
Internet of Things 23 (2023) 100829

A
2
(

R

I
l
A
a

s
b

(

A

K
I
L
M
P
S

1

t
t

t
R

(

h
R

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

esearch article

oT-based expert system for fault detection in Japanese Plum
eaf-turgor pressure WSN✩

rturo Barriga a,∗, José A. Barriga a, María José Moñino b, Pedro J. Clemente a

Quercus Software Engineering Group1, Department of Computer Science, Universidad de Extremadura2, Avenida de la Universidad
/n, Cáceres (10003), Spain
Area of Agronomy of Woody and Horticultural Crops, Extremadura Scientific and Technological Research Centre
CICYTEX), Guadajira (06187), Badajoz, Spain

R T I C L E I N F O

eywords:
nternet of things
eaf-turgor pressure sensors
achine learning

recision agriculture
ensor faults

A B S T R A C T

Industry 4.0 involves the digital transformation of industrial sectors. Given the current climate
change scenario and the scarcity of water in semi-arid regions, this digital transformation has to
take into account the sustainable use of water. In agriculture, one of the most water-intensive
sectors, to optimise the use of water, precision irrigation techniques are being applied. As a
result of the digital transformation of agriculture, a key aspect for the application of these
precision irrigation techniques, the crop water stress, can be predicted from a Wireless Sensor
Network (WSN) of leaf-turgor pressure sensors. However, these sensors often fail, introducing
errors in the data, which could lead to inaccurate application of precision irrigation techniques
compromising crops and yields. So, sensor fault identification is a must. Nevertheless, sensor
fault identification is a tedious and costly task that requires an expert to manually review all
sensors and each of their measurements over the last 24 h. In this work, with the aim of digitally
transforming this task, an IoT-based expert system is proposed. By means of a novel learning
model, this system is capable of identifying sensor faults with 84.2% f1-score and 0.94 AUC
ROC. Note that to train this learning model, only real-world data gathered from an experimental
plot has been used. In addition, the real-world application of the IoT-based expert system in
this plot is shown and discussed. Furthermore, a novel methodology that summarises the main
findings and techniques applied in this study is also illustrated.

. Introduction

Industry 4.0 involves the digital transformation of different industrial sectors, such as livestock [1], agriculture [2], automo-
ive [3], construction [4], etc. Nevertheless, given the current climate change scenario, and the scarcity of water in semi-arid regions,
he digital transformation has to take into account the sustainable use of water [5].

✩ This work was funded by project TED2021-129194B-I00 funded by MCIN/AEI/10.13039/501100011033 and for European Union NextGenerationEU/PRTR;
he Government of Extremadura, Council for Economy, Science and Digital Agenda under the grant GR21133 and the projects IB20058, and by the European
egional Development Fund (ERDF).
∗ Corresponding author.
E-mail addresses: arturobc@unex.es (A. Barriga), jose@unex.es (J.A. Barriga), mariajose.monino@juntaex.es (M.J. Moñino), pjclemente@unex.es

P.J. Clemente).
1 http://quercusseg.unex.es
2 https://ror.org/0174shg90
vailable online 30 May 2023
542-6605/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

ttps://doi.org/10.1016/j.iot.2023.100829
eceived 17 April 2023; Received in revised form 17 May 2023; Accepted 22 May 2023

https://www.elsevier.com/locate/iot
http://www.elsevier.com/locate/iot
mailto:arturobc@unex.es
mailto:jose@unex.es
mailto:mariajose.monino@juntaex.es
mailto:pjclemente@unex.es
http://quercusseg.unex.es
https://ror.org/0174shg90
https://doi.org/10.1016/j.iot.2023.100829
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2023.100829&domain=pdf
https://doi.org/10.1016/j.iot.2023.100829
http://creativecommons.org/licenses/by-nc-nd/4.0/

Internet of Things 23 (2023) 100829A. Barriga et al.

g
w
u
b
s

t
t
p
t

I
s
i

t
i
a
p

N

s
b
s

a
p
f
f

a
p
l
s

2

t
h

T
g
c
N

a

In agriculture, the sustainable use of water is key [6]. Indeed, in countries such as Spain agriculture is the sector with the
reatest water consumption, accounting for more than 70% of water extractions from rivers, reservoirs and aquifers [7]. Furthermore,
ater is a limiting resource in semi-arid regions, which together with the current climate change scenario, is fostering a context of
ncertainty and major challenges concerning the sustainability and viability of existing agroecosystems. However, water scarcity can
e mitigated by its sustainable use through the study and application of precision irrigation techniques. In this regard, techniques
uch as deficit irrigation techniques allow obtaining the maximum yield of a crop from the available water [8].

To apply these precision irrigation techniques, it is necessary to have a precise knowledge of the water stress of the crops. In
his regard, crop water stress identification is a process that has traditionally been carried out manually, but it can be digitally
ransformed and automated by means of the Internet of Things (IoT) and Machine Learning (ML). In this sense, the authors of [9]
resent a solution based on a WSN of leaf-turgor pressure sensors and a ML model able to identify the water stress of crops from
he readings of these leaf-turgor pressure sensors.

Nevertheless, since the solution described above is based on an IoT system, it has some limitations that are inherent to several
oT systems, such as the need of handling sensor faults. Furthermore, in the context of precision irrigation, the identification of
ensor faults is a critical task since their readings could have a negative impact on the precision irrigation systems that use them as
nputs, thus compromising crop yields.

Currently, the identification of leaf-turgor pressure sensor faults is carried out by experts by hand and involves daily analysis of
he data gathered by each sensor over the last 24 h. This process is tedious, time-consuming and costly, particularly when the crop
s extensive, thus limiting the scalability and feasibility of proposals such as [9]. For these reasons, this communication proposes
n IoT-based expert system able of identifying leaf-turgor pressure sensor faults, thus automating and digitally transforming this
rocess.

To carry out this proposal, a learning model able to identify if a sensor is failing is trained by means of a set of experiments.
ote that this model has been trained from the leaf-turgor pressure data gathered by sensors during one year’s fruit ripening cycle.

In this sense, with the aim of giving a practical approach to this communication, this model has been integrated into an IoT
ystem, illustrating its real-world application. The proposed IoT system is designed bearing in mind the context where it could
e deployed, thus addressing some of the open challenges that IoT is currently facing, such as interoperability, energy awareness or
calability [10].

Finally, to the best of our knowledge, most of the existing works in the literature concerning the identification of sensor faults
re based on the introduction of artificially generated faults (in healthy datasets) [11]. Since the training of the learning model
resented in this proposal uses only real data, this communication also shows a real-world application of the findings on sensor
aults identification of these proposals. Thus, showing the value of these findings in the identification of leaf-turgor pressure sensor
aults.

The main contributions of this communication are listed below:

• A novel ML model able to identify leaf-turgor pressure sensor faults. This model presents an 84.2% f1-score and a 0.94 Area
Under the Curve (AUC) Receiver Operating Characteristic (ROC), being feasible to replace experts in terms of leaf-turgor
pressure sensor fault identification.

• A novel methodology that summarises the main findings and techniques applied in this study. This methodology could be
easily extrapolated to similar problems involving sensors and time series, thus reducing development efforts and costs.

• An IoT-based expert system that integrates the trained learning model, illustrating its real-world application. Furthermore, this
IoT-based expert system is designed bearing in mind aspects such as interoperability, energy awareness and scalability.

• A real-world application of the findings of related work on sensor fault detection, assessing its effectiveness in identifying
faults in a leaf-turgor pressure WSN.

The rest of the communication is structured as follows: Section 2 analyses several related works. Section 3 presents the materials
nd methods applied to train and validate the learning models. Section 4 illustrates the results and experiments carried out. Section 5
roposes a methodology to address similar problems that involve sensors and time series. Section 6 presents the integration of the
earning model in a real IoT system. Section 7 conducts a discussion regarding the findings of this paper. Finally, Section 8 considers
ome future works and concludes the paper.

. Related works

Sensor fault detection is a key process when dealing with WSNs. Particularly in critical applications such as military opera-
ions [12], disaster prediction and management [13], intruder detection [14], elderly monitoring [15] or vital signs monitoring in
ospitalised patients [16]. Thus, the improvement or automation of sensor fault detection has been a subject of study over time.

In 2006 and 2009 respectively, two proposals with a major impact on the automatic detection of sensor faults emerged [17,18].
hese two proposals are based on algorithms known as Neighbours-based algorithms. Neighbours-based algorithms assume that, in
eneral, the nodes of a WSN are close together in space and there is a relation between sensor data from devices in a geographically
lose proximity. Moreover, the data obtained at an instant of time is related with previous and succeeding measurements. Thus,
eighbours-based algorithms use these spatial–temporal correlations to detect outliers and anomalous behaviour [19].

Thus, in [17] a distributed neighbour-based algorithm to identify faulty sensors is proposed and assessed. The execution of this
2

lgorithm is as follows: first, labels all nodes in the network as possibly correct or possibly faulty. To carry out this labelling, the

Internet of Things 23 (2023) 100829A. Barriga et al.
Table 1
Key elements of the related works summarized.

Article Ref Computing Approach Dataset Source of faults System performance

Chen et al. [17] Distributed Neighbours Artificially generated data from a simulated
scenario composed of 1024 sensor nodes randomly
deployed in a region of size 32 × 32 units

Artificially injected Performance metric: Faulty sensor detection
accuracy; Results: 7 neighbours and 25% fault
ratio: 97%; 10 neighbours and 25% fault ratio:
99%

Jiang [18] Distributed Neighbours Artificially generated data from a simulated
scenario composed of 200 sensor nodes randomly
deployed in a region of size 30 × 30 units

Artificially injected Performance metric: Faulty sensor detection
accuracy; Results: 5 neighbours and 25% fault
ratio: 98.5%; 10 neighbours and 25% fault ratio:
99.2%

Zidi et al. [20] Centralised Machine
learning

Relative humidity and air temperature
measurements. Data were obtained in 2010 by
researchers at the University of North Carolina at
Greensboro

Artificially injected Performance metric: Faulty sensor detection
accuracy; Results: SVM with 25% fault ratio:
99.9%; NB with 25% fault ratio: 98.0%; Hidden
Markov Models 25% fault ratio: 96.0%

Noshad et al. [21] Centralised Machine
learning

Relative humidity and air temperature
measurements. Data were obtained in 2010 by
researchers at the University of North Carolina at
Greensboro

Artificially injected Performance metric: Faulty measurement detection
accuracy; Results: SVM with 25% fault ratio:
92.0%; RF with 25% fault ratio: 95.0%

Yuan et al. [22] Centralised Machine
learning

Air temperature, relative humidity, light and
battery voltage. The data were collected from 54
sensors deployed in the Intel Berkeley Research
lab between February 28th and April 5th, 2004

Artificially injected Performance metric: Measurement classification
accuracy; Results: SVM: 82.0%; NB: 83.5%; GBDT:
91.0%

Zhang et al. [23] Centralised Machine
learning

Fifteen signals from wind turbines monitored by
sensors, including wind velocity at hub height,
rotor angular velocity or generator angular
velocity, among others. Data were obtained from
the National Renewable Energy Laboratory (USA)

Artificially injected Performance metric: Faulty measurement detection
accuracy; Results: SVM: 96.1%; RF: 99.9%;
XGBoost with RF: 99.9%

Jin et al. [24] Centralised Statistics Randomly generated data from a simulated WSN
topology composed of 100 sensor nodes

Artificially injected Performance metric: Mean deviation, among
others, to estimate the similarity of a WSN
compared to others WSNs of known health status
(proportion of faulty nodes). Results: Kuiper test:
0.1 when comparing a WSN with five faulty nodes
to a WSN without faults; Kolmogorov–Smirnov
test: 0.05 in the same situation

Our proposal Centralised Machine
learning

Leaf-turgor pressure and leaf temperature. Data
were obtained from 18 leaf-turgor
pressure/temperature sensors of a WSN deployed
in a Japanese plum tree farm. The experimental
field was carried out for six months with
late-maturing Japanese plum trees cv. Angeleno
and Talete, located in the Centre for Scientific and
Technological Research of Extremadura (CICYTEX)
- La Orden in Badajoz (Spain)

Real Performance metric: Measurement classification
accuracy, precision, recall, f1-score and AUC-ROC;
Results: SVM: 84.9% of accuracy, 84.9% of
precision, 84.9% of recall, 84.2% of f1-score and
0.94 of AUC-ROC; NB: 71.4% of accuracy, 73.1%
of precision, 71.4% of recall, 69.8% of f1-score
and 0.80 of AUC-ROC; Decision Tree (DT): 75.8%
of accuracy, 76.8% of precision, 75.8% of recall,
75.1% of f1-score and 0.76 of AUC-ROC; Logistic
Regression (LR): 74.1% of accuracy, 74.5% of
precision, 74.1% of recall, 73.0% of f1-score and
0.82 of AUC-ROC; K-Nearest Neighbours (kNN)
(k=7): 84.8% of accuracy, 85.9% of precision,
84.8% of recall, 84.2% of f1-score and 0.91 of
AUC-ROC

algorithm assesses the differences of measured values at the same instant of time between neighbouring nodes. Then, if the node’s
measurements do not exceed a threshold compared to the majority of measurements of the neighbours’ nodes, the node is labelled as
possibly correct, otherwise, possibly incorrect. Then, each node is compared again with its neighbours, assessing whether neighbours
are possibly correct or incorrect. Based on the possibly correct or incorrect neighbours, the algorithm finally labels each node as
correct or incorrect. To test their proposal, the authors applied it to a simulated WSN of 1024 nodes with erroneous random nodes.
The system proved to be able to identify faults with high accuracy (see Table 1, system performance column). However, performance
worsens exponentially as the ratio (percentage) of erroneous nodes increases.

In [18], an improvement to the previous algorithm is presented. Thus, in this proposal, the second part of the algorithm is
improved, i.e. when it compares each node with its neighbours to finally classify them as correct or incorrect. In this sense, it
applies a less strict condition to determine the final classification of each node, resulting in fewer nodes being misdiagnosed as
faulty. To test their proposal, the authors carry out several experiments where they applied their proposal on a simulated WSN of
200 sensors with different ratios of faulty nodes. The experiments show that the performance is improved compared to the previous
version with high error rates, identifying more than 94% of faulty nodes compared to the previous version which detected 83% for
a high error rate of 30% of faulty nodes.

Subsequently, ML gained popularity in virtually all research fields, due to its broad scope of application and its effectiveness in
solving problems. Therefore, most current work relies on ML to identify whether a sensor is failing or not.

Thus, in [20], a WSN fault detection system based on a learning model trained with the Support Vector Machine (SVM) classifier
is proposed. This learning model is able to identify and classify different kinds of sensor faults, specifically random faults, offset
faults, gain faults, stuck-at faults, and out-of-bounds faults. To train the learning model, the authors use a humidity and temperature
dataset published by the University of North Carolina, injecting into it the above-mentioned kinds of errors. To test their system,
the authors carry out several experiments considering different error rates, classifying the measurements with 99% of accuracy in
all cases.

In [21], a WSN fault detection system based on ML is proposed. This system is able to identify several types of sensor faults
such as offset, gain, stuck-at, out-of-bounds, spike, and data loss faults. To train the learning models, the same dataset used in the
related work described above is used in this work. Again, it is the authors who inject the sensor fault data into the dataset. In this
3

Internet of Things 23 (2023) 100829A. Barriga et al.

D
d
e
T
c

t
a
A
R
c
f

b
c

A
t
i
t
d
a
t
i

c

H
s
t
t
f

k
s

3

a
p
t

3

case, sensor fault data are injected randomly at different rates (10%, 20%, 30%, 40%, and 50%). To train the learning model, the
authors use and compare the performance of several algorithms such as SVM, multilayer perceptron, convolutional neural networks,
Random Forest (RF), stochastic gradient descent and probabilistic neural networks. The RF algorithm is reported as the best with a
faulty measurements identification accuracy of 90% for almost all kinds of faults and rates.

The communication presented in [22] carries out a comparative analysis of SVM, Naive Bayes (NB) and Gradient Boosting
ecision Tree (GBDT) for data fault detection in WSNs. To train the learning models, it is used a public dataset from 54 sensors
eployed in the Intel Berkeley Research lab (2004). These devices collected humidity, temperature, light, and voltage values once
very 31 s. Regarding sensor fault data, the authors injected three different types of faults: noise fault, gain fault and stuck-at fault.
hus, after training the learning models the communication reports GBDT as the best model with an average accuracy of 90%
lassifying all different kinds of faults.

In [23], a data-driven design for fault detection of wind turbines using RF and XGboost is presented. To train the learning models,
he authors use a dataset from The National Renewable Energy Laboratory (USA). In this work, not only sensor failures but also
ctuator failures are detected. Thus, ten different fault scenarios are defined, including six sensor faults and four actuator faults.
gain, it is the authors who inject sensor fault data into the dataset. On the other hand, in the dataset’s pre-processing stage, the
F algorithm is applied to assess and select the most representative dataset’s features. Then, when features are selected, the fault
lassifier is trained with the XGBoost algorithm. The resulting model reports an average accuracy of 90% classifying each kind of
ault.

The works described above are some of the current proposals for sensor fault identification. As mentioned above, since ML has
ecome popular, ML approaches are the most common to solve the problem of sensor fault detection. However, there are other
urrent approaches based on other kinds of techniques that are also effective solving this problem.

In this regard, the communication presented in [24] presents a statistical approach for WSN fault diagnosis based on the
utoregressive model [25], using the Kuiper test [26] and the Kolmogorov–Smirnov test [27], which are statistical methods used

o determine whether two given distributions are similar or significantly different. With the results of the above-mentioned tests, it
s theoretically possible to compare a WSN with other WSNs whose health states are known (proportion of faulty nodes) to assess
he similarity between them, thus being able to estimate the health states of a WSN. The authors use several metrics such as mean
eviation to evaluate the performance of both tests in estimating the similarity between WSNs with known health status. After
ssessing the results achieved, the authors concluded that both tests are able to evaluate the health conditions of WSNs, however,
he Kuiper statistic shows better performance than the Kolmogorov–Smirnov statistic. The main drawback of this approach is that
t is not possible to find out the exact number of faulty nodes.

Finally, note that Table 1 shows a summary of the related works described together with the proposal presented in this
ommunication.

As witnessed by the related work described above, sensor fault detection has been and is currently a matter of research interest.
owever, most studies in the literature are theoretical and generalist. These studies do not focus on fault detection of a specific

ensor and do not apply to a real WSN, furthermore, these proposals only consider artificially injected faults. On the other hand,
he proposal presented in this communication uses a dataset that comes from a real WSN of leaf-turgor pressure sensors, including
he real sensor faults. So, there is no need to inject sensor faults artificially. Moreover, in order to validate the learning model, data
rom this WSN is used, thus corroborating its effectiveness in a real WSN.

In short, the difference between our proposal and those presented in the related works is that our proposal gathers all the
nowledge that the different related works have reached, and uses it to apply it to a real WSN. Thus, solving a real problem of
ensor fault detection in WSNs composed of leaf-turgor pressure sensors.

. Material and methods

In this Section, the material and methods used are illustrated. In this regard, Section 3.1 describes the countryside context
nd presents the leaf-turgor pressure sensors. Next, Section 3.2 addresses how the leaf-turgor pressure data has been gathered and
resents the dataset. Finally, Section 3.3 shows the pre-processing techniques, ML algorithms and validation metrics applied to train
he learning models.

.1. Countryside context and leaf-turgor pressure sensors

The experimental field was carried out for six months with late-maturing Japanese plum trees cv. Angeleno and Talete, located
in the CICYTEX - La Orden Research Center in Badajoz (Spain). The experimental plot consisted of nine trees with two leaf-turgor
pressure sensors installed on each tree, distributed along the orchard (Fig. 1).

On the other hand, a leaf-turgor pressure sensor consists of a pressure chip embedded in a gel and limited by a plastic chamber.
Surrounding the chamber is placed a metal ring which, together with a counter magnet, is fixed to the tree leaf (see Fig. 2). The
photosynthesis process of the plant with the rise and fall of the sun causes cyclical increases and decreases of the leaf-turgor pressure
level over time. In addition, changes in the plant’s water stress directly affect leaf size and behaviour, which are recorded by the
chip. The sensor turns these changes into an electrical signal that sends to a communication box continuously. The communication
box is equipped with Bluetooth and every five minutes sends the readings to a gateway that stores the information and once per
4

hour sends a data packet to a cloud where it is stored and processed.

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 1. Experimental plot. It consists of nine trees, each one with two leaf-turgor pressure sensors installed.

Fig. 2. Sensor detail installed on the plum trees.

3.2. Leaf measurements and IoT-sensor data gathering

Nine trees were monitored installing two leaf-turgor pressure sensors per tree. The leaf-turgor pressure sensors were installed on
May 13th and removed on October 5th and the frequency of data gathering was set at 5 min. Note that leaf-turgor pressure sensors
also measure the temperature of the leaf. Fig. 1 shows the distribution of monitored trees throughout the farm.

On the other hand, Fig. 3 shows the well-defined cycles (24 h) that leaf-turgor pressure presents as a result of the process of
photosynthesis. These cycles show how leaf-turgor pressure increases during the day, as solar radiation increases, and decreases
in the evening, as solar radiation decreases, remaining constant during the night. Other parameters such as crop’s water-stress can
also affect the behaviour of leaf pressure [28]. So, plum’s leaf-turgor pressure curves could present different distributions and/or
behaviours. Figs. 3 shows 30 random days of correct leaf-turgor pressure measurements.
5

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 3. 30 randomly selected leaf-turgor pressure curves (24 h). All measurements have been classified as correct by the experts.

Fig. 4. 30 randomly selected leaf-turgor pressure curves (24 h). All measurements have been classified as incorrect (faulty sensors) by the experts.

Furthermore, Fig. 4 shows 30 random days of incorrect leaf-turgor pressure measurements. Fig. 4 evidences that faulty sensors
present more heterogeneous and arbitrary measurements than correct ones. In this regard, several kinds of well-known errors found
in the literature can be identified, such as stuck-at faults, i.e., days where the leaf-turgor pressure barely varies, or spike faults,
i.e., days where the rate of change of the measured time series with the predicted time series is higher than the acceptable change
trend [19], among other kinds of faults. However, there are also several instances where both the measurements of the faulty sensors
and the correct ones are similar.

For these reasons, the identification of faulty measurements is a task to be carried out by experts. In this way, experts inspect
leaf-turgor pressure curves on a daily basis with the aim of identifying incorrect measurements. This inspection is carried out by
displaying leaf-turgor pressure charts where the last 24 h of measurements of each sensor are shown. By analysing these charts,
experts can identify whether a sensor is behaving abnormally, and then associate a binary error code to each measurement depending
on whether the sensor was considered correct (1) or faulty (0). Furthermore, since some correct measurements could be identified
as errors, and vice versa, experts physically check the sensors on a daily basis with the aim of ensuring the reliability of their
classification (correct or incorrect measurement).

In the course of this process, the experts have, over a period of one year, elaborated the dataset used to train the learning models,
which is shown in Table 2.

Finally, note that, since this kind of sensor also gathers leaf-temperature data, leaf-temperature behaviour has been also analysed
with the aim of identifying sensor faults. However, as experts stated, no patterns have been found in the leaf temperature data that
would help to identify sensor faults.
6

Internet of Things 23 (2023) 100829A. Barriga et al.

l
p

3

d
t

a

i
i

M
p

p

v

Table 2
Dataset description.
Feature Description Type

𝑠𝑒𝑛𝑠𝑜𝑟𝐼𝑑 sensor ID String
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 timestamp Date
𝑃𝑙𝑒𝑎𝑓 leaf-turgor pressure (kPa) Float
𝑇𝑙𝑒𝑎𝑓 leaf temperature (◦C) Float
𝐸𝑟𝑟𝑜𝑟𝐶𝑜𝑑𝑒 sensor error code Boolean

Table 3
Re-framed time series to supervised (two variables and time steps).
var1(t-2) var2(t-2) var1(t-1) var2(t-1) label

1.0 51.0 2.0 52.0 0
2.0 52.0 3.0 53.0 0
3.0 53.0 4.0 54.0 1
4.0 54.0 5.0 55.0 1

3.3. Data pre-processing techniques, ML algorithms and learning models validation

This Section focuses on describing the dataset pre-processing carried out (Section 3.3.1), the ML algorithms applied to train the
earning models (Section 3.3.2), and the validation metrics used to measure the performance of the learning models from different
erspectives (Section 3.3.3).

.3.1. Dataset pre-processing
The dataset pre-processing phase is performed before the training of the learning models and aims to generate reliable input

ata. So, the main purpose of this stage is to increase the performance of the learning models in terms of classification accuracy,
ime in building a classifier, the size of the classifier, etc. [29,30].

Regarding pre-processing techniques, two types of pre-processing techniques can be usually distinguished: (1) Data Reduction
nd (2) Data Projection. Data Reduction includes those techniques that focus on modifying data features in order to optimise data

quality. Data projection focuses on the necessary transformations of the raw data into an optimised and feasible representation for
each particular learning algorithm [29].

Data Reduction. The techniques applied in this context are UnderSampling, OverSampling and Mislabels Correction. UnderSampling
s the process of decreasing the amount of majority target instances or samples [31]. OverSampling means increasing the volume of
nstances of a particular class [32,33]. Finally, mislabels occur when an observation is incorrectly labelled, Mislabels Correction is

performed by flipping the label [34].
Data Projection. The techniques applied in this context are Min-Max Normalisation and Re-frame Time Series as Supervised Learning.
inMax Normalisation is a technique able to scale data in a range bounded by a predefined minimum and maximum limit. [35]. As

er Min-Max Normalisation technique see Eq. (1).

𝐴′ =
(𝐴 − 𝑚𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝐴
𝑚𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝐴 − 𝑚𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝐴

)

× (𝐷 − 𝐶) + 𝐶 (1)

Where 𝐴′ is Min-Max Normalised data, [𝐶,𝐷] is the predefined boundary and A is a data within the range of original data.
On the other hand, Re-frame Time Series as Supervised Learning is applied to transform time series forecasting and classification

roblems into supervised learning problems for their use with ML algorithms [36].
A time series is a sequence of numbers that are ordered by a time index. A supervised learning problem is comprised of input

ariables 𝑋 and an output variable 𝑌 , and an algorithm can be used to learn the mapping function from the input to the output.
The goal is to approximate the underlying true mapping so that when there is new input data 𝑋, the output 𝑌 for that new input
can be predicted [36], see Eq. (2).

𝑌 = 𝑓 (𝑋) (2)

Re-frame Time Series as Supervised Learning consists of using the previous measurements of 𝑁 time steps as the input variables
𝑋 and the value of the next time step or a label as the output variable 𝑌 . Table 3 shows an example of a classification problem in
which measurements of two variables from two previous time steps are considered to determine a label.

3.3.2. Algorithms applied
In order to carry out the experiments proposed in this work, several ML algorithms have been applied: k-Nearest Neighbours,

Support Vector Machine, Naive Bayes, Decision Tree and Logistic Regression.

• K-Nearest Neighbours (kNN) [37] is based on determining the similitude between examples. Thus, the classifier compares their
attributes-based descriptions. The fact of each example is represented by a point in an n-dimensional space which makes it
possible to calculate the geometric distance between any pair of examples. The closer to each other examples are in the
instance space, the greater their mutual similarity. The classifier identifies not only one neighbour but also k neighbours. So,
k-NN classifier is a similarity classifier where k is the number of the voting neighbours.
7

Internet of Things 23 (2023) 100829A. Barriga et al.

t

b

c

R

• Support Vector Machine (SVM) is a supervised ML that analyses data for classification and regression analysis which belongs
to the kernel-based algorithms [38]. SVM is an algorithm for maximising a particular mathematical function with respect to a
given collection of data [39]. So, the target is to determine the vector support and their margins. The algorithm should identify
the support vector that maximises the margin. Consequently, training an SVM involves searching for a separating hyperplane
that leads to the maximum margin as this will best separate the levels of the target feature [40].

• Naive Bayes (NB) can predict class membership probabilities, such as the probability that a given sample belongs to a particular
class. Bayesian classifiers are based on Bayes’ theorem. Naive Bayesian classifiers assume that the effect of an attribute value
on a given class is independent of the values of the other attributes [41]. The NB classifier performs remarkably well even
when the underlying independence assumption is violated [42].

• Decision Tree (DT) algorithm is part of the supervised learning algorithm family, and its main objective is to construct a training
model that can be used to predict the class or value of target variables through learning decision rules inferred from the training
data. The DT algorithm can be used to solve regression and classification problems [43].

• Logistic Regression (LR) is a multivariable method devised for dichotomous outcomes. It is a standard statistical classification
method which is particularly appropriate for models involving binary classification problems. It has been widely applied due
to its simplicity and great interpretability [44].

3.3.3. Learning model validation metrics
In order to assess the performance of the trained learning models, metrics such as Accuracy, Precision, Recall, F1_score, Matthews

correlation coefficient or Cohen’s kappa statistic [45] have been calculated. Accuracy is computed as the number of correctly classified
data over the total number of data [46], see Eq. (3). True Positive (TP) and True Negative (TN) mean the number of correctly
classified as positive or negative. False Positive (FP) means that a negative instance is predicted as positive, and False Negative (FN)
means the opposite (predicted negative when the instance is positive).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(3)

Precision or Confidence (as it is called in Data Mining) denotes the proportion of Predicted Positive cases that are correctly Real
Positives [47], that is the number of True Positives divided by the sum of True Positives and False Positives, see Eq. (4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

Recall or Sensitivity (as it is called in Psychology) is the proportion of Real Positive cases that are correctly Predicted Positive [47],
hat is the true positive rate (the number of True Positives divided by the sum of True Positives and False Negatives), see Eq. (5).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

F1_score is calculated from Precision and Recall. It is the harmonic mean of the precision and recall [45], see Eq. (6).

𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(6)

Matthews Correlation Coefficient (MCC) is a validation metric that, when applied to binary classification problems, returns the
Phi-Coefficient [48,49]. It is a value between −1 and +1, where −1 indicates a perfect negative correlation between predictions
and actual labels, 0 indicates no correlation (i.e. the model predicts randomly) and +1 indicates a perfect positive correlation [45].
MCC is defined as Eq. (7).

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
(7)

Cohen’s kappa statistic (Kappa) is a validation metric that takes into account the probability of obtaining the correct classifications
y chance [50]. It is defined as Eq. (8).

𝐾𝑎𝑝𝑝𝑎 =
𝑃0 − 𝑃𝑒
1 − 𝑃𝑒

(8)

In Eq. (8), 𝑃0 is the proportion of correct classifications, i.e. accuracy, and 𝑃𝑒 is the probability of performing correct
lassifications by chance. 𝑃𝑒 can be computed as Eq. (9), where 𝑛 is the number of total instances [45].

𝑃𝑒 =
𝑇𝑃 + 𝐹𝑃

𝑛
× 𝑇𝑃 + 𝐹𝑁

𝑛
+ 𝐹𝑁 + 𝑇𝑁

𝑛
× 𝐹𝑃 + 𝑇𝑁

𝑛
(9)

Like MCC, Kappa also ranges from −1 to +1, where 0 means random classification and +1 means perfect classification.
Additionally, well-known measures such as AUC ROC [51] will be used to measure the performance of the ML models proposed.

OC related Sensitivity and 1 - Specificity [40]. It should be noted that Sensitivity is calculated as Recall, see Eq. (10).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

Specificity is Recall measures with negative examples, see Eq. (11).

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (11)
8

𝑇𝑁 + 𝐹𝑃

Internet of Things 23 (2023) 100829A. Barriga et al.

t
m

I
t

u
a
t
p
m
(
n
d

t

s
i

4

p
t
i
e

m

4

4

p

T
v
t

s
c
b

c
o

Table 4
Experiments carried out to allow the identification of the best performing pre-processing conditions.
Experiment ID Description

Experiment 00 Applying the techniques of related works, two different approaches can be distinguished.
(A): Models are trained using the original dataset and no pre-processing techniques are applied.
(B): Applying Re-frame Time Series as Supervised Learning (three time steps) to the original dataset.

Experiment 01 Applying hourly UnderSampling, Re-frame Time Series as Supervised Learning (24 h) and MinMax
Normalisation by sensors as pre-processing techniques to the original dataset.

Experiment 02 Applying MinMax Normalisation by time ranges within each sensor and Mislabels Correction
to the Experiment 01 dataset.

Experiment 03 Applying OverSampling to minority class in the Experiment 02 dataset.

The ROC curve summarises all the confusion matrices that each threshold produced. That is, the ROC curve is obtained by moving
he model threshold between [0-1] and obtaining the values of Sensitivity and 1-Specificity for each threshold. The ROC index or AUC
easures the area underneath a ROC curve [40].

It is possible to generate ROC curves from a K-fold cross-validation process and analyse the variation of the curve at each fold.
n addition, from all the ROC curves of each fold, it is possible to calculate the arithmetic and weighted average ROC curve and
hus the arithmetic and weighted average AUC.

Finally, note that no neuronal networks have been applied. In this regard, the firsts steps in training the model involved the
se of recurrent neural networks such as Long Short-Term Memory (LSTM) networks (given the recurrent nature of the problem);
nd Extreme learning machine neuronal networks, in view of the good results obtained in works involving sensor data related
o agriculture, as the current problem [52–54]. The results obtained using these neuronal networks reported similar predictive
erformance to those presented above. However, neuronal networks have three major disadvantages compared to these: (1) Slower
odel training, (2) Greater complexity in terms of model training (network architecture development and parameter configuration)

3) Additional complexity to replicate the training of the models due to (1) and (2). One of the main drawbacks of most neural
etwork optimisation methods is their low efficiency; more complex methods tend to achieve better results, but this is offset by a
isproportionate increase in computational costs [55].

In view of these disadvantages and the fact that the application of such algorithms does not add extra value to this communica-
ion, the authors have considered that the inclusion of this stage of the research in the article is fruitless.

Finally, several clustering techniques have also been unsuccessfully assessed to solve the problem, e.g. K-Means and Density-based
patial clustering of applications with noise (DBSCAN). As with the algorithms discussed above, the authors have decided not to
nclude this phase of the research in the paper, as it does not provide any additional value.

. Experiments carried out for tuning the ML models and results

This section shows the experiments carried out to train the learning models. The aim of these experiments is to increase the
erformance of the trained learning models. To achieve it, each experiment is focused on the application of different pre-processing
echniques. Note that the experiments described in this section are a selection/summary of all those that have been carried out,
ncluding those from which it has been possible to improve the performance of learning models. Table 4 summarises the main
xperiments carried out.

Before addressing the description of the experiments, this section shows how the dataset has been used and how the performance
etrics have been applied to measure the results obtained in each experiment.

.1. Dataset and validation metrics in experiments

Next, both the dataset and the application of validation metrics used throughout the set of experiments are described.

.1.1. Dataset in experiments
The original dataset is formed by the features defined in Table 2 and by 974.493 rows. This dataset is the result of monitoring

lum crops for one year’s fruit ripening cycle following the methodology described in Sections 3.1 and 3.2.
In order to use this dataset to train learning models, it is necessary to split the dataset into a training and a validation set.

here are several techniques to carry out this splitting and the most common is to randomly choose a set of rows and use them as
alidation set [56]. However, the dataset provided in this communication presents some peculiarities, so some considerations have
o be taken into account before applying this technique to it.

Splitting the data set randomly means that data relating to readings from the same sensor could be assigned to both the training
et and the validation set. As each sensor presents a particular behaviour, this scenario could lead to train models that only correctly
lassify the measurements of sensors that have similar behaviour to the sensors on which the models have been trained, i.e., not
eing able to generalise.

In this regard, not all sensors, even if they belong to the same tree, are located on similar leaves or share the same meteorological
onditions. A small difference such as the cardinal orientation of the sensor may determine different exposure to sunlight or wind
9

n the leaf and thus to a different leaf-turgor pressure behaviour.

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 5. K-Fold validation split by sensors.

For these reasons, the data relating to the readings of the same sensor are handled as an inseparable set. Thus, to randomly
split the dataset, instead of randomly choosing a set of rows as described in [56], the whole data of a sensor is randomly assigned
together to either the training set or the validation set.

So, validating with readings from sensors that are not in the training set implies that the models will be able to apply what they
have learned to unknown situations, i.e., to classify the correct or incorrect status of sensors attached to leaves of trees that do not
have similar behaviour to the devices with which the model has been trained.

Note that these considerations are made because the results achieved in the first stages of training, when the dataset was randomly
divided regardless of whether the readings from the same sensor belonged to both the validation or training set, led to the undesired
scenario described above, i.e. the models do not generalise as expected.

4.1.2. Application of the validation metrics
In order to achieve reliable results in terms of performance measurements, cross-validation is applied [57]. Taking into account

the considerations made in Section 4.1.1, the cross-validation is carried out using in each iteration the data from one sensor for
testing and the data from the rest for training, as shown in Fig. 5. It is worth mentioning that the dataset used for training and
testing at each fold is not only composed of the faulty records of the sensors but an equal number of correct records (as it is the
majority class) is sampled in order to balance the classes.

The results achieved in each iteration are weighted, i.e. multiplied by the size of the sensor dataset reserved for validation. It
has been considered suitable to weigh the results as there are sensors with significant variations in the number of errors made. In
this regard, it is considered inappropriate for a sensor with a single fault well identified by the learning models, that could achieve
a 100% of accuracy, to have the same weight in the final performance assessment as a sensor with 50 errors and 85% accuracy.

Taking the above-mentioned into consideration, the following Eq. (12) indicates how to calculate a performance metric
(e.g. accuracy, precision, recall, f1-score and the AUC-ROC) with the sensor-weighted cross-validation method.

𝑀𝑒𝑡𝑟𝑖𝑐 = 1
𝑛𝐹 + 𝑛𝐶

×
𝑠𝑒𝑛𝑠𝑜𝑟𝑠
∑

𝑖=1
𝑀𝑒𝑡𝑟𝑖𝑐𝑖 × (𝑛𝐹𝑖 + 𝑛𝐶𝑖) (12)

Where 𝑀𝑒𝑡𝑟𝑖𝑐 is the weighted average of the performance metric throughout the cross-validation process, 𝑛𝐹 and 𝑛𝐶 are the
total number of faulty and correct records of the dataset respectively, 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 represents the set of the 18 sensors included in the
dataset, 𝑀𝑒𝑡𝑟𝑖𝑐𝑖 is the performance reported by the validation metric in the cross-validation iteration 𝑖, and 𝑛𝐹𝑖 and 𝑛𝐶𝑖 are the
number of faulty and correct records respectively of the sensor reserved for testing purposes in the cross-validation iteration 𝑖.

In other words, the expression explained above calculates the weighted average of the performance metric throughout the cross-
validation process. Thus, at each iteration of the cross-validation process, the performance obtained is multiplied by the size of the
sensor dataset reserved for validation (𝑛𝐹𝑖 + 𝑛𝐶𝑖). Finally, the resulting amount of the 18 iterations is divided by the total data size
(𝑛𝐹 + 𝑛𝐶).

4.2. Experiment setup and experimentation

The motivation, reasoning, set-up, experimentation and results achieved in each experiment are illustrated below.

4.2.1. Experiment 00: First approach, applying the techniques of related works.
This first experiment aims to carry out a first approach to the problem, clarifying whether it is possible to identify faulty sensors

in a real application case by means of the findings and pre-processing techniques used in related works, which are theoretical.
As discussed in depth in Section 2, in these related works the faults are artificially injected and usually do not apply to specific

sensors but are generalist. The most recent ones, employ ML algorithms to generate classification models capable of classifying the
measurements as correct or incorrect. All of them hardly apply any pre-processing techniques to the data, however, they achieve
very high performances in detecting erroneous measurements.
10

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 6. ROC curve and AUC for the ML models developed in Experiment 00 (A).

Table 5
Experiment 00 (A) results. The values given for the metrics are the weighted average of all iterations of the cross-validation.
Algorithm Accuracy Precision Recall F1-Score AUC MCC Kappa

SVM 56.2% 61.6% 56.2% 51.3% 0.58 0.17 0.12
DT 52.7% 52.8% 52.7% 51.7% 0.53 0.05 0.05
NB 55.8% 58.5% 55.8% 53.3% 0.57 0.14 0.12
LR 53.9% 55.5% 53.9% 52.5% 0.59 0.09 0.08
kNN(k=7) 52.6% 52.7% 52.6% 51.7% 0.54 0.05 0.05

In [22], measurements from temperature and voltage sensors are used and no pre-processing techniques are applied to the data
before feeding it into the ML algorithms, the authors achieve around 90% of accuracy in classifying the measurements as correct or
incorrect. Moreover, in [23], signals from sensor-monitored wind turbines are used, faults are injected and data are fed into the ML
algorithms. Only Random Forest is applied for the selection of the most representative features; no further preprocessing techniques
are specified, however, the authors report 99.9% of accuracy in detecting incorrect measurements.

Thus, the aim of the first part of Experiment 00, i.e. Experiment 00 (A), is to follow the approach of these two related works,
where almost no pre-processing techniques are applied to the data. Therefore, in Experiment 00 (A) the ML models are trained
and validated following the cross-validation process explained in Section 4.1.2 without applying any pre-processing techniques.
Each record is composed of only three features, i.e. two input features, a leaf-turgor pressure measurement and a leaf temperature
measurement at a specific time instant, together with the class label or output feature (correct or incorrect).

Table 5 shows the Experiment 00 (A) results. Note that in this table, the neighbours of kNN (k) are set to seven (k=7). This
is the result of a grid search process [58] that has been carried out to identify the optimal number of neighbours in kNN. Thus,
after applying this process, seven neighbours (k=7) were found to be optimal for maximising the performance of the kNN models.
On the other hand, the weighted average of ROC curves and AUC values can be observed in Fig. 6. Moreover, Fig. 15 included
in the appendix (Appendix) shows not only the weighted average but also the performance of each individual sensor through the
cross-validation process.

In view of the results achieved (see Table 5), it is shown that the classification performance of the measurements is very poor
following the strategies of [22,23]. This is probably because it is a real use case with real faults, and more data pre-processing
techniques are needed to increase the performance. However, no random classification is being performed, e.g. 50% of accuracy,
as around 56% of this metric is obtained in the case of SVM or NB.

On the other hand, there are related works in the literature that already include Re-frame Time Series as Supervised Learning, such
as [20,21], where this pre-processing technique is applied. In both studies, data from two humidity and temperature sensors at the
11

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 7. ROC curve and AUC for the ML models developed in Experiment 00 (B).

Table 6
Experiment 00 (B) results. The values given for the metrics are the weighted average of all iterations of the cross-validation.
Algorithm Accuracy Precision Recall F1-Score AUC MCC Kappa

SVM 56.1% 61.2% 56.1% 51.2% 0.58 0.16 0.12
DT 52.4% 52.4% 52.4% 51.1% 0.52 0.04 0.04
NB 55.7% 58.3% 55.7% 53.1% 0.57 0.14 0.11
LR 53.7% 55.2% 53.7% 52.3% 0.59 0.09 0.07
kNN(k=7) 52.5% 52.6% 52.5% 51.6% 0.53 0.05 0.05

University of North Carolina at Greensboro are used and three consecutive time steps are employed to generate the time series,
thus generating records of 12 input features or dimensions, i.e., two temperature and humidity measurements at each time step,
since there are two sensors, for three consecutive time instants. No further pre-processing techniques are applied in these studies,
however, in both cases, an accuracy of around 95% is achieved in the detection of incorrect measurements.

Therefore, in the second part of this experiment, i.e. Experiment 00 (B), the aim is the same as in the first part, but now Re-
frame Time Series as Supervised Learning is applied in the same manner described in the two related works [20,21] discussed above.
Since this is the only pre-processing technique used in both related works, in Experiment 00 (B) the measurements are fed into the
ML algorithms without further pre-processing. The generated records have seven dimensions, i.e. six input features, which are the
leaf-turgor pressure and leaf temperature of three consecutive time instants, together with the class label or output feature.

Note that, as in related works, the generated time series are composed of three measurements or time steps spaced a few minutes
or even seconds apart. This leads to the leaf-turgor pressure and leaf temperature values being practically identical throughout the
time series, however, this has been done on purpose as the aim of this first experiment is to follow as similarly as possible the
techniques applied in the related works, assessing its applicability to a real use case such as the one in this paper.

Table 6 shows the Experiment 00 (B) results. The weighted average of ROC curves and AUC values can be observed in Fig. 7.
Moreover, Fig. 16 included in the appendix (Appendix) shows not only the weighted average but also the performance of each
individual sensor through the cross-validation process.

The results of Experiment 00 (B) are quite similar to those of Experiment 00 (A). A clearly insufficient performance is achieved,
however, the classification is not random, as about 56% of accuracy is achieved for SVM and NB in classifying the time series as
correct or incorrect.

This first approach has shown that the few pre-processing techniques applied in the related works are insufficient in a real
application case such as the one addressed in this paper. The related works are theoretical and generalist and faults are artificially
12

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 8. ROC curve and AUC for the ML models developed in Experiment 01.

injected, which explains such a drastic loss of performance when applied to the case under study, which is real. However, the
knowledge and techniques used in the related works seem to be useful in the present case as no random classification has been
performed, which means that the models have been able to learn some patterns from the data. In this regard, it is expected that
based on the knowledge of the related work and by applying new preprocessing techniques, as well as better adapting them to the
problem under study, the performance will be improved, which is what is done in the following experiments.

4.2.2. Experiment 01: Incorporation and adaptation of basic pre-processing techniques to our real problem
In view of the poor performance results achieved in Experiment 00, where the findings and the few pre-processing techniques

used in the related work were applied, the aim of this experiment is to increase the performance of the learning models by including
new data pre-processing techniques, as well as better adapting them to the real problem under study. Furthermore, this experiment
also aims to build a first pre-processed dataset that can be used as a basis for the rest of the experiments.

As described in Section 4.1.1, the original dataset consists of 974,493 rows. This is the result when sensors publish a measurement
every two-three minutes during one year’s fruit ripening cycle. With the aim of determining whether lower data resolution, i.e. fewer
measurements per hour, provides the same knowledge to the learning models, the undersampling technique has been applied.

In this regard, the best results in terms of the performance of the learning models were obtained when using one row per hour.
After the hourly undersampling, the dataset reduced the number of rows from 974,493 to 59,534.

In terms of training, this reduction means more feasible training in terms of the application of further pre-processing techniques,
the use of less computational power, and high speed to train models. Regarding the deployment of the model in an IoT system,
this reduction implies lower energy consumption of the devices in terms of gathering and publishing data, lower bandwidth usage,
lower energy and computational costs of the component involved in pre-processing the data collected by sensors (to provide reliable
inputs to the model), lower energy and computational costs in the execution of the model, etc.

Since experts use the daily (24-hour) leaf-turgor pressure curves to determine whether a sensor is performing correctly or not
(Section 3.2), the training of the models has been approached in the same way, including not only the leaf-turgor pressure but
also the leaf temperature measurements as input features for the algorithms. Thus, once the hourly undersampling was applied, the
re-frame of time series as supervised learning has been made using the measurements of 24 time steps. These time series have 48
input variables (𝑋), i.e. the leaf-turgor pressure and leaf temperature of 24 h, and one value that represents the error code of that
24 measurements as the output variable (𝑌). Note that the time series where the 24 h do not share the same error code has been
deleted.

Finally, the MinMax normalisation of the magnitudes according to the maximum and minimum values measured by each sensor
has been performed. This is because, as experts reported, each magnitude moves in slightly different ranges for each sensor.
13

Internet of Things 23 (2023) 100829A. Barriga et al.
Table 7
Experiment 01 results. The values given for the metrics are the weighted average of all iterations of the cross-validation.
Algorithm Accuracy Precision Recall F1-Score AUC MCC Kappa

SVM 62.4% 64.4% 62.4% 60.7% 0.72 0.27 0.25
DT 58.0% 58.5% 57.9% 55.9% 0.58 0.16 0.16
NB 63.3% 64.1% 63.3% 62.1% 0.68 0.27 0.27
LR 58.5% 58.7% 58.5% 57.4% 0.64 0.17 0.17
kNN(k=7) 59.8% 59.8% 59.8% 58.3% 0.65 0.20 0.20

Fig. 9. ROC curve and AUC for the ML models developed in Experiment 02.

In short, in this first experiment, the data have been reduced from 974,493 to 59,534 rows, re-frame to time-series (dimensionality
of 48 variables, i.e., the leaf temperature and leaf-turgor pressure of 24 h, and a label indicating whether the series is faulty or not)
and MinMax normalised.

Table 7 shows the Experiment 01 results. The weighted average of ROC curves and AUC values can be observed in Fig. 8.
Moreover, Fig. 17 included in the appendix (Appendix) shows not only the weighted average but also the performance of each
individual sensor through the cross-validation process.

In view of the results, this second experiment evidences that the problem can be tackled by ML techniques and the dataset
gathered. This is evidenced by the fact that about 60% of f1-score was obtained by classifying the test data, achieving an 8%
increase in the value of this metric compared to Experiment 00, which was around 52%. Accuracy values have also increased for
all algorithms by about 6% compared to the previous experiment.

On the other hand, one of the most relevant performance metrics in this problem is the AUC ROC, which determines the ability
of models to discriminate between classes, i.e. the ability of the model to classify incorrect measurements as incorrect and correct
measurements as correct (thus avoiding false positives/negatives) [59]. AUC ROC is key in this problem because when a sensor is
identified as faulty, experts have to go to the country to inspect and fix the faulty sensor. Therefore, low AUC ROC, or in other
words, the frequent occurrence of false positives, implies that experts would have to go to the country unnecessarily frequently,
which is an undesirable scenario.

Currently, an AUC ROC of 0.72 has been achieved for the case of SVM (an improvement of 0.14 points over Experiment 00).
This AUC ROC performance is not yet acceptable, however, in view of the rest of the performance metrics, the AUC ROC achieved
could be considered high. Therefore, it could be that as the other performance metrics improve, the AUC ROC will also improve.

4.2.3. Experiment 02: In-depth dataset analysis and learning model performance improvement
The aim of this experiment is the improvement of the performance of the learning models, as the performance achieved in

Experiment 01 is not enough to replace experts.
14

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 10. Leaf-turgor pressure measurements from a sensor normalised without taking into account range shifts (A), and normalised taking into account the range
shifts (B).

Table 8
Experiment 02 results. The values given for the metrics are the weighted average of all iterations of the cross-validation.
Algorithm Accuracy Precision Recall F1-Score AUC MCC Kappa

SVM 81.5% 81.7% 81.5% 80.8% 0.91 0.63 0.63
DT 70.7% 71.9% 70.7% 70.1% 0.68 0.39 0.37
NB 71.1% 73.0% 71.1% 69.7% 0.78 0.44 0.42
LR 69.7% 71.0% 69.7% 67.9% 0.79 0.40 0.39
kNN(k=7) 78.0% 78.7% 78.0% 77.1% 0.86 0.57 0.56

In this regard, analysing the dataset, it is observed that sensors’ measurements present range shifts in their measurements (see
Fig. 10). As can be seen in Fig. 10, these range shifts occur abruptly at specific time instants. Analysing the data in more depth,
it was found that these time instants match the time instants at which a sensor is detected as faulty. According to expert opinion,
these range shifts are the result of fixing the sensor. Thus, after a sensor fault, experts place the sensor again correctly, often in a
different position or even changing the leaf, which shifts the range in which the sensor was gathering its measurements.

Therefore, in this second experiment, an improved MinMax normalisation of the measurements of each sensor is performed taking
into account the above-described range shifts.

Furthermore, analysing the dataset, it has been noticed that when sensors’ measurements are identified as faulty, several previous
days of correct measurements have also been labelled as faulty. After seeking expert opinion, it was reported that since a sensor is
manually identified as faulty, the previous days’ measurements are also labelled as incorrect to ensure the correctness of the data
for subsequent studies. Furthermore, it has been noticed that when a faulty sensor is fixed, experts also label all measurements of
that sensor for that day as incorrect.

This is a key aspect to take into account as introducing mislabelled measurements into ML algorithms might have a negative
impact. So, Mislabels correction has been applied in this experiment by removing all the measurements that are susceptible of have
being mislabelled.

Table 8 shows the Experiment 02 results. The weighted average of ROC curves and AUC values can be observed in Fig. 9.
Moreover, Fig. 18 included in the appendix (Appendix) shows not only the weighted average but also the performance of each
individual sensor through the cross-validation process.

Thus, applying the above pre-processing techniques, this second experiment achieves a performance of 80.8% of f1-score in the
case of SVM, an 18.7% more than the best result reported by Experiment 01 (62.1% of f1-score in the case of NB and kNN(k=7)).
Furthermore, the AUC ROC achieved is 0.91, also in the case of SVM (0.19 more than the best case reported by Experiment 01).
According to experts’ opinion, this increased performance brings learning models closer to an expert in terms of identifying sensor
faults.

Therefore, in view of the results obtained, this model could replace the experts in the identification of sensor faults.

4.2.4. Experiment 03. Fine-tuning of the model.
This experiment aims to further increase the performance achieved in Experiment 02. In this regard, there are techniques that have

not yet been applied, such as data-augmentation techniques (Oversampling), which could increase the performance of the models in
problems where the number of samples is low.
15

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 11. ROC curve and AUC for the ML models developed in Experiment 03.

Table 9
Experiment 03 results. The values given for the metrics are the weighted average of all iterations of the cross-validation.
Algorithm Accuracy Precision Recall F1-Score AUC MCC Kappa

SVM 84.9% 84.9% 84.9% 84.2% 0.94 0.71 0.70
DT 75.8% 76.8% 75.8% 75.1% 0.76 0.54 0.53
NB 71.4% 73.1% 71.4% 69.8% 0.80 0.45 0.43
LR 74.1% 74.5% 74.1% 73.0% 0.82 0.49 0.48
kNN(k=7) 84.8% 85.9% 84.8% 84.2% 0.91 0.71 0.70

Thus, data-augmentation techniques have been applied. These techniques have been considered particularly interesting for two
reasons: (1) The first reason refers to the common benefit of increasing data when dealing with a ML problem, i.e. increasing the
number of instances of a particular class allows models to gain more knowledge of this class, learning better and performing better
at classifying instances of this class [60]. (2) Secondly, note that the learning models are not only trained and tested with faulty
records, but an equal number of correct records is taken, thus providing balanced sets with respect to the two possible classes (faulty
measurement and correct measurement). Since incorrect measurements are the minority class, when sampling an equal number of
correct records to balance the classes there are a lot of correct measurements that are not included (around 97% of the total).
Therefore, increasing the number of incorrect records also means increasing the percentage of correct records that are considered
to train and test the learning models. In this way, the algorithms are fed with a wider variety of correct measurements.

The applied data augmentation technique consists of increasing and decreasing incorrect measurements slightly in a random
way, generating new measurements similar to the previous one, thus giving the models more variety of possible incorrectly behaving
measurements. In this regard, the best results were achieved by generating three new faults from each original fault.

Table 9 shows the Experiment 03 results. The weighted average of ROC curves and AUC values can be observed in Fig. 11.
Moreover, Fig. 19 included in the appendix (Appendix) shows not only the weighted average but also the performance of each
individual sensor through the cross-validation process.

In this final experiment, an 84.2% of f1-score is achieved with the SVM algorithm, a 3.4% more than in Experiment 02 (80.8%
in the case of SVM). This performance also improves AUC, achieving a 0.94 of AUC.

To sum up, the best learning model presents an 84.2% f1-score and 0.94 AUC, making it feasible to replace experts, thus
automating the process of identifying faulty sensors.

In the following sections, a novel methodology for tackling similar problems involving time series and sensor data will be
presented. Furthermore, it will be illustrated how to integrate the resulting ML model into an IoT system so that it can be already
deployed and exploited for sensor fault detection in plum tree orchards.
16

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 12. Flowchart relating the proposed methodology to the main phases of a data science project.

5. Proposed methodology for sensor fault detection in time series

In this paper, not only a learning model for sensor fault detection has been developed together with an IoT system, but also
an entire approach for sensor time series classification has been illustrated in a real use case. Since the techniques and knowledge
achieved in this work could help to successfully tackle similar problems that integrate time series and sensors with less time and
effort, this section presents a methodology that summarises such key ideas and techniques.

Fig. 12 relates the proposed methodology to the main phases of a traditional data science project. Note that in Fig. 12, the
traditional steps of a data science project are shown with a dotted border, in contrast to the novel steps proposed in the methodology,
which are shown with a solid border. These novel steps proposed in the methodology affect most phases of a data science project,
ranging from the exploratory data analysis to the training and validation of ML models (see Fig. 12). The steps of the proposed
methodology are explained in detail below:

• Determining the seasonality of the measured magnitude. One of the first steps in tackling a problem involving times
series is to determine the seasonality time period of the measured magnitude, i.e. the time period in which optional patterns
of behaviour are repeated. In the case of the problem addressed in this article, the seasonality time is 24 h since as can be seen
in Fig. 3, the leaf-turgor pressure increases during the day with the rise of the sun and decreases at night, which corresponds
to the tree’s photosynthesis cycles. In addition, the other measured magnitude is the leaf temperature, which is also directly
related to the daily cycles. Moreover, as the experts said, they displayed 24-hour charts to label the measurements as correct
or incorrect. In other problems, seasonality periods can range from a few minutes to weeks, months or even years.

• Parallel coordinate display. To further time series analysis, plots with parallel coordinates can be generated. This paper
includes two charts of this nature in Figs. 3 and 4, with 30 days from 00 a.m. to 11 p.m. of measurements classified as correct
and incorrect by the experts, respectively. With these charts, it is possible to notice particular patterns and behaviours in the
data that provide information and a better understanding of the problem. Note that the visualisation of this type of chart is
extremely useful for determining the seasonality time discussed in the previous point.

• Normalisation according to range-shifts. As discussed in Experiment 02 in Section 4, a normalisation according to features
and even differentiating between sensors is not always enough. It is possible that different ranges of values may be measured
for the same magnitude within a sensor (see Fig. 10). In the particular case of this work, ranges shifts occur when CICYTEX
workers detect faults in the sensors and change the position or even the leaf where the sensor is attached. This is a non-
trivial issue, and the normalisation according to each range shift has produced in this work a substantial improvement in the
performance of the learning models. Note that in other problems this situation could also occur, especially with the emerging
digital transformation of the agricultural sector with greater monitoring of crops with sensors attached to leaves or tree trunks,
where the amplitude of the measured magnitude can be dependent on the exact point where it is placed, as occurs in this work.

• Re-frame Time Series as Supervised Learning. After proper analysis and normalisation of the dataset, a time series classifi-
cation or forecasting problem can be approached as a supervised ML problem by reformatting the data, using the previous
measurements of 𝑁 time steps as the input variables (𝑋) and the value of the next time step or a label as the output variable
(𝑌) [36]. For the particular case of this paper Re-frame Time Series as Supervised Learning is applied considering 24 h or time
steps of leaf temperature and leaf-turgor pressure measurements as input variables (48 features), together with a class label
17

Internet of Things 23 (2023) 100829A. Barriga et al.

t
o
t
t
i
r

6

i
S
a

6

t
m
a
o

6

F
h
a

a
d
T

t
t
a

c
c

that indicates whether the time series of measurements has been classified as correct or incorrect by the experts. Table 3 shows
an illustrative example of the records for a classification problem in which measurements of two variables from two previous
time steps are considered to determine a label.

• Split by sensors to train and validate models. As discussed in Section 4.1.1, learning models are trained and validated so
that data from the same sensor are never in both stages. Note that in a tree, leaves are oriented towards different cardinal
points, have different exposure to the sun or may be older or younger, among other factors, this results in each sensor showing
particular leaf-turgor pressure behaviours. Validating with data from sensors not used for training ensures that the performance
metrics obtained correspond to the actual performance of the models, since in future it will have to classify measurements
from sensors attached to leaves that have never been seen before in the training phase. This is something that can occur in
other problems involving time series, especially in the agricultural sector with sensors on crop leaves, therefore validation of
models with data from sensors other than those used to train them may also be necessary to ensure that models are able to
generalise properly.

• Sensor weighted cross-validation. As discussed in the previous point, in order to properly calculate the performance metrics
of the models it is sometimes necessary to validate with data from sensors that have never been seen in the training phase.
Thus, an alternative version of k-fold cross-validation is proposed in this article (see Section 4.1.2), where the division between
folds is made by sensors, always saving the measurements of one sensor for testing and training with the measurements of the
remaining ones. Therefore, there are as many folds as sensors. In each fold, the metrics obtained are weighted to calculate
the average, given that there are sensors with more data and faults than others. This validation process can be applied to
many other problems, where segregating by sensors for training and testing is necessary to ensure that the models generalise
properly. Furthermore, AUC ROC charts can be computed by following the same sensor cross-validation process. See Fig. 11
where the AUC ROC folds of Experiment 03 are displayed for every single fold or sensor, and the weighted average ROC curve
is calculated and plotted thicker in blue.

As shown, many of the techniques and knowledge achieved in this work can be applied to similar problems involving sensors and
ime series. In this section, a complete methodology has been proposed to tackle this type of problems, ranging from the analysis
f the time series by visualising parallel coordinate charts and determining the seasonality of the measured magnitude, through the
ransformation of the data so that time series classification and forecasting problems can be tackled as supervised ML problems, to
he validation of the results, including as well an alternative cross-validation process that separates training and test sets by sensors
n each fold. Therefore, many related future works involving time series could be based on the proposed methodology and thus
educe the development cost in time and effort, as well as improve the results in terms of performance.

. IoT-based expert system for leaf-turgor pressure sensor fault detection

This section proposes an IoT-based expert system that integrates the learning model trained through the experiments described
n Section 4. In this regard, this section is structured as follows: Section 6.1 describes the motivation for developing the IoT system.
ection 6.2 identifies some design requirements that the proposed system has to reach. Section 6.3 presents the design, main layers
nd components of the system. Finally, Section 6.6 conducts a discussion about the trade-offs of the system design.

.1. IoT-based expert system. Motivation

In this communication, a learning model that is able to identify faulty leaf-turgor pressure sensors has been developed. However,
o take advantage of this learning model, it has to be integrated into the WSN of leaf-turgor pressure sensors. Therefore, the main
otivation for developing this IoT system is to integrate and take advantage of the trained learning model in a real system. Thus,

lso showing how the learning model can be deployed as part of an IoT system, its role within the system, interactions with the
ther devices or software components, etc.

.2. Iot-based expert system. Design requirements

The IoT currently has several open challenges that should be taken into account in the development of any IoT system.
urthermore, depending on the IoT system, addressing some of these open challenges is a must. Thus, the open challenges that
ave been considered key to the IoT system that has been developed in this communication are: (1) Interoperability, (2) Energy
wareness, and (3) Scalability.

In the context of IoT, interoperability is understood as the property that allows an IoT system to operate with a third party, such
s another IoT system, an application, etc. [10]. This open challenge has to be addressed in the proposed system, as the sensor fault
etection system could be a part of a larger IoT system that requires such fault detection service (e.g. a smart irrigation system).
herefore, the IoT system has to be interoperable.

On the other hand, given the current scenario of climate change [61], the challenges to be overcome by many countries towards
he exclusive use of green energies [62], the limitations of the IoT itself, such as the low battery life of some IoT devices [63] (as in
he case of leaf-turgor pressure sensors), and also the context of our research, energy consumption needs to be optimised as much
s possible. For these reasons, the IoT system has to be energy-aware.

Finally, scalability can be defined as the property that ensures that, regardless of the size of the IoT system (number of devices
onnected to it), the performance of the IoT system will not be negatively affected [10]. Since the IoT system that has been developed
18

ould be deployed on small or large agricultural farms, the system has to be scalable.

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 13. Software architecture of the IoT-based expert system.

6.3. Iot-based expert system. Design, layers and components

This section presents the proposed IoT system’s design, main layers and components. For the sake of clarity, each layer is
presented below specifying its aim and components. Thus, layers, their components and interrelationships are described. Note that,
to describe the elements better, the numerical and alphabetical labels shown in Fig. 13 are used below as references in the text.
These references are used for layers and components by means of the expression [layer or component name] X⃝, where 𝑥 is
the label associated with the [layer or component name] in Fig. 13. References are used for relationships by means of the
expression (relationship n⃝), where n is the label associated with the relationship in Fig. 13, avoiding its name.

• Leaf-turgor pressure sensors Layer A⃝
Aim. This layer represents the WSN of leaf-turgor pressure sensors deployed on the plum tree farm. The purpose of this layer
is to feed measurements into the system, where each individual measurement will be classified as correct or faulty.
Interrelationships. The sensors from the Leaf-turgor pressure sensors layer periodically publish their measurements
in the MQTT Broker B⃝(relationship 1⃝).

• MQTT Broker B⃝
Aim. The purpose of this component is to allow communication between the other layers and components of the IoT system
through the Message Queuing Telemetry Transport (MQTT) protocol, based on the publish–subscribe pattern. In the proposed
IoT system in Fig. 13, the message broker that implements the MQTT protocol Eclipse Mosquitto [64] is used.
Interrelationships. As the central element driving the communication, the MQTT Broker has several interrelationships. These
interrelationships will be explained below in each component and layer description.

• Persistence Layer C⃝
Aim. The main purpose of this layer is to provide persistence to all data sent by the Leaf-turgor pressure sensors
layer A⃝. Thus, this layer provides persistence to both, raw and labelled sensor measurements (as correct or incorrect). Also
allows other components to query such data.
Components:

– DB Manager. The aim of this component is to receive and insert into a database all the raw sensor measurements
published in the MQTT Broker B⃝by the Leaf-turgor pressure sen- sors layer A⃝, as well as labelled sensor
19

Internet of Things 23 (2023) 100829A. Barriga et al.
measurements published in the MQTT Broker B⃝by the Machine Learning layer (Expert System) D⃝. To do
that, first, it subscribes to the topics provided by the MQTT Broker B⃝where the Leaf-turgor pressure sensors
layer A⃝publish their measurements (relationship 2⃝). Each time a sensor measurement is published in the MQTT
Broker B⃝the DB Manager receives it (relationship 3⃝) and inserts the sensor reading into the database (MongoDB) as a
JSON document (relationship 4⃝). In addition, it also subscribes to the topic of the MQTT Broker B⃝where the Machine
Learning layer (Expert System) D⃝publish labelled sensor measurements (relationships 2⃝and 11⃝), and stores
received sensor measurements labelled as correct or incorrect in a different collection in the database (relationship 4⃝).

– DB. The purpose of this component is to store sensor measurements and machine learning classifications. Thus, the raw
measurements sent by the sensors are stored in one collection, and the measurements labelled as correct or incorrect by
the Machine Learning layer (Expert System) D⃝are stored in a separate collection. In the proposed IoT system
in Fig. 13, the NoSQL database MongoDB [65] is used.

• Machine Learning Layer (Expert System) D⃝
Aim. The purpose of this layer is to classify and label as correct or incorrect the raw sensor measurements sent by the Leaf-
turgor pressure sensors layer A⃝, as well as to publish the labelled sensor measurements in the MQTT Broker
B⃝.
Components:

– Data pre-processor. The purpose of this component is to perform all the necessary pre-processing techniques to
adapt the sensor measurements to the learning models. Thus, reliable and properly formatted data is provided to the
learning models. In this way, the learning models are able to classify the sensor measurements as correct or incorrect.
Note that the pre-processing techniques applied are those previously discussed in Section 3.3.1.

– Learning Model. This component hosts the best-performing learning model developed in the experiments (Section 4).
The aim of this component is to classify the data published by the Leaf-turgor pressure sensors layer A⃝as
correct or incorrect. Thus, through the HyperText Transfer Protocol (HTTP), the service receives the sensors’ measure-
ments already pre-processed from the Data pre-processor component. Then, it returns the sensors’ measurements
together with the classification performed by the model (0=incorrect; 1=correct).

– ML Manager. This is the core component of this layer. Its purpose is to manage the flow of data between the above-
described components. Thus, the ML Manager periodically queries the latest measurements from the raw or unlabelled
collection of the DB in the Persistence layer C⃝(relationships 5⃝and 6⃝). These raw sensor measurements are sent to
the Data Processor component (relationship 7⃝) which applies all the necessary transformations and pre-processing
techniques to the data and sends it back to the ML Manager (relationship 8⃝). Then, the properly pre-processed and
formatted data is sent to the Learning Model component (relationship 9⃝). In this way, the sensors measurements are
classified and the result (labelled measurements) is returned to the ML Manager (relationship 10⃝), which publishes it
in the MQTT Broker B⃝(relationship 11⃝).

• Clients Layer E⃝
Aim. The purpose of this layer is to represent the target users of the IoT system, who exploit the learning model to detect
faults in the leaf-turgor pressure sensors deployed in plum tree farms. Note that target users can be people as well as other
computer systems.
Interrelationships. The Clients layer is subscribed to the classification reports in the MQTT Broker B⃝(relationship 12⃝). So,
every time the Machine Learning layer D⃝publishes a new labelled measurement, it will be received by the Clients
layer E⃝(relationship 13⃝). Note that with this approach the target users do not have to worry about the internal logic of the
system that works as a black box for them. Once the sensors publish their raw measurements in the appropriate topic of the
MQTT Broker B⃝, they are only responsible for subscribing to the topic in the MQTT Broker B⃝where the labelled sensor
measurements are published.

• Leaf-turgor pressure sensors fault detection system F⃝
Aim. This box encompasses all the elements previously described and can be considered as a single entity. It is the IoT-based
expert system for fault detection in leaf-turgor pressure sensors that integrates and exploits the best learning model developed
in the experiments (Section 4). This system persistently stores the sensor measurements and allows them to be queried, both
raw and labelled (classified as correct or incorrect). Thus, it allows third parties applications or users to query such data
through the Interoperability layer G⃝.
Interrelationships. Its interrelationships are discussed below, as they are related to the Interoperability layer G⃝.

• Interoperability Layer (Middleware) G⃝
Aim. The purpose of this layer is to allow any application or user to query and consume sensor records from the Leaf-turgor
pressure sensors fault detection system F⃝, both raw, i.e. the data directly stored from sensors measurements, and
labelled (as correct or incorrect), i.e. the data after the application of the pre-processing techniques and the learning model.
Interrelationships. Thus, this layer acts as middleware (REST API) that allows any application or user that is not able to use
the MQTT protocol to query data from the IoT system’s persistent storage (relationships 16⃝, 14⃝and 15⃝). Thus, after receiving
a request, the middleware returns such data to the user or application that requested it (relationship 17⃝).

H

20

• Other IoT systems ⃝

Internet of Things 23 (2023) 100829A. Barriga et al.

f

t
a
p
s

a
h
(

6

a
t
i
c

a

f
c

i
s
c
g

m
o

s
d
e
t
o

Aim. This layer represents all IoT systems that could take advantage of the Leaf-turgor pressure sensor fault
detection IoT system F⃝through the Interoperability layer (Middleware) G⃝. Note that the Interoper-
ability layer (Middleware) G⃝ensures that any third IoT system, regardless of its particular communication protocols
and properties, can consume the proposed IoT system for fault detection. An example could be a smart irrigation system, which
detects faults automatically without the need for an expert to manually check the sensors.

Finally, note that the proposed system integrates MQTT, which is associated with an event-driven architecture (EDA), with REST
unctionality. The reason for not adopting a purely EDA or purely REST solution is described below.

An event-driven architecture allows data to be managed by using publish–subscribe communication protocols, which help us
o improve internal components’ reusability, design low coupling systems and improve aspects such as fault tolerance, energy-
wareness and scalability [66–68]. On the other hand, REST APIs make it possible to describe single entry points for service
rovisioning/consumption, either between system components or for third-party components that could be integrated with the
ystem.

Thus, both paradigms can (should) be used together, using each of them according to the application context in order to take
dvantage of their strengths. So, in this work, the following application criteria have been followed: EDA if (1) The data does not
ave a specific recipient, (2) No response is expected from the recipients and (3) The data is not a response to a request. REST if
1) The data has a specific recipient, (2) A response is expected from the recipients or (3) The data is a response to a request.

.4. Infrastructure of the proposed IoT-based expert system

In this section, the infrastructure of the proposed IoT-based expert system is described. Thus, this section addresses aspects such
s the network topology adopted, the protocol stacks used, the hardware employed for each node of the system, the technologies
hat support the WSN architecture (Fig. 13 A⃝) as well as the platforms that support the deployment of the rest of the system,
.e. Persistence, ML and Interoperability layers (Fig. 13, labels C⃝, D⃝and G⃝respectively). Note that, for the sake of
larity, a graphical summary of this section is shown in Fig. 14.

Thus, first of all, before describing the infrastructure design of the system, the system model, i.e. the characteristics and
ssumptions of the system that need to be taken into account throughout this design process, has been defined.

• Scalability is one of the requirements of the system as described in Section 6.2. So, large-scale WSNs are expected.
• The leaf-turgor pressure sensor layer (WSN, Fig. 13 A⃝) is deployed in a different location from the ML layer (where predictions

are made, Fig. 13 D⃝). So, the Internet is required to connect the WSN to the Base Station (BS), i.e. the platform on which the
ML layer is deployed (Microsoft Azure [69]).

• Sensors are only needed at the defined control points (see Fig. 1). Thus, the leaf-turgor pressure sensors are deployed in the
same area but grouped in these control points.

• Sensors gather data at a fixed rate (five minutes).
• Sensor fault identification is carried out at a fixed rate (hourly).
• Sensors are homogeneous, i.e. have the same computing power, energy consumption, battery life, processes and data gathering

rate. In this regard, note that the sensors’ hardware is constrained.
• Internet access is provided through WiFi (IEEE 802.11 [70]).
• Sensors do not have a WiFi card, although they come equipped with a Bluetooth 4.2 LE (BLE) module.
• Energy-awareness is one of the requirements of the system as described in Section 6.2. So, energy-efficient protocols are

required.
• Both leaf-turgor pressure sensors and the Base Station (BS), are static after deployment.

Thus, from this system model and studies such as [71] or [72], it has been considered that the most appropriate WSN topology
or the proposed system is the Cluster-based topology. In this way, each control point, where sensors are grouped, is managed as a
luster of the WSN.

Concerning the communication between the WSN and the BS, there are several key aspects related to the system model to take
nto consideration before its design. Firstly, leaf-turgor pressure sensors lack WiFi, which is required to connect to the Internet and
end the collected data directly to the BS. Secondly, energy-awareness is crucial in this design stage because of the sensors’ hardware
onstraints and the aim of designing a green IoT system (Section 6.2). Thirdly, sensors come with a BLE module to transmit the
athered data.

Bearing in mind these aspects and analysing BLE features such as its energy-awareness in low-rate data transmissions, in sleep
ode and when establishing communication [73,74], it has been considered appropriate to use this technology for the transmission

f the collected data.
Then, to enable the sending of the data gathered to the BS, a new device with BLE (in order to collect the data gathered by

ensors) and WiFi (in order to connect to the Internet), has to be added to the WSN. According to these requirements, the included
evice is the RaspBerry Pi 3 B+ [75], which has been added to each cluster of the WSN with the role of Cluster Head (CH). So,
very five minutes (sensor gathering rate) the CH collects (via BLE) the data gathered by each sensor belonging to its cluster. Note
hat to carry out this transmission, the BLE protocol stack defined in [76] is used. On the other hand, once per hour (prediction rate
21

f the expert system), the CHs aggregate the collected data and send it to the BS. As for this transmission, it is performed through

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 14. Infrastructure of the IoT-based expert system.

MQTT, which is applied over the TCP protocol through the Internet (IP protocol). In this regard, according to the aforementioned,
the RaspBerries access to the Internet through WiFi.

On the other hand, the infrastructure design of the rest of the system, i.e. the BS, could be summarised in Microsoft Azure and
Kubernetes [77]. Thus, each component belonging to the Persistence, ML and Interoperability layers together with the
MQTT Broker (Fig. 13, labels C⃝, D⃝, G⃝and B⃝respectively) are wrapped in a Docker container, deployed on Microsoft Azure and
orchestrated by Kubernetes. Regarding the communication between these components, they use both MQTT and HTTP over TCP/IP
to interact among them (see Fig. 13). As for the protocols used below TCP/IP, in this case, it will depend on Microsoft Azure.

6.5. Computational complexity analysis of the proposed IoT-based expert system

The computational complexity of a system [78] is usually expressed by the well-known Big-O notation [79]. In short, the Big-O
notation represents the worst-case computational complexity of a system by determining how its time requirements increase as the
size of the inputs grows and approaches infinity [79].

In this section, an analysis from the Big-O notation perspective about the computational complexity of the proposed IoT-based
expert system is carried out. On the one hand, the computational complexity related to the training and running (i.e. make a
classification) of the learning models is addressed. On the other hand, the computational complexity of each layer of the proposed
IoT-based expert system is assessed. In this case, the impact of each learning model on these components (when deployed together)
is also explored.

6.5.1. Computational complexity of the ML algorithms
Firstly, the computational complexity of the learning models is addressed. Although these algorithms belong to the Machine

Learning layer (Expert System) D⃝, they are analysed separately from the rest of the system due to several reasons such
as their relevance within the proposed IoT-based expert system, the presence of additional variables that impact its complexity
(e.g. the number of support vectors in SVM), and the type of analysis, which is carried out from two different perspectives, training
and running complexity.

Thus, Table 10 shows the computational complexity of each ML algorithm applied in this manuscript (see Section 3.3.2). As
mentioned above, this complexity is analysed from two perspectives, training and running complexity. The training complexity is
22

Internet of Things 23 (2023) 100829A. Barriga et al.

o
o
g
a
t

Table 10
Computational complexity of the applied ML algorithms [80,81].
Algorithm Training complexity Running complexity

SVM (𝑛2𝑓 + 𝑛3) (𝑛𝑠𝑣𝑓)
DT (𝑛2𝑓) (𝑓)
NB (𝑛𝑓) (𝑓)
LR (𝑛𝑓) (𝑓)
kNN (𝑘𝑛𝑓) (𝑛𝑓)

Table 11
Computational complexity of the proposed Leaf-turgor
pressure sensors fault detection system F⃝ and
each of its layers: Leaf-turgor pressure sensors
layer A⃝, MQTT Broker B⃝, Persistence layer C⃝,
Machine Learning layer (Expert System) D⃝ and
Interoperability layer (Middleware) G⃝.
Layer Computational complexity

A⃝ (𝑛)
B⃝ (𝑛)
C⃝ (𝑛𝑙𝑜𝑔(𝑛))
D⃝ 𝑀𝐴𝑋[(𝑛𝑓), 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑒𝑙]
F⃝ 𝑀𝐴𝑋[(𝑛𝑓), 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑒𝑙]
G⃝ (𝑙𝑜𝑔(𝑛))

Table 12
Computational complexity of Machine Learning layer (Expert System).
Machine Learning layer (Expert System) D⃝

𝑀𝐴𝑋[(𝑛𝑓), 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑀𝑜𝑑𝑒𝑙]

ML Manager Data pre-processor Learning Model

𝑀𝐴𝑋[(𝑛𝑓), (𝑛𝑓) Depending on
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 the algorithm
𝑀𝑜𝑑𝑒𝑙] (see Table 10)

related to the time required for the ML algorithms to train the classification models. On the other hand, the running complexity is
related to the time required to perform classifications using these models once they have been trained.

Regarding the variables used to determine the computational complexity of these ML algorithms, 𝑛 is the number of instances
that form the training dataset, 𝑓 is the number of features of each instance, 𝑘 is the number of neighbours specified in kNN and
𝑛𝑠𝑣 is the number of support vectors specified in SVM. Note that these variables represent the inputs to the ML algorithms, whose
growth affects the computational complexity of the training and running processes of the learning models. Finally, it should be
noted that the computational complexity of these ML algorithms has already been addressed in the literature [80,81].

6.5.2. Introduction to the computational complexity of the iot-based expert system and notation used
The computational complexity of an algorithm in terms of Big-O notation can be determined by analysing its code. Specifically,

from the structures that scale in number of operations as the size of the input variables grows, i.e. loops and nested loops [79,82].
This analysis has been carried out for each component that forms the proposed IoT-based expert system. Table 11 shows the
computational complexity determined for each system layer. To carry out this analysis, a Big-O notation similar to that used in
Section 6.5.1 has been applied. Nevertheless, the concept that the variables represent changes depending on the context (Layer) in
which they are applied. So, the notation used and its meaning in each case is presented below.

In this section, (𝑓) is equal to (𝑚𝑡), where 𝑚 represents the number of measured magnitudes (e.g. leaf-turgor pressure and leaf
temperature) and 𝑡 represents the number of time steps considered (e.g. 24 h). Note that (𝑚𝑡) is equal to (𝑓) since the number
f features (𝑓) in each time series is the number of measured magnitudes (𝑚) multiplied by the number of time steps (𝑡). On the
ther hand, sensors gather data at a fixed gathering rate (e.g. every five minutes). Therefore, if sensors grow, the amount of data
athered grows in the same proportion. Moreover, the number of time series that can be generated grows in the same proportion
s both. As these three variables (number of sensors, number of recorded measurements and number of final time series) grow in
he same proportion, they can be reduced to the same variable 𝑛, which represents all three interchangeably.
23

Internet of Things 23 (2023) 100829A. Barriga et al.

c

t
c
o

e

r
p
⃝

e

6

o
t
d
d

6

o
a
l

6

t

6

a

M
p
p
i

d
c

T
i
O
i

6

G
h

c
e
B
t
w

6.5.3. Computational complexity of the Machine Learning layer
Table 12 shows the computational complexity of the Machine Learning layer D⃝. To determine this computational

omplexity, the computational complexity of each of the components of this layer has been assessed.
Firstly, the computational complexity of the Data Preprocessor grows as the number of monitored magnitudes (𝑚) and

he number of time steps considered (𝑡) for each record to preprocess (𝑛) increases (𝑛𝑚𝑡) = (𝑛𝑓). Note that the computational
omplexity of this component is not affected by the learning models, as the required pre-processing techniques are the same for all
f them.

Secondly, as the Learning Model component represents the selected learning model to be deployed as part of the IoT-based
xpert system, its computational complexity is the complexity of the selected learning model (see Table 10).

Thirdly, regarding the ML Manager component, it manages the flow of the data in the Machine Learning layer D⃝. So, it
equests periodically the data gathered by the sensors from the DB. Later, it sends this data to the Data Preprocessor. Once the
reprocessed data is received, it requests the Learning Model to get the classifications and publish them to the MQTT Broker

B . Therefore, the complexity of this component is determined by the component with the highest complexity on which it depends.
In this regard, note that only the ML layer is affected by the learning model selected to be deployed as part of the IoT-based

xpert system.

.5.4. Computational complexity of the Persistence layer
The purpose of the Persistence layer C⃝is to provide persistence to both, raw and labelled sensor measurements (as correct

r incorrect). In this regard, note that to optimise the insertion and retrieval of the data, a date-based index has been included in
he DB. Therefore, the number of operations required to insert or retrieve a measurement (by means of a dichotomous search by
ate) will grow in a logarithmic order, i.e. (𝑙𝑜𝑔(𝑛)). So, as the tasks of the DB Manager are limited to inserting and retrieving
ata by date from the database, the computational complexity of this component is (𝑛𝑙𝑜𝑔(𝑛)).

.5.5. Computational complexity of the Leaf-turgor pressure sensors layer
The Leaf-turgor pressure sensors layer A⃝represents the WSN deployed in the experimental plot, which is composed

f leaf-turgor pressure sensors clusters and Cluster Heads. Thus, each cluster sends its measurements to its Cluster Head, which
ggregates and publishes them to the MQTT Broker B⃝. Therefore, the amount of operations that this layer has to perform grows
inearly with the number of sensors (𝑛) deployed. So, the time complexity of the layer is (𝑛).

.5.6. Computational complexity of the Interoperability layer
The Interoperability layer G⃝acts as a middleware (REST API) that allows any application or user to request data from

he IoT system’s persistent storage. Since the DB has a complexity of (𝑙𝑜𝑔(𝑛)), the computational complexity of this layer is (𝑙𝑜𝑔(𝑛)).

.5.7. Computational complexity of the MQTT Broker
Although the MQTT Broker is not a system layer, it is an essential element of the system. So, its computational complexity is

ddressed in this section.
Thus, the computational complexity of the MQTT Broker B⃝depends on which has been used. In this work, the Eclipse

osquitto [64] has been selected and its computational complexity has already been analysed in the literature from several
erspectives, such as the growth of response times as the size of the message payload increases [83], as well as the number of
ublishers increases [84]. In both cases, a linear growth relationship between response time and these magnitudes is identified,
.e. (𝑛).

In the proposed system, both the number of publishers could vary (𝑛 sensors deployed) and the message payload (amount of
ata aggregated by each Cluster Head). As the complexity in both cases grows linearly and they involve independent processes, the
omplexity of the MQTT Broker is (𝑛).

Finally, note that the Machine Learning layer D⃝is the component that presents the highest computational complexity.
herefore, the overall computational complexity of the system is determined by the complexity of this component. In this regard,

t is crucial to take into account that the computational complexity of this layer varies depending on the selected learning model.
n the other hand, also note that the complexity of the client layer has not been analysed. This is because the client layer could

nvolve any type of device or system that consumes the proposed expert system.

.6. Discussion about the proposed IoT-based expert system

The proposed system is an energy-aware, scalable and interoperable IoT system based on the system of systems paradigm [85].
iven that the previous section did not address how these open challenges have been specifically addressed, this section discusses
ow these IoT open challenges have been reached with the software architecture of the system and its components.

Regarding the energy awareness of the system, communication is considered one of the key factors in terms of sensor energy
onsumption [86]. In this sense, the MQTT communication protocol has been chosen since it is one of the most widespread and
nergy-efficient protocols in the IoT [87]. On the other hand, the number of sensors’ publications has been considerably reduced.
efore the training of the learning model, the sensors belonging to the sensor layer A⃝were configured to publish their data every
wo or three minutes. However, after the experiments were carried out, the trained learning model showed that it is able to perform
24

ith only one measurement from each sensor per hour. This represents a decrease of around 95% in the data that sensors have to

Internet of Things 23 (2023) 100829A. Barriga et al.

l
d
L
F

t
t
s
(

7

d
p
i
i
i

s
f
t
t
s
H
t
t

t
f
p

h
t
a
e
i

i
p
t
s
t

t
m
r

d
m
p
O
c
t

8

c

gather and publish, implying significant energy savings. Besides, it also implies a reduction in the use of the bandwidth of the IoT
system, which also saves energy.

Regarding scalability, the main elements of the proposed system are designed to be scaled. The Leaf-turgor pressure
ayer A⃝can be scaled by simply adding more sensors to it. The Persistence layer C⃝is composed of MongoDB, a NoSQL
atabase designed to be scalable [88]. Concerning the Machine learning layer D⃝, both the Data pre-processor and the
earning model components can be replicated, being the ML manager which would act as a load balancer in this scenario.
inally, the Interoperability layer G⃝can be also replicated.

Finally, regarding interoperability, the proposed system is designed following the system of systems paradigm. In this way,
he Leaf-turgor pressure sensors fault detection IoT system F⃝can be integrated or consumed as a service by
hird-party applications or systems through the Interoperability layer G⃝. So, third-party systems only have to request the
ervices (faults identified, whole labelled dataset, whole raw dataset, etc.) they need from this layer G⃝and pre-process the response
if needed) to later consume it.

. Discussion

Precision irrigation techniques are a vehicle for the sustainable use of water in agriculture. In this regard, techniques such as
eficit irrigation techniques need precise knowledge of crop water stress to be suitably applied. Proposals such as [9] provide these
recision irrigation techniques with the water stress of crops. However, such solutions are IoT-based and often involve sensors. So,
t is mandatory to identify sensor faults since they could compromise the application of precision irrigation techniques, negatively
mpacting crop yield. Besides, in the context of leaf-turgor pressure sensors, this process is carried out manually by experts. So, it
s tedious, time-consuming and costly.

With the aim of improving the digital transformation by using and automating this process in the context of leaf-turgor pressure
ensors, this communication presents as main contribution a learning model that is able of identifying leaf-turgor pressure sensor
aults with an 84.2% f1-score and 0.94 AUC ROC. According to the experts’ opinion, these results imply the feasibility of replacing
hem in order to carry out this process. Therefore, using this model, manual error identification can be avoided, thus reducing
he effort and costs associated with this task. Besides, the digital transformation of this process also increases the feasibility and
calability of proposals such as [9], since they no longer require an expert in terms of fault identification to be successfully applied.
owever, taking into account that the performance of the learning model is not able to identify 100% if a sensor fails, to achieve

he optimum crop yield it is recommended that experts manually inspect the correct status of sensors occasionally. Nevertheless, in
his scenario, the workload related to this task has been also substantially reduced.

On the other hand, the training of this model has involved dealing with several challenges. So, it has been considered interesting
o develop a methodology taking into account these difficulties. In this regard, this methodology could save effort, time and money
or those facing a similar problem. However, it should be noted that the usability of this methodology depends on the scope of the
roblem to address and its similarity with the problem addressed in this communication.

This communication also presents an IoT system that integrates the fault identification learning model. In this way, it illustrates
ow the learning model should be deployed and applied by showing its role in the system, interactions with other components of
he system, required components for its operation, etc. Furthermore, the design of the IoT system is carried out bearing in mind
spects such as scalability, interoperability and energy awareness. Thus, the use and applicability of the learning model are shown,
ncouraging those who can benefit from it to integrate it into their systems. Besides, in a simple and sustainable way, due to its
nteroperability and energy-awareness properties.

Finally, to the best of the authors’ knowledge, the related works to date on fault detection in WSNs are generalist and theoretical,
.e., they attempt to detect faults synthetically injected by the authors themselves in the sensor data. A relevant contribution of this
aper is that the findings of these related works have been shown to be successfully applied to a real use case, thus corroborating
he applicability of the techniques and knowledge achieved by the related works in a real-world application case with real, non-
ynthetically injected faults. In this way, further work dealing with fault detection in real WSNs can be more reliably supported by
hese related works.

Nevertheless, the contributions of this communication enable, through technologies such as IoT and ML, the digital transforma-
ion and automation of fault detection of leaf-turgor pressure sensors deployed in plum tree farms. Furthermore, both the proposed
ethodology and the validation of the applicability of the findings of more theoretical studies in a real use case scenario could

educe the efforts and costs of solving similar problems.
As for the limitations of this work, the main limitation is the lack of data from plum tree crops grown in different climates. In

ifferent climates, the behaviour of the leaf-turgor pressure curves could vary. So, the performance of the trained learning models
ight be reduced if they are applied in this context. Nevertheless, even though applied in this scenario, no significant decrease in
erformance is expected, but some uncertainty is expected in those faults that are more difficult for learning models to identify.
n the other hand, another limitation of this work is that it is not possible to state that this proposal is valid for other types of
rops. Although the pressure curves of other crops are similar to those of plum trees, no validation tests have been carried out in
his respect. Thus, further research is needed in this matter.

. Conclusions and future works

This section presents the conclusions, as well as some possible lines of future research that can be explored to improve or
25

omplement the study reported in this paper.

Internet of Things 23 (2023) 100829A. Barriga et al.
8.1. Conclusions

Some precision irrigation techniques use input data coming from or based on data gathered by sensors. However, these sensors
could fail, leading to an inaccurate application of these techniques. As this scenario could compromise crop yield, identifying faults
in these sensors is a must.

Currently, in the context of leaf-turgor pressure sensors, the identification of sensor faults is carried out manually by experts.
This process is tedious, time-consuming and costly. So, in order to avoid it, this communication has presented a learning model
able to identify leaf-turgor pressure sensor faults with an 84.2% f1-score and a 0.94 AUC ROC, a suitable performance to replace
the manual process. Besides, the key aspects related to the experiments carried out to train this model have been identified, thus
developing a methodology from them that could improve the investment of time, money and efforts to train models of this scope.

On the other hand, an IoT system that integrates and illustrates the practical use of this learning model has been presented.
Furthermore, this system has been designed bearing in mind key aspects such as interoperability, scalability or energy awareness,
thus simplifying its integration with other systems and making sustainable use of energy.

Finally, it has been shown that the findings found in more theoretical works (use of artificial data) concerning the identification
of sensor faults are applicable to real-world approaches.

8.2. Future works

The main future works under consideration are outlined below:

• Test the performance of the ML models presented in this article for the detection of leaf-turgor pressure sensor faults in a
Japanese plum-tree farm, on sensors deployed in other crops, such as almond, mandarin or orange trees.

• If the same performance is not achieved in other crops, generate crop-specific models from the leaf-turgor pressure sensor data
of each crop and its faults, in order to optimise the faults detection task.

• Test the performance of the ML models presented in this article with sensor data from different years. Since the models have
only been trained with data from one year’s fruit ripening cycle.

• Integrate the IoT system for fault detection of leaf-turgor pressure sensors with other IoT systems. For instance, smart irrigation
IoT systems in CICYTEX’s Japanese plum tree farms.

• Automate the normalisation of data taking into account range shifts. This is a time and effort-consuming manual task, as charts
of the measured magnitude (e.g. leaf-turgor pressure as shown in Fig. 10) have to be displayed and analysed to identify the
time instants at which range shift occurs. Automating this task would speed up the development times of many similar works,
as well as reduce the possibility of errors, optimising an essential phase of the methodology proposed in Section 5.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgements

To Robert BOSCH España S.L.U. for providing the leaf-turgor pressure sensors.

Appendix

AUC ROC charts showing the performance of each sensor throughout the cross-validation process.

See Figs. 15–19.
26

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 15. ROC curve and AUC for the machine learning models developed in Experiment 00 (A).
27

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 16. ROC curve and AUC for the machine learning models developed in Experiment 00 (B).
28

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 17. ROC curve and AUC for the machine learning models developed in Experiment 01.
29

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 18. ROC curve and AUC for the machine learning models developed in Experiment 02.
30

Internet of Things 23 (2023) 100829A. Barriga et al.
Fig. 19. ROC curve and AUC for the machine learning models developed in Experiment 03.
31

Internet of Things 23 (2023) 100829A. Barriga et al.
References

[1] Bernard Ijesunor Akhigbe, Kamran Munir, Olugbenga Akinade, Lukman Akanbi, Lukumon O. Oyedele, IoT technologies for livestock management: A review
of present status, opportunities, and future trends, Big Data Cogn. Comput. 5 (1) (2021) 10.

[2] Muhammad Shoaib Farooq, Shamyla Riaz, Adnan Abid, Tariq Umer, Yousaf Bin Zikria, Role of IoT technology in agriculture: A systematic literature
review, Electronics 9 (2) (2020) 319.

[3] Baofeng Ji, Xueru Zhang, Shahid Mumtaz, Congzheng Han, Chunguo Li, Hong Wen, Dan Wang, Survey on the internet of vehicles: Network architectures
and applications, IEEE Commun. Stand. Mag. 4 (1) (2020) 34–41.

[4] Roy Woodhead, Paul Stephenson, Denise Morrey, Digital construction: From point solutions to IoT ecosystem, Autom. Constr. 93 (2018) 35–46.
[5] Hans-Otto Pörtner, Debra C. Roberts, H. Adams, C. Adler, P. Aldunce, E. Ali, R. Ara Begum, R. Betts, R. Bezner Kerr, R. Biesbroek, et al., Climate Change

2022: Impacts, Adaptation and Vulnerability, IPCC Sixth Assessment Report, IPCC Geneva, Switzerland, 2022.
[6] Juan F. Velasco-Muñoz, José A. Aznar-Sánchez, Luis J. Belmonte-Ureña, Isabel M. Román-Sánchez, Sustainable water use in agriculture: A review of

worldwide research, Sustainability 10 (4) (2018) 1084.
[7] Jaime Espinosa-Tasón, Evolución de la gestión del regadío en España y sus implicaciones ante la escasez del agua, 2022, Universidad de Córdoba, UCOPress.
[8] Iván García-Tejero, Victor Hugo Durán-Zuazo, Javier Arriaga-Sevilla, José Luis Muriel-Fernández, Impact of water stress on Citrus yield, Agron. Sustain.

Dev. 32 (3) (2012) 651–659.
[9] Jose A. Barriga, Fernando Blanco-Cipollone, Emiliano Trigo-Córdoba, Iván García-Tejero, Pedro J. Clemente, Crop-water assessment in Citrus (Citrus sinensis

L.) based on continuous measurements of leaf-turgor pressure using machine learning and IoT, Expert Syst. Appl. (2022) 118255.
[10] Ibrar Yaqoob, Ejaz Ahmed, Ibrahim Abaker Targio Hashem, Abdelmuttlib Ibrahim Abdalla Ahmed, Abdullah Gani, Muhammad Imran, Mohsen Guizani,

Internet of Things architecture: Recent advances, taxonomy, requirements, and open challenges, IEEE Wirel. Commun. 24 (3) (2017) 10–16, http:
//dx.doi.org/10.1109/MWC.2017.1600421.

[11] Sana Ullah Jan, Young Doo Lee, In Soo Koo, A distributed sensor-fault detection and diagnosis framework using machine learning, Inform. Sci. 547 (2021)
777–796.

[12] Milica Pejanović Ðurišić, Zhilbert Tafa, Goran Dimić, Veljko Milutinović, A survey of military applications of wireless sensor networks, in: 2012
Mediterranean Conference on Embedded Computing, MECO, IEEE, 2012, pp. 196–199.

[13] Ahsan Adeel, Mandar Gogate, Saadullah Farooq, Cosimo Ieracitano, Kia Dashtipour, Hadi Larijani, Amir Hussain, A survey on the role of wireless sensor
networks and IoT in disaster management, in: Geological Disaster Monitoring Based on Sensor Networks, Springer, 2019, pp. 57–66.

[14] D. Arjun, P.K. Indukala, K.A. Unnikrishna Menon, Border surveillance and intruder detection using wireless sensor networks: A brief survey, in: 2017
International Conference on Communication and Signal Processing, ICCSP, IEEE, 2017, pp. 1125–1130.

[15] Muhammad Irfan, Husnain Jawad, Barkoum Betra Felix, Saadullah Farooq Abbasi, Anum Nawaz, Saeed Akbarzadeh, Muhammad Awais, Lin Chen, Tomi
Westerlund, Wei Chen, Non-wearable IoT-based smart ambient behavior observation system, IEEE Sens. J. 21 (18) (2021) 20857–20869.

[16] Cristiano André Da Costa, Cristian F. Pasluosta, Björn Eskofier, Denise Bandeira Da Silva, Rodrigo da Rosa Righi, Internet of health things: Toward
intelligent vital signs monitoring in hospital wards, Artif. Intell. Med. 89 (2018) 61–69.

[17] Jinran Chen, Shubha Kher, Arun Somani, Distributed fault detection of wireless sensor networks, in: Proceedings of the 2006 Workshop on Dependability
Issues in Wireless Ad Hoc Networks and Sensor Networks, 2006, pp. 65–72.

[18] Peng Jiang, A new method for node fault detection in wireless sensor networks, Sensors 9 (02) (2009) 1282–1294.
[19] Thaha Muhammed, Riaz Ahmed Shaikh, An analysis of fault detection strategies in wireless sensor networks, J. Netw. Comput. Appl. 78 (2017) 267–287.
[20] Salah Zidi, Tarek Moulahi, Bechir Alaya, Fault detection in wireless sensor networks through SVM classifier, IEEE Sens. J. 18 (1) (2017) 340–347.
[21] Zainib Noshad, Nadeem Javaid, Tanzila Saba, Zahid Wadud, Muhammad Qaiser Saleem, Mohammad Eid Alzahrani, Osama E. Sheta, Fault detection in

wireless sensor networks through the random forest classifier, Sensors 19 (7) (2019) 1568.
[22] Ye Yuan, Shouzheng Li, Xingjian Zhang, Jianguo Sun, A comparative analysis of SVM, naive bayes and GBDT for data faults detection in WSNs, in: 2018

IEEE International Conference on Software Quality, Reliability and Security Companion, QRS-C, IEEE, 2018, pp. 394–399.
[23] Dahai Zhang, Liyang Qian, Baijin Mao, Can Huang, Bin Huang, Yulin Si, A data-driven design for fault detection of wind turbines using random forests

and XGboost, Ieee Access 6 (2018) 21020–21031.
[24] Xiaohang Jin, Tommy W.S. Chow, Yi Sun, Jihong Shan, Bill C.P. Lau, Kuiper test and autoregressive model-based approach for wireless sensor network

fault diagnosis, Wirel. Netw. 21 (3) (2015) 829–839.
[25] Jiří Anděl, Autoregressive series with random parameters, Math. Oper.forsch. Stat. 7 (5) (1976) 735–741.
[26] A.S. Louter, J. Koerts, On the Kuiper test for normality with mean and variance unknown, Stat. Neerl. 24 (2) (1970) 83–87.
[27] Frank J. Massey Jr., The Kolmogorov-Smirnov test for goodness of fit, J. Amer. Statist. Assoc. 46 (253) (1951) 68–78.
[28] Saray Gutiérrez-Gordillo, Leontina Lipan, Víctor Hugo Durán Zuazo, Esther Sendra, Francisca Hernández, Martín Samuel Hernández-Zazueta, Ángel A.

Carbonell-Barrachina, Iván Francisco García-Tejero, Deficit irrigation as a suitable strategy to enhance the nutritional composition of hydrosos almonds,
Water 12 (12) (2020) 3336.

[29] Sven Crone, Stefan Lessmann, Robert Stahlbock, The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing,
European J. Oper. Res. (2006) 781–800, http://dx.doi.org/10.1016/j.ejor.2005.07.023.

[30] Alper Kursat Uysal, Serkan Gunal, The impact of preprocessing on text classification, Inf. Process. Manage. 50 (1) (2014) 104–112.
[31] Roweida Mohammed, Jumanah Rawashdeh, Malak Abdullah, Machine learning with oversampling and undersampling techniques: Overview study and

experimental results, in: 2020 11th International Conference on Information and Communication Systems, ICICS, IEEE, 2020, pp. 243–248.
[32] S. Barua, M.M. Islam, X. Yao, K. Murase, MWMOTE–Majority weighted minority oversampling technique for imbalanced data set learning, IEEE Trans.

Knowl. Data Eng. 26 (2) (2014) 405–425, http://dx.doi.org/10.1109/TKDE.2012.232.
[33] Aida Ali, Siti Mariyam Shamsuddin, Anca L. Ralescu, Classification with class imbalance problem, Int. J. Adv. Soft Comput. Appl. 5 (3) (2013).
[34] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, Ce Zhang, Cleanml: A benchmark for joint data cleaning and machine learning [experiments and

analysis], 2019, p. 75, arXiv preprint arXiv:1904.09483.
[35] S. Gopal Krishna Patro, Kishore Kumar Sahu, Normalization: A preprocessing stage, 2015, CoRR abs/1503.06462.
[36] Jason Brownlee, Introduction to Time Series Forecasting with Python: How to Prepare Data and Develop Models to Predict the Future, Machine Learning

Mastery, 2017.
[37] Miroslav Kubat, An Introduction to Machine Learning, Springer, 2017.
[38] Bernhard E. Boser, Isabelle M. Guyon, Vladimir N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop

on Computational Learning Theory, 1992, pp. 144–152.
[39] William S. Noble, What is a support vector machine? Nature Biotechnol. 24 (12) (2006) 1565–1567.
[40] John D. Kelleher, Brian Mac Namee, Aoife D’arcy, Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and

Case Studies, MIT Press, 2020.
[41] K. Ming Leung, Naive Bayesian Classifier, Vol. 2007, Polytechnic University Department of Computer Science/Finance and Risk Engineering, 2007, pp.

123–156.
32

http://refhub.elsevier.com/S2542-6605(23)00152-X/sb1
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb1
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb1
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb2
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb2
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb2
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb3
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb3
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb3
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb4
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb5
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb5
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb5
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb6
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb6
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb6
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb7
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb8
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb8
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb8
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb9
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb9
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb9
http://dx.doi.org/10.1109/MWC.2017.1600421
http://dx.doi.org/10.1109/MWC.2017.1600421
http://dx.doi.org/10.1109/MWC.2017.1600421
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb11
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb11
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb11
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb12
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb12
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb12
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb13
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb13
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb13
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb14
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb14
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb14
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb15
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb15
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb15
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb16
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb16
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb16
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb17
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb17
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb17
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb18
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb19
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb20
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb21
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb21
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb21
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb22
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb22
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb22
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb23
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb23
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb23
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb24
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb24
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb24
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb25
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb26
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb27
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb28
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb28
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb28
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb28
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb28
http://dx.doi.org/10.1016/j.ejor.2005.07.023
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb30
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb31
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb31
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb31
http://dx.doi.org/10.1109/TKDE.2012.232
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb33
http://arxiv.org/abs/1904.09483
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb35
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb36
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb36
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb36
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb37
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb38
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb38
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb38
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb39
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb40
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb40
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb40
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb41
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb41
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb41

Internet of Things 23 (2023) 100829A. Barriga et al.
[42] Daniel Berrar, Bayes’ Theorem and Naive Bayes Classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Vol. 403,
Elsevier Science Publisher, Amsterdam, the Netherlands, 2018, p. 412.

[43] Bahzad Charbuty, Adnan Abdulazeez, Classification based on decision tree algorithm for machine learning, J. Appl. Sci. Technol. Trends 2 (01) (2021)
20–28.

[44] Abdallah Bashir Musa, Comparative study on classification performance between support vector machine and logistic regression, Int. J. Mach. Learn.
Cybern. 4 (1) (2013) 13–24.

[45] Daniel Berrar, Performance Measures for Binary Classification, Elsevier, 2019.
[46] Kinam Park, Youngrok Song, Yun-Gyung Cheong, Classification of attack types for intrusion detection systems using a machine learning algorithm, in:

2018 IEEE Fourth International Conference on Big Data Computing Service and Applications, BigDataService, IEEE, 2018, pp. 282–286.
[47] David Martin Powers, Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation, in: Informedness, Markedness

and Correlation. Journal of Machine Learning, Bioinfo Publications, 2011.
[48] Joakim Ekström, The phi-coefficient, the tetrachoric correlation coefficient, and the pearson-yule debate, 2011.
[49] Margherita Grandini, Enrico Bagli, Giorgio Visani, Metrics for multi-class classification: An overview, 2020, arXiv preprint arXiv:2008.05756.
[50] Jacob Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Measur. 20 (1) (1960) 37–46.
[51] Daniel Berrar, Peter Flach, Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them), Brief. Bioinform. 13 (1) (2012)

83–97.
[52] Yu Feng, Yong Peng, Ningbo Cui, Daozhi Gong, Kuandi Zhang, Modeling reference evapotranspiration using extreme learning machine and generalized

regression neural network only with temperature data, Comput. Electron. Agric. 136 (2017) 71–78.
[53] Amit Prakash Patil, Paresh Chandra Deka, An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs, Comput. Electron.

Agric. 121 (2016) 385–392.
[54] Kasra Mohammadi, Shahaboddin Shamshirband, Shervin Motamedi, Dalibor Petković, Roslan Hashim, Milan Gocic, Extreme learning machine based

prediction of daily dew point temperature, Comput. Electron. Agric. 117 (2015) 214–225.
[55] Z. Reitermanova, Feedforward neural networks–architecture optimization and knowledge extraction, in: WDS’08 Proceedings of Contributed Papers, 2008,

pp. 159–164.
[56] Zuzana Reitermanova, Data splitting, in: WDS, Vol. 10, 2010, pp. 31–36.
[57] Daniel Berrar, Cross-validation, 2019.
[58] Petro Liashchynskyi, Pavlo Liashchynskyi, Grid search, random search, genetic algorithm: A big comparison for NAS, 2019, arXiv preprint arXiv:1912.06059.
[59] Sarang Narkhede, Understanding AUC-ROC curve, Towards Data Sci. 26 (1) (2018) 220–227.
[60] Mayuri S. Shelke, Prashant R. Deshmukh, Vijaya K. Shandilya, A review on imbalanced data handling using undersampling and oversampling technique,

Int. J. Recent Trends Eng. Res 3 (4) (2017) 444–449.
[61] Paola Arias, Nicolas Bellouin, Erika Coppola, Richard Jones, Gerhard Krinner, Jochem Marotzke, Vaishali Naik, Matthew Palmer, G.-K. Plattner, Joeri Rogelj,

et al., Climate Change 2021: The Physical Science Basis, Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change; Technical Summary, 2021.

[62] Campos Inês, Pontes Luz Guilherme, Marín-González Esther, Gährs Swantje, Hall Stephen, Holstenkamp Lars, Regulatory challenges and opportunities for
collective renewable energy prosumers in the EU, Energy Policy 138 (2020) 111212.

[63] Cheng Zhuo, Shaoheng Luo, Houle Gan, Jiang Hu, Zhiguo Shi, Noise-aware DVFS for efficient transitions on battery-powered IoT devices, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 39 (7) (2019) 1498–1510.

[64] The MosquittoTeam, Mosquitto, 2022.
[65] MongoDB, MongoDB named as a leader in the forrester wave™: Translytical data platforms, Q4 2022, 2022.
[66] Biswajeeban Mishra, Attila Kertesz, The use of MQTT in M2M and IoT systems: A survey, IEEE Access 8 (2020) 201071–201086.
[67] Tetsuya Yokotani, Yuya Sasaki, Comparison with HTTP and MQTT on required network resources for IoT, in: 2016 International Conference on Control,

Electronics, Renewable Energy and Communications, ICCEREC, IEEE, 2016, pp. 1–6.
[68] Bharati Wukkadada, Kirti Wankhede, Ramith Nambiar, Amala Nair, Comparison with HTTP and MQTT in Internet of Things (IoT), in: 2018 International

Conference on Inventive Research in Computing Applications, ICIRCA, IEEE, 2018, pp. 249–253.
[69] Google, Kubernetes, 2023.
[70] Guido R. Hiertz, Dee Denteneer, Lothar Stibor, Yunpeng Zang, Xavier Pérez Costa, Bernhard Walke, The IEEE 802.11 universe, IEEE Commun. Mag. 48

(1) (2010) 62–70.
[71] Amin Shahraki, Amir Taherkordi, Øystein Haugen, Frank Eliassen, A survey and future directions on clustering: From WSNs to IoT and modern networking

paradigms, IEEE Trans. Netw. Serv. Manag. 18 (2) (2021) 2242–2274, http://dx.doi.org/10.1109/TNSM.2020.3035315.
[72] Quazi Mamun, A qualitative comparison of different logical topologies for wireless sensor networks, Sensors 12 (11) (2012) 14887–14913, http:

//dx.doi.org/10.3390/s121114887.
[73] Karan Nair, Janhavi Kulkarni, Mansi Warde, Zalak Dave, Vedashree Rawalgaonkar, Ganesh Gore, Jonathan Joshi, Optimizing power consumption in iot

based wireless sensor networks using Bluetooth Low Energy, in: 2015 International Conference on Green Computing and Internet of Things, ICGCIoT,
IEEE, 2015, pp. 589–593.

[74] Roy Friedman, Alex Kogan, Yevgeny Krivolapov, On power and throughput tradeoffs of wifi and bluetooth in smartphones, IEEE Trans. Mob. Comput. 12
(7) (2012) 1363–1376.

[75] RaspBerry, RaspBerry Pi 3 B+, 2023.
[76] Christopher J. Hansen, Internetworking with bluetooth low energy, GetMobile: Mob. Comput. Commun. 19 (2) (2015) 34–38.
[77] Microsoft, Azure cloud services, 2023.
[78] Christos H. Papadimitriou, Computational complexity, in: Encyclopedia of Computer Science, 2003, pp. 260–265.
[79] Sammie Bae, Sammie Bae, Big-O notation, in: Javascript Data Structures and Algorithms: An Introduction to Understanding and Implementing Core Data

Structure and Algorithm Fundamentals, Springer, 2019, pp. 1–11.
[80] Hamoud Younes, Mohamad Alameh, Ali Ibrahim, Mostafa Rizk, Maurizio Valle, Efficient algorithms for embedded tactile data processing, in: Electronic

Skin, River Publishers, 2022, pp. 113–138.
[81] Zubeda K. Mrisho, Jema David Ndibwile, Anael Elkana Sam, Low time complexity model for email spam detection using logistic regression, Int. J. Adv.

Comput. Sci. Appl. 12 (12) (2021).
[82] S. Gayathri Devi, K. Selvam, S.P. Rajagopalan, An Abstract to Calculate Big O Factors of Time and Space Complexity of Machine Code, IET, 2011.
[83] Yifeng Liu, Eyhab Al-Masri, Slow subscribers: A novel IoT-MQTT based denial of service attack, Cluster Comput. (2022) 1–12.
[84] Kitae Hwang, Jae Moon Lee, In Hwan Jung, Dong-Hee Lee, Modification of mosquitto broker for delivery of urgent MQTT message, in: 2019 IEEE Eurasia

Conference on IOT, Communication and Engineering, ECICE, IEEE, 2019, pp. 166–167.
[85] Giancarlo Fortino, Claudio Savaglio, Giandomenico Spezzano, MengChu Zhou, Internet of Things as system of systems: A review of methodologies,

frameworks, platforms, and tools, IEEE Trans. Syst. Man Cybern.: Systems 51 (1) (2020) 223–236.
[86] Abdul Waheed Khan, Abdul Hanan Abdullah, Mohammad Hossein Anisi, Javed Iqbal Bangash, A comprehensive study of data collection schemes using

mobile sinks in wireless sensor networks, Sensors 14 (2) (2014) 2510–2548, http://dx.doi.org/10.3390/s140202510.
[87] Biswajeeban Mishra, Attila Kertesz, The use of MQTT in M2M and IoT systems: A survey, IEEE Access 8 (2020) 201071–201086, http://dx.doi.org/10.

1109/ACCESS.2020.3035849.
[88] MongoDB, Scalability with MongoDB Atlas, 2022.
33

http://refhub.elsevier.com/S2542-6605(23)00152-X/sb42
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb42
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb42
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb43
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb43
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb43
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb44
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb44
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb44
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb45
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb46
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb46
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb46
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb47
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb47
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb47
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb48
http://arxiv.org/abs/2008.05756
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb50
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb51
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb51
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb51
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb52
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb52
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb52
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb53
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb53
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb53
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb54
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb54
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb54
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb55
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb55
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb55
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb56
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb57
http://arxiv.org/abs/1912.06059
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb59
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb60
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb60
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb60
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb61
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb61
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb61
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb61
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb61
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb62
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb62
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb62
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb63
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb63
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb63
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb64
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb65
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb66
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb67
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb67
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb67
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb68
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb68
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb68
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb69
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb70
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb70
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb70
http://dx.doi.org/10.1109/TNSM.2020.3035315
http://dx.doi.org/10.3390/s121114887
http://dx.doi.org/10.3390/s121114887
http://dx.doi.org/10.3390/s121114887
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb73
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb73
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb73
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb73
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb73
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb74
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb74
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb74
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb75
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb76
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb77
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb78
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb79
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb79
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb79
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb80
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb80
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb80
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb81
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb81
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb81
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb82
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb83
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb84
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb84
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb84
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb85
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb85
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb85
http://dx.doi.org/10.3390/s140202510
http://dx.doi.org/10.1109/ACCESS.2020.3035849
http://dx.doi.org/10.1109/ACCESS.2020.3035849
http://dx.doi.org/10.1109/ACCESS.2020.3035849
http://refhub.elsevier.com/S2542-6605(23)00152-X/sb88

	IoT-based expert system for fault detection in Japanese Plum leaf-turgor pressure WSN
	Introduction
	Related works
	Material and methods
	Countryside context and leaf-turgor pressure sensors
	Leaf measurements and IoT-sensor data gathering
	Data pre-processing techniques, ML algorithms and learning models validation
	Dataset pre-processing
	Algorithms applied
	Learning Model Validation Metrics

	Experiments carried out for tuning the ML models and results
	Dataset and validation metrics in experiments
	Dataset in experiments
	Application of the validation metrics

	Experiment setup and experimentation
	Experiment 00: First approach, applying the techniques of related works.
	Experiment 01: Incorporation and adaptation of basic pre-processing techniques to our real problem
	Experiment 02: In-depth dataset analysis and learning model performance improvement
	Experiment 03. Fine-tuning of the model.

	Proposed methodology for sensor fault detection in time series
	IoT-based expert system for leaf-turgor pressure sensor fault detection
	IoT-based expert system. Motivation
	IoT-based expert system. Design requirements
	IoT-based expert system. Design, layers and components
	Infrastructure of the proposed IoT-based expert system
	Computational complexity analysis of the proposed IoT-based expert system
	Computational complexity of the ML algorithms
	Introduction to the computational complexity of the IoT-based expert system and notation used
	Computational complexity of the Machine Learning layer
	Computational complexity of the Persistence layer
	Computational complexity of the Leaf-turgor pressure sensors layer
	Computational complexity of the Interoperability layer
	Computational complexity of the MQTT Broker

	Discussion about the proposed IoT-based expert system

	Discussion
	Conclusions and future works
	Conclusions
	Future Works

	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix
	AUC ROC charts showing the performance of each sensor throughout the cross-validation process.

	References

