore B(x)′(z) = 2w2z−1 log w · x . It
ollows that the differential map is given by

�1,1x = 11 B(x) = B(x)′(1/2) = 2 log w · x,

hich is a linear map. The associated Rochberg space Rn(ℓ2(w−1), ℓ2(w))1/2 will be
alled Rn(w). Thus, R2(w) = {(y, x) : x ∈ ℓ2, y − 2 log w · x ∈ ℓ2}. In this case,
om �1,1 = {x ∈ ℓ2 : 2 log w · x ∈ ℓ2} = ℓ2(log w) = {(0, x) ∈ R2(w)} and
an �1,1 = ℓ2((log w)−1). Therefore, (�1,1)−1x =

1
2 log w

x and Dom (�1,0)−1
= {x ∈

2((log w)−1) : (log w)−1
· x ∈ ℓ2(log w)} = ℓ2 = Ran (�1,0)−1 obtaining the following

two inverse representations for R2(w)

ℓ2((log w)−1)

ℓ2 →→ R2(w) →→

↑↑

ℓ2

ℓ2(log w)

↑↑
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Let us present now a complete description of their higher order Rochberg spaces.
In [31, Section 8] the reader can find a thorough description of the six diagrams that
the first three Schecheter interpolators generate. Since B(x)k(z) = 2kw2z−1 logk w · x one

btains 1k B(x) =
2k

k!
logk w · x and therefore

�1,k−1x =

(
2k−1

(k − 1)!
logk−1 w · x, . . . , 2 log w · x

)
=

(
2k−1

(k − 1)!
logk−1 w, . . . , 2 log w

)
· x

s also a linear map and

Rn(w) = {(xn, . . . , x1) : x1 ∈ ℓ2, (xn, . . . , x2) − �1,n−1x1 ∈ Rn−1(w)}.

e have

roposition 5.1.

Rn(w) = {(xn, . . . , x1) : xn −

n−1∑
k=1

cn−k logn−k wxk ∈ ℓ2},

here

ck =

m≤k∑
(i1,...,im )

( ∏
l=1,...,m

i1+···+im=k

(−1)m
(2il

il !

))
=

m≤k∑
(i1,...,im )

i1+···+im=k

(
(−1)m

(2i1

i1!
· · ·

2im

im !

))
.

Sketch of the Proof. Observe two facts:

(1) If we call ωm the mth entry of �1,n , namely ωm(x) =
2m

m!
logm w · x then

ωk(ωm(x)) =
2k

k!

2m

m!
logk+m w · x .

(2) Whenever (xn, . . . , x1) ∈ Rn(w), the last component x1 is shifted by �1,n−1 to the
other n−1 entries to form the element

(
xn −ωn−1(x1), . . . , x2 −ω2(x1)

)
∈ Rn−1(w).

Iterating this process one gets(
xn −ωn−1(x1) −ωn−2(x2 −ω1(x1)), . . . , x3 −ω2(x1) −ω1(x2 −ω1(x1))

)
∈ Rn−2(w)

and since ωk is linear, we obtain

xn − ωn−1(x1) − ωn−2(x2 − ω1(x1)) = xn − ωn−1x1 − ωn−2(x2) + (−1)2 ωn−2ω1(x1).

Therefore, we only have to worry about the coefficients of compositions like (1).

To handle them, observe that the sum k+m in ωkωm x indicates how many positions to
he left we have shifted the elements from their initial position. Moreover, the coefficients
ppearing keep the track of the succession of shifted positions. For example, 21

1!

22

2!

2n
−4

(n−4)!
enotes that first we shifted n − 4 positions, later 2 positions and lastly 1 position until
he end. Since the process can be iterated n − 1 times until reaching an element of

(w) = ℓ , we deduce that the coefficients of a given coordinate describe all the
1 2
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possible ways of shifting such element to the first coordinate. One can deduce the formula
for ck from here. □

In this case, all Rochberg spaces Rn(w) are isomorphic to ℓ2 because all differentials
re linear and thus all exact sequences involved split. The coefficients cn−1 indicate their
rowing complexity. A more elementary and more general construction for Köthe spaces

X over a measurable space (S, µ) was presented in [33, Prop. 4.1]:

roposition 5.2. Let X be a Köthe function space with the Radon–Nikodym property
nd w0, w1 two weights. Then (X (w0), X (w1))θ = X (w1−θ

0 wθ
1 ) for every 0 < θ < 1 with

ssociated linear derivation �1,1x = w1−θ
0 wθ

1 log w1
w0

· x.

. Rochberg spaces for the scale of ℓ p-spaces

We study now the, arguably, most important case: Rochberg spaces associated to
he interpolation scale of ℓp spaces. As we have explained in Section 2.3, while we

work inside Köthe spaces, complex interpolation and Lozanovskii factorization yield
the same spaces so we will work with any of those approaches indistinctly. If we
consider the pair (ℓ∞, ℓ1) for which the celebrated Riesz–Thorin Theorem [6] yields
(ℓ∞, ℓ1)θ = ℓθ−1 for 0 ≤ θ ≤ 1, a bounded homogeneous selection for the evaluation
map δ 1

p
: C → ℓp is given for normalized positive x ∈ ℓp by Bp(x)(z) = x pz . Therefore

B ′
p(x)(z) = px pz log x and thus, after homogenization, we obtain the differential

KP(x) = KP1,1x = 11 Bp(x)(p−1) = p x log
(

|x |

∥x∥p

)
,

usually called the Kalton–Peck map and denoted, if no confusion arises, simply by
KP. The associated Rochberg space R2(ℓp) = R2(ℓ∞, ℓ1)1/p is the usually called

alton–Peck space [75]

R2(ℓp) = Z p = {(w, x) ∈ ℓ∞ × ℓp : w − px log
|x |

∥x∥
∈ ℓp}.

The domain and range of KP acting on ℓ2 have been already calculated. A few
modifications, left to the reader, yield the corresponding domain and range spaces of
KP on ℓp. However, basic questions such as the following are open:

Problem 10. Provide an explicit description for KP−1.

Some discussion regarding this problem appears in [32, Section 5.3].
We describe now the higher order Rochberg spaces Rn(ℓ2) that we will call from

ow on Zn . For the rest of ℓp spaces, the construction is entirely analogous, although the
roperties of the spaces may be not. To that end, we compute the higher order derivatives
f B2(x): for normalized x we have

B(k)
2 (x)(z) = 2k x pz logk x . (24)

Therefore, the kth component of KP1,n is

kpk(x) = 1k B2(x)(1/p) =
2k

x logk
(

|x |
)

k! ∥x∥2
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so that the differential KP1,n : ℓ2 ↷ Zn is

KP1,n x =

(2n

n!
x logn

(
|x |

∥x∥2

)
, . . . , 2 x log

(
|x |

∥x∥2

))
.

he map KP1,n generates the exact sequence 0 →→ Zn →→ Zn+1 →→ ℓ2 →→ 0
nd one therefore has

Zn+1 = {(xn+1, . . . , x1) ∈ ℓn
∞

× ℓ2 : (xn+1, . . . , x2) − KP1,n(x1) ∈ Zn}

ndowed with the quasinorm

∥(xn+1, . . . , x1)∥Zn+1 = ∥(xn+1, . . . , x2) − KP1,n x1∥Zn + ∥x1∥ℓ2 .

As we strived to explain, there are 2(n − 1) “canonical representations” (except for
= 1 that there is just one) of Zn as a twisted sum of two lower order Rochberg spaces:

or any k, m ∈ N so that n = k+m one also has 0 →→ Zm →→ Zn →→ Zk →→ 0
enerated by KPk,m (which only depends on k and m and so that Rn is isomorphic to
he Banach space

Zn = {(xn, . . . , x1) ∈ ℓm
∞

× Zk : (xn, . . . , xk+1) − KPk,m(xk, . . . , x1) ∈ Zm}

nder the quasinorm

∥(xn, . . . , x1)∥Zn = ∥(xn, . . . , x1) − KPk,m(xk, . . . , x1)∥Zm + ∥(xk, . . . , x1)∥Zk .

The problem is that it is not as easy as it seems to obtain the explicit description
f KPk,m out of thin air. Of course it can be done [9,17,31] and has been done. It is
owever unquestionable that the explicit description of higher Rochberg spaces turns out
ncreasingly difficult. Even so, many interesting properties of Zn have been uncovered,
nd the rest of this Section is devoted to them.

The Rochberg spaces Zn possess all 3-space properties that Hilbert spaces enjoy.
owever, none of the space are Hilbert spaces [17, Corollary 6] or possess unconditional
asis (see Theorem 6.8). Therefore, they behave simultaneously very differently than
ilbert spaces and very much like Hilbert spaces. Duality is one of those similar aspects:

.1. Duality

The following result is due to Cabello [10]:

heorem 6.1. Let X be a Köthe superreflexive function space such that (X, X∗)1/2 = L2
ith associated differential �. Then L2 ⊕� L2 is isomorphic to its dual.

Duality of twisted Hilbert spaces was studied first by Kalton and Peck, who showed
75, 5.1] that Z∗

2 ≃ Z2 and, in general, Z∗
p ≃ Zq whenever 1 = 1/p + 1/q, under

“twisted duality”: given (x, y) and (z, w) finitely supported elements of Z p and Z p∗ ,
espectively, the duality map is given by

⟨(x, y), (z, w)⟩ = ⟨x, w⟩ + ⟨y, z⟩.

Duality for higher order Rochberg spaces obtained from families of finite dimensional
anach spaces was studied by Rochberg himself in [97]. The study has been extended
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in [9] to cover the infinite dimensional case for the scale ℓp-spaces. For operative reasons,
et us use in this section the notation Rn(θ ) instead of the so far standard Rn(ℓ1/θ ). We

have [9, Prop. 5.5]:

Theorem 6.2. The linear map Dn : Rn(1 − θ ) → Rn(θ )∗ given by

Dn
(
(xn, . . . , x1)

)
(yn, . . . , y1) =

n∑
k=1

(−1)k+1
⟨xk, yn−k+1⟩ (25)

s an isomorphism. In particular, each space Rn(1/2) is isomorphic to its dual.

In [43] we present an interpolation-free proof for this last result. If we focus on the
ase θ = 1/2, so that Zn = Rn(1/2), the result is much deeper of what it sounds at first
earing: not only Zn is isomorphic to its dual in an explicit (non canonical) way, but the
somorphism also preserves the representation as twisted sum of lower order Rochberg
paces. Precisely (see [9]):

heorem 6.3. The following diagrams are commutative

0 →→ Zm

Dk

↓↓

→→ Zn

Dn

↓↓

→→ Zk →→

Dl

↓↓

0

0 →→ Z∗
m

→→ Z∗
n

→→ Z∗

k
→→ 0

Recall that, by Hahn–Banach, the dual of an exact sequence is an exact sequence. The
ombination of this last fact and Theorem 6.3 implies [40, Th. 5.1] that if KP∗

m,k denotes
the quasilinear map that generates the dual sequence of
0 →→ Zk →→ Zn →→ Zm →→ 0 then

DmKPk,m ≡ KP∗

m,k Dk

See [9,31,40,45] or else [8, Section 3.8] for a detailed explanation of this construction. In
particular, it follows that Ran KPk,m = Dom (KPm,k)∗ and Dom KPk,m = Ran (KPm,k)∗.

6.2. Basic sequences

Let us start with an obvious fact: Z1 = ℓ2 is also the Orlicz space ℓ f0 generated by
the function f0(t) = t2. Then, as we have already explained, Kalton and Peck showed
in [75] Z2 = Z2 contains ℓ2 and the Orlicz space ℓ f1 generated by the Orlicz function
f1(t) = t2 log2 t . In [31] it is shown that R3 contains, in addition to that, the Orlicz space
ℓ f2 generated by the function f2 = t2 log4 t . The general case is studied in [43]:

Proposition 6.4. The space Zn contains all the Orlicz spaces ℓ fk generated by the
2 2k

1 1 1 
Orlicz functions fk(t) = t log t for 0 ≤ k ≤ n − 1.
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More precisely,

ℓ fk = 1n−1−k

⎛⎜⎝ ⋂
0≤ j≤n−1

j ̸=n−k

ker 1 j

⎞⎟⎠
amely, ℓ f0 =

[
(e j , 0, . . . , 0) : j ∈ N

]
, ℓ fk =

[
(0, 0, . . . , e j , 0, . . . , 0) : j ∈ N

]
and

fn−1 =
[
(0, 0, . . . , e j ) : j ∈ N

]
. Moreover ℓ fn = DomKP1,n . From that, in [43] it is

obtained a remarkable result regarding the structure of Zn:

Theorem 6.5. Every normalized basic sequence in Zn contains a subsequence equivalent
to the basis of one of the spaces ℓ fk , 0 ≤ k ≤ n − 1.

This result immediately yields that Zn are not Banach lattices, do not contain
complemented Banach lattices and are not complemented in any Banach lattice. In
particular, they do not have Gordon–Lewis unconditional structure (GL-l.u.st.) and,
therefore, they do not have unconditional basis. Let us present here another proof for this
last fact shaped upon the original proof of Johnson, Lindenstrauss and Schechtman [65]
that Z2 fails to have GL-l.u.st. Recall that a Banach space X has GL-l.u.st. (Local
Unconditional Structure of Gordon–Lewis) if there exists a constant K such that for
every finite dimensional Banach space F ⊂ X , the inclusion map iF : F ↪→ X factorizes
through a Banach space Y with unconditional basis so that ∥U∥ ∥V ∥ uc(Y ) ≤ K , where

V = iF and uc(Y ) is the unconditionality constant of Y . The GL-l.u.st. property is a
rather weak form of unconditionality, as any Banach lattice has GL-l.u.st. Moreover, any
complemented subspace of a Banach space with GL-l.u.st. also has GL-l.u.st. The key
of the Johnson, Lindenstrauss, Schechtman approach is:

Lemma 6.6. A superreflexive Banach space with an UFDD (En)n∈N has GL-l.u.st. if
and only if there exists a Banach space Y with an unconditional basis ((yi,n)kn

i=1)∞n=1 such
hat:

(i) En ⊂ span{yi,n}
kn
i=1 for each n ∈ N;

(ii) there exists a bounded projection P : Y → X such that P(span{yi,n}
kn
i=1) = En for

each n ∈ N.

We extend now their argument from Z2 to Zn . We begin with a technical re-
sult of independent interest. Observe that the spaces {Ek : k ∈ N} with Ek =

(ek, 0, . . . , 0), (0, ek, 0, . . . , 0), . . . , (0, 0, . . . , ek)} form an UFDD for Zn . Moreover,
operators Zn −→ Zn can be interpreted as matrices with linear maps as entries
(see [42]). When these entries are scalars, things are simpler: Johnson, Lindenstrauss
and Schechtman [65, Prop. 3] show (see also [5]) that a scalar matrix extends to an

operator on Z2 = Z2 if and only if has the form
(

α β
)

. We extend this result to Zn .
0 α
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Lemma 6.7. A n × n scalar matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1 δ1 · · · ε1 π

γ21 α2 β2 δ2 · · · ε2
γ31 γ32 α3 βn−2 δn−3 · · ·

... γn−2 n−4 γn−2 n−3 αn−2 βn−2 δn−2

γn−1 1
... γn−1 n−3 γn−1 n−2 αn−1 βn−1

γn1 γn2 · · · γn n−2 γn n−1 αn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(26)

xtends to a bounded operator on Zn if and only if it has the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

α β δ · · · ε π

0 α β δ · · · ε

0 0 α β δ · · ·

... 0 0 α β δ

0 · · · 0 0 α β

0 · · · 0 0 0 α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (27)

roof. Fix m = 0, . . . , n. The operator having all entries 0 except those at places
k, k + m) for k = 1, . . . , n − m which are 1 is bounded on Zn: indeed, one only has to
epresent Zn as a twisted sum of Zk and Zm for n = k + m and work inductively. This
roves the sufficiency. To prove the necessity, work again by induction on n: restricting
urselves to vectors of the form (x1, x2, . . . , xn−1, 0) ∈ Zn we may assume that the thesis
s verified on the elements of the upper-right (n −1)× (n −1) submatrix. Since Z∗

n ≃ Zn ,
ne can apply induction once again to deduce the thesis for all elements except γn1 and
he pair ε1 and ε2.

Assume that γn1 ̸= 0. Taking the sequence un =
1

√
n (
∑n

k ek, 0, 0, . . . , 0) we deduce
that ∥un∥ = 1 for all n ∈ N; however,

∥T un∥ ≥ C
[ 1
√

n
|(α

n∑
k

ek, 0, . . . , 0)∥ +
1

√
n
∥(0, 0, . . . , γn1

n∑
k

ek)∥
]

≥ C
|γn1|
√

n

√
n logn n

or some constant C > 0, so T is not bounded. On the other hand, if ε1 ̸= ε2, then we
ake the sequence

un =
1

√
n

(logn−1 √
n

n∑
k

ek, logn−2 √
n

n∑
k

ek, . . . , log
√

n
n∑
k

ek,

n∑
k

ek).

hus we have

∥T un∥ ≥ c∥(ε1 log
√

n
n∑
k

ek, ε2

n∑
k

ek)∥Z2 ≥ c|ε1 − ε2| log
√

n

for some constant c > 0 and T is not bounded again. □

Given a sequence (Ak)k of n × n matrices of the form (26), let us denote by
∑

k Ak

the operator on R defined by
∑

A | = A for each k ∈ N. Observe that the previous
n k k Ek k
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Lemma 6.7 can be restated as: consider a constant sequence of n × n matrices Ak = A.
Then the operator

∑
k Ak is bounded on Rn if and only if A is of the form (27). If

Ak = A + Kk , where Kk are small perturbations (for instance satisfying ∥
∑

Kk∥ < ∞),
hen

∑
k(A + Kk) is still bounded if and only if A is of the form (27).

We are ready to show how the Johnson–Lindenstrauss–Schechtman arguments in [65]
or Z2 can be translated to higher order Rochberg spaces.

heorem 6.8. Zn does not have GL-l.u.st.

roof. If Zn has GL-l.u.st. then it is a complemented subspace of a Banach space with
n unconditional basis with the properties stated in Lemma 6.6. That should allow us to
efine a bounded operator T̂ : Zn → Zn such that

T̂ (En) ⊂ En for all n ∈ N and inf
n

dist(T̂ |En , T ) > 0,

here the T represents any operator of the form (27).
The operator T̂ can be obtained as follows: suppose we are in the conditions stated

n Lemma 6.6 and denote by y∗

i,n the biorthogonal vectors of the unconditional basis
((yi,n)kn

i=1)∞n=1. Taking into account that such basis is unconditional, given any set of
indices J , the operator

TJ (x) = P
(∑

n

∑
i∈J

(yi,n ⊗ x)yi,n
)

is bounded on Zn . It suffices then to obtain for each n ∈ N a subset Jn ⊂ {1, . . . , kn}

such that dist
(
(TJn )|En , T

)
≥ µ for all n ∈ N and some absolute constant µ > 0. Our

operator will be then T̂ = TJ where J =
⋃

n Jn .
To find Jn , fix n ∈ N and define for each 1 ≤ i ≤ kn the following operator on En

Ti (x) = P
(
(y∗

i,n ⊗ x)yi,n
)

This is a rank one operator that must have the form of one of the following matrices
(to simplify the notation, we can assume that, in each case, the first non-null row has
normalized coefficients equal to 1)⎛⎜⎜⎜⎜⎝

ai bi · · · ci

αi ai αi bi · · · αi ci
.
.
.

.

.

.
. . .

.

.

.

βi ai βi bi · · · βi ci

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
0 0 · · · 0
ai bi · · · ci
.
.
.

.

.

.
. . .

.

.

.

βi ai βi bi · · · βi ci

⎞⎟⎟⎟⎟⎠ , · · · or

⎛⎜⎜⎜⎜⎝
0 0 · · · 0
0 0 · · · 0
.
.
.

.

.

.
. . .

.

.

.

ai bi · · · ci

⎞⎟⎟⎟⎟⎠ .

Taking into account that P is linear and that (yi,n)kn
i=1 is a basis it follows that

∑kn
i Ti =

I . Thus, summing up the last row of the matrix, we obtain by the unconditionality of the
basis that

kn∑
i

βi ci = 1 and
kn∑
i

|ci | ≤ K ,

where K equals the unconditional constant of the basis multiplied by ∥P∥. If we consider
the set I = {i ∈ {1, . . . , k } : |β | ≥

1
}, then we have that

∑
β c ≥ 1/2. Fix k ∈ I-
n n i 2K i∈In i i n
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and suppose that the associated matrix to this k is of the first form described; then one
of the following cases occurs:

(1) βkak ≥
1

1+2K |βkck |;
(2) −βkak ≥

1
1+2K |βkck |;

(3) ak − βkck ≥
1

1+2K |βkck |;
(4) βkck − ak ≥

1
1+2K |βkck |.

f none of those possibilities occurred, then we can sum the following inequalities

|ak | <
1

1 + 2K
|ck | ≤

2K
1 + 2K

|βkck |

nd

|ak − βkck | <
1

1 + 2K
|βkck |,

hus forcing |ck | < |ck |, which is absurd. If the matrix associated to k is any of the
ther matrices, then they satisfy the analogue of |ak − βkck | ≥

1
1+2K |βkck |, i.e., that

|βkck | ≥
1

1+2K |βkck |. This represents that there exist both a non-null entry and a null
entry in the diagonal.

We deduce that there exists a subset Jn ⊂ In such that
∑

i∈Jn
βi ci ≥ 1/8 and one of

the four previous inequalities holds for each i ∈ Jn . This choice for the set Jn satisfies
that dist

(
(TJn )|En , T

)
≥ µ > 0, so we may define T̂ = TJ for J =

⋃
n Jn . Once that has

been settled, we may choose a subsequence k j of the integers such that we can define
an operator on Zn extending the operators T̂ |Ek j

, each of which is a small perturbation
of a fixed matrix that’s not of the form described in the previous Lemma 6.7, which is a
contradiction by the comments before the proof (see also [5, pp.383]). □

Immediate consequences of this result are:

orollary 6.9. Zn is not complemented in a Banach space with GL-l.u.st. In particular,
n a Banach lattice.

Moreover, using forthcoming Theorem 6.18 (1) it follows:

orollary 6.10. Zn does not contain any infinite dimensional complemented Banach
pace with GL-l.u.st. In particular, a Banach lattice.

.3. Natural subspaces of Zn

The topic of subspaces of twisted sum spaces is complicated in itself. Think about
he simplest (non trivial) space in this scale: Z2. One can currently identify only a
mall number of subspaces of this space: ℓ2, ℓ f1 , Z2 and a recently identified new
ubspace [78], plus their products. That’s all.

In Zn spaces we encounter a family of distinguished subspaces. Given a subset
A = {i , . . . , i } ⊂ {0, . . . , n − 1} with i < · · · < i we denote by 1 the interpolator
1 k 1 k A
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(1ik , . . . ,1i1 ) and define the subspace X A ⊂ Zn as

X A = 1A

( ⋂
0≤k≤n−1,k /∈A

ker 1k

)
.

We have already encountered subspaces of this type: for k = 0, . . . , n − 1 we already
now that the choice A = {k} yields X A = ℓ fn−k−1 = DomKP1,n−k−1. If we call X [l,k]
he space generated by sets A = [l, k] = {l, l + 1, l + 2, . . . , k} when l < k then
X [l,k] = Dom(KPk−l+1,n−k−1) if 0 < l < k < n −1 and X [0,k] = Dom(KPk+1,n−k−1). This
uggests that X A spaces should be regarded as domains or ranges of “some” differentials.

roblem 11. Identify the natural subspaces of Zn as Domain or Range spaces.

As we said before, the Rochberg spaces associated to a scale of weighted ℓ2 spaces
re isomorphic. However, that is no longer true for the scale of ℓp spaces due to the
ollowing result from [9]:

heorem 6.11. Zn is not isomorphic to a subspace of Zm when m < n.

The result is consequence of the following estimate for the sequence an,2(Zn) of type
constants of the spaces:

am,2(Zn) ∼ am,2(ℓ fn ) ∼ logn m

In particular Zn is not isomorphic to Zm when n ̸= m. In combination with
heorem 6.18 we obtain that any operator Zm −→ Zn is strictly singular when m > n.

roblem 12 (A bit vague, we must admit). Generalize the previous results to spaces X A

ith |A| ≥ 2.

.4. Rochberg spaces are symplectic without Lagrangian subspaces

In this section we need to work with the real versions of the spaces Zn: i.e., the spaces
f real sequences in Zn . Recall from the introduction that a real Banach space X is said
o be symplectic if there is a continuous alternating bilinear map ω : X × X → R such
hat the induced map Lω : X → X∗ given by Lω(x)(y) = ω(x, y) is an isomorphism
nto. A symplectic Banach space is necessarily isomorphic to its dual and reflexive [36,
emma 2.2]. During the decade of 1970’s several authors drew the attention to the

mportance of the study of symplectic forms on Banach spaces and, more broadly, on
anach manifolds. For instance, in the proof of Weinstein [111] of an infinite dimensional
ersion of the classical Darboux theorem for symplectic geometry, or in the Hamiltonian
ormulation of infinite dimensional mechanics due to Chernoff and Marsden [48]. See
lso Swanson [107,108] for various results about symplectic structures on Banach spaces.

subspace F ⊂ X of a symplectic Banach space (X, ω) is called isotropic is ω(x, y) = 0
or all x, y ∈ F . A Lagrangian subspace of (X, ω) is an isotropic complemented subspace
hose complement is also isotropic.
Kalton and Swanson [76] solved in the negative the question raised by Weinstein [111]

f whether every infinite dimensional symplectic Banach space is trivial, in the sense that
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there does exist a reflexive Banach space Y and an isomorphism T : X → Y ⊕ Y ∗ such
hat ω(x, y) = �Y (T x, T y) for every x, y ∈ X , where

�Y [(z, z∗), (w, w∗)] = w∗(z) − z∗(w).

bserve that if so then T −1(Y ×{0}) is a Lagrangian subspace of (X, ω). Thus, triviality
eans that the space does not contain (nontrivial) Lagrangian subspaces. Kalton and
wanson showed that Z2 is a symplectic space with no Lagrangian subspaces. Moreover,

t is essentially the only one known so far.
In [36] it is shown that the higher order Rochberg spaces Rn can be added to this

estricted list.

heorem 6.12. For all n > 1 the space Zn is symplectic and contains no Lagrangian
ubspace.

What is remarkable in the proof is that while the symplectic structure of Rochberg
paces of even order is the one induced by the natural duality, the symplectic structure
n Rochberg spaces of odd order requires to introduce a perturbation of the duality with
suitable complex structure. Precisely, given n ≥ 1 one can consider the continuous

ilinear map ωn : Zn × Zn → R given by

ωn
(
(xn−1, . . . , x0), (yn−1, . . . , y0)

)
=

∑
i+ j=n−1

(−1)i
⟨xi , y j ⟩

or which the induced operator Dn : Zn → Z∗
n given by Dn(x)(y) = ωn(x, y) is an

somorphism onto. Since ωn is alternating if (and only if) n is even, the result follows
or even n.

For n odd, one has to additionally consider a complex structure σ on ℓ2 acting on the
cale; say, σ (x) = (−x2, x1, −x4, x3, . . .). The Generalized Commutator Theorem 4.7
hows that the n × n diagonal matrix operator τσ with σ at its entries is bounded on Zn .

It turns out that the bilinear map

ωn
(
(xn−1, . . . , x0), (yn−1, . . . , y0)

)
= ωn

(
(xn−1, . . . , x0), τσ (yn−1, . . . , y0)

)
=

∑
i+ j=n−1

(−1)i
⟨xi , σ y j ⟩.

is alternating because σ ∗
= −σ , is bounded because ωn and τσ are and the induced

inear map Lωn : Zn → Zn
∗ is an isomorphism onto, but proving that is a technical

atter, see [36]. The proof that those symplectic structures are non-trivial when n > 1
equires new knowledge on the behaviour of operators on Rochberg spaces, something
e will display in the next section. A topic not solved in [36] is whether the symplectic

tructure of Rn is unique, something that could be true since the complex structure of
2 is unique, up to equivalence (see [59] for a larger background on this topic):

roblem 13. Does Rn admit a unique, up to equivalence, non-trivial symplectic
tructure?
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6.5. Operators on Zn

Following Pietsch [91], an operator ideal A is a subclass of the class L of bounded
operators between Banach spaces such that finite range operators belong to A, A+A ⊂ A
nd LAL ⊂ A. The operator ideals we will mainly work with are those of compact
resp. strictly singular) operators, that will be denoted by K (resp. S) [91, 1.4, 1.9 and
.10]. Recall that an operator is called compact (resp.strictly singular) [91] if the closure
f the image of the unit ball is a norm compact set (rep. its restriction to any infinite
imensional subspace is not an isomorphism). It is a standard fact that K ⊂ S. Given an
perator ideal A and k ∈ N we will denote by Ak the class of operators formed as the
omposition of k operators of A.

In its own peculiar way, operators on Zn behave quite similarly as they do in Hilbert
paces:

• An operator T : ℓ2 → X is either strictly singular or an isomorphism on a
complemented copy of ℓ2 (see [79, Chapter 2]).

• An operator T : ℓ2 → ℓ2 is either strictly singular or an isomorphism on a
complemented copy E of ℓ2 such that T [E] is complemented in ℓ2.

Kalton and Peck [75] and Kalton [69] extended these results to Z2:

• Every operator τ : Z2 → X is either strictly singular or an isomorphism on a
complemented copy of Z2.

• Every operator τ : Z2 → Z2 is either strictly singular or an isomorphism on a
complemented subspace E ∼= Z2 such that τ (E) is also complemented.

ith a twist:

• The quotient map Z2 −→ ℓ2 is strictly singular.
• An operator T ∈ L(Z2) is strictly singular if and only if its restriction to the

canonical copy of ℓ2 is strictly singular.

he first of these last assertions was proved by Kalton and Peck [75, Th. 6.4]. A different
pproach can be given [8, Chapter 9]: Let us call from now on a short exact sequence
→ Y → Z → X → 0 singular when its quotient is a strictly singular operator. It is

ot hard to prove that an exact sequence generated by a quasilinear map � is singular
we shall also say that � is singular) if and only if the restriction of � to an infinite
imensional subspace is never trivial. Using the following Transfer Principle [8, Chapter
]

emma 6.13. Let X be a Banach space with unconditional basis and Q : Z → X
quotient map. Then either Q is strictly singular or it is invertible on an infinite

imensional subspace of X generated by a block sequence.

The singularity the Kalton–Peck map KP is immediate since given a block subspace
generated by the sequence (un)n of blocks, the restriction KP|U to U has the form

KP(
∑

λnun) =

∑
n

λn log
|λn|

∥u∥
un + L(

∑
λnun)--
where L : U → ℓ2 is a linear map.
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A careful look at diagrams (15) plus the ideal property of S shows [17] that all
ochberg sequences 0 →→ Zn →→ Zn+m →→ Zm →→ 0 are singular. To prove

the other twisted assertion just keep in mind the following well known characterization
(see [47, Prop. 3.2]):

Proposition 6.14. A quotient map Q : Z → Z/Y is strictly singular if and only if for
very infinite dimensional Z ′

⊂ Z there exist an infinite dimensional subspace Y ′
⊂ Y

and a compact operator K : Y ′
→ Z ′ such that I + K : Y ′

→ Z ′ is an isomorphic
embedding.

It is now simple to obtain
• An operator T ∈ L(Zn) is strictly singular if and only if for some m < n its

estriction to some Zm is strictly singular
The proofs of the first two assertions are much more delicate and require to introduce

he existence in L(Zn) of a large family of well behaved isometries called block operators.
et (un)n be a sequence of disjointly supported consecutive normalized blocks in ℓ2. The
perator u : ℓ2 → ℓ2 given by x ↦→ x · u (seen as the product on each coordinate) is
ounded since ∥

∑
n xnun∥ = ∥

∑
n xnen∥.

efinition 6.15. Let u be a block sequence in ℓ2. We inductively define the block
perator T n

u ∈ L(Zn) as: T 1
u = u, and for n > 1, T n

u is the upper triangular operator
aking the diagrams

0 →→ Zn

T n
u
↓↓

→→ Zn+m

T n+m
u
↓↓

→→ Zm →→

T m
u
↓↓

0

0 →→ Zn →→ Zn+m →→ Zm →→ 0

commutative.

Let us see now how these block operators are generated and where does Defini-
ion 6.15 come from. The canonical example of block operators in Z2 = Z2 are the
nes originally given by Kalton [69]: Tu(en, 0) = (un, 0) and Tu(0, en) = (KPun, un).

This is an injective isometry yielding a commutative diagram

0 →→ ℓ2

u
↓↓

→→ Z2

Tu

↓↓

→→ ℓ2 →→

u
↓↓

0

0 →→ ℓ2 →→ Z2 →→ ℓ2 →→ 0

1 1 1 

1 1 1 
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Recall from the Commutator Theorem that when τ is an operator acting on the scale

hen T =

(
τ 0
0 τ

)
is a bounded operator on R2 making the diagram

0 →→ ℓ2

τ

↓↓

→→ Z2

T
↓↓

→→ ℓ2 →→

τ

↓↓

0

0 →→ ℓ2 →→ Z2 →→ ℓ2 →→ 0

commute. What occurs when τ is not an operator acting on the scale? To make the

diagram commutative T has to have the form
(

τ □
0 τ

)
, and since

(
τ −[τ, KP]
0 τ

)
makes

he diagram commutative (although it is not linear), □ will have to be a linear map at
nite distance from the commutator −[τ, KP] (see [42] for details). We have a situation
ere: how to find out such □ linear map? Moreover, there might exist many valid choices
or □. Observe that when u is the operator induced by a sequence (un) of blocks of
isjointly supported normalized blocks in ℓ2, the operator u is not compatible with
he scale generated by (ℓ∞, ℓ1) because the un are normalized blocks in ℓ2 only and

hus something having the form
(

u □
0 u

)
is needed. The proposal of Kalton was to

et
(

u KPu
0 u

)
where KPu is the linear map induced by the (not necessarily uniformly

ounded) sequence of blocks (KPun)n . In [37] the authors developed a theory to somehow
nify the commutator theorem and the existence of block operators through the study of
ctions of a semigroup G compatible with the structure of exact sequences. What is
nteresting for us here is that given a normalized sequence u = (un)n of blocks on ℓ2,
e can define, for each z ∈ S, the sequence of blocks u2z

= (u2z
n )n normalized in ℓ1/z

nd that therefore defines a bounded operator on ℓ1/z . The theory of analytic semigroups
cting on interpolation scales as developed in [21,37] shows that the role of □ can be
layed by the derivative of the action u2z (with respect to z) at 1/2 [37, Theorem 4.7],
amely 2u log u = KPu. And this is indeed Kalton’s block operator [37, Section 6]. Some
ariations in the argument (not simple iteration) [37, Section 7] yield that the matrices

T n
U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

u 21

1!
u log u 22

2!
u log2 u · · ·

2n−1

(n−1)!u logn−1 u

0 u 21

1!
u log u 22

2!
u log2 u · · ·

0 0 u 21

1!
u log u 22

2!
u log2 u

0 0 0 u 21

1!
u log u

0 0 0 0 u

⎞⎟⎟⎟⎟⎟⎟⎟⎠
efine bounded block operators on Zn . To prove the assertion about the complemented
ange we need to come back to the symplectic structure. Block operators are symplectic,
n the sense that

ωn(T n
U x, T n

U y) = ωn(x, y), (28)

r, equivalently, that (T n
U )+T n

U = I [36, Prop. 6.2]. This can be put in a broader context:
f we define the symplectic dual T +

: Z → Z of an operator T : Z → Z [36,37] as

1 1 1 
n n n n
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the operator T +
∈ L(Zn) such that

ωn(T +x, y) = ωn(x, T y)

it turns out that the symplectic dual can be seen as the translation to higher order
Rochberg spaces of the Hilbert dual of an operator on ℓ2. In fact, symplectic and classical
uals are connected by a commutative diagram:

Zn
Dn →→

T +

↓↓

Z∗
n

T ∗

↓↓
Zn Dn

→→ Z∗
n

In other words, T +
= D−1

n T ∗ Dn . Thus, since Dn is an isomorphism, it is not strange
hat most of the properties of T + coincide with those of T ∗: for instance, ∥T ∥ ∼ ∥T +

∥,
ImT is closed if and only if ImT + is closed, and, therefore, T is an isomorphism into if
and only if T + is surjective.

Still one more digression before we return to our main topic in [108] Swanson showed
that the symplectic group, formed by those operators that preserve a given symplectic
form, is a contractible subgroup of GL(ℓ2).

Problem 14. Is the symplectic group of Zn contractible. Is it path connected? It is not
even known if GL(Z2) is path connected [42, Question 4].

OK, we are back: why block operators are important in the analysis of operators in
ochberg spaces? Because of the following result [36,69]:

emma 6.16. If T : Zn → Zn is not strictly singular then there exist α ̸= 0 and block
perators T n

U and T n
V such that T T n

W − αT n
V is strictly singular.

The result says that if T : Zn → Zn is not strictly singular then there is a
omplemented isometric copy W of Zn so that T |W is, up a strictly singular operator, a
ultiple of a block operator. From here, we can obtain [36,42,69]:

roposition 6.17. Let T : Zn → Zn be any operator. If T +T is strictly singular then
T is strictly singular.

roof. We present the proof due to its simplicity: if T is not strictly singular, by
emma 6.16 there exist α ̸= 0 and block operators T n

U , T n
V such that T T n

U = αT n
V + S

ith S ∈ S(Zn). Therefore

(T n
U )+T +T T n

U = (T T n
U )+T TU = (α(T n

V )+ + S+)(αTV + S) = α′(T n
V )+T n

V + S′

= α′ I + S′,

here S′
∈ S(Zn). Since T +T is strictly singular, this implies that the identity I is

trictly singular, a contradiction. □

-

1 1 
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And from here we finally obtain several extensions of Kalton’s results from Z2 to
n [43]:

heorem 6.18.

• Every operator τ : Zn → X is either strictly singular or an isomorphism on a
complemented copy of Zn .

• Every operator τ : Zn → Zn is either strictly singular or an isomorphism on a
complemented subspace E ∼= Zn such that τ [E] is also complemented.

• Sl(Zn) ̸= K(Zn) for all 1 ≤ l ≤ n − 1.
• Sn(Zn) = K(Zn).
• S(Zn) = C(Zn) is the only nontrivial maximal ideal of L(Zn).

.6. Complemented subspaces of Zn

Theorem 6.18 implies that any complemented subspace of Zn contains a comple-
ented copy of Zn , but it is not known if every complemented subspace of Zn is

somorphic to Zn . Actually, the result is an extension of a famous long-standing open
roblem:

roblem 15. Is Z2 is isomorphic to its hyperplanes?

Here is what is currently known [43]:

heorem 6.19.

• Every infinite dimensional complemented subspace of Zn contains a further com-
plemented subspace isomorphic to Zn .

• Every subspace of Rn isomorphic to Zn is complemented.
• The complement of two infinite codimensional copies of Zn in Zn are isomorphic.
• Zm is not complemented in Zn for m ̸= n.

. Rochberg spaces for scales of L p-spaces

A large part of our analysis about Rochberg spaces associated to the scale of ℓp

paces can be translated to the scale of L p(µ) spaces, but there are important issues to
onsider. On the mimicry side we have that, independently on the base measure space, the
nterpolation formula (L1, L∞)1/2 = L2 yields the L∞-centralizer KP( f ) = 2 f log | f |

∥ f ∥

s associated differential on L2 with corresponding Rochberg spaces Rn(L2) obtained
ollowing the general construction and, in particular,

R2(L2) = {( f, g) ∈ L∞ × L2 : f − KP(g) ∈ L2}

ndowed with the corresponding quasinorm. The spaces R2(ℓ2) and R2(L2) are not
somorphic when the underlying measure space is not atomic, even if L2 and ℓ2 are
sometric Banach spaces: observe that the sequence

0 −−−−→ L −−−−→ R (L ) −−−−→ L −−−−→ 0 (29)

--
p 2 p p
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is not singular. This was first proved in [104] for 0 < p < ∞ and shortly thereafter,
Cabello [13] extended the result to any L∞-centralizer on L p for 0 < p < ∞. The result
was subsequently extended in [35] to superreflexive Köthe (nonatomic) spaces. All these
results essentially consist in showing that centralizers become bounded on the subspace
spanned by the Rademacher functions, isomorphic to ℓ2. Of course that such a distinct
behaviour of R2(L2) and R2(ℓ2) is possible because the isomorphism between L2 and
ℓ2 is not induced by operators acting on the scales. Let us consider now two interesting
cases in which the Rochberg spaces become isomorphic.

• Hardy spaces Let T be the unit circle and by m the normalized Lebesgue measure
on T. If H (D) stands for the space of complex valued analytic functions on the unit
disk and 1 ≤ p < ∞ then the Hardy space Hp is the Banach space

Hp = { f ∈ H (D) : sup
0<r<1

Mp( f, r ) < ∞}

where

Mp( f, r ) =

( 1
2π

∫ 2π

0
| f (rei t )|

p
dm(t)

)1/p
, for each 0 < r < 1.

For p = ∞ just consider the usual modification M∞( f, r ) = sup0<t<2π | f (rei t )|.
The space Hp can be identified with the closed subspace of L p(T, m) generated by
the polynomials, i.e., Hp = { f ∈ L p(T, m) : f̂ (n) = 0, n < 0}, where f̂ (n) is the
nth Fourier coefficient of f (see [112, Th. 8] or [88]).
Complex interpolation of Hardy spaces highly resembles the case of Lebesgue
spaces [67] and one has: If 1 < p < ∞ and 1/p = 1 − θ , then (H1, H∞)θ = Hp.
See [113] for a generalization to rearrangement invariant spaces and [94] for an
alternative proof and an extension to the noncommutative realm. What is important
for our purposes is that the scale of Hardy spaces is, excluding the endpoints
p = 1 and p = ∞, isomorphic to the scale of Lebesgue spaces L p(T, m) (see [88,
Theorem 0.3] and [112, Corollary 11]) as it was originally proved by Boas [7]:

roposition 7.1. The map B : L p(T, m) → Hp given by

B
(∑

n∈Z

aneint
)

= a0 +

∑
n≥1

anei(2n)t
+

∑
n≥1

a−nei(2n−1)t ,

s a bounded isomorphism for any 1 < p < ∞.

The extremal cases are known to be false: H∞ is not isomorphic to a quotient of a
(K ) space [88, Prop. 4.1] and H1 is a separable dual space [88, Th. 1.2].

• Sobolev spaces For 1 ≤ p ≤ ∞ and k ∈ N, the Sobolev space W k
p(Rn) (for which

general references are [1,82], although we follow here the description given in [90])
is the Banach space of all functions f : Rn

→ R whose distributional derivatives
up to order k are in L p. Precisely, given a finite sequence α = (αi )n

i=1 ∈ Nn denote
by ∂α

=
∂ |α|

∂x1
α1 ∂x

α2
2 ... ∂xnαn

the usual partial derivative associated to the multi-index

α, where |α| =
∑

αi is the order of the derivative. A function g : Rn
→ R is said

to be the α-th distributional partial derivative of a function f : Rn
→ R, denoted
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f

h

by g = Dα f , if satisfies the equation∫
Rn

gϕ dx = (−1)|α|

∫
Rn

f Dαϕ dx,

when tested against all infinitely differentiable functions ϕ : Rn
→ R with compact

support. The Sobolev space W k
p(Rn) is, for k ∈ N and 1 ≤ p ≤ ∞, the Banach

space

W k
p(Rn) = { f : Rn

→ R : Dα f exist and Dα f ∈ L p(Rn) for all |α| ≤ k}

endowed with the norm

∥ f ∥k,p =

⎧⎨⎩
(∑

|α|≤k

∫
Rn |Dα f (x)|p dx

)1/p
, for 1 ≤ p < ∞

max|α|≤k ess supx∈Rn |Dα f (x)|, if p = ∞

One has [83] that (W k
1 (Rn), W k

p(Rn))θ = W k
pθ

(Rn) for k ∈ N and 1 < p < ∞

and where 1
pθ

= 1 − θ +
θ
p . Moreover, W k

p(Rn) is isomorphic to L p(Rn) for each
1 < p < ∞ through an isomorphism on the scale obtained using the theory of
Fourier multipliers [90, Th. 6] (see also [89]):

Proposition 7.2. For each k ∈ N and n ∈ N there exists an isomorphism T : L p(Rn) →

W k
p(Rn) for all 1 < p < ∞.

The operator T does not depend on p (see [90, pp. 1372], the comments before
Proposition 8).

We are thus ready to show that the corresponding Rochberg spaces Rn(L2), Rn(H2)
and Rn(W k

2 ) are all isomorphic for all k ∈ N. Indeed, by general arguments it suffices
to work with the Rochberg spaces associated to the scale (L p, L p∗ ). The Commutator
theorem and the existence of isomorphisms B : L p → Hp and T : L p → Wp for
all 1 < p < ∞ yields a “diagonal” isomorphism between the corresponding Rochberg
spaces.

8. Rochberg spaces for scales of Orlicz spaces

We follow the same notation as in Section 2.3. In [38] the authors identify the
differential maps corresponding to an interpolation scale (Lφ0 , Lφ1 ) of Orlicz spaces:

Proposition 8.1. Let φ0 and φ1 be two N-functions that satisfy the 12-property such
that t = φ−1

0 (t) · φ−1
1 (t). Then (Lφ0 (µ), Lφ1 (µ))1/2 = L2(µ) with associated derivation

�1/2 f = f log
φ−1

1 ( f 2)

φ−1
0 ( f 2)

= 2 f log
φ−1

1 ( f 2)
f

,

or f ∈ L2(µ) a normalized positive element.

This follows from the observation that, in the hypothesis of Proposition 8.1, a bounded
omogeneous selection for the evaluation map δ is B( f )(z) = (φ−1( f 2))1−z(φ−1( f 2))z ,
1/2 0 1
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from where it follows

B ′( f )(z) = B( f )(z) log
φ−1

1 ( f 2)

φ−1
0 ( f 2)

,

hich yields the result. Also, it follows by reiteration that

B(n)( f )(z) = B( f )(z) logn φ−1
1 ( f 2)

φ−1
0 ( f 2)

.

hus the associated differential map (1n, . . . ,11)B( f )(z) is given on normalized posi-
ive elements f ∈ L2(µ) by

�1,n( f ) =

(2n

n!
f logn φ−1

1 ( f 2)
f

, . . . , 2 f log
φ−1

1 ( f 2)
f

)
.

Orlicz spaces appear in this theory we are formalizing from different considerations
oo. Kalton and Peck considered in [75] a rather general variation of the Kalton–Peck

ap:

KPφ(x) = xφ
(
− log

|x |

∥x∥

)
where φ : R → R is an unbounded Lipschitz map such that φ(t) = 0 for t ≤ 0.
The maps KPφ are non-trivial centralizers on ℓ2 [70,75] and therefore define non-trivial
twisted Hilbert spaces ℓ2⊕KPφ

ℓ2, usually denoted ℓ2(φ). Note that the Kalton–Peck space
Z2 corresponds (up to a sign) to the simple choice of φ(t) = t . Moreover, Kalton and
Peck show in [75, Corollary 5.5] that, setting for 0 < r < 1 the Lipschitz map

φr =

{
t, for 0 ≤ t ≤ 1
tr , for t > 1

then ℓ2(φr ) and ℓ2(φs) are not isomorphic for r ̸= s. Moreover, one has [38, Prop. 6.11]:

roposition 8.2. Let 0 < r < 1 and let φ0 and φ1 be the maps from [0, ∞) to itself
efined by

φ0(t) = t1/2+1/4(− log t)r−1
and φ1(t) = t1/2−1/4(− log t)r−1

n a neighbourhood of 0, and extended to N-functions on [0, ∞) satisfying the 12-
roperty. Then (ℓφ0 , ℓφ1 )1/2 = ℓ2 and the induced differential is boundedly equivalent to
Pφr . In particular ℓ2(φr ) and R2(ℓφ0 , ℓφ1 )1/2 are isomorphic.

Specific properties of Rochberg spaces associated to interpolation scales of Orlicz
equence spaces have been studied by Corrêa in [53]. Among other results, he obtains
hat such Rochberg spaces are Fenchel–Orlicz spaces, generalizing the results of [3].

. Rochberg spaces for scales of Tsirelson-like spaces

Let X be a space with a common unconditional basis with X∗. Even so, it is
ather difficult, in general, to obtain the differential map �X : ℓ2 ↷ ℓ2 associated to
2 = (X, X∗)1/2. The reason lies behind the lack of information that we have about the
ozanovskii factorization ℓ = X · X∗ when the basis of X is not symmetric [29]. Despite
1
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this, Suárez [106] and Morales and Suárez [84] have been able to study the properties
of the twisted Hilbert space generated by �X without knowing an explicit formula for
�X . The core idea in Suárez’s work is to study properties that can be characterized
locally through the behaviour of the sequences an,2(X ) and cn,2(X ) of local type and
cotype 2 constants of X , respectively, already used in Section 6.3 to show that Rn and

m are not isomorphic when n ̸= m. For instance, Kwapień showed [77] (see also [2,
Th. 7.4.7]) that supn an,2(X )cn,2(X ) < ∞ if and only if X is isomorphic to a Hilbert
space, while Pisier proved in [92] that an,2(X )cn,2(X )(log n)−1

−→ 0 when n → ∞

mplies that X is superreflexive. Suárez obtained [106] the following estimate for the local
ype/cotype constants for order 2 Rochberg spaces R2(Xθ ) associated to the interpolation
pace (X0, X1)θ obtained from a pair of Banach spaces (X0, X1):

emma 9.1. There exists a constant C > 0 such that

an,2(R2(Xθ )) ≤ Can,2(Xθ )
[

an,2(X0)1−θan,2(X1)θ +

⏐⏐⏐ log
an,2(X0)
an,2(X1)

⏐⏐⏐]
This means that when an(X0) and an(X1) grow slowly, then an(R2) will also grow

lowly. And this slowly increasing is connected with the weak Hilbert character of the
pace: a Banach space X is said to be weak Hilbert if there are 0 < ε < 1 and C > 0
uch that every finite-dimensional subspace E ⊂ X contains a subspace F ⊂ E with
im F ≥ ε dim E such that dist(F, ℓdim F

2 ) ≤ C and there is a projection P : X −→ F
ith ∥P∥ ≤ C . This is not the original definition, but it is equivalent [93, Th. 12.2].
The typical weak Hilbert space is the 2-convexification T2 of Tsirelson space T , as

ell as its dual, subspaces and quotients (see [64,93]). Moreover, the Hilbert space ℓ2 is
ontinuously and densely embedded in T2 and therefore (T2, T2

∗

)1/2 = ℓ2. The associated
ochberg space R2(T2) is not a Hilbert space and Suárez [106] proved that it is a weak
ilbert space. His proof can be summarized in the following steps:

(i) Use Lemma 9.1 to obtain

an,2(R2(T2)) ≤ C max{an,2(T2), an,2(T ∗

2 )}

Since R2(T2) is isomorphic to its dual, the same asymptotic bound holds for the
cotype 2 sequence cn,2(R2(T2)).

(ii) This implies that the sequence an,2(R2(T2))cn,2(R2(T2)) grows slowly and, by
the aforementioned result of Kwapien, we have that the n-dimensional subspaces
R2(T2) are an,2(R2(T2)) cn,2(R2(T2))-isomorphic to a Hilbert space.

(iii) Replacing R2(T2) by some carefully chosen finite codimensional subspaces Vn ,
it follows from the same approach that the 55n

-dimensional subspaces of Vn are
uniformly isomorphic to Hilbert spaces.

(iv) Use a result of W.B. Johnson [64, Lemma 1.6] to conclude that R2(T2) is weak
Hilbert.

We do not know however any explicit formulation for the associated differential. It
ould be extremely interesting to know:
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Problem 16. Provide an explicit formulation for �T or for �T2 .

Problem 17. Is the differential map �T2 associated to the 2-convexification of Tsirelson
space singular?

It is proved in [38] that �T , the associated differential to the scale (T , T ∗) of Tsirelson
space is singular. The butterfly lemma then yields

�T2 =
1
2

(�T + KP)

but this is not enough to deduce that �T2 is singular since KP is also singular. In a
forthcoming paper [46] we will show that all higher Rochberg spaces Rn(T2) are also

eak Hilbert spaces, which provides the existence of new more exotic weak Hilbert
paces. Additional properties of R2(T2) were studied by Suárez in [105]. It would be
mportant to advance in the following question:

roblem 18. Identify the natural subspaces of Rn(T ) and Rn(T2)

Properties of Rochberg spaces associated to other exotic Banach spaces of the
sirelson family were studied by Morales and Suárez [84]. In particular, those associated

o the symmetrization of Tsirelson space. The key difference between T2 and T s
2 is

hat the symmetrized space is not weak Hilbert [27, Prop. 3.7]. In fact, it is not even
symptotically hilbertian (a Banach space X is asymptotically hilbertian if there is a
onstant C such that for every n, there exists a finite codimensional subspace of X all
hose n-dimensional subspaces are C-isomorphic to some ℓn

2). All weak Hilbert spaces
re asymptotically hilbertian [93, Prop. 14.2 and Th. 14.4]. However, T2 and T s

2 have the
ommon property of being HAPpy spaces [66], i.e., spaces such that all of their subspaces
ave the Approximation Property. Weak Hilbert spaces are HAPpy [93, Th. 15.1]. The
pace Rn(T s

2 ) was studied by Morales and Suárez in [84, Section 5] showing that it is an
xample of HAPpy space that is not asymptotically hilbertian. Moreover, using the local
pproach described above they prove [84, Prop. 8] that Rn(T s

2 ) is HAPpy. The proof is
clever combination of:

(i) The using of Kwapien’s bound [77], mentioned earlier, and the estimates above to
get that, for any n-dimensional subspace E of R2(T s

2 ), the function d(E, ℓn
2) grows

as the inverse of Ackerman type (see the initial discussion of [84, Section 5]).
(ii) A result of Johnson and Szankowski [66, Th. 2.1] asserting that if the function

dn(X ) = sup{d(E, ℓn
2) : E ⊂ X, dim E = n} grows sufficiently slow, as the inverse

of Ackerman type, then X is HAPpy.

Again, we do not have any explicit formulation for the associated differential �T s
2

.

roblem 19. Is �T s
2

singular?

Morales and Suárez prove [84, Prop. 9] that R2(T s
2 ) is not asymptotically hilbertian

ecause, if it were, it would contain a non-Hilbert, asymptotically hilbertian Banach space
ith symmetric basis, in contradiction with a result of Johnson [64, Remark 2] asserting

-
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that an asymptotically hilbertian space with a symmetric basis is ℓ2. A stronger result is
rue:

roposition 9.2. A non-trivial twisted Hilbert obtained from the interpolation scale
X, X∗) in which X and X∗ have a common symmetric basis is not asymptotically
ilbertian.

roof. Assume that (X, X∗)1/2 = ℓ2 and denote by � the corresponding differential.
et (en)n be the common symmetric basis. If R2 were asymptotically hilbertian then the
omain space Dom� would also be asymptotically hilbertian. But observe that Dom�

as a symmetric basis: indeed, if σ is a permutation of the integers, the canonical
rojections Pσ is an operator on the scale (X, X∗) and therefore, by Proposition 4.8, it
cts on Dom�, from where we conclude that (en)n is a symmetric basis for Dom(�). The
forementioned result of Johnson implies that Dom� is isomorphic to a Hilbert space.
herefore (0,

∑
x j e j

)
R2

=

∑ x j e j


Dom�

∼

∑ x j e j


ℓ2

,

nd thus �(∑ x j e j

)
ℓ2

≤ C
∑ x j e j


ℓ2

,

mplying that � : ℓ2 −→ ℓ2 is bounded. □

Suárez and Morales also study the Rochberg spaces associated to the scale of Schreier
nd 2-convexified Schreier spaces. However, we do not know:

roblem 20. Provide an explicit formulation for �S , the differential associated the
chreier space. Is it singular? Similar questions for the 2-convexification S2 of the
chreier space.

0. Advanced topics

0.1. Stability

Stability issues are important in every mathematical theory. The meaning of “stability”
n the context of the study of differentials of interpolation processes and their associated
ochberg spaces is to determine to what extent small modifications of the data (the

nterpolation pair, the parameter at which one interpolates) produce significant variations
f the properties of either the Rochberg spaces, the associated exact sequences or the
ifferentials that generate them. Let us begin with the result that started it all in this
ontext: Kalton’s Stability Theorem.

Complex interpolation between Köthe function spaces over the same measure space
ield centralizers, something that can be seen as a consequence of the Commutator
heorems considered in Section 4.5. Indeed, let (X0, X1) be a pair of Köthe spaces and
ote that, for any a ∈ L (µ) and j = 0, 1, the multiplication operator τ : X → X
∞ a j j
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given by τa( f ) = a f is bounded by ∥a∥∞. Thus, by the Commutator Theorem for the
case n = 2 (see Theorem 4.7) it follows that for any 0 < θ < 1,

∥a�θ ( f ) − �θ (a f )∥X = ∥τa�θ ( f ) − �θ (τa( f ))∥X ≤ C∥ f ∥X .

Moreover, the centralizer �θ is real, meaning that it sends real functions to real functions.
Summing it up, complex interpolation of Köthe spaces always define real centralizers on
Köthe spaces. Kalton’s Stability Theorem provides the converse under some additional
hypothesis: any real centralizer on a superreflexive Köthe function space X comes as the
derivation of an interpolation scale (X0, X1) of Köthe spaces such that (X0, X1)1/2 = X .
Precisely (see [29,38,71]):

Theorem 10.1. Let X be a superreflexive Köthe space and suppose that � : X → L0(µ)
is a real centralizer. Then:

• There exist ε > 0 and Köthe spaces X0, X1 such that X = (X0, X1)1/2 and ε� is
boundedly equivalent to �1/2.

• The spaces X0 and X1 are determined up to equivalent renorming, i.e, if Y0 and
Y1 are Köthe spaces such that (Y0, Y1)1/2 = X and the induced centralizer �Y

1/2 is
boundedly equivalent to �1/2, then X0 ≃ Y0 and X1 ≃ Y1.

The uniqueness condition implies, very remarkably, that if (X0, X1) is any compatible
couple of superreflexive Köthe spaces such that �θ : Xθ → L0(µ) is bounded, then
X0 ≃ X1 and �ρ ≡ 0 for every 0 < ρ < 1. We say in this case that complex interpolation
of superreflexive Köthe spaces enjoys bounded global stability since boundedness of a
differential at a point implies that all the remaining differentials at other points must also
be bounded. Kalton’s Stability Theorem opens the door to ask if a kind of bounded local
stability, out of the Köthe space case:

Problem 21. Assume that for θ ∈ S one has �θ ≡ 0. Does there exist ε > 0 such that
�z ≡ 0 for z ∈ (θ − ε, θ + ε)?

Another stability notion is worth consideration. We say that there is global stability
(resp. local stability) for (X0, X1) if the triviality of �θ implies that �ρ is trivial for all
0 < ρ < 1 (resp. for all ρ ∈ (θ − ε, θ + ε) for some ε > 0). The same ideas can be
transplanted for families. The paper [33] was devoted to studying the (bounded) stability
of the complex method, and it provides unexpected results:

• There is bounded and global stability for pairs of Köthe space.
• There is bounded and global stability for families of up to three Köthe spaces.
• There is no bounded or local stability for families of four Köthe space spaces.

Moreover

Problem 22. Is there local stability for pairs of arbitrary Banach spaces?

In the abstract setting, one could consider an interpolation method with parameters
living in a metric space P in such a way that for each θ ∈ P there are two interpolators
9(θ ), 8(θ ) obtained from the method. These interpolators generate a differential � with
z
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its associated exact sequence. The previous stability results translate in this general case
to the following problem:

Problem 23. Study the stability of the map z → �9(z),8(z).

with the meaning of whether relevant properties of �9(z),8(z) are maintained by small
perturbations of z.

10.2. Homology

The reader is addressed to [8,28,30] for a sounder development of categorical and
homological elements in Banach space theory. Let us denote, as it is usual in homology,
the vector space of exact sequences 0 →→ ℓ2 →→ Z →→ ℓ2 →→ 0 modulo
quivalence by Ext(ℓ2, ℓ2). The 0 element is the class of trivial sequences. What the
nflo–Lindenstrauss–Pisiser example ELP shows is that Ext(ℓ2, ℓ2) ̸= 0. The space Z2
nd, in general, any non-Hilbert twisted Hilbert space, provides a new nonzero element
f Ext(ℓ2, ℓ2). The space Ext(ℓ2, ℓ2), more precisely the functor Ext, is part of a hierarchy

of functors Extn studied in homology. The reader is invited to peruse [8,16] for a
comprehensive overview of the theory. These functors provide vector spaces Extn(ℓ2, ℓ2),

hose study is by no means easy. For instance, the second space in the hierarchy is
xt2(ℓ2, ℓ2), whose elements are equivalence classes of four-term exact sequences

0 →→ ℓ2 →→ Z1 →→ Z2 →→ ℓ2 →→ 0

modulo a suitable equivalence relation. Since a four-term exact sequence can be regarded
s the concatenation of two short exact sequences

0 →→ ℓ2 →→ Z1 →→

↘↘

Z2 →→ ℓ2 →→ 0

V

↗↗

then the four-term sequence can be labelled as FG, where F represents the exact
sequence

0 →→ ℓ2 →→ Z1 →→ V →→ 0
and G the exact sequence

0 →→ V →→ Z2 →→ ℓ2 →→ 0 .

The final section of [17] is devoted to showing that the existence of the nets (15) of
Rochberg spaces shows that given any differential � associated at 1/2 to an interpolation
pair (X, X∗) with (X, X∗)1/2 = ℓ2 satisfies �� = 0 in the space Ext2(ℓ2, ℓ2). This result
eems to come out of the blue, and turned out to be more unexpected yet when the
uthors proved in [15] that Ext2(ℓ2, ℓ2) ̸= 0 by showing the existence of a differential

� such that �KP ̸= 0. These results together seem to point out some strong, still
oncealed, connections between nets of order Rochberg spaces and higher order spaces in
he hierarchy of Ext. However, nobody has been able to prove so far that Extn(ℓ , ℓ ) ̸= 0.

-----
2 2
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10.3. Nonlinear classification

A must reading for this section is [74], even if it can be followed independently. The
ap g(M, N ) between two closed subspaces M, N of a Banach space Z is defined as

g(M, N ) = max
{

sup
x∈BM

dist(x, BN ), sup
y∈BN

dist(y, BM )
}
,

here dist(x, BN ) = inf{∥x −n∥: n ∈ BN }. The Kadets distance dK between two Banach
paces X, Y is defined as the infimum of g(i X, jY ), where i : X → W , j : Y → W range
hrough linear isometric embeddings into the same Banach space W . The following result

essentially is in [41], although not formulated in this way:

Lemma 10.2. Given an exact sequence 0 → Y → X
π
→ Z → 0 of Banach spaces,

dK (X, Y ⊕ Z ) = 0.

roof. Y ⊕1 Z is a subspace of X ⊕1 Z and for each positive ε the subspace Xε =

{(εx, πx) : x ∈ X} of X ⊕1 Z is isomorphic to X . Then, g(Xε, Y ⊕1 Z ) ≤ ε [87, Lemma
.9] yields dK (X, Y ⊕1 Z ) = 0. □

The combination of this result plus the existence of the exact sequences (13) imply,
y an straightforward induction argument:

roposition 10.3.

• If Rn = Rn(X0, X1)θ denote the Rochberg spaces obtained from the complex
interpolation pair (X0, X1) at θ then dK (Rn, (X0, X1)n

θ ) = 0.
• In particular, if Rn = Rn(X, X∗)1/2 denote the Rochberg spaces obtained from a

suitable complex interpolation pair (X, X∗) at 1/2 then dK (Rn, ℓ2) = 0.

1. List of open problems

We conclude the paper by listing most of the problems that have been mentioned in
he text. The number corresponds to the numbering already used in the text, although
roblems have been gathered by topics.

Basic unsolved questions about twisted Hilbert spaces

roblem 2 Is every twisted Hilbert space isomorphic to its dual?
roblem 4 Does every twisted Hilbert space have the BAP?
roblem 5 Let X be a Banach space such that (X, X∗)1/2 = H is a Hilbert space with

associated differential �. Is H ⊕� H isomorphic to its dual?

Advanced questions about interpolation methods

Problem 1 Do interpolation methods generate Rochberg spaces?
Problem 6 Obtain a generalized Butterfly Lemma for higher order differential maps.
Problem 7 Is every compatible family of interpolators strongly compatible?
Problem 8 Do non-compatible families of interpolators appear in nature?
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Problem 9 Do Domains and Ranges form interpolation scales on their own? More pre-
cisely, is (DomKPp, DomKPp∗ )1/2 = DomKP2 or (DomKPp, DomKPp∗ )1/2 =

ℓ2 ?
roblem 24 Is Extn(ℓ2, ℓ2) = 0?

Questions about specific spaces

Problem 3 Is the space ELP constructed by Enflo, Lindenstrauss and Pisier [58] isomor-
phic to its dual?

roblem 10 Provide an explicit description for KP−1.
roblem 11 Identify the natural subspaces of Rochberg spaces for the scale of ℓp-spaces

as Domain or Range spaces.
roblem 12 Obtain manageable characterizations of the natural subspaces X A ⊂ Rn for

|A| ≥ 2.
roblem 13 Does Rn admit a unique, up to equivalence, non-trivial symplectic structure?
roblem 14 Is the symplectic group of Rn contractible. Is it path connected? It is not

even known if GL(Z2) is path connected.
roblem 15 Is Z2 isomorphic to its hyperplanes?
roblem 16 Provide an explicit formulation for �T or �T2
roblem 17 Is the differential �T2 associated to the 2-convexification of Tsirelson space

singular?
roblem 18 Identify the natural subspaces of Rn(T ) and Rn(T2).
roblem 19 Is the differential �T s

2
singular?

roblem 20 Provide an explicit formulation for the differential map �S associated the
Schreier space. Is it singular? Similar questions for the 2-convexification S2
of the Schreier space.

Stability problems

roblem 21 Let (X0, X1) be an interpolation pair of Banach spaces. Assume that �θ ≡ 0.
Does there exist ε > 0 such that �z ≡ 0 for z ∈ (θ − ε, θ + ε).

roblem 22 Is there local stability for pairs of arbitrary Banach spaces?
roblem 23 Study the stability of the map z → �9,8(z).
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