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Abstract

In 1996, it was published the seminal work of Rochberg “Higher order estimates in complex
interpolation theory” (Rochberg, 1996). Among many other things, the paper contains a new
method to construct new Banach spaces having an intriguing behaviour: they are simultaneously
interpolation spaces and twisted sums of increasing complexity. The fundamental idea of Rochberg
is to consider for each z € S the space formed by the arrays of the truncated sequence of the
Taylor coefficients of the elements of the Calderén space. What was probably unforeseen is that the
Rochberg constructions would lead to a deep theory connecting Interpolation theory, Homology,
Operator Theory and the Geometry of Banach spaces. This work aims to synthetically present
such connections, an up-to-date account of the theory and a list of significative open problems.
©2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In 1996, it was published the seminal work of Rochberg “Higher order estimates
in complex interpolation theory” [97]. Among many other things, the paper contains
a new method to construct new Banach spaces having an intriguing behaviour: they are
simultaneously interpolation spaces and twisted sums of increasing complexity. From
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this point of view we can think of the whole process of construction of Rochberg spaces
unfolding at different levels: At level O (no derivatives involved) we have plain complex
interpolation. More precisely, given a suitable pair of Banach spaces (X, X;), if one
considers the usual Calder6n space C(Xy, X;) of X+ X;-valued analytic functions then
the interpolation space (X, X1)g = {f(0) : f € C(Xo, X1)} is the space $R; of values of
the functions at 6. At level 1 (one derivative involved) one would think of the space ‘R,
of pairs of values (f'(0), f(0)) as f € C(Xp, X1). In general, at level n (n derivatives
involved) one would consider the space

1
Ry (X0 X0)o = { (= £70). ... £0). F©)) : f € CXo. X1}

of truncated sequences of Taylor coefficients of elements of C(Xy, X) at 6. These spaces
will be endowed with the quotient norm, referred to as Rochberg spaces and, unless it
is required to specify (Xo, X) or 6, denoted R,,. The display and study of properties of
Rochberg spaces is the main topic of this survey.

It turns out that many concepts, properties and results occurring in classical inter-
polation theory (level 0) have close analogues at higher levels. Other phenomena can
only occur at higher levels. The following table depicts some of the analogies and
correspondences:

Calderdn space C(Xo, X1)

Level O Level n

e Interpolation space (X, X1)g e Rochberg space R, (X, X1)o

e Evaluations f(6) e Taylor Coefficients
(/00O ... 1®))

e Interpolation property for operators e Commutator Theorem

e Identity (X, X1)9 — (X0, X1)s o Differentials Q;; : Ry — Ry for
k+1l=n

e Reiteration Theorem e Reiteration theorem for differential
maps

The aim of this survey is to present an up-to-date account of the theory of Rochberg
spaces. We will focus on two scenarios: Rochberg spaces generated by complex in-
terpolation for pairs of spaces and Rochberg spaces generated by a family of abstract
interpolators. We have strived to give proper credits and sources for all the results, while
those unassigned are presented here for the first time. In some cases the results are in
the literature but the proofs presented here are original. We will provide explicit proofs
for the fundamental results, and the main ideas plus informal discussions for the rest.

We now explain the organization of the paper. For all unexplained terminology and
concepts see the corresponding sections (or the end of this introduction). We assume that
the reader has some acquaintance with Banach space theory, for which three authoritative
references are [2,79,80], and the basics of complex interpolation as can be seen in [6,73].

The overall organization of the paper is: first, what occurs at level O (interpolation);
then, what occurs at level 1 (twisted sums) and then what occurs at higher levels. In the
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three cases combining the complex interpolation and the abstract frame. Accordingly,
in Section 2 we deal with the basics of complex interpolation for pairs: definitions,
constructions, the reiteration theorem, Lozanovskii factorization and several examples
including the Hilbert space, which is central to the theory in many regards. The O level
is also considered from the abstract point of view through the concept of interpolator.
In Section 3 we deal with level 1 and introduce the fundamental ideas of the theory
of twisted sums, exact sequences of Banach spaces and the necessary homological
techniques. We thus show how level O results can be generalized to level 1 using the
previously introduced homological ideas. The central concept at this level 1 is that of
differential associated to an interpolation scale. The mirroring of ideas between the two
levels establishes, for instance, that Hilbert spaces correspond to twisted Hilbert spaces,
that reiteration results from interpolation theory transform into reiteration results for
differentials, etc. In Section 4 we formally introduce Rochberg spaces R, for the complex
interpolation method as the space formed by truncated sequences of Taylor coefficients of
functions in the corresponding Calderén space. Rochberg spaces can also be generated by
certain higher order differentials €2, ,. In turn, these differentials induce exact sequences
that can be entwined in commutative diagrams of the form

mk p— mk

l !

S){n B SRn +m T mm

l ! |

iRn—k — mn-km—k _— mm

The discussion about the Rochberg spaces associated to a sequence of abstract
interpolators points out specific properties of the interpolators associated to complex
interpolation. Those specific properties crystallize in the notion of compatibility studied
in Section 4.3. The rest of the Section contains a generalized form of the Commutator
theorem and its consequences, an exposition of the inversion process and a few additional
consideration about the effect on Rochberg spaces of reiteration and multiplication by
scalars.

Sections 5 to 9 are devoted to present concrete examples. First, the case of weighted
Hilbert spaces. This is the simplest situation since the associated differentials are all
linear, and therefore all Rochberg spaces are isomorphic to £,. Then, Section 6 is devoted
to the case of £, spaces, arguably the most important example. The associated Rochberg
spaces are strange creatures: for instance, when fixed at 1/2 the Rochberg space R,
is a Banach space isomorphic to its dual, which has exactly n different types of basic
sequences, has no complemented subspace with G.L-lust., has a non-trivial symplectic
structure and every operator 7 : 9}, — X is strictly singular or invertible on some
complemented subspace isomorphic to fR,. Section 7 treats the non-atomic L, spaces,
Section 8 deals with Orlicz spaces and Section 9 considers Tsirelson-like spaces, with
particular interest in the 2-convexified Tsirelson space that produces new weak-Hilbert
spaces [106].
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The two final sections are devoted to (1) briefly discuss advanced topics closely related
to Rochberg spaces: Stability, Homology and Nonlinear classification and (2) list open
problems.

The following notation will be consistently used throughout the paper: X = ¥ means
that the two spaces X, Y coincide, X ~ Y that they are isometric and X ~ Y that they
are isomorphic. Given two real valued functions f and g, by f ~ g means that there
exist positive constants C and C’ such that C'g(x) < f(x) < Cg(x) for all x.

2. Complex interpolation for pairs of Banach spaces

In its essence, an interpolation method is a method to, given a pair (X, X;) of Banach
spaces and a parameter 6, produce an intermediate space Xy = (Xy, X1)y. The meaning
of “intermediate” depends on the interests one has.

(1) From the point of view of convex analysis, the question of how is it possible to
“continuously” transform a (convex) set Cy into another C;. Readers interested
in this approach would largely benefit from the reading of [18], where a natural
structure of normed space is placed on the space of quasinorms Q defined on a
finite dimensional space K”. Then, consider, given the unit balls Cy, C; of two
quasinorms, a continuous path H : [0,1] — Q such that H(0) = C, and
H() = Cy. If one sets Xg = (K", Cy) and X; = (K", C;) then each space
A, = (K", H(t)) can be considered an intermediate space between X, and X.

(2) The classical operator theory point of view is rather interested in obtaining spaces
Xy with the following property: if one has another pair (By, By) and an operator
T that is linear and continuous as an operator A; — B; for i = 0, 1 then it is also
continuous as an operator Xy — By. Spaces with this property are usually called
interpolated spaces.

(3) The “differential equation” point of view considers interpolation methods as a
kind of Banach valued forms of Dirichlet’s problem for Laplace’s equation: Given
a function f that has values everywhere on the boundary of a region in K",
find a continuous function F twice continuously differentiable in the interior
and continuous on the boundary, such that F is harmonic in the interior and
F = f on the boundary. Now, place at each point @ of the boundary of a
domain D of the complex plane a normed space X, (say, a norm N, defined
on a prefixed K”) instead of a scalar (one can think of this scalar as ||1],)
and determine a way to assign to each point z € D a norm N, with some
additional continuity or regularity properties. Details about this approach can be
followed at [52,96,102]. The papers [50,51] presented solutions for the so-called
(sub-) interpolation families (in dimension one, the family of norms | - ||, is
a (sub-) interpolation family when log||1]|, is (subharmonic) harmonic, so that
what one is asking for is the solution for the Dirichlet problem for the equation
Alog||1]], = 0); this lead to what is called nowadays the interpolation method
for families. The case of pairs can be recovered placing, without giving too many
details now, X, and X; on equally distributed arcs on the boundary of D. The case
of families is much more sophisticated and delicate than the case of pairs (Xo, X)
since the relative distribution and positions of the spaces along the boundary have
impact on the interpolated space one obtains.
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(4) The differential geometry point of view attempts to think of the intermediate spaces
{H(t) : t € [0, 1]} as conforming a geodesic, in a sense to be determined, between
Xo and X ;. See [102].

Moreover, the many methods (for pairs, for families, ...) appeared in the literature
have led diverse unification attempts and from that to what could be called “abstract
interpolation methods”.

2.1. The abstract setting

As we have just said, there are many interpolation methods in the literature: in some
of them the parameter 6 is a complex number, in some 6 is a pair, or three or four, real
numbers, or a point in a prefixed Banach space, etc. At the abstract level, 8 is just an
element of the space D of parameters and most interpolation method adopt the following
form: assign to each suitable pair (X, X;) of Banach spaces a certain Banach space H of
functions D — ¥ from D to a given ambient Banach space ¥ (see below for additional
comments about the role of the ambient space) such that for each 6 € D the evaluation
map &y : H — X is continuous. In this way, for each parameter 6 one can form the space
X9 = {f(0) : f € H}. Since 8y is a bounded operator, Xy = 8y[?] is a Banach space
when endowed with the quotient topology [32] and Xy = H/ ker §y. Judicious choices of
‘H will make the intermediate space Xy to be an interpolation space in the sense of (2)
above. Abstract methods make their entrance when one replaces §y by a more general
interpolator ®; namely, a suitable operator ® : H — X such that X¢ = ®[H] (endowed
with the quotient norm) is an interpolation space. See the general setting for this abstract
approach in [32] and the categorical approach in [85].

In this survey we will focus, half of the time at least, on Calderén complex interpola-
tion method for pairs of Banach spaces [6,19] combined with Schechter’s approach [99].
A certain bias towards abstract methods and some occasional appreciations of what other
methods could yield, or even what could happen when families (instead of pairs) are
considered, will be either desirable or unavoidable.

2.2. The basics of complex interpolation

Let us briefly describe the complex interpolation method for couples, following a
combination of [6,73]. Let S denote the open strip {z € C : 0 < Re(z) < 1} in the
complex plane and let S be its closure. A pair (X, X1, 1, 7) of complex Banach spaces
together with injective operators 1 : X9 —> X and j : X; —> X into some ambient
Banach space ¥ will be an interpolation pair. We will identify both X, X; with their
continuous images in X without further mention. The Calderén space C(Xg, X;) is the
space of continuous bounded functions f : S —> ¥ that are holomorphic on S and
satisfy the following boundary condition: For k = 0, 1, f(k 4 it) € X, for eacht € R
and sup, || f(k+it)|lx, < oo. The Calderén space C(Xo, X1) is complete under the norm
£l = sup{ll ftk +it)llx, : K =0,1;¢ € R} The evaluation map 8, : C(Xo, X;) — X

is continuous for all z € S. Given 8 € (0, 1), the interpolation space Xy = (X, X1)g is
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defined as the Banach space
Xo={x e X:x= f(0) for some f € C(Xgy, X1)} =C(Xo, X1)/kery

endowed with the quotient norm || x| x, = inf{||f|| x = f(0), f € C(Xo, Xl)}.
Assume now that (X, X;) and (Yy, Y;) are pairs of Banach spaces continuously
injected in ambient spaces ¥ and X', respectively. The fundamental property of inter-
polation spaces already mentioned at the beginning of this section is the following: if
T : ¥ — X'is a bounded operator such that T'|x, : Xo — Yy and Tl|x, : X — Y|
are bounded, then T : Xy — Y, is bounded for any 8 € (0, 1). In [37, Section 3] it is
explained a method so that, without loss of generality, one can assume that ¥ = ¥'.

2.3. Examples

A few examples are of paramount importance for this survey, and all of them lie
inside the category of Kothe spaces: Given a measure space (X, u) we denote by L
the space of all p-measurable functions. A Kothe space X is an L..-submodule of L
(in particular, a vector subspace X such that if g € Ly and || gllx < oo then g € X)
containing the characteristic functions of measurable sets, and endowed with a norm
such that if f,g € X and |f| < |g| then || f||x < ||gllx- To develop more sophisticated
issues about twisted sums of Kothe spaces it will be needed, according to [71, p. 482],
to additionally ask to X the existence of strictly positive functions i,k € Lo such
that |hf]l1 < lIfllx < lkflle for every f € Lg. In particular, Banach spaces with a
1-unconditional basis with their associated £.,-module structure are Kothe spaces.

Let X, Y be two Kothe spaces on the same base space and let 0 < 6 < 1. We can
form the following quasi Banach spaces:

e X ={f eLy:|f]" e X} endowed with the norm ||x ||y = |/|x|"/?|°.

e XY ={feLy: f=uxyforsomex € X,y € Y} endowed with the quasinorm
I fllxy = inf{||x||xlIylly : f =xy, x € X,y € Y}. According to [12, Lemma 2],
if X, Y are Banach spaces then XY is (isomorphic to) a 1/2-Banach space.

o If X, Y are Banach spaces, the Banach space X!~?Y? is therefore formed by the
functions f € Lo such that f = ab for some a € X' ™% b € Y? so that
[f] = |x|'""?y|® for x = a'/'=? and y = b'/?. The space is thus endowed with
the norm | /| = inf(Ilx [y Iyl s x € X,y € Y. |f] = x|y},

The pair (Xo, X1) will be called regular in the terminology of Cwikel, if Xy N X,
is dense in both Xy and X;. Shestakov proved in [103] that [X,, X ]y = XoN X; C
X(l,_e X% and Kalton [71, formula (3.2)] already observed that complex interpolation for
regular couples and factorization are the same, thanks to Lozanovskii decomposition
formula (see [73, Theorem 4.6]); precisely,

(Xo, X1)p = X" X{. M
A fundamental example appears when one considers the regular pair (Lo, L1):
(Lo, L1)g = Ly—1.

This is, in its complex interpolation version, the classical Riesz—Thorin theorem [0,
Theorem 1.1.1], consequence of the Three-lines theorem [6, Lemma 1.1.2]. Still, this
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example can be seen as follows. Recall that the p-convexification of a Kothe function
space X is defined by to be the space X, endowed with the norm [|x|| = lx |21V,
Conversely, when X is p-convex, the p-concavification of X is given by |[|x|| =
[llx|"/7||”. Thus, if 0 <@ < 1, 1 < p < oo and X is a Kothe space then

(Loo(p), X)o = X(efl) 2

is the 6~ '-convexification of X. Conversely if X is p-convex and X” is the p-
concavification of X then X = (Loo(1t), X'P)1,.

To present our second basic example, recall that a weight w is a positive function in
Lo(p). Given a Kothe function space X of p-measurable functions, we denote by X(w)
the space of all measurable scalar functions f such that wf € X, endowed with the
norm ||x|, = ||wx|x. We get [6, Theorem 5.4.1] that if X is a Kothe space with the
Radon-Nikodym property and wy, w; are two weights then, for 0 < 6 < 1, one has

(X (wo), X(w))g = X(wy "wl) A3

Still intermediate between the special case of L ,-spaces and the general one of Kothe
spaces is the case of Orlicz spaces (see [57,79,81,86] for details and the general theory).
Recall that an N-function is a map ¢ : [0, 00) — [0, co) which is strictly increasing,
continuous, ¢(0) = 0, ¢@)/t — 0 ast — 0, and ¢(¢)/t — 00 as t — o0.
An N-function ¢ satisfies the A,-property if there exists a number C > 0 such that
@(2t) < Co(t) for all + > 0. When an N-function ¢ satisfies the A,-property, the
Orlicz space is L,() = {f € Lo(n) : ¢(If]) € Li(n)}. endowed with the norm
Ifll = inf{r > O : f¢(|f|/r)du < 1}. It was proved in [63] (see also [20]) that if
¢ and ¢; are two N-functions satisfying the A,-property, and let 0 < 6 < 1, then the

formula =" = (¢, 1)1_0 ((01—1)0 defines an N-function ¢ satisfying the A,-property, and

(L(,Oo(/’L)’ L(p] (M))g = L(p(l"“) (4)

Observe that the function ¢(¢) = t” for 1 < p < oo defines an N-function satisfying
the A,-property and the corresponding Orlicz spaces are the usual L, and £, spaces.

On the farthest shore of Banach spaces with unconditional basis we encounter the
family of Schreier-like and Tsirelson-like Banach spaces. The Schreier space [101] is
constructed as follows: call a finite subset A C N admissible if |A] < minA and
consider the family A C {0, 1} of all finite admissible subsets of N. Given A € A
and x = (x,), a sequence with finite support, denote by Ax the sequence formed by the
elements of x having coordinates on A. The space S is the completion of the space of
finitely supported sequence under the norm |x|ls = sup, 4 l|Ax|l1. The canonical unit
vectors form a shrinking basis for S. The Tsirelson space 7 [109] was the first example
of reflexive Banach space with no copies of ¢y or £, for 1 < p < oo. A comprehensive
treatment of Tsirelson space can be found in [27]. Given any finite subsets E, F C N
denote by E < F that max £ < min F, and define as before Ex = Zne g
x =), xx € coo. The norm of Tsirelson space is defined inductively: one fixes x € cy

x, for any
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and consider the following sequence of norms (|| - |I,n)5g

lxllo = llx1le
)
(R max[||x|| 1 max[zk IE x| ]} for m > 0
m+1 = ms 3 j=1 JAMlm | (> — Y,
where the inner maximum is defined over all possible choices of finite subsets Ey, ..., Ej

suchthat k < E| < E;, < --- < E.

The norms thus defined are increasing in m, ||x||;;+1 > |x|», and bounded above
by the ¢; norm. Therefore the limit ||x||7 = lim,— [|X]ln exists for every x € cq
and defines a norm on the space of finitely supported sequences. The Tsirelson space 7~
is the completion of coy with the norm || - || It is customary to say that, in fact, this
definition is due to Figiel and Johnson [61] and describes the dual space of the original
space obtained by Tsirelson. The canonical unit vectors form a 1-unconditional basis for

T. Moreover, the norm || - || satisfies the following equation:
1 k
Il = max{ e 5 sup[X; 1E5xlr] ). (©)
j:
where the supremum is taken over all choices k < E| < --- < E; with k € N. Thus, in

contrast to all spaces considered up to this point, the norm of Tsirelson space is implicitly
defined — it has been recently proved [25] that an explicit finitary definition is not possible
—. The importance of Tsirelson space extends beyond these considerations. As Casazza
and Shura state already in the preface of [27] about 7 “His example opened a Pandora’s
box of pathological variations, and has had a tremendous effect upon the study of Banach
spaces”. And such it is indeed the case: its fruitful modifications include, among others,
the Schlumprecht space [100], which is the first arbitrarily distortable space that led to
the discovery of Hereditarily Indecomposable spaces by Gowers and Maurey [62].
What is important for us is that due to reasons to be explained in the next section

(S, SNp==0
(T TN =L

Tsirelson and Schreier spaces admit, of course, p-convexifications, and we will be
especially interested in their 2-convexifications 7, and S,. Another interesting variation
is the symmetrization of Tsirelson space. Recall that given a Banach space X with a basis
(en)n there is a standard procedure to construct another Banach space having (e,), as a
symmetric basis. Such space is defined, for any finitely supported vector x = >, aye,,
as the completion of cyy under the norm

X = Su a,|e
” ”S(X) p ”2’1:| n| w(n) ¥

0E€0x
where o, denotes the set of all permutations of N. The symmetrization of 7,, denoted
75, was constructed by Casazza and Nielsen in [26] and is a reflexive Banach space with
symmetric basis that contains neither £, nor ¢ [26,27]. One still has (7, (75°)")12 = £».
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2.4. Hilbert spaces

As we see, £, the space of sequences x = (x,,) of scalars such that || x| = (Z | X, |2) 12
plays an important role in interpolation affairs. This is, up to isometries, the only infinite-
dimensional separable Hilbert space. A Hilbert space is a complete normed space whose
norm | - || comes induced by an inner product (-,-) in the form |x| = (x,x)"%.
The orthogonal projection (which should not be linear, but it is) provides a contractive
projection onto every closed subspace. Infinite dimensional Hilbert spaces enjoy the
following properties: They are reflexive, £,-saturated and isomorphic to its dual; they have
type and cotype 2, all its subspaces are complemented, have a (generalized) unconditional
basis and they only admit one type of basic sequence. Moreover, they are symplectic,
in the following sense: A real Banach space X is said to be symplectic if there is
a continuous alternating bilinear map @ : X x X — R such that the induced map
L, : X — X* given by L,(x)(y) = w(x,y) is an isomorphism onto. A symplectic
Banach space is necessarily isomorphic to its dual and reflexive. The simplest symplectic
structure is the obvious one on Y @, Y* for Y a reflexive space; namely

wyl(z, 2°), (w, wH] = w*(2) — " (w).

A symplectic Banach space (X, w) is said trivial if there exist a reflexive Banach space
Y and an isomorphism 7 : X — Y @ Y* such that w(x, y) = wy(Tx, Ty) for every
x,y € X. Thus, Hilbert spaces admit a symplectic but trivial structure.

Hilbert spaces are easily obtainable by complex interpolation and, in particular, £,
is easily obtainable by complex interpolation of Banach spaces with basis. The general
idea is that complex interpolation between a Banach space and its dual gives, in many
cases, a Hilbert space (see e.g., the comments at [95, around Theorem 3.1]). More
precisely, Watbled shows [38,110] that if X is a Kothe function space on a complete
o-finite measure space S and we assume both that X N X* is dense in X and that
Li(S)NLo(S) C XNX* C La(S) C X+ X* C Li(S)+ Loo(S) then (X, X*)1/2 = La(S).
More precisely, given a Banach space X, we denote by X" its anti-dual, namely, the
dual space X* endowed with the conjugate scalar multiplication « - x = ax. There are
several results that yield a Hilbert space H as interpolated space of two Banach spaces.
A typical situation occurs when H < X is continuously and densely embedded in X
or, conversely, if X < H embeds continuously and densely in H (see [49,110]). In this
case, (X, Y*)l 2 = H, i.e, the interpolation of X and its anti-dual in 1/2 produces the
Hilbert space H. We state this explicitly (cf. [38, Prop. 6.1]):

Proposition 2.1. Let X be a Banach space and H a Hilbert space. Suppose that either
X < H or H — X define a densely continuous embedding. Then (X, Y*)l/z =H.In
particular, if X is a Banach space with a monotone and shrinking basis then (X, Y*)l 2=
£y with equality of norms.

2.5. Reiteration for the complex method

We need to recall the classical reiteration theorem for the complex method, since it
will play an important role in our exposition.
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Proposition 2.2. Ler (X, X1) be a pair of Banach spaces and consider, for 0 < a <
B < 1, the interpolated spaces (Xo, X1)q and (Xo, X1)p. Then, for any a <0 < B, the
interpolation identity

((Xo, X1e, (Xo, Xl)ﬁ)g = (Xo, X1)1-0)a+08 @)

holds with equality of norms.

This was proved by Calderén in [19, 32.3] under supplementary hypothesis (see
also [6, Th. 4.6.1]) and in full generality by Cwikel [54].

3. Exact sequences of Banach spaces and complex interpolation

For background on the theory of twisted sums and diagrams and their interaction with
modern Banach space theory we refer to [8].

3.1. Exact sequences of Banach spaces

An exact sequence 0 - A — B — C — 0 of Banach spaces and continuous
operators is a diagram in which the kernel of each arrow coincides with the image
of the preceding one. The simplest exact sequence is obtained taking B = A @, C
with embedding y — (y,0) and quotient map (y,x) — x. Two exact sequences
0—>A—>B - C—>0and0 > A —> B, > C — 0 are said to be equivalent
if there exists an operator 7' : B — B, such that the diagram

: P

0 A B c 0
|
0 A B, C 0

is commutative. The classical algebraic 3-lemma (see [8]) shows that T must always be
an isomorphism. An exact sequence is said to be rivial, or that it splits, if it is equivalent
to0 > A— AB, C - C — 0. An exact sequence 0 - A — B — C — 0 splits if
and only if :1[A] is complemented in B.

Given an exact sequence 0 - A — B — C — 0 and an operator 7 : A — A’ one
can form a commutative diagram

0 A B c 0
Lo L
0 Al PO c 0

v )
in which PO = (A’ @, B)/A with A = {(ta, —i1a) : a € A} is the pushout space,
1(a) = (@,0) + A and p((d’,b) + A) = pb. Since PO is a categorical object, any
diagram having the form
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is actually a pushout diagram, with the meaning that the lower sequence is equivalent
to the pushout lower sequence in the diagram

0 A B C 0
b
0 A PO C 0

Two equivalent sequences yield equivalent pushout sequences.

3.2. Twisted sums of Banach spaces

A twisted sum of two Banach spaces Y, X is a quasi-Banach space Z having a closed
subspace isomorphic to Y and such that the quotient Z/Y is isomorphic to X. Therefore,
a twisted sum Z of ¥ and X yields an exact sequence 0 — ¥ — Z — X — 0
and, conversely, the open mapping theorem yields that the middle space Z in an exact
sequence 0 - Y - Z — X — 0 is a twisted sum of ¥ and X.

Kalton [68] developed first a theory of twisted sums of quasi Banach spaces through
quasi-linear maps and later [70,71,75] for twisted sums for Kothe spaces through a
special type of quasi-linear maps called centralizers (see below their definition). We
briefly outline the fundamentals of the dictionary: A map 2 : X — Y is called quasi-
linear if it is homogeneous and there is a constant M such that || Q2(u+v)—Qu)— Q)| <
M| u + v| for all u,v € X. A quasi-linear map 2 : X — Y induces the exact sequence
0—>Y > Y®aX 2 X — 0in which Y ®q X denotes the vector space ¥ x X endowed
with the quasi-norm |[(v, 2)|lq = |ly — Q(2)|| + |Iz]|. The embedding is j(y) = (v, 0)
while the quotient map is 7w (y, z) = z. Exact sequences 0 - ¥ — Z — X — 0 of
Banach spaces correspond to a special type of quasi-linear maps, called z-linear [14] or
1-linear [8], which are those satisfying [|2(}_"_, u;) — Y i Qu)| < M Y_'_, llu;| for
all finite sets uy, ..., u, € X. Thus, when F is z-linear, the quasinorm above is equivalent
to a norm [39, Chapter 1]. On the other hand, the process to obtain a z-linear map out
from an exact sequence 0 — Y — Z 2 X — 0 of Banach spaces is as follows: obtain a
homogeneous bounded selection b : X — Z for m and then a linear selection £ : X — Z
for p. Then Q2 = b — ¢ is a z-linear map. The commutative diagram

0 y —° VA P . x 0
| lr |
0 Y Y @, X X 0
J T

is obtained by setting 7 : Z — Y @, X as T(x) = (x — £px, px).

Two quasi-linear maps F, F' : X — Y are said to be equivalent, something that will
be denoted F = G, if the difference F — F’ can be written as B+ L, where B: X — Y
is a homogeneous bounded map (not necessarily linear) and L : X — Y is a linear map
(not necessarily bounded). Of course two quasi-linear maps are equivalent if and only if
the associated exact sequences are equivalent.
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Let X be a Kothe function space. A centralizer on X is a homogeneous map 2 :
X — Ly(w) for which there is a constant C(€2) such that, given f € Loo(1) and x € X,
Q(fx) — fQx) e X and [|2(fx) — fQLMX)|x < CEDI flloollxllx. A centralizer 2 on
X generates an exact sequence

J b g

0 X X ®qX X 0
where X ®&q X = {(f,x) € Lo x X : f — Qx € X} endowed with the quasi-
norm ||(f, x)|lq = ||f — Qx||x + |lx|lx, with inclusion j(y) = (y,0) and quotient

map 7w (f,x) = x. A centralizer is trivial if the exact sequence its induces is trivial.
Namely, a centralizer 2 : X — Lo(u) is trivial if and only if there exists a linear map
L : X — Lo(n) such that Q — L is a bounded map from X to X. Two centralizers 2
and Q' defined on X are boundedly equivalent if Q — Q' is bounded as map from X to
X.

3.3. Differentials of interpolation processes

Interpolation methods do not provide by themselves twisted sums, in general, since
there is not much that can be done with just one interpolator. One needs at least two
(nevertheless, standard interpolation methods do not just provide one interpolator, but
two or infinitely many). In [32] we developed an abstract theory to cover that case, and
we briefly reproduce it here. Let (¥, @) be a couple of interpolators defined on a space
‘H obtained from a pair of spaces (X, X1). We consider them in that order: first ®, then
W. So we first consider the interpolation space ®[#]. Then, we can form the pushout
diagram

@

0 —— kerd H P[H] —— 0
gl | H ®
0 —— Wlker @] PO O[H] —— 0

in which we see that PO is a twisted sum of W[ker ®] and ®[H]. Precisely, if B¢ denotes
a homogeneous bounded selection for ® then the lower sequence is generated by the
quasilinear map Qy,¢ = VB¢ so that PO = W[ker ] ®q,, , P[H].

Definition 3.1. The map Qy ¢ will be called the differential of the interpolation process
generated by the two interpolators (¥, @), and the space dQ2y ¢ = V[ker @] Bgq,, , P[H]
will be called the associated derived space.

The following problem is simultaneously deep and fuzzy:
Problem 1. Does an interpolation method provide derived twisted sum spaces?
3.4. Differentials of complex interpolation processes
If we focus on the complex interpolation method for pairs as described above (in

which H = C(Xy, X;) is the associated Calderdn space), the first interpolator is the
evaluation map &y : C(Xp, X;) —> % and §y[C(Xp, X1)] = Xy. Schechter [99] observed
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that the evaluation of the nth derived function map 8;,”) : C(Xyp, X1) —> X provided new
significative interpolators. The meaning of “significative” here can be condensed in the
following cornerstone result (see [22]):

Proposition 3.2. 5 : kerdy —> Xy is bounded and onto for 0 < 6 < 1.

Proof. The crucial property we require from C(Xg, X;) is that if ¢ : S — D is a
conformal equivalence vanishing at 0, then kerdy = ¢ - C(Xp, X1), in the sense that
every f € C(Xp, X1) vanishing at 6 has a factorization f = ¢ g, with g € C(Xy, X1)
and ||g|l = || fIl. If f € kerdy and we write f = ¢ g then f' = ¢’g + ¢g’ and therefore
8,(f) = ¢'(6)80(g), hence |5, : kerdy —> Xyl < |¢’(0)|. That §;, maps kerdy onto
Xy is also clear: if x € Xy, then x = g(@) for some f € C(Xy, X;) and x is then the
derivative of p(0)"'¢ f ato. O

Consequently, for each 6 € (0, 1) there is a pushout diagram

39

O—>ker89 —>C(XQ,X1)—>X9 —0 (9)
of ]
0 X PO Xy 0
and therefore whenever X is isomorphic to a space Xy = (Xo, X1)p obtained by
complex interpolation applied to a pair (Xo, X;) there is always an exact sequence
0 X Z X 0, more precisely
0—>X9—>X9695{;39X9—>X9é0 (10)

where By is a homogeneous bounded selection for 8y. The exact sequence is or not trivial
depending on whether the quasilinear map 2y = 5, By can be approximated by a linear
map.

3.5. Twisted Hilbert spaces

A twisted Hilbert space is a Banach space that is a twisted sum of two Hilbert spaces.
Namely, the middle space Z in an exact sequence 0 H Z H' 0
in which H and H’ are Hilbert spaces. Things turn out spicy when it was shown
that there exist twisted Hilbert spaces not isomorphic to Hilbert spaces. This was first
proved by Enflo, Lindenstrauss and Pisier [58], with the following construction: they
obtain quasi-linear map g, : ¢4 — ¢3 increasingly (in n) far from linear maps.
With these, they constructed the (finite dimensional) spaces ¢3" @,, €4 to then form the
space £, (E%n Do, Z’z’) Thus, ELP = ¢,(N, F),) for certain finite dimensional spaces F,.
However, the construction of paramount importance to our purposes is that of the Kalton—
Peck space Z, presented in [75]. And it is so because the space Z, was constructed
obtaining a quasi-linear maps KP : ¢, — £, that cannot be approximated by linear maps.
This map, called the Kalton—Peck map, is

X
KP(x) = 2x log ﬁ
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The maverick argument that makes all that work is that, since KP(e,) = 0, the only
linear map that can be close to KP is one having the form L(e,) = A,e, for a certain
bounded sequence (1,): The idea is averaging an arbitrary linear map L that is at finite
distance from € to get a new linear map L’ at the same distance from € as L and such
that L'(ex) = eL/(x) for every ¢ € {—1, +13V. It is straightforward that a linear map
with that property must have the form L’(x) = (4,x,) for some sequence A (see [8,22] or
else [38] for details). Done that, the rest is simple: ||KP(ZN en) — L(ZN e)ll < MNVN
is mandatory for some M < +o0o: but ||L(ZN el = I S Anenll < C/N since (1) is
bounded while ||KP(ZN ex)ll ~ Nv/N so no bound M is possible.

Why this map is interesting? Because is the differential map that corresponds to the
pair (£, £1). Indeed, a selector for the interpolator §;,, acting on the pair (£, £1) can
be easily given as follows: assume x is positive and ||x|| = 1 and define B(x)(z) =
x% € C(€oo, £1). Therefore, an associated differential is B(x)'(1/2) = 2xlogx which,
after suitable homogenization, yields Q(x) = KP(x).

Observe that an exact sequence 0 2 Z £ 0 splits if and
only if Z is a Hilbert space. Equivalently, £, @ £, is (isomorphic to) a Hilbert space if
and only if F is at finite distance from a linear map. Thus, a way for obtaining nontrivial
sequences as above is to show that Z is not a Hilbert space. This makes important
to determine which properties twisted Hilbert spaces enjoy. Are twisted Hilbert spaces
similar to Hilbert spaces in some sense or can they be very different? Both. Obviously,
all 3-space properties enjoyed by Hilbert spaces, such as superreflexivity, near Hilbert etc
(see [39]) are shared by all twisted Hilbert spaces. On the other hand, there are obvious
properties that no twisted Hilbert space can have: those implying that copies of ¢, are
complemented, such as Maurey extension property. In between, one encounters

e Properties of Hilbert spaces that some nontrivial twisted Hilbert enjoy but that we do
not know whether every twisted Hilbert space enjoys, such as: (1) to be isomorphic
to its dual, (2) to be isomorphic to its square; (3) to be isomorphic to its hyperplanes;
(4) to admit complex structures [34]; (5) to be a weak Hilbert space; (6) to be
ergodic [60].

e Properties that we do not know if can be possessed by a nontrivial non-Hilbert
twisted Hilbert space, such as to have GL-l.u.st. [72] (see below) or to be prime
(i.e. isomorphic to its infinite dimensional complemented subspaces).

e Properties P for which it is known that a twisted Hilbert space with P must be
Hilbert, such as to have unconditional basis (proved by Kalton [72]); to have type
2 or to have cotype 2 in either case the canonical copy of ¢, is complemented by
Maurey extension theorem.

For instance, the Kalton—Peck space Z, has properties (1, 2, 4) [34,75] but not (5) [39,
pp- 95]; whether Z, has property (3) is a long-standing problem (see Section 6.6). The
Enflo-Lindenstrauss—Pisier space has property (3), not (5) and we do not know about
the rest. The twisted Hilbert constructed by Sudrez in [106] has property (5) and, thus,
has (6) by a result of Anisca [4]. We shall review this example in Section 9. Kalton
and Swanson [76] solved the problem raised by Weinstein [111] by showing Z, is
a symplectic space with a nontrivial structure and we shall return later to this topic.
We shall explain later that all twisted Hilbert spaces generated with a centralizer are
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isomorphic to their duals. More precisely: if X is a Kothe space and (X, X*);» = H is
a Hilbert space with associated differential €2/, then the twisted Hilbert space H @gq, 1 H
is isomorphic to its dual.

Problem 2. Is every twisted Hilbert space isomorphic to its dual?

The space ELP is the only twisted Hilbert space in sight for which we do not know
if it can be generated with a centralizer, so it makes sense to ask:

Problem 3. Is ELP isomorphic to its dual?

We refer the reader to [24] for an authoritative account of approximation properties
in Banach spaces. We will need the Bounded Approximation Property (BAP), the Finite
Dimensional Decomposition (FDD) (there exist a sequence of closed subspaces (X,,), of
X such that any x € X can be represented uniquely as x = Y >~ | x,, where x, € X,, for
all n € N) and the basis; as well as their unconditional variations: Unconditional Finite
Dimensional Decomposition (UFDD) if, for every x € X, the expansion x = Y - x,
in the FDD converges unconditionally and the notion of unconditional basis. Note that
a (unconditional) basis for X is just an (unconditional) FDD where dim(X,) = 1 for all
n e N.

All twisted Hilbert spaces generated with a centralizer have an unconditional 2-FDD
formed by the subspaces F,, = [(e,,0), (0, e,)] (in [106] is already observed that the
vectors (0, e,), form an unconditional basis for its closed span): pick a finite sequence

of elements f, = (u4,, v,) € F, and pick ¢, € {—1, +1}. One has:

Hzgll)hnfn = H (Z Sn)hnunv Zgn)hnvn) ‘
= HZenknunen —Q (Z enxnvnen) ‘ + HZSHAnvnen

= || ZSH)“nunen - (8”) : Q(Z )»nv,,en)
+en) - Y nvnen) = 2 () (3 avnen)) |

+ Z AnUnen

< [+ D" ruttnen = () Y nvien)
+ | @ 2 duvnen) — 2 (@) - (3 2uvnen)|
+1D Mnvaen

=

HZ )‘nunen - Q(Z )‘nvnen)
+ Z)\,,v,,e,,

C@+ [ w s

+ @) |3 nvnen

IA

Consequently, twisted Hilbert spaces generated with a centralizer have a basis (in
particular, Z, has a basis [75]). The space ELP has BAP since ELP = ¢,(N, F,). It
makes once again sense to ask:
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Problem 4. Does every twisted Hilbert space have the BAP?
3.6. Derived spaces and differentials

We are ready to resume the construction of the derived space (cf. [22, Proposition 7.2]
and [38, Proposition 3.2]).

Proposition 3.3.
do,Xe = X9 @q, Xo
={(w,x) C X x Xg:w— Qx € Xy}
> {(f(0), £(9)): f € C(Xo, X1)}.

Proof. Keep in mind that 2y = 8§, By. Given f € C(Xo, X1), since f—By(f(0)) € ker g,
by Proposition 3.2 we have

F1(0) — Qu(f(0)) = 8,(f — Ba(f(9))) € Xy,
hence (f'(0), f(0)) € Xo ®q, Xo. Conversely, if (w,x) € Xo ®y;5, Xo then Byx €
C(Xy, X1). Since w — Qgx € Xy, there exists g € kerdy such that w — Qgx = g’(6).
Thus, picking f = Bpx + g we obtain f(#) = x and f'(#) = w. To prove the
equivalence of quasinorms, pick (w,x) € Xg @, Xy and f € C(Xo, X;) with || f|| <
2dist( f, ker 89 Nker &) such that w = f'(0) and x = f(0). Then ||x||x, = dist(f, kery)
and
lw— Qoxllx, = 165(f — Bax)llx,-

Since f — Byx € ker §y, we get

1w, Olla < 185 ers, 1L+ IBaDILN + £
< 2118 ers, 11 + 1 Bo ) + Ddist(f, ker 85 N 85),

and there exists a constant C so that dist(f, ker §oN5,) < C|[(w, x)|| by the open-mapping
theorem. [l

And since ideas are more powerful that realizations, any Banach space X such that
(X, X*)12 is a Hilbert space generates a differential €/, and then a twisted Hilbert
space. The following problem is a little less ambitious than Problem 2:

Problem 5. Let X be a Banach space such that (X, X*);,, = H is a Hilbert space with
associated differential Q. Is H &g H isomorphic to its dual?

Let us transport these ideas to the abstract setting.

3.7. The abstract setting

The abstract setting is sometimes clearer than any specific case. Let (¥, ®) be a
pair of interpolators on a space H, let (¥, ®) : H — X x X be the map defined
by (¥, ®)f = (Vf, ®f), and let us write X¢ = O[H] and Xy o = (¥, O)[H] =



J.M.F. Castillo and R. Pino / Expo. Math. 41 (2023) 333-397 349

{(U(f), P(f)) : f € H}, both endowed with the respective quotient norms. One thus
has the following commutative diagram with exact rows and columns:

0 0
ker W N ker ® ker(W, @)
0 ——  kerd ——s H 2o Xe—50 (1D

d L]

0 ——  Wkerd] ——> Xy — Xo¢ — 0
T

l l

0 0
As we know, the differential associated to the pair (W, ®) is the quasilinear map
Que = WBg, where By is a homogeneous bounded selection for &. We have the

following generalization of Proposition 3.3 (cf. [32]):
dQu o = {(w,x) € £ X X¢ : w — Qy ¢px € V[ker O]}
>V, () f eH)

= Xy0

(with equivalence of quasinorms).

3.8. Reiteration results for differential maps

The reiteration formula (7) for the complex method has the following counterpart for
differential maps:

Qg = (B — 0)QL1-6)at68-

In [38, Prop. 3.7] there is a proof via factorization for Kithe spaces. We cover now the
general case.

Proposition 3.4. Let (Xo, X1) be a pair of Banach spaces and @ < 6 < B. Denote
b(v Q; the differential associated to (Xo, X1); and 2, the differential associated to
(

X0, X1)a» (Xo, Xl)ﬂ)t- If (Xo, X1)(1-0)a+po = ((Xo, X 1o, (Xo, X1)ﬁ)9 then
Q= (B — OQ1—0ytp-

Proof. Denote by X, = (Xo, X1)« and Xg = (Xo, X1)p and note that given f €
C(Xo, X1), the operator C : C(Xy, X1) = C(Xq, Xp) given by

C(H) @) = f(( =)o + 2B)
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is bounded with ||C(f)| < |IfIl (see [19, 32.3]). Consider now a homogeneous
bounded selection B : X(1_gje+g0 — C(Xo, X1) for the evaluation operator 8(i—gu+p0 :
C(Xo, X1) = X(-6ja+p«- Taking into account the reiteration identity X(i_gjat+p0 =
(X«, Xp)g, we conclude that the map CB : (Xq, Xg)g — C(X4, Xp), defined for each
x € X(1-0)a+p0 bY
CB(x)(z) = B(x)((1 — 2o + ﬂz)

is a homogeneous bounded selectlon for the evaluation map 89 CXa, Xp) = (Xa, Xp)o-
Therefore, the differential map Qg is defined, for each x € (X, Xpg)g, by:

Qu(x) = 8,CB(x)(z) = 8, B(x)((1 — D)t + Bz)
= B'(x)((1 — 2)a + Bz) (—a + B)l.—p
=B - 0‘)8(/(1_9)a+ﬁ9)3(x)(z)
= (B — )Q1-6)atpo. U

3.9. Differentials for p-convexifications

This especially interesting situation was treated from the interpolation side in 1.3.
We obtain now the associated differential. Since the p-convexified space X(,) of a
Kothe space X can be identified with the interpolated space (£, X)1/,, We have
that any positive and normalized x € X,y admits a factorization of the form x =
ap(x)'=VPa;(x)!/P, where ag(x) = ly,p,(x) € Lo is the indicator function on the
support of x and al(x) x? e X (see [38, Prop. 3.6] for details). In particular,
Il = laoI?laol? = IxP1? = lxllx,,. Thus, for normalized and
positive x € X, the map B(x)(z) = ap(x)'"2a;(x)? is an homogeneous bounded
selection for the evaluation map on 1/p, hence

/ a(x) p_
Qp(x) = 81/pB(x)(z) =x log ) = xlogx? = pxlogx.

For general x € X(,) we may define the selection B(x)(z) = sz(gvn(x)||x||(p>B(”)!fl‘(| ))(z),
which yields the associated differential

x|
Q(p)(x) = px 10g< Il )
P

3.10. The butterfly lemma

The formula for the differential associated to a p-convexification is a particular case
of a phenomenon called in [44] “the butterfly lemma” that we explain now. We assume
we are dealing with a Kothe space X such that (X, 7*)1 2 = £>. We have, by reiteration,
the following interpolation identities

X(pys X(p)1/2 = <(£oo; X)1/ps (L1, X*)l/p)l/z = ((X, X2, Uoo, 51)1/2)1/[7 =0

Let us consider the interaction between the associated differentials to the three scales
involved:



J.M.F. Castillo and R. Pino / Expo. Math. 41 (2023) 333-397 351

e Let Qy be the differential associated to the scale (X, Y*) at 1/2.
e Let Q(,) be the differential associated to the scale (X(,), X¢,) at 1/2.
e And, as always, let KP be the differential associated to the scale (¢, £1) at 1/2.

The Butterfly Lemma [44, Prop. 8] states that then
1 1

Q=0 —-—)Qx + —KP. (12)
14 p

The Butterfly Lemma can be regarded as a reiteration formula for differential maps
of interpolation scales (see [44, Lemma 3]).

4. The Rochberg spaces

The paper [19] of Calderén established in its point 1 the foundations for abstract
interpolation. The foundations were expanded by Schechter in [99] since he considers
as interpolators distributions with compact support; in particular the evaluation of the
nth-derivative. Still, compatibility conditions between several interpolators and their
connection with exact sequences and twisted sums did not begin to emerge until