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A B S T R A C T

Estimating future blood glucose levels is an essential and challenging task for people with diabetes. It
must be carried out based on variables such as current glucose, carbohydrate intake, physical activity, and
insulin dosing. Accurate estimation is essential to maintain glucose values in a healthy range and avoid
dangerous events of low glucose levels (hypoglycemia) and extremely high glucose values (hyperglycemia).
Those situations maintained in time can cause not only permanent long-term damage but also short-term
complications and even the death of the person. This paper proposes a new method to predict and detect
hypoglycemic events over a 24-h time horizon. The technique combines applying the wavelet transform
to glucose time series and deep learning convolutional neural networks. We have experimented with real
data collected from 20 different people with type 1 diabetes. Our technique can also be applied to predict
hyperglycemia. We incorporate a data augmentation technique consisting of a rolling windows system that
improves the accuracy of the prediction. The uncertainty of the data is considered by the addition of controlled
noise. The results show that the predictions obtained are accurate (higher than 88% of accuracy, sensitivity,
specificity, and precision), confirming the effectiveness of the proposed method.
1. Introduction

Diabetes Mellitus (DM) is an increasingly relevant disease in the
world, especially in developed countries. According to the World
Health Organization, it will be one of the leading causes of death
by 2030. DM is characterized by elevated blood glucose levels due
to the fact that the pancreas does not produce insulin or the cells
present resistance to the action of insulin. There are two main types
of DM, type 1 (T1DM) and type 2 (T2DM). The pancreas of a person
suffering from T1DM does not produce enough insulin, making the cells
unable to regulate and process the glucose in the blood. This causes the
blood glucose (BG) concentration to rise to potentially unhealthy levels.
To solve the lack of insulin, people with T1DM apply injections of
pharmaceutical insulin, insulin boluses, to replace what is not produced
by the pancreas. The administration of these insulin doses is critical
for the person since a miscalculation in the amount or type of insulin
can cause the glucose to reach or down to dangerous levels. T2DM is
the most extended and is usually controlled with a change in diet and
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exercise habits combined with non-injected medicament. Sometimes is
necessary also to administer some amount of insulin, as in T1DM.

Injecting the appropriate amount of insulin is challenging because
different factors can affect this decision. It is crucial to correctly es-
timate future glucose values after the administration of insulin to
avoid low glucose level events (hypoglycemia) and high values (hy-
perglycemia). Those are potentially dangerous to health if their effects
are sustained over time and can even cause the death of the person.
Other important tasks include estimating the grams of carbohydrates
ingested, or evaluating exercise, stress, etc.

One of the most important factors in determining future glucose
levels and preventing hypoglycemia and hyperglycemia events is know-
ing the glucose value at the time of prediction. Nowadays, people
with diabetes widely use continuous glucose monitor (CGM) systems,
consisting of a sensor that records and monitors interstitial glucose
values. When the blood glucose level falls below a threshold, usually
70 mg∕dL (5.5 mmol∕L), it is said that the person is suffering hypo-
glycemia. On the opposite side, hyperglycemia occurs when the glucose
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level is above 180 mg∕dL (10 mmol∕L). The main objective of glucose
management protocols is to remain between those values as much time
as possible, i.e. to maximize the time in the [70, 180] mg∕dL range, or
ust time in range.

In particular, hypoglycemia is one of the main complications of
iabetes [1]. These episodes of low glucose levels are dangerous to
ealth as they can cause damage to multiple organs. If the effects
f hypoglycemia are sustained over time, they can cause long-term
ealth complications such as an increased risk of kidney disease, prob-
ems in the nervous system, etc. If the glucose level is lower than
4 mg∕dL (3.0 mmol∕L), a severe hypoglycemia episode occurs, which,
f sustained over time, can be potentially very dangerous because it
ay produce cognitive impairment and even death of the person. Hy-
oglycemia episodes are usually classified depending on the moment of
he day they happen and are usually established in three classes: daily,
ostprandial, and nocturnal hypoglycemia. Nocturnal hypoglycemia
vents are probably the most dangerous situation since they often go
nnoticed due to the patient being asleep. As being asymptomatic
pisodes, its effects may be maintained over time, seriously affecting
ealth and, eventually, causing the syndrome of the dead in bed.

Several works in the past addressed the problem of predicting
ypoglycemia, although most of them need to know much historical in-
ormation on several physiological variables. In this paper, we proposed
n innovative method for predicting hypoglycemia events using only
nformation on glucose values recorded by commercial CGM systems.
ur method combines wavelet transform of glucose time series with
eep learning to predict hypoglycemia events in the following 24 h.
his novel change of domain, from time to frequency, generates valuable

nformation through images that will feed a deep learning system of
onvolutional neural networks (CNN).

The main contributions of this paper are the following:

• To the best of our knowledge, this is the first work that tries to
predict hypoglycemic events 24 h before they may occur.

• Wavelets Transforms (WT) has been used for the first time for
hypoglycemia prediction.

• We propose the combination of WT and Deep Learning, trans-
forming the signal from the time to the time–frequency domain.
Our technique is not limited to blood glucose data; it can be ap-
plied to other time series with similar characteristics, particularly
those featuring slight periodic behavior.

• Our technique can be applied also to predict hyperglycemia.
• We present a data augmentation (DA) technique consisting of

a rolling windows system that improves the accuracy of the
prediction.

• The uncertainty of the data is considered by the addition of
controlled noise to it.

The rest of the paper is organized as follows. Section 2 revises the
elated work on both, the problem of hypoglycemia prediction, and the
se of wavelets over time series. In Section 3 we explain in detail our
pproach and the techniques used in this work. Section 4 details the
xperimental setup and the results obtained by our technique. Finally,
onclusions and future work are presented in Section 5.

. Related work

In recent years, several attempts have been made to solve the
roblem of glucose prediction in general, and hypoglycemia and hyper-
lycemia prediction, in particular. There are different ways of modeling
lucose dynamics, including data-driven models based on time-series
ata. Some of the techniques used in these models make use of ma-
hine learning (ML) algorithms such as Random Forest (RF) [2], K-
earest Neighbors (KNN) [3], Support Vector Machine (SVM) or Auto-

egressive Integrated Moving Average (ARIMA) [4]. On the other hand,
2

volutionary computational methods such as Genetic Programming,
rammatical Evolution [5], and Genetic Algorithms have also been
pplied.

Thanks to advances in high-performance computing, the use of
eural networks (NN) offers promising results in glucose prediction [6].
he main types of Neural Networks are Multilayer Perceptron (MLP),
ecurrent Neural Networks (RNN), Long Short-Term Memory (LSTM),
nd Convolutional Neural Networks (CNN).

.1. Hypoglycemia related work

Oviedo et al. [7] use SVM to predict postprandial hypoglycemia
vents with a time horizon of 240 min after the meal. Real data
btained using a CGM from ten patients with type 1 diabetes have
een used. Two hypoglycemia thresholds were used to train and test
he models: 𝐿𝑒𝑣𝑒𝑙1 ∶ 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 ≤ 70 mg∕dL (3.9 mmol∕L) and 𝐿𝑒𝑣𝑒𝑙2 ∶
𝐺𝑙𝑢𝑐𝑜𝑠𝑒 ≤ 54 mg∕dL (3.0 mmol∕L). The results showed a sensitivity of
79% and 71% for the first and second levels, respectively. One of the
main limitations of the proposal is that it focuses only on postprandial
hypoglycemia and not on events that can occur during the 24 h of the
day.

In [8], Vu et al. proposed the use of a Random Forest (RF) to predict
nocturnal hypoglycemia events, with an extended time horizon of up to
360 min. Only BG values obtained by a CGM have been used as input
data. The dataset is large, with about 9800 real patients and an average
of 100 days recorded per patient. The predictions have been divided
into several approaches depending on the time of night: overall night
(midnight to 6 a.m.), early night (midnight to 3 a.m.), and late night
(3 a.m. to 6 a.m.). The results show that the model has good accuracy
in the early evening with an Area Under the ROC Curve (AUC) of 0.90,
and the prediction performance after 3 a.m. with an AUC of 0.75 can
be improved. Compared with other works, this proposal is limited to
detecting nocturnal hypoglycemia.

Dave et al. [9] propose a predictive model of hypoglycemia events
based on machine learning techniques using Logistic Regression (LR)
and Random Forest (RF). The time horizon to be predicted is a short
term of 30 and 60 min. Features extracted from raw data from a CGM
have been used as input. The threshold for detecting hypoglycemia
events is Level 1, i.e. 70 mg∕dL (3.9 mmol∕L). The dataset comprises
the real data of 112 patients with type 1 diabetes and 90-day average
records for each patient. The results show that the proposed prediction
model has a sensitivity greater than 91% at the 60-minute horizon and
high performance for nocturnal hypoglycemia with a sensitivity of 95%.
On the other hand, the predictive model’s performance for horizons
longer than 60 min is unknown.

In [10], Seo et al. used four machine learning models (RF, KNN,
SVM, LR) to predict postprandial hypoglycemia events with a time
horizon of 30 min. The dataset consists of 104 real patients, and for
each patient, the BG level was recorded for an average of 3 days
using a CGM. The different prediction models were compared, and the
RF algorithm obtained the best accuracy in detecting hypoglycemia
events with an average prediction performance with an AUC of 0.97,
a sensitivity of 89.6%, and a specificity of 91.3%. This approach has
several limitations; firstly, it focuses only on hypoglycemia events after
meals and the short-term detection time horizon.

An LSTM neural network is used to predict hypoglycemia events
in [11]. The time horizon for detecting these events is limited to
only 30 min. The data have been obtained using a contact lens with
an electrode that measures the level of BG contained in tear fluid.
The dataset is relatively small as the number of patients used is not
mentioned; only 2000 glucose measurements have been used. The
results obtained by the predictive model show an accuracy of 80%.

Also, Porumb et al. [12] use neural networks, precisely two different
approaches: a CNN and a combination of a CNN + RNN. This proposal
aims to detect nocturnal hypoglycemia events with a probability of
occurrence without a defined time horizon. The dataset is limited

because there are only four real patients. The cardiogram (ECG) signal



Chemometrics and Intelligent Laboratory Systems 243 (2023) 105017J. Alvarado et al.
at 5-minute intervals, and BG levels have been recorded for 14 con-
secutive days for each patient. The CNN model structures the network
in 15 convolutional layers plus one fully connected layer. The CNN +
RNN model comprises a CNN network with five convolutional layers
and an RNN network consisting of a single LSTM layer. The results
obtained from the models show an average predictive performance for
all patients with an accuracy of 82.4%, a sensitivity of 87.5%, and a
specificity of 81.7%.

A systematic literature review on data-based algorithms and models
using real data for blood glucose and hypoglycemia prediction can be
found in [13]. As Felizardo et al. have shown, all the approaches rely
on the use of recorded data directly or with typical data preprocessing
steps. In this paper, we propose a completely novel view that transforms
the data from the time domain to the frequency domain, allowing the
artificial intelligence system to be fed with images suitable for training
deep learning systems.

2.2. Wavelets related work

The classification of time series has been approached from different
points of view in the scientific literature. Initially, the idea was to find
a distance function to establish a sense of closeness between different
time series that would allow them to be grouped. The basic idea
is to use the Euclidean distance and then group the series using an
algorithm such as K-Nearest Neighbors. However, Euclidean distance
cannot catch the structure and behavioral patterns of complex time
series. Researchers have tried different distance functions to address
this problem, perhaps the best known and most successful being the
Dynamic Time Warping technique [14,15]. A survey that compiles the
time series classification techniques knowledge before the arrival of
deep learning is the paper of Wang et al. [16].

In the work by Ye et al. [17], we find the idea of transforming com-
plex shapes found in nature (such as plant leaves) into time series and
then applying time series classification techniques to them. However,
this approach can also work in the other direction, i.e. transforming
the time series to other domains to use different distance functions and
classification techniques. An example of this idea is transforming the
time series into a sequence of characters for subsequent use of language
processing techniques [18]. However, the most widely adopted option
is using a mathematical transformation as a preliminary step to the use
of classification techniques, as we can find in [19]. Time series anal-
ysis using mathematical transformations is more than half a century
old [20]. A summary of the transforms used to classify time series that
do not include the wavelet transform can be found in the survey by Ji
et al. [19].

Of all the mathematical transforms successfully employed in re-
cent years, the wavelet transform [21] deserves special mention. Re-
searchers in the financial world were probably the first to envision the
vast possibilities of applying the wavelet transform to time series. As
an example, we have the work of Masset (2015) [22], and Bolman
et al. [23]. This research has been extended to other time series, as
in Grant and Islam [24], or in Li et al. 2016 [25]. We can also find ex-
amples that mix wavelets and modern techniques such as convolutional
networks [26].

Recently, we can find examples of researchers concerned with the
classification of multivariate time series, Pasos et al. [27], and Middle-
hurst et al. [28]. The second one studies the inclusion of an ensemble of
classifiers, an option that could also be used for univariate time series.

In the field of diabetes, we find the example of Ashok et al. [29].
This approach consists of a system to measure glucose in a non-invasive
way using a laser beam and a photodetector. The Haar wavelet trans-
form is used to decompose the signals the sensor receives. A predictive
model based on a neural network with backpropagation is responsible
for glucose prediction.

So, our work can be considered an extension or continuation of
these works to predict hypoglycemia scenarios within a one-day hori-
3

zon. Within the research literature focused on predicting hypoglycemia
events, we can find several examples using machine learning tech-
niques, mostly with prediction horizons ranging from 30 min to 4 h,
although none of them for 24 h.

3. Methodology

The method proposed in this paper, Wavelet Transformation of Glu-
cose prediction system (WTG), is graphically explained in Fig. 1. The
process starts from time series consisting on BG recordings at 15-minute
intervals, 96 recordings in total per day:

1. A DA process is applied to the data (see Section 3.3).
2. The data for each patient is separated in 24-hour time series of

BG values.
3. A threshold for the hypoglycemia 𝑇ℎ𝑦𝑝𝑜 level is fixed by the user.

The default value is 70 mg∕dL.
4. The 24-hour BG time series are classified in two categories, (see

Fig. 2), according to the following criteria:

• hypoglycemia: at least one value in the following 24 h is
lower than the established 𝑇ℎ𝑦𝑝𝑜.

• Non-hypoglycemia: values on the following 24 h equal to
or greater than 𝑇ℎ𝑦𝑝𝑜.

5. Once the classification has been performed, a spectrogram is
generated from each glucose 24-hour time series by applying
the wavelet transform. The spectrogram is an image resulting
from the application of the corresponding wavelet function to
each glucose value. The wavelet functions used are explained in
Section 3.1. We selected 24 h in order to obtain images with
enough information after applying the wavelet transform.

6. A deep learning Convolutional Neural Network (CNN) is trained
with the spectrogram images generated in the previous step.
Two different CNN architectures have been used to compare the
performance. They will be detailed in Section 3.2.

Fig. 3 shows an example of a prediction of the proposed method.
First, the glucose records of the last 24 h are collected as a vector
of 96 values. The wavelet transform is applied to the data vector,
generating the spectrogram image. The image is the input to the model,
and the output is a numerical value resulting from applying the softmax
function. For the example shown in Fig. 3, the output is 𝑝 = 0.28,
therefore, the prediction is labeled as hypoglycemia.

3.1. Wavelet transforms

The evolution of blood glucose levels is affected by numerous
biorhythms whose cycles span different scales (weekly, daily, intake-
related, etc..) but are not stationary. In other words, we do not expect
the presence of these cycles to be constant but restricted to specific
time segments. We need to use a mathematical transformation that can
characterize the glucose time series with the information on the present
frequencies, their magnitudes, and their variation over time. The most
suitable tool for this task is the wavelet transform.

While the short time Fourier transform (STFT) [30] allows us to
decompose a signal into multiple signals within frequency ranges of
equal width, the wavelet transform goes further and provides a de-
composition based on signals of equal bandwidth on a logarithmic
scale, i.e. we have a resolution whose grain is frequency dependent.
With the wavelet transform, we have high temporal and low-frequency
resolutions for high-frequency events (we expect few such events in
the glucose dynamics). It gives good frequency resolution but poor
temporal resolution for low-frequency events (more common in the
glucose time series). The latter makes the wavelet the most suitable
transform for characterizing the evolution of glucose levels in the
time–frequency plane.
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Fig. 1. Proposed method.
Fig. 2. Classification of daily BG data into two categories: hypoglycemia and non-hypoglycemia.
Fig. 3. Prediction example of the proposed method.
The wavelet is a function with a small set of non-stationary oscil-
lations. If these oscillations were stationary, we could say they have a
particular frequency. If we change the size, i.e. the scale of the wavelet,
we also change the corresponding hypothetical stationary frequency of
the oscillations. Thus, when we perform a convolution of the wavelet
with a given scale through our time series, we look for segments of the
time series that show a frequency behavior equal to the hypothetical
frequency of the wavelet. Changing the size (i.e. the scale) of the
wavelet and repeating the convolution process (i.e. shifting the wavelet
through our time series and calculating the convolution of the two
functions) will give us the coefficients of the wavelet transform for
different frequencies. The set of these coefficients can be represented in
the form of a ‘‘scaleogram’’ or the form of a power spectrum. We will
use this visual representation of the wavelet transform to characterize
the time series of blood glucose levels.

So with the different values of ‘‘scale’’ and ‘‘shift’’, we will have a
set of generating functions of the wavelet transform with the form:

𝛹𝑠𝑐𝑎𝑙𝑒,𝑠ℎ𝑖𝑓 𝑡(𝑡) =
1

√

𝑠𝑐𝑎𝑙𝑒
𝛹
(

𝑡 − 𝑠ℎ𝑖𝑓 𝑡
𝑠𝑐𝑎𝑙𝑒

)

In addition, the shape of the oscillations produces different families
of wavelets: Mexican Hat, Morlet, Shannon or Spline, among others.
Following the results published in [31], the wavelet functions used in
this paper are:

• Mexican Hat wavelet (also called Ricker wavelet). This function
is mathematically defined as:

𝛹 (𝑡) = 2
√

4
√

𝑒−
𝑟2

2 (1 − 𝑟2)
4

3 𝜋
• Morlet Wavelet. This function is mathematically defined as:

𝛹 (𝑡) = 𝑒−
𝑟2

2 𝑐𝑜𝑠(5𝑡)

The Mexican Hat and Morlet wavelets have been chosen because
they are the most used of the Continuous Wavelet Transforms (CWT)
family. The advantages of CWTs are that they allow time–frequency
analysis, which is important in the field for processing biomedical
signals, such as glucose time series. These two families of wavelets
complement each other, and their joint use improves both temporal
and frequency analysis [31].

3.2. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of neural network
widely used for image recognition, object detection, classification,
anomaly detection, and time series-based prediction, among others.

Thanks to the advances in Deep Learning in recent years, multi-
ple CNNs architectures have been developed. In this paper, we have
experimented with different CNNs. First, we used the AlexNet [32]
architecture, developed in 2012 by Alex Krizhevsky et al. The models
have been trained from scratch without Transfer Learning because the
Python module Keras Applications1 used to implement the networks has
no pre-trained AlexNet models. As can be seen in Fig. 4, the architecture
of AlexNet embodies five convolutional layers, three pooling layers and

1 https://keras.io/api/applications/

https://keras.io/api/applications/
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Fig. 4. AlexNet architecture.
two fully connected layers. The input of this network is RGB images of
size 227 × 227 pixels, to which the first convolution of size 11 × 11 is
applied, followed by a 3 × 3 max pooling. Next, the second convolution
of size 5 × 5 and a 3 × 3 max pooling is performed. The resulting
feature map is subjected to three successive 3 × 3 convolutions and
a 3 × 3 max pooling operation. Finally, two fully connected layers of
size 4096 neurons and the classification layer. This last layer uses the
softmax function and has been adapted to our problem by setting two
outputs, one for each category to be predicted. The softmax function is
a mathematical function that takes a vector of real values as input and
produces a real number as output, with values ranging between 0 and
1. This function is widely used in classification tasks and is frequently
employed as the final layer in neural network models to transform raw
scores into probabilities associated with classes. The softmax function
is defined mathematically as:

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑𝑁
𝑗=1 𝑒

𝑧𝑗

We also take use of the DenseNet [33] architecture, developed in 2017
by Gao Huang et al. Transfer Learning has been employed using a
network pre-trained with the ImageNet [34] dataset. We have fine-
tuned the fully connected layers and the last layer, leaving the rest of
the layers frozen to improve the accuracy of the models. Fig. 5 shows
the DenseNet configuration used in this work, known as DenseNet-121.
The network has as input RGB images of size 224 × 224 pixels and
then a 7 × 7 convolution is applied. DenseNet is organized into dense
blocks, and transition layers are placed between these blocks. A dense
block combines several layers formed by the composite function of
batch normalization (ReLU) and a 3 × 3 or 1 × 1 convolution operation.
These layers are interconnected so that the produced feature maps are
concatenated at the end of the block, adding new information that
can be reused. The transition layers are responsible for subsampling
the feature maps between the dense blocks by batch normalization
following a 1 × 1 convolution and a 2 × 2 max pooling. At the end of the
last dense block, an average pooling of 7 × 7 is applied, and the output
is connected to a dense layer of size 512. Finally, the classification layer
has been adapted to our problem by using a layer of size 2 with a
softmax function.
5

3.3. Data augmentation by rolling windows

In modern deep learning applications, the performance of neural
networks is profoundly influenced by the size and diversity of the
dataset on which they are trained. However, in specific domains such as
endocrinology, acquiring extensive actual patient data for training pur-
poses can be exceedingly challenging, mainly due to privacy concerns
and the limited availability of comprehensive databases. In the context
of this situation, data augmentation (DA) [35] has been used, offering
an ingenious solution to enhance the utility of limited datasets, as is
the case in blood glucose datasets [36]. DA is a fundamental machine
learning and computer vision technique widely adopted to expand the
size and diversity of training datasets artificially. It involves creating
new, modified data points from the existing dataset by applying various
transformations, such as rotation, scaling, cropping, or, in our case,
a rolling window technique. These transformed data points diversify
the dataset, reducing the risk of overfitting and improving the model’s
ability to generalize to unseen data. In the context of our research,
DA is essential due to the scarcity of hypoglycemia events in our
dataset. To overcome this limitation, we have innovatively devised a
data augmentation technique that uses a rolling window approach.
By employing this method, we effectively generate additional data
points, each representing a different portion of the original time series
data, thus simulating various hypoglycemia events. This augmenta-
tion amplifies the dataset and introduces diversity in the patterns of
hypoglycemia events, making our model more robust and capable of
handling a more comprehensive range of scenarios. Our approach, us-
ing a rolling window for DA in the context of hypoglycemia prediction,
is an innovative adaptation tailored to our specific needs that, to the
best of our knowledge, has not been implemented before. The problem
we face is:

If we use an entire one day for each patient prediction, we would
have only one spectrogram for each day of data. Moreover, the de-
tection of hypoglycemia events should be performed once a day. In
addition, not all the days present hypoglycemia events, so very few
images would be produced, and consequently, the models would be
unable to correctly detect them.

We propose in this paper to apply a technique consisting of a rolling
window of values. A general description of the method can be observed
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Fig. 5. DenseNet-121 architecture.
Fig. 6. DA using a rolling window of 1-hour size.
in Fig. 6. A rolling window of size 96 records (one day of data) with
a 1-hour offset has been applied to the time series of glucose data.
In this way we can generate up to 24 images per patient per day. As
described, a wavelet function is applied to the glucose data to generate
the corresponding spectrogram, obtaining up to 24 samples per day.

When comparing the models, we can see that the general models
with rolling window obtains in test an accuracy of 80.15% (+/−0.09),
sensitivity of 79.55% (+/−0.82), specificity of 80.83% (+/−1.23), pre-
cision of 81.21% (+/−1.70), AUC of 0.88 (+/−0.01) versus 50.76%
(+/−4.05), 50.55% (+/−3.58), 51.15% (+/−4.87), 58.29% (+/−8.17),
0.53 (+/−0.04) obtained without rolling window. In the case of the
individual models, we cannot perform this comparison because the
models are unreliable, and some cannot be trained since so few images
are generated without a rolling window. As can be seen, the rolling
window allows us to obtain enough images to obtain robust models.

4. Experimental results

4.1. Experimental set-up

The experiments were carried out using a computer with 2 x Intel
Xeon Silver 4310 at 2.1 GHz, 4 x NVIDIA A100 GPUs and 512 GB of
RAM. The proposed method has been developed using Python with
the TensorFlow and Keras libraries, together with the package called
PyWavelets, which includes a selection of functions for the application
of the wavelet transforms needed in the proposed work.

Table 1 shows the values of the hyperparameters applied to train
the CNN models. To improve the results, a time-based learning rate
scheduler has been used, which allows to gradually reduce the value
of the learning rate over the training time. The learning rate for each
epoch is calculated using the following expression:

𝑙𝑟 =
𝑙𝑟0
6

(1 + 𝑘𝑡)
Table 1
Hyperparameters are used to train the models with the different CNN architectures.
SGD: Stochastic Gradient Descent. Adam: Adaptive Moment Estimation.

Param/Network AlexNet DenseNet-121

Epochs 300 300
Validation Interval (epochs) 30 30
Initial Learning Rate 0.001 0.001
Learning Rate Scheduler Time-based Decay Time-based Decay
Batch size 64 64
Optimizer SGD Adam
Loss Function Categorical Crossentropy Categorical Crossentropy

where 𝑙𝑟0 is the initial learning rate, 𝑘 is the decay hyperparameter,
and 𝑡 is the epoch number. In this work, 𝑘 is the result of dividing the
initial learning rate by the total number of epochs.

In order to carry out the experiments, validate the learning of the
algorithm used and test the results, it is necessary to divide the dataset
as follows: 75% of the images have been used for training, 15% for
validation, and 10% for testing. We ensure that there was not leakage
of data from the training to testing sets and that images from the same
patient were not present in both training and validation/testing sets.

Two different types of models have been trained: general models
with the data of all patients and personal models with the data of
each patient. In both types of models, images have been generated
for each patient. Then, images from the majority class were randomly
eliminated so that both classes were balanced with the same number
of images. In the case of general models, they are composed by putting
the images of all personal models without cross-validation.

4.2. Data

The results shown below are obtained from using a dataset consist-
ing of 20 adults with type 1 diabetes. These data are real data, obtained
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Table 2
Clinical characterization of each patient. ID, Gender, HbA1c, Age, Years of disease, Weight, Height, Treatment (MDI: Multiples doses of Insulin; ISCI. Infusion Subcutaneal continuous
of Insulin).

Measure HUPA0001P HUPA0002P HUPA0003P HUPA0004P HUPA0005P HUPA0006P HUPA0007P HUPA0008P HUPA0011P HUPA0014P

Gender Female Male Female Male Female Male Female Female Female Female
HbA1c [%] 8.2 7.1 7.3 7.8 6.9 7.8 6.6 8.0 6.0 8.5
Age [years] 56.3 48.6 43.4 41.2 41.9 22.1 37.6 18.5 41.9 50.0
DX time [years] 15.5 36.5 12.5 8.5 39.5 13.5 10.1 8.7 15.2 12.9
Weight [kg] 59.0 82.4 62.0 88.0 58.5 71.0 102.6 83.5 51.0 61.0
Height [cm] 161 186 182 180 161 170 183 161 164 155
ISCI/MDI ISCI ISCI ISCI ISCI ISCI ISCI ISCI ISCI ISCI MDI

Measure HUPA0015P HUPA0016P HUPA0017P HUPA0020P HUPA0022P HUPA0023P HUPA0024P HUPA0025P HUPA0026P HUPA0027P

Gender Female Female Female Male Male Male Male Male Female Male
HbA1c [%] 6.4 6.5 8.2 9.7 6.7 7.7 8.3 7.0 7.2 7.0
Age [years] 43.1 29.9 26.3 45.7 59.6 22.9 47.9 38.1 61.8 26.4
DX time [years] 11.2 20.1 24.2 13.5 14.6 0.8 35.9 20.3 21.5 23.7
Weight [kg] 58.6 64.9 61.8 71.6 77.6 55.5 80.5 104.7 80.0 76.0
Height [cm] 162 157 167 168 179 173 174 188 165 185
ISCI/MDI MDI ISCI MDI MDI ISCI MDI MDI ISCI MDI MDI
Table 3
Glucose records, number of glycemic events and number of images generated for each patient.

Patient ID Glucose records Hypo events Training images: All Training images: Hypo Test images: All Test images: Hypo

HUPA0001P 1312 9 190 95 26 13
HUPA0002P 1312 34 32 16 6 3
HUPA0003P 1312 22 56 28 10 5
HUPA0004P 1027 12 92 46 14 7
HUPA0005P 1306 16 202 101 28 14
HUPA0006P 725 12 30 15 4 2
HUPA0007P 1304 18 84 42 12 6
HUPA0008P 1304 15 82 41 12 6
HUPA0011P 1248 10 170 85 24 12
HUPA0014P 1304 10 150 75 22 11
HUPA0015P 1248 14 134 67 20 10
HUPA0016P 1309 32 42 21 6 3
HUPA0017P 1293 11 202 101 28 14
HUPA0020P 1268 13 150 75 20 10
HUPA0022P 1248 21 56 28 10 5
HUPA0023P 1248 12 172 86 24 12
HUPA0024P 1248 15 106 53 16 8
HUPA0025P 1247 29 74 37 12 6
HUPA0026P 16 409 173 2568 1284 346 173
HUPA0027P 12 574 177 1220 610 164 82

Mean 2562.30 32.75 290.60 145.30 40.20 20.10
Std 148.13 7.29 60.64 30.32 8.02 4.00
by the medical team of the Hospital Principe de Asturias in Alcalá de
Henares, Spain. The ethical committee of the Hospital approved the
study, and patients signed an informed consent.

The data was obtained using Abbott FreeStyle Libre CGM sensors,
that records glucose values in 15-minute intervals. Table 2 shows the
clinical characteristics of the participants taking part in the study. The
data presented in the table are: sex (50% female), age (40.16 +/−
11.86), weight (69.31 +/− 13.62) kg, height (169.31 +/− 9.69 cm),
mean HBA1c (glycosylated haemoglobin) 7.45 (+/−0.93), years of
illness 17.9 (+/−9.7), treatment: 60 >= 60% continuous subcutaneous
insulin infusion (CSII) and 40 >= 40% multiple dose insulin (MDI).
Moreover, Table 3 shows the distribution of hypoglycemia events per
patient. Although, in general, the DA process manages to generate a
high number of images, in specific datasets such as Patient HUPA0002P
and HUPA0003P, the number of images generated is lower because
hypoglycemia events are concentrated in time.

Fig. 7 shows the percentage of time in range for each patient.
This value translates as the time the patient maintains the glucose
value between 70 and 180 mg∕dL. This value is displayed along with
the percentages of time patients are in other situations, which are
as follows: severe hypoglycemia (<54 mg∕dL), hypoglycemia (54–70
mg∕dL), hyperglycemia (180–250 mg∕dL) and severe hyperglycemia
7

(>250 mg∕dL). It can be observed that most of the patients are most
of the time in the 70 and 180 mg∕dL range. This may be due to the fact
that these participants were not using the CGM regularly at the time
of the study. Recent studies show that the use of CGM often increases
the percentage of time in range of people with diabetes. In addition,
Fig. 7(b) shows the patients’ interquartile range and median glucose
value. It can be seen that there is a large variability in the data, as the
median glucose differs between patients. Along with these observations,
we can highlight an important intra-patient glycaemic variability, as
the standard deviation of glucose is high, which can be considered as
another source of difficulty in prediction.

4.3. Results

Table 4 shows the accuracy of the models trained with the different
CNN architectures and wavelet types, establishing a hypoglycemia
threshold of <70 mg∕dL. The combination of DenseNet-121 and the
Mexican Hat wavelet produced the best results, with an accuracy of
80%, also in a general way, using Morlet wavelet.

On the other hand, the results of each patient’s personal models
are presented in Tables 5 and 6. Unlike the previous model, these
models have trained only with the data of one patient and not the
whole set. To establish the necessary comparisons, the general and the

individual patient models have been trained using Mexican Hat and
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Fig. 7. Figure (a) shows the percentage of time the patient has a very low glucose level (<54 mg∕dL), low ([54, 70) mg∕dL), in range ([70, 180] mg∕dL), high ((180, 250] mg∕dL),
and very high (>250 mg∕dL). Figure (b) shows the interquartile ranges of glucose. The mean value is shown with a red dot. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 4
Comparison of general models trained with the different base networks and wavelets. Hypoglycemia threshold: <70 mg∕dL.

Mexican Hat Wavelet

Base Network Train Validation Test

Accuracy Accuracy Accuracy Sensitivity Specifity Precision AUC

AlexNet 99.86 (+/−0.01) 70.79 (+/−1.13) 70.91 (+/−3.06) 71.50 (+/−2.31) 71.06 (+/−3.82) 69.99 (+/−9.99) 0.77 (+/−0.02)
DenseNet-121 98.61 (+/−0.09) 79.81(+/−0.49) 80.15 (+/−0.82) 79.55 (+/−1.22) 80.83 (+/−1.23) 81.21 (+/−1.70) 0.88 (+/−0.01)

Morlet Wavelet

Base Network Train Validation Test

Accuracy Accuracy Accuracy Sensitivity Specifity Precision AUC

AlexNet 99.95 (+/−0.00) 64.59 (+/−0.71) 64.99 (+/−1.10) 64.88 (+/−1.46) 65.18 (+/−1.11) 65.54 (+/−2.26) 0.71 (+/−0.01)
DenseNet-121 98.79 (+/−0.07) 73.91 (+/−0.68) 72.98 (+/−0.84) 72.98 (+/−1.27) 73.08 (+/−1.46) 73.08 (+/−2.63) 0.81 (+/−0.01)
8
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Table 5
Comparison of personal models trained with DenseNet-121 and using Mexican Hat Wavelet. Results are shown as the average of all runs. Hypoglycemia threshold: <70 mg∕dL.

ed text indicates values below 50%.
Mexican Hat Wavelet

Patient ID Train Validation Test

Accuracy Accuracy Accuracy Sensitivity Specifity Precision AUC

HUPA0001P 100.00 (+/−0.00) 94.12 (+/−1.47) 98.72 (+/−1.81) 100.00 (+/−0.00) 97.62 (+/−3.37) 97.44 (+/−3.63) 1.00 (+/−0.00)
HUPA0002P 100.00 (+/−0.00) 87.50 (+/−7.05) 76.67 (+/−18.60) 75.00 (+/−45.83) 73.25 (+/−18.03) 53.33 (+/−37.20) 0.99 (+/−0.04)
HUPA0003P 100.00 (+/−0.00) 82.33 (+/−4.23) 43.33 (+/−9.07) 43.78 (+/−12.15) 43.30 (+/−7.57) 36.00 (+/−8.00) 0.41 (+/−0.09)
HUPA0004P 100.00 (+/−0.00) 80.74 (+/−3.43) 71.19 (+/−3.44) 71.43 (+/−4.98) 71.15 (+/−2.05) 71.43 (+/−0.00) 0.81 (+/−0.04)
HUPA0005P 100.00 (+/−0.00) 96.25 (+/−1.25) 97.74 (+/−3.26) 97.35 (+/−4.20) 98.44 (+/−3.69) 98.33 (+/−3.99) 1.00 (+/−0.01)
HUPA0006P 100.00 (+/−0.00) 70.56 (+/−8.26) 100.00 (+/−0.00) 100.00 (+/−0.00) 100.00 (+/−0.00) 100.00 (+/−0.00) 1.00 (+/−0.00)
HUPA0007P 100.00 (+/−0.00) 94.38 (+/−3.73) 86.39 (+/−5.48) 98.06 (+/−5.96) 79.78 (+/−6.06) 74.44 (+/−9.36) 0.94 (+/−0.05)
HUPA0008P 100.00 (+/−0.00) 93.33 (+/−4.82) 86.39 (+/−4.56) 100.00 (+/−0.00) 79.01 (+/−5.67) 72.78 (+/−9.11) 0.89 (+/−0.05)
HUPA0011P 100.00 (+/−0.00) 98.73 (+/−1.64) 85.42 (+/−2.34) 99.67 (+/−1.80) 77.64 (+/−2.85) 71.11 (+/−4.68) 0.96 (+/−0.02)
HUPA0014P 100.00 (+/−0.00) 88.89 (+/−2.17) 91.36 (+/−4.75) 95.95 (+/−4.66) 88.49 (+/−4.66) 86.67(+/−9.31) 0.99 (+/−0.01)
HUPA0015P 100.00 (+/−0.00) 93.97 (+/−2.37) 85.67 (+/−4.03) 94.20 (+/−7.61) 80.29 (+/−3.21) 76.67 (+/−4.71) 0.94 (+/−0.04)
HUPA0016P 100.00 (+/−0.00) 83.33 (+/−8.12) 67.22 (+/−8.03) 93.89 (+/−15.80) 61.22 (+/−6.32) 38.89 (+/−12.42) 0.73 (+/−0.09)
HUPA0017P 100.00 (+/−0.00) 94.83 (+/−2.03) 94.76 (+/−4.49) 91.39 (+/−6.86) 99.48 (+/−1.94) 99.52 (+/−1.78) 1.00 (+/−0.00)
HUPA0020P 100.00 (+/−0.00) 91.89 (+/−2.05) 91.17 (+/−2.79) 98.59 (+/−3.59) 85.95 (+/−3.67) 83.67 (+/−4.82) 0.98 (+/−0.01)
HUPA0022P 100.00 (+/−0.00) 77.00 (+/−9.00) 74.67 (+/−7.18) 75.02 (+/−7.56) 75.06 (+/−7.16) 75.33 (+/−8.46) 0.78 (+/−0.05)
HUPA0023P 100.00 (+/−0.00) 96.18 (+/−1.72) 93.19 (+/−2.28) 88.16 (+/−3.53) 100.00 (+/−0.00) 100.00 (+/−0.00) 0.99 (+/−0.01)
HUPA0024P 100.00 (+/−0.00) 91.33 (+/−2.21) 92.08 (+/−3.20) 87.76 (+/−2.67) 98.01 (+/−5.30) 97.92 (+/−5.67) 0.95 (+/−0.03)
HUPA0025P 100.00 (+/−0.00) 84.29 (+/−2.86) 94.72 (+/−5.04) 93.17 (+/−7.32) 97.46 (+/−5.70) 97.22 (+/−6.21) 0.99 (+/−0.02)
HUPA0026P 99.17 (+/−0.08) 85.53 (+/−0.67) 84.50 (+/−1.09) 86.87 (+/−1.33) 82.45 (+/−1.39) 81.31 (+/−1.79) 0.92 (+/−0.01)
HUPA0027P 97.59 (+/−0.25) 84.30 (+/−1.27) 85.93 (+/−2.16) 89.06 (+/−3.41) 83.62 (+/−3.27) 82.20 (+/−4.70) 0.94 (+/−0.01)

Mean 99.84 88.47 85.06 88.97 83.61 79.71 0.92
Std 0.55 7.17 13.01 13.41 14.46 18.85 0.13
Table 6
Comparison of personal models trained with DenseNet-121 and using Morlet Wavelet. Results are shown as the average of all runs. Hypoglycemia threshold: <70 mg∕dL. Red text
indicates values below 50%.

Morlet Wavelet

Patient ID Train Validation Test

Accuracy Accuracy Accuracy Sensitivity Specifity Precision AUC

HUPA0001P 100.00 (+/−0.00) 91.14 (+/−1.73) 91.92 (+/−3.76) 92.22 (+/−5.99) 92.16 (+/−3.77) 92.05 (+/−4.21) 0.98 (+/−0.01)
HUPA0002P 100.00 (+/−0.00) 81.11 (+/−5.67) 95.56 (+/−7.37) 93.33 (+/−11.06) 100.00 (+/−0.00) 100.00 (+/−0.00) 1.00 (+/−0.00)
HUPA0003P 100.00 (+/−0.00) 96.00 (+/−4.90) 54.00 (+/−5.54) 54.17 (+/−6.07) 53.89 (+/−5.24) 60.00 (+/−0.00) 0.72 (+/−0.04)
HUPA0004P 100.00 (+/−0.00) 70.74 (+/−3.78) 83.10 (+/−6.52) 77.10 (+/−6.22) 94.10 (+/−9.66) 94.76 (+/−8.64) 0.91 (+/−0.06)
HUPA0005P 100.00 (+/−0.00) 86.58 (+/−1.51) 78.69 (+/−4.07) 87.09 (+/−7.91) 73.74 (+/−3.41) 68.10 (+/−5.13) 0.85 (+/−0.03)
HUPA0006P 100.00 (+/−0.00) 71.11 (+/−7.37) 87.50 (+/−12.50) 100.00 (+/−0.00) 83.33 (+/−16.67) 75.00 (+/−25.00) 1.00 (+/−0.00)
HUPA0007P 100.00 (+/−0.00) 93.33 (+/−1.56) 83.06 (+/−4.56) 84.98 (+/−7.36) 81.96 (+/−4.01) 81.11 (+/−5.67) 0.90 (+/−0.04)
HUPA0008P 100.00 (+/−0.00) 85.42 (+/−4.06) 96.67 (+/−5.09) 96.03 (+/−6.60) 97.94 (+/−5.28) 97.78 (+/−5.67) 0.99 (+/−0.02)
HUPA0011P 100.00 (+/−0.00) 80.00 (+/−2.67) 90.28 (+/−3.93) 89.12 (+/−5.42) 92.31 (+/−5.81) 92.22 (+/−6.06) 0.98 (+/−0.01)
HUPA0014P 100.00 (+/−0.00) 82.89 (+/−2.23) 72.58 (+/−4.31) 76.61 (+/−6.84) 70.34 (+/−5.25) 66.06 (+/−8.44) 0.82 (+/−0.05)
HUPA0015P 100.00 (+/−0.00) 78.46 (+/−3.53) 82.67 (+/−5.73) 79.65 (+/−7.28) 88.25 (+/−8.21) 89.00 (+/−8.31) 0.92 (+/−0.04)
HUPA0016P 100.00 (+/−0.00) 98.75 (+/−3.75) 83.33 (+/−6.09) 97.78 (+/−8.31) 76.11 (+/−6.71) 68.89 (+/−8.31) 0.91 (+/−0.10)
HUPA0017P 100.00 (+/−0.00) 90.25 (+/−1.75) 89.52 (+/−3.19) 87.22 (+/−5.15) 92.70 (+/−3.18) 93.10 (+/−3.44) 0.96 (+/−0.02)
HUPA0020P 100.00 (+/−0.00) 90.11 (+/−2.51) 92.00 (+/−2.77) 100.00 (+/−0.00) 86.40 (+/−4.10) 84.00 (+/−5.54) 0.98 (+/−0.02)
HUPA0022P 100.00 (+/−0.00) 86.33 (+/−4.82) 74.67 (+/−7.18) 99.17 (+/−4.49) 67.14 (+/−6.57) 50.00 (+/−14.38) 0.96 (+/−0.04)
HUPA0023P 100.00 (+/−0.00) 80.29 (+/−2.96) 84.86 (+/−2.94) 85.51 (+/−5.44) 85.17 (+/−4.60) 84.72 (+/−5.73) 0.94 (+/−0.01)
HUPA0024P 100.00 (+/−0.00) 82.00 (+/−4.00) 59.17 (+/−6.40) 62.61 (+/−9.76) 57.65 (+/−5.57) 47.08 (+/−11.03) 0.64 (+/−0.05)
HUPA0025P 100.00 (+/−0.00) 78.57 (+/−0.00) 88.06 (+/−5.13) 84.62 (+/−1.64) 93.10 (+/−9.49) 92.78 (+/−10.26) 0.87 (+/−0.03)
HUPA0026P 99.29 (+/−0.10) 82.19 (+/−0.93) 76.83 (+/−1.45) 76.71 (+/−1.50) 77.06 (+/−2.17) 77.11 (+/−3.01) 0.85 (+/−0.01)
HUPA0027P 98.04 (+/−0.24) 78.39 (+/−0.84) 79.51 (+/−2.25) 79.66 (+/−3.07) 79.74 (+/−3.35) 79.55 (+/−4.85) 0.87 (+/−0.02)

Mean 99.87 84.18 82.20 85.18 82.15 79.67 0.90
Std 0.45 7.31 10.71 11.82 12.48 15.10 0.09
Morlet wavelets. The different characteristics of each patient and the
lack of sufficient data in some of them explain the variations between
the results obtained by the models. Moreover, like the general models,
the Mexican Hat Wavelet obtains better results, but the difference is
insignificant. It is worth highlighting the case of the patient with ID
HUPA0003P, the low accuracy obtained by the model is because the
atient has had poor glycaemic control, which has caused most of the
mages generated to be within the hypoglycemia range, as can be seen
n Fig. 8.

On average, the prediction models fitted to each patient have an
ccuracy of better than 80%.
9

4.4. Discussion

Table 7 shows a comparison of our general model with and without
noise with other machine learning techniques and neural networks.
The models have been trained with data from all patients, and the
hypoglycemia threshold <70 mg∕dL has been used. In addition, the DA
technique described in Section 3.3 has been used without generating
images in the rest of the techniques, i.e., glucose time series have been
used as input to the models. The results in Tables 4, 5, 6 and 7
are the average of 30 runs performed for each model. Our model with
1% noise applied is the best performing, obtaining 89% accuracy, 88%
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Table 7
Comparison of our model with other machine learning techniques and neural networks. Results are shown as the average of all runs. Red text
indicates values below 50%.
Model Accuracy Sensitivity Specificity Precision

WTG with 1% noise 89.42 (+/−0.55) 88.75 (+/−0.94) 90.14 (+/−0.74) 90.31 (+/−0.84)
WTG without noise 80.15 (+/−0.82) 79.55 (+/−1.22) 80.83 (+/−1.23) 81.21 (+/−1.70)
Extra-Trees Classifier 72.25 (+/−1.20) 98.52 (+/−0.44) 19.39 (+/−1.94) 71.09 (+/−1.26)
Bagging Classifier 71.91 (+/−1.26) 97.27 (+/−0.65) 20.91 (+/−1.88) 71.22 (+/−1.26)
Random Forest Classifier 71.84 (+/−1.32) 97.06 (+/−0.60) 21.13 (+/−2.15) 71.23 (+/−1.37)
Gradient Boosting 69.33 (+/−1.30) 94,64 (+/−0.64) 18.43 (+/−2.05) 70.01 (+/−1.31)
Gaussian Process Classifier 68.52 (+/−0.91) 91.81 (+/−1.02) 21.68 (+/−1.69) 70.23 (+/−1.08)
Decision Tree Classifier 68.44 (+/−1.39) 92.97 (+/−3.03) 19.14 (+/−4.73) 69.84 (+/−1.47)
AdaBoost Classifier 62.26 (+/−1.24) 70.41 (+/−1.29) 45.88 (+/−2.28) 72.36 (+/−1.52)
Gaussian Naive Bayes 60.25 (+/−1.55) 61.06 (+/−1.79) 58.60 (+/−2.16) 74.81 (+/−1.11)
Multilayer Perceptron Classifier 56.40 (+/−10.16) 60.69 (+/−30.90) 48.40 (+/−32.62) 72.50 (+/−5.26)
Stochastic Gradient Descent Classifier 54.69 (+/−13.53) 63.35 (+/−41.36) 37.19 (+/−42.64) 66.02 (+/−19.92)
Fig. 8. Percentage of images generated with hypoglycemia (orange bars) and non-hypoglycemia (green bars) and the test accuracy (blue line) obtained by the models for each
patient. Hypoglycemia threshold: <70 mg∕dL, Wavelet: Mexican Hat. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
sensitivity, 90% specificity, and 90% precision. The results show that
the other techniques obtain a higher sensitivity than our approach but
achieve a very low specificity, even below 20%.

Fig. 8 shows the percentage of images generated with hypoglycemia
and non-hypoglycemia and the test accuracy obtained by the models
for each patient. These models have been trained with a hypoglycemia
threshold <70 mg∕dL and Mexican Hat Wavelet. It can be seen that the
accuracy of the model is not related to the percentage of hypoglycemia
images due to the different characteristics well as the amount of data
available for each patient.

In Fig. 9, we present the ROC (Receiver Operating Characteristic)
curves [37], AUC (Area Under the Curve) [38], and KS (Kolmogorov–
Smirnov) statistic [39,40] which are commonly used measures in eval-
uating the performance of binary classification models.

ROC curves summarize the trade-off between a model’s True Pos-
itive Rate (TPR) and the False Positive Rate (FPR) for various clas-
sification thresholds. The TPR is the proportion of actual positives
correctly classified as positives, while the FPR is the proportion of
actual negatives incorrectly classified as positives. A ROC curve plots
the TPR against the FPR at different threshold settings, and the curve
illustrates how well the model can distinguish between the positive
and negative classes. The dashed line represents a random classifier,
so the further the ROC line departs from the dashed line, the better the
classifier. Another way of putting it is that the closer the ROC curve is
to the upper left corner, the better.

The AUC is the Area Under the ROC Curve and is a commonly used
metric for evaluating the overall performance of a binary classification
model. The AUC ranges between 0 and 1, with 0.5 indicating random
guessing and 1 indicating a perfect classifier. The KS statistic is another
commonly used measure of model performance in binary classification.
It is the maximum difference between the positive and negative classes’
10
cumulative distribution functions (CDFs). The KS statistic ranges be-
tween 0 and 1, with 0 indicating no separation between the classes
and 1 indicating perfect separation.

In Fig. 9, we can see that classifiers using DenseNet have AUC values
above 0.8, clearly better than those of classifiers using AlexNet. This
fact can also be seen visually in the ROC lines (left column) and the sep-
aration between the cumulative distribution functions (right column).
Similarly, there is a clear improvement when using the Mexican hat
shape for the Wavelet function over the Morl for both DenseNet and
AlexNet.

4.5. Uncertainty analysis

As seen before, the models have been trained using a fixed hypo-
glycemia threshold. In real life, the threshold may change due to each
patient’s characteristics. Therefore, an uncertainty analysis has been
performed to check whether the proposed method is affected in a range
of hypoglycemia thresholds, in particular, between 65 and 75 mg∕dL.
Fig. 10 shows the plots of the average and standard deviation of the
test accuracy of personal models at different hypoglycemia thresholds.
Figs. 10(a) and 10(b) show the results after 30 runs for the Mexican
Hat wavelet and the Morlet wavelet, respectively. As can be seen, there
are no significant changes in accuracy at the different hypoglycemia
thresholds. There is little variability in the model outputs when the
hypoglycemia threshold is modified.

4.6. Sensibility analysis

We conducted a sensitivity analysis to determine how much noise
our method can handle without losing reliability. During this analysis,

we deliberately added noise to the original glucose time series in our
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Fig. 9. ROC curves.
training data, ranging from 1% and 100%. This served the purpose of
gauging our method’s resilience and its performance in the presence
of varying levels of noise. The reason for introducing this noise was
to assess our method’s capacity to work effectively in the face of the
uncertainty and variability inherent in real-world glucose data. By
systematically increasing the noise levels, we sought to understand how
this affected the accuracy of our predictions. It is important to empha-
size that our method is tailored for real-world use, and the intentional
introduction of controlled noise helped us evaluate its ability to handle
noisy input data while maintaining the reliability of its predictions.
11
Concerning the Continuous Glucose Monitoring System (CGMS)
data, it is worth noting that this data source already introduces some
level of noise and uncertainty due to factors like sensor accuracy and
physiological variations, as documented in existing literature [41–43].
However, our sensitivity analysis focused on introducing an additional,
controlled noise layer to assess how well our method performs under
varying noise levels, extending beyond what is naturally present in
CGMS data. This enabled us to gain a deeper understanding of how
our technique responds to different noise levels and its ability to make
accurate predictions in real-world scenarios.
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Fig. 10. Uncertainty analysis. Plots of the average (solid line) and standard deviation (blue shadow) of the accuracy in test of personal models at different hypoglycemia thresholds
between 65 and 75 mg∕dL. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Sensibility analysis: The red dot line marks the accuracy of the model trained in the absence of noise. The blue line indicates the accuracy when adding different
percentages of noise to the dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Once the noisy time series are obtained, they are incorporated into
the training set. The images are generated using the wavelet transform
in the same way as in Section 3.

Fig. 11 shows the sensitivity analysis. It can be observed that the
accuracy without noise is approximately 80%. When noise is applied,
the accuracy rises due to the increase in the number of hypoglycemia
images, i.e., the training dataset grows. From a noise level of 10%,
the accuracy degrades due to more images of the non-hypoglycemia
class being generated because there is less probability of generating an
image that is within the hypoglycemia range (40–70 mg∕dL) than the
non-hypoglycemia range (>70 mg∕dL).

5. Conclusions and future work

In this work, we have proposed a new method, WTG Prediction
system, for the detection of hypoglycemia events in people with diabetes
by combining the application of the wavelet transform and Deep Learn-
ing techniques, specifically, the use of convolutional neural networks.
The main advantage is that it is that we only use BG levels, and the
technique is easily implementable on a mobile phone, which allows the
person to improve she/his quality of life. The method is also applicable
to the detection of any BG level, which makes it specially interesting
for predicting dangerous situations such as hyperglycemia events.

Our results show that WTG performs successfully in predicting hy-
poglycemic events 24 h in advance. We have approached the problem
from two points of view, a general model where we have used all
the patient data available to us and, a customized approach for each
patient. The results show that customized models outperformed general
models. We can affirm that the customization of intelligent models
based on the data of each patient is positive for the prediction process.

In order to study the sensitivity of the proposed system, controlled
noise has been incorporated to data for training the general models.
12
Surprisingly, the application of this noise produces an improvement in
the models, as seen in Table 7. By applying noise to the time series, we
also increase the number of spectrograms and, thus, the information
used for training the models. It should be noted that when more than
10% noise is applied, the accuracy decreases because, with these noise
levels, information on hypoglycemia events is lost, which means that
the model does not have the information it needs to fit. This decrease
occurs because a hypoglycemic image is less likely to be generated as
there is a smaller threshold of values (40–70 mg∕dL).

The data used in this work come from 20 real patients with different
characteristics obtained from a study in a Spanish hospital. At this
point, it is worth mentioning that at the time of data collection, the
patients were unfamiliar with the use of CGMs to monitor their glucose
levels, which may have influenced the time and range of data obtained
from each patient.

Comparison of our model with other machine learning techniques
shows that WTG obtains better accuracy results for the data of this
study. Wavelet Deep learning models will be integrated into a mobile
application that combines glucose monitoring, recommendations and
alarm signals. Our 24-hour prediction will produce hypoglycemia alerts
and recommend changes in their diet or insulin routine every 15 min.

The results obtained in this study allow us to address the problem
of hyperglycemia detection in the future. Since this is a classification
problem, we can employ the same technique described in this work
using data from the same patients. In addition, we have the idea of
a personalized adjustment of the hypoglycemia and hyperglycemia
thresholds using intelligent algorithms to tailor the model designed for
each patient more precisely. We are also working on a double DA tech-
nique applying a 1% noise to the time series combined with the moving
window technique explained in Section 3.3 on data augmentation for
personal models after the good results obtained in Tables 5, 6 and
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Fig. 11. Finally, we will study our technique with different prediction
horizons and the application of Early Stopping to avoid overfitting
during model training.

It should be noted that our technique can be applied to other time
series with similar behavior. For instance, in environmental monitor-
ing, time series data from environmental sensors, such as weather
conditions or pollution levels, could benefit from our approach for
forecasting and identifying extreme events, such as severe weather
patterns or pollution peaks. Additionally, our methodology is adaptable
to energy forecasting, facilitating predictions of energy demand and
detecting unusual consumption patterns. Moreover, the financial sector,
including stock market data, currency exchange rates and cryptocur-
rency prices, demands time series analysis for prediction and anomaly
detection. While financial time series typically exhibit less periodic-
ity than blood glucose data, our approach could still be valuable in
predicting stock price fluctuations and detecting financial anomalies.
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