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Abstract

A criterion is obtained for the semi-stability of the isolated singular positive closed solutions, i.e., singular 
positive limit cycles, of the Abel equation x′ = A(t)x3 +B(t)x2, where A, B are smooth functions with two 
zeros in the interval [0, T ] and where these singular positive limit cycles satisfy certain conditions, which 
allows an upper bound on the number of limit cycles of the Abel equation to be obtained. The criterion 
is illustrated by obtaining an upper bound of two positive limit cycles for the family A(t) = t (t − tA), 
B(t) = (t − tB)(t − 1), t ∈ [0, 1]. In the linear trigonometric case, i.e., when A(t) = a0 + a1 sin t + a2 cos t , 
B(t) = b0 + b1 sin t + b2 cos t , an upper bound of two limit cycles is also obtained for a0, b0 sufficiently 
small and in the region where two positive limit cycles bifurcate from the origin.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction and main results

We consider Abel equations

dx

dt
= x′ = A(t)x3 + B(t)x2, (1.1)
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with A, B smooth functions defined on [0, T ]. Let u(t, x) denote the solution of (1.1) determined 
by u(0, x) = x. We say u(t, x) is closed or periodic if u(T , x) = x. Let u(t, x) be closed. It is 
singular or multiple if ux(T , x) = 1, otherwise it is simple or hyperbolic. Isolated closed solutions 
are also called limit cycles. A singular closed solution such that uxx(T , x) �= 0 is called a double 
closed solution or a semistable limit cycle. The problem of determining the maximum number of 
closed solutions of (1.1) is the “Pugh problem” mentioned by Smale [18].

Notice that x = 0 is always a closed solution of (1.1). Therefore the number of closed solutions 
in regions x > 0 and x < 0 can be studied separately. Since one region can be translated to the 
other with the transformation x → −x, we shall restrict attention to the region x > 0.

There are several results for uniqueness of closed solutions of (1.1) on x > 0. The best known 
impose that one of the functions A or B does not change sign (see [11–14,16]). Other condi-
tions, allowing A and B to change sign, are considered for instance in [2,4]. In all these results, 
the condition of a definite sign is imposed on a certain derivative of the return map or on the 
initial conditions corresponding to positive closed solutions. Applying these results to (1.1), one 
determines families for which there is at most one positive closed solution.

A different approach is taken in [5] where, in order to obtain two positive closed solutions as 
upper bound, the Abel equation is considered to be a member of a one-parameter family,

x′ = A(t, λ)x3 + B(t, λ)x2, λ ∈ R (1.2)

where F(t, x, λ) := A(t, λ)x3 + B(t, λ)x2 satisfies Fλ(t, x, λ) > 0 for x > 0. Thus, λ →
F(t, x, λ) is strictly increasing for all t ∈ R, x > 0. This is termed monotonic with respect to 
λ.

Notice that the above definition of monotonic with respect to λ for families of Abel equations 
is an adaptation of the setting of the so-called rotated families of planar vector fields introduced 
by G.F.D. Duff, see [8] or [15, Sec. 4.6]. For these families of vector fields, the control of bifur-
cations of double closed solutions is crucial to understanding their global bifurcation diagram of 
closed solutions.

We consider simple Abel equations for which there is no uniqueness of positive closed solu-
tions, and study their number by controlling the nature of the double closed solutions. In [5], we 
studied the case where A has two simple zeros of which one is at t = 0, and B has one simple zero 
in [0, T ]. In the present work, we consider the case where B has two simple zeros in [0, T ]. Our 
main result provides sufficient conditions to determine the stability of positive singular closed 
solutions.

Throughout this communication we shall write

P(t) = 4(B(t)A′(t) − B ′(t)A(t)) − B3(t) (1.3)

and

v(t, x) = B(t)(2A(t)x + B(t))2 + P(t). (1.4)

Theorem 1.1. If

(C1) A(0) = 0, A(t) has a simple zero tA ∈ (0, T ) and B(t) has two simple zeros tB1, tB2 ∈ [0, T ]
with 0 < tB < tA < tB ≤ T ,
1 2
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and for any positive singular closed solution ũ(t) := u(t, x̃) of Abel equation (1.1)

(C2) the function 2A(t)ũ(t) +B(t) has at most a simple zero in each of the intervals [0, tA] and 
[tA, T ],

(C3) sgn (v(t, ũ(t))) = sgn(A′(0)B(0)), for all t ∈ [0, T ],

then uxx(T , x̃) = sgn(A′(0)B(0)).

Remark 1.2. For the sake of simplicity of exposition, we assume A′(0) < 0 and B(0) > 0. So 
condition (C3) becomes v(t, ũ(t)) < 0 for all t ∈ [0, T ], and the conclusion is uxx(T , x̃) < 0. 
The other cases are proved similarly.

A difficult point for the above result to be applicable is to verify when hypotheses (C2) and 
(C3) hold since they include the unknown singular closed solution. Nevertheless, in Proposi-
tions 3.1 and 3.2 and Corollary 3.3 below, we shall give sufficient algebraic conditions for them 
to be checked computationally.

As a motivating example, consider the family of Abel equations

x′ = t (t − tA)x3 + (t − tB)(t − 1)x2, tA, tB ∈ R, (1.5)

where t ∈ [0, 1]. Upper bounds of the number of positive closed solutions of (1.5) have been 
obtained for some cases, as will be detailed in Section 4. As a consequence of Theorem 1.1
above, we prove:

Theorem 1.3. Abel equation (1.5) has at most two positive closed solutions, taking into account 
their multiplicities, and this upper bound is sharp.

As we shall see, the existence of two positive closed solutions is due to the fact that for 
tA = 2/3 and tB = 1/3 the multiplicity of the closed solution x = 0 is four, while generically it is 
two. Hence a Hopf-like codimension-two bifurcation appears, and two positive closed solutions 
bifurcate from the origin.

The main motivation for this paper was Problem 6 of [9], i.e., to obtain the maximum number 
of limit cycles of the Abel equation

x′ = (a1 + a2 sin t + a3 cos t) x3 + (b1 + b2 sin t + b3 cos t) x2. (1.6)

We address this problem in Section 5. For this equation, the functions A, B have at most two 
simple zeros, and a Hopf-like codimension-two bifurcation at a0 = b0 = 0 proves the existence of 
at least two positive limit cycles. If A and B have at most one simple zero, or the simple zeros of 
A and B do not alternate, the problem is solved in [2] and [4]. We prove that Theorem 1.1 explains 
the upper bound of two positive limit cycles in a region where two positive limit cycles bifurcate 
from the origin, giving a partial answer to Problem 6 of [9]. We also discuss the limitations of 
Theorem 1.1 in this case.
3



J.L. Bravo, M. Fernández and I. Ojeda Journal of Differential Equations 379 (2024) 1–25
2. Stability of singular closed solutions

In this section we prove the main result, but first we shall explain how the stability of the 
singular closed solutions determines the maximum number of limit cycles for (1.2) assuming 
that this number is known for certain values of the parameter.

Assume that the family (1.2) satisfies Fλ(t, x, λ) > 0 for all t ∈ (0, T ), x > 0, and λ ∈ (λ1, λ2). 
If u(t, x, λ) denotes the solution of (1.2) determined by u(0, x, λ) = x then u(t) is a closed 
solution if and only if u(T , u(0), λ) = u(0). As the monotonicity of F(t, x, λ) with respect to λ
implies that of u(t, x, λ) when the latter is positive, the Implicit Function Theorem guarantees 
the existence of a C1 function � defined by

u (T , x,�(x)) = x.

Therefore, for every fixed λ, the number of positive closed solutions, N(λ), is the number of 
solutions of �(x) = λ. Note that

�′(x) = 1 − ux(T , x,�(x))

uλ(T , x,�(x))
,

where uλ(T , x, �(x)) > 0, and if �′(x) = 0 then

�′′(x) = −uxx(T , x,�(x))

uλ(T , x,�(x))
.

The following result is an adaptation of [5, Theorem 1.3]. It states that if the number of closed 
solutions for a certain value of λ, e.g. λ2, is known and the graph of � has only minima, then the 
number of closed solutions cannot increase for lower values of the parameter, except maybe for 
two closed solutions corresponding to a bifurcation of the origin and a bifurcation of infinity. A 
similar conclusion holds when the graph of � has only maxima.

Theorem 2.1. Assume that Abel equation (1.2) satisfies Fλ(t, x, λ) > 0 for every λ ∈ (λ1, λ2), 
t ∈ (0, T ) and x > 0, and that uxx(T , x̃, λ) < 0 (uxx(T , x̃, λ) > 0), for every positive singular 
closed solution u(t, x̃, λ) with λ ∈ [λ1, λ2]. Then

N(λ) ≤ N(λ2) + 2 (N(λ) ≤ N(λ1) + 2) for every λ ∈ (λ1, λ2).

Moreover, the two possible additional closed solutions correspond to a Hopf bifurcation of the 
origin or a Hopf bifurcation of infinity.

Proof. In each of the intervals of the domain of definition of � there is at most one extremum 
point, which is a minimum, since otherwise there are two consecutive zeros x1 < x2 of �′ which 
satisfy �′′(x1)�

′′(x2) ≤ 0 in contradiction with the hypothesis. Hence, � is monotonic or it has a 
unique minimum, being alternate monotonic in the latter case, since two consecutive hyperbolic 
closed solutions have opposite stability.

Claim 1. If 0 < x1 < x2 then u(t, x1, �(x1)) < u(t, x2, �(x2)).
4
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If �(x1) = �(x2), the conclusion follows by the uniqueness of solutions of the initial value 
problem. If �(x1) < �(x2) (resp. �(x1) > �(x2)) then u(t, x1, �(x1)) is a lower (resp. upper) 
solution of x′ = F(t, x, �(x2)). The conclusion holds since closed solutions cannot cross lower 
or upper closed solutions.

Claim 2. If �(x) is defined in the interval (x̄, x̃] with x̄ > 0 then it is also defined at x̄.

By Claim 1, x → u(t, x, �(x)) is strictly increasing. Also, there exists ε > 0 such that � is 
monotonous continuous in (x̄, x̄ + ε), so that, denoting λ̄ = limx→x̄ �(x),

u(t, x̄, λ̄) = lim
x→x̄

u(t, x,�(x)).

Note that the limit exists since x → u(t, x, �(x)) is an increasing function bounded below by 0. 
Moreover, u(t, x̄, ̄λ) is periodic in t since the functions t → u(t, x, �(x)) are. Thus �(x̄) = λ̄.

Claim 3. If � is defined in a set [x1, x2) ∪ {x3}, where x2 < x3, then it is also defined at x2.

By Claim 1, u(t, x, �(x)) < u(t, x3, �(x3)) for all x < x3, so that if we denote λ2 =
limx→x2 �(x) then

u(t, x2, λ2) = lim
x→x2

u(t, x,�(x)),

and we conclude analogously.
As a consequence of Claims 1, 2, and 3, if D is the domain of definition of � then (finiteness 

of the intervals will be proved below)

D = (0, x1] ∪ [x2, x3] ∪ · · · ∪ [xn−1, xn],

or

D = (0, x1] ∪ [x2, x3] ∪ · · · ∪ [xn, xn+1),

or

D = [x1, x2] ∪ [x3, x4] ∪ · · · ∪ [xn−1, xn],

or

D = [x1, x2] ∪ [x3, x4] ∪ · · · ∪ [xn, xn+1),

where xn+1 ≤ ∞, �(xi) ∈ {λ1, λ2}, for i = 1, . . . , n, and if xn+1 < ∞ and

λ̄ = lim
x→xn+1

�(x) < +∞

then the solution u(t, xn+1, ̄λ) is unbounded.
5
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As � has only local minima, for every λ ∈ [λ1, λ2] the number of solutions of �(x) = λ with 
x ∈ (xi, xi+1) is less than or equal to the number of solutions of �(x) = λ2 with x ∈ (xi, xi+1), 
while the number of solutions of �(x) = λ with x ∈ (0, x1) or x ∈ (xn, xn+1) is less than or 
equal to the number of solutions of �(x) = λ2 with x ∈ (0, x1) or x ∈ (xn, xn+1) plus one, where 
the extra solution corresponds to a Hopf bifurcation of the origin or infinity, respectively. In 
particular, since N(λ2) < ∞, we have that D cannot be the union of infinitely many intervals. �

By the change λ → −λ, a similar result holds if Fλ(t, x, λ) < 0.
Now we shall prove Theorem 1.1, which determines the stability of the singular positive 

closed solutions. We divide the proof into various propositions. In the following, we assume that 
ũ(t) := u(t, x̃) is a singular positive closed solution, and that (C1), (C2), and (C3) hold.

Proposition 2.2 ([5]). For any α, β ∈R,

sgn (uxx(T , x̃)) = sgn

⎛
⎝ T∫

0

F(t,α)G(t, β) dt

⎞
⎠ , (2.7)

where

F(t,α) := (2 − α)B(t) + 2(3 − α)A(t)ũ(t),

G(t, β) := ux(t, x̃) − βũ(t).

With equation (2.7) in mind, the idea for proving Theorem 1.1 is to choose α and β such 
that the changes of sign of the corresponding F(t, α) and G(t, β) coincide, and consequently 
F(t, α)G(t, β) does not change sign.

The first step is to determine the changes of sign of F(t, α) and G(t, β), which is done in the 
following two propositions, where we have taken into account Remark 1.2.

By (C2), 2A(t)ũ(t) +B(t) has at most one simple zero in each of the intervals [0, tA], [tA, T ]. 
In view of the signs of A and B , it can be proved that there are at least two simple zeros, denoted 
by t1 and t2, such that

0 < t1 < tB1 < tA < t2 < tB2 ≤ T .

Moreover, regarding (C1) and Remark 1.2, 2A(t)ũ(t) + B(t) is positive in [0, t1) ∪ (t2, T ] and 
negative in (t1, t2).

Proposition 2.3. for all α ∈R, F(t, α) has at most two changes of sign in (0, T ). More precisely,

(1) F(t, α) = 0 is the graph of a smooth function α(t) defined for every t �= t1, t2,
(2) F(t, α) > 0 for α < α(t), t ∈ [0, t1) ∪ (t2, T ], and for α > α(t), t ∈ [t1, t2],
(3) F(t, α) < 0 for α > α(t), t ∈ [0, t1) ∪ (t2, T ], and for α < α(t), t ∈ [t1, t2],
(4) α(t) is strictly decreasing in its domain of definition,
(5) for every i = 1, 2,

lim
t→t±

α(t) = ±∞,
i

6
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(6) α(T ) ≥ α(0) = 2.

Proof. First, we observe that F(t, α) = 0 if and only if α = α(t) where

α(t) = 2 + 2A(t)ũ(t)

2A(t)ũ(t) + B(t)
.

Then, by (C2), the function α(t) is smooth, so that (1) holds. Moreover, since 2A(t)ũ(t) + B(t)

changes sign at t1, t2, and F(tA, 0) = 2B(tA) < 0 then (2) readily follows (see Fig. 1).

Fig. 1. Sketch of α(t).

To prove (4), it suffices to observe that sgn(α′(t)) = sgn (v(t, ũ(t))) and that sgn (v(t, ũ(t))) <

0 by (C3). Moreover, as A(ti) �= 0, i = 1, 2, we have (5).
By (C1) and Remark 1.2, A(T ) and B(T ) are non-negative and not simultaneously zero, so 

that

2A(T )u(T , x)

2A(T )u(T , x) + B(T )
≥ 0.

Hence, α(T ) ≥ 2 = α(0), and (6) follows.
Finally, as F(t, α) = 0 is the graph of α(t), then (1) − (6) imply that, for every fixed α, the 

function t → F(t, α) has at most two changes of sign in (0, T ). �
Note that F(t, α) = 0 always defines the graph of a function, so that hypotheses of The-

orem 1.1 are imposed to determine its properties. In particular, (C2) implies that it has two 
asymptotes, and (C3) implies the monotonicity of α(t).

A similar result holds for the zeros of G(t, β), which are determined by the zeros of a given 
function whose number of extrema and their nature are determined by (C2).

Proposition 2.4. There exist β0, β1, β2 such that G(t, β) has two changes of sign in (0, T ) for 
every β ∈ (β1, β2), β �= β0, and no zeros for β /∈ [β1, β2]. More precisely,

(1) G(t, β) = 0 is the graph of a positive closed smooth function β(t) defined for t ∈ [0, T ],
(2) G(t, β) > 0 for β < β(t) and G(t, β) < 0 for β > β(t),
(3) β(t) has exactly two extrema: a maximum at t1 and a minimum at t2.
7
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Proof. First, we notice that G(t, β) = 0 if and only if β = β(t), where

β(t) = ux(t, x̃)

ũ(t)
. (2.8)

As ũ(t) > 0, we have that β(t) is defined for all t ∈R. Furthermore, deriving in (1.1) with respect 
to x and using that ux(0, x) = 1, we obtain that

ux(t, x̃) = exp

⎛
⎝ t∫

0

(
3A(t)ũ2(t) + 2B(t)ũ(t)

)
dt

⎞
⎠ ,

and therefore ux(t, x̃) > 0. Thus, β(t) > 0. Since ũ(t) is singular, both ũ(t) and ux(t, x̃) are 
closed, and then β(0) = β(T ) =: β0. Hence we conclude (1).

Since Gβ(t, β) = −u(t, x) < 0, then (2) follows.
To prove (3), we first note that

β ′(t) =
(

2A(t)ũ2(t) + B(t)ũ(t)
)

β(t). (2.9)

Since β(t) > 0, we conclude that β ′(t) = 0 if and only if t = t1 or t = t2. Moreover, as 
2A(t)ũ2(t) + B(t)ũ(t) > 0 for t ∈ [0, t1) ∪ (t2, T ], we have that β(t) has a maximum at t1 and a 
minimum at t2.

Finally, writing β1 = β(t1) and β2 = β(t2), we obtain that G(t, β) has two changes of sign in 
(0, T ) for every β ∈ (β1, β2), β �= β0, and no zeros for β /∈ [β1, β2] (for a graphical illustration 
of β(t) see Fig. 2). �

Fig. 2. Sketch of β(t).

Recall that, by Proposition 2.2,

sgn(uxx(T , x̃)) = sgn

⎛
⎝ T∫

0

F(t,α)G(t, β) dt

⎞
⎠ .

Therefore, in order to complete the proof of Theorem 1.1, it only remains to prove that there exist 
α, β such that the changes of sign of F(t, α) and G(t, β) coincide.

Proposition 2.5. There exist α, β such that the changes of sign of F(t, α) and G(t, β) coincide. 
Moreover, for these α and β ,
8
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T∫
0

F(t,α)G(t, β) dt < 0.

Proof. Let β(t) be the closed smooth function defined by (2.8) and write β0 = β(0). By Propo-
sition 2.4, β(t) has a maximum at t1 and a minimum at t2. Set β1 = β(t1) and β2 = β(t2), and 
let t0 be the unique value in (0, T ) with β(t0) = β0.

We distinguish three cases in accordance with the relative position of α(0) = 2, α(t0), and 
α(T ) ≥ 2.

• If α(t0) ∈ (α(0), α(T )), then take α = α(t0), β = β0. Then F(t, α) and G(t, β) only change 
sign in (0, T ) at t0. By Proposition 2.3, F(t, α) < 0 for t ∈ [0, t0) and F(t, α) > 0 for t ∈
(t0, T ]. Moreover, by Proposition 2.4, G(t, α) > 0 for t ∈ [0, t0) and G(t, α) < 0 for t ∈
(t0, T ]. Consequently, F(t, α)G(t, β) < 0 for all t ∈ [0, t0) ∪ (t0, T ], and the result holds.

• α(t0) < α(0). Since β(t) has a maximum at t1, and is strictly monotonic for t ∈ (0, t1) ∪
(t1, t0), there exist two continuous monotonic functions T1, T2, defined in (β0, β1) such that 
T1(β(t)) = t, t ∈ (0, t1) and T2(β(t)) = t, t ∈ (t1, t0). Notice that 0 < T1(β) < t1 < T2(β) <
t0, β ∈ (β0, β1), and that T1, T2 have opposite monotonicity.
Now, let us define the continuous function

d(β) = α(T1(β)) − α(T2(β)), β ∈ (β0, β1).

Since α(t) → ±∞ as t → t±1 , then limβ→β1 d(β) = −∞. On the other hand, d(β0) = α(0) −
α(t0) > 0. By continuity, there exists β̄ such that d(β̄) = 0. For α = α(T1(β̄)) and β = β̄ , 
F, G have the same changes of sign: exactly two and both in (0, t0).
On the one hand, α = α(T1(β̄)) < α(0) = 2, so that F(t, α) > 0 for t close to zero by Propo-
sition 2.3. On the other hand, for t close to zero, β(t) < β = β̄ , so that G(t, α) < 0 by 
Proposition 2.4. Consequently, F(t, α)G(t, β) ≤ 0, and

T∫
0

F(t,α)G(t, β) dt < 0.

• α(t0) > α(T ). Since β(t) has a minimum at t2, and is strictly monotonic for t ∈ (t0, t2) ∪
(t2, T ), then there exist two continuous monotonic functions T1, T2, defined in (β2, β0), 
such that T1(β(t)) = t, t ∈ (t0, t2) and T2(β(t)) = t, t ∈ (t2, T ). Notice that t0 < T1(β) <
t2 < T2(β) < T, β ∈ (β2, β0), and that T1, T2 have opposite monotonicity. Now, if d(β) =
α(T1(β)) −α(T2(β)), β ∈ (β2, β0), then limβ→β2 d(β) = −∞ and d(β0) = α(t0) −α(T ) >
0, and we conclude as in the previous case. �

3. Sufficient criteria

The following results establish sufficient conditions for (C2) and (C3) to be satisfied without 
assuming knowledge of the positive singular closed solutions of (1.1).

The first result is an adaptation of Proposition 5 of [5] to the case γ = 1. In order to obtain 
(C2), we define
9
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φ(t) = −B(t)/(2A(t)).

By condition (C1) and Remark 1.2, φ(t) ≥ 0 if and only if t ∈ [0, tB1 ] ∪ [tA, tB2 ]. For a graphical 
illustration of φ(t) see Fig. 3.

Fig. 3. Sketch of φ(t).

Now, we impose some sufficient conditions in order that any positive bounded solution u(t, x)

crosses the graph of φ in at most two points. These conditions are quite restrictive, but can be 
verified computationally.

Proposition 3.1 ([5]). Let u(t, x) be a positive singular closed solution of (1.1) and suppose that 
(C1) holds. Let J1 = (0, tB1) and J2 = (tA, tB2). If the function P , defined in (1.3), has at most 
one zero in each Ji, i = 1, 2, then u(t, x) − φ(t) has a unique simple zero in each Ji, i = 1, 2, 
i.e., condition (C2) holds.

Proof. Firstly, we observe that

φ′ − Bφ2 − Aφ3 = BA′ − B ′A
2A2 − B3

4A2 + B3

8A2

= 4(BA′ − B ′A) − B3

8A2 = P

8A2 .

If φ′ − Bφ2 − Aφ3 has no zeros in Ji , then φ is an upper or lower solution of (1.1) and therefore 
the graphs of u(t, x) and φ coincide in at most one point.

If φ′ − Bφ2 − Aφ3 has one zero in Ji , then φ changes from an upper (resp. lower) solution to 
a lower (resp. upper) solution of (1.1) in that interval. In any case, since u(t, x) is bounded and 
the graph of φ in Ji goes from zero to infinity, u(t, x) intersects φ at one point in Ji .

Therefore, 2A(t)u(t, x) + B(t) has at most one zero in (0, tB1) and at most one zero in 
(tA, tB2).

Finally, since

2A(0)u(0, x) + B(0) = B(0) > 0,

2A(tB )u(tB , x) + B(tB ) = A(tB )u(tB , x) < 0,
1 1 1 1 1

10
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we have that 2A(t)u(t, x) + B(t) has at least one zero in (0, tB1), and since

2A(tA)u(tA, x) + B(tA) = B(tA) < 0,

2A(tB2)u(tB2 , x) + B(tB2) = A(tB2)u(tB2 , x) > 0,

we have that 2A(t)u(t, x) + B(t) has at least one zero in (tA, tB2). �
We now obtain a sufficient condition for (C3) to hold, which can be computed. Note that (C3)

is equivalent to imposing that the graph of every singular positive closed solution ũ is contained 
in the region v(t, x) < 0, where v(t, x) is the function defined in (1.4). In order to control the 
intersections of the solutions with the complementary region v(t, x) ≥ 0, consider the derivative 
of the solutions with respect to the vector field (1.1), i.e.,

v̇(t, x) = vt (t, x) + vx(t, x)(A(t)x3 + B(t)x2).

Controlling the common zeros of v and v̇, we obtain a sufficient condition for (C3) to hold.
Let

v−1(0) = {(t, x) : 0 < t < T,x > 0, v(t, x) = 0},
v̇−1(0) = {(t, x) : 0 < t < T,x > 0, v̇(t, x) = 0},

and denote S = [0, T ] × [0, ∞).

Proposition 3.2. If v(t, 0) = A′(t)B(t) − A(t)B ′(t) < 0 for all t ∈ [0, T ], v(0, x) < 0 and 
v(T , x) < 0 for all x ≥ 0, and v−1(0) ∩ v̇−1(0) = ∅, then condition (C3) holds.

Proof. v−1(0) ∩ v̇−1(0) = ∅, the set v−1(0) has no singular points, so it consists of regular 
curves. By the one-point compactification of the region [0, T ] × [0, +∞), we may assume that 
they are closed, so that, by the Jordan curve theorem, each of these regular curves divides the 
space into two regions. Since v(t, 0), v(0, x), v(T , x) < 0 for all t ∈ [0, T ] and x ≥ 0, then there 
is a connected region W in v(t, x) < 0 containing the points of the form (t, 0), (0, x), (T , x), for 
all t ∈ [0, T ] and x ≥ 0.

From the hypothesis, we have that

v̇(t, x) = 〈(vt (t, x), vx(t, x)), (1,A(t)x3 + B(t)x2)〉

has definite sign on v−1(0), where 〈·.·〉 is the ordinary scalar product in R2 and (1, A(t)x3 +
B(t)x2) is the vector field defined by (1.1). By the Jordan curve theorem, we can fix an ori-
entation for any given regular curve contained in the set v−1(0), and the field has either that 
same orientation at each point of the curve or the opposite orientation at each point of the curve. 
Hence, one of the regions into which the curve divides the space is positively invariant and the 
other negatively invariant.

In any case, since any bounded solution u(t, x) of (1.1) starts and ends in the connected region 
W the graph of u(t, x) does not intersect v−1(0), and consequently condition (C3) holds. �
11
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The following result provides a simple sufficient condition that implies v−1(0) ∩ v̇−1(0) = ∅, 
which will be used in the examples.

Corollary 3.3. Let

Q(t) = B(t)(A(t)B ′′(t) − B(t)A′′(t)) + 3B ′(t)(B(t)A′(t) − A(t)B ′(t)). (3.10)

If Q(t) has no zeros in (0, T ) or v(t̄, x) = 0 does not have positive solutions for each zero t̄ of 
Q(t) in (0, T ) then v−1(0) ∩ v̇−1(0) = ∅.

Proof. Observe that

Q(t) = 4
(

2A(t)B(t)x2 + B2(t)x + 3B ′(t)
)

v(t, x) − 4B(t) v̇(t, x).

Thus, if v(t, x) = v̇(t, x) = 0 then Q(t) = 0. So, v−1(0) ∩ v̇−1(0) = ∅, since otherwise there 
exist 0 < t̄ < T and x̄ > 0 such that v(t̄, x̄) = v̇(t̄ , x̄) = Q(t̄) = 0, in contradiction with the 
hypothesis. �
4. Example of application

In this section, we prove Theorem 1.3, i.e., that (1.1) has at most two positive closed solutions 
when T = 1 and

A(t) = t (t − tA) and B(t) = (t − tB)(t − 1), tA, tB ∈ R.

In either of the following cases, the known methods allow it to be proved that (1.5) has at most 
one simple positive closed solution:

(1) tA /∈ (0, 1) or tB /∈ (0, 1).
(2) tA ∈ (0, 1), tB ∈ (0, 1), and tA ∈ (0, tB ].

In case (1), either A or B has no zeros in (0, 1): if A has no zeros, it was proved in [16]
that (1.5) has at most one positive closed solution, while if B has no zeros, the proof was given 
in [12]. In case (2), it was proved in [2] that if for some α, β ∈ R the function αA + βB does 
not vanish identically and does not change sign in (0, 1) then the Abel equation has at most one 
positive closed solution. Hence, if we consider a linear combination of the form αA(t) + B(t), 
its discriminant d(α) is a degree-two polynomial in α with leading coefficient t2

A. Therefore, 
there exists α such that d(α) ≤ 0 (and so αA(t) + B(t) does not change sign) if and only if its 
discriminant is greater than or equal to zero. But this discriminant is

Disc(d) = −(1 − tA)tB(tA − tB),

which is non-negative if and only if tA ∈ (0, tB ], and the result follows.
Hence, to prove Theorem 1.3 we may assume that 0 < tB < tA < 1. We shall divide the proof 

into two parts, first proving that (1.1) satisfies the hypotheses of Theorem 1.1, and then using 
Theorem 2.1 to show that there are at most two positive closed solutions.
12
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4.1. Semistability of the singular solutions

As it is immediate to check that (C1) holds, it only remains to verify that (C2) and (C3) hold 
to apply Theorem 1.1.

Let us see that (C2) holds. By Proposition 3.1, it suffices to prove that P(t) = 4(B(t)A′(t) −
B ′(t)A(t)) − B3(t) has at most one zero in each of the intervals J1 = (0, tB), J2 = (tA, 1). First 
we need the following lemma.

Lemma 4.1. The polynomial A′(t)B(t) − A(t)B ′(t) is negative for every t .

Proof. A′(t)B(t) −A(t)B ′(t) is a quadratic polynomial in t with coefficients in R[tA, tB ] whose 
discriminant and leading coefficient are −(1 − tA)tB(tA − tB) < 0 and tA − tB − 1 < 0, respec-
tively. �
Proposition 4.2. The function P(t) is negative in (0, tB) ∪ (tA, 1). In particular, condition (C2)

holds.

Proof. By hypothesis, B(t) > 0 for all t ∈ (0, tB), and, by Lemma 4.1, we have that A′(t)B(t) −
A(t)B ′(t) < 0 for all t . Thus,

P(t) = 4(A′(t)B(t) − A(t)B ′(t)) − B3(t) < 0

for all t ∈ (0, tB).
Let us assume that tA < t < 1. Observe that

P(t) = −(t3(t − tA)3 + (1 − t)(2t − tA)(t − tB) + t (t − tA)).

Since t3(t − tA)3 > 0, (1 − t)(2t − tA)(t − tB) > 0, and t (t − tA) > 0 for all t ∈ (tA, 1), we 
conclude that P(t) is negative for all t ∈ (tA, 1).

Finally, since P(t) has no zeros in (0, tB) ∪ (tA, 1), condition (C2) holds by Proposi-
tion 3.1. �

Now let us prove that (C3) is fulfilled by using Proposition 3.2 and Corollary 3.3. Recall that 
v(t, x) = B(t)(2A(t)x +B(t))2 +P(t). By Lemma 4.1, we have that v(0, x) < 0 and v(1, x) < 0
for all x ≥ 0, and v(t, 0) < 0 for all t ∈ [0, 1]. So it suffices to show that v(t̄, x) = 0 has no 
positive solution for each zero t̄ of Q(t) in the interval (0, 1).

In our setting, the function Q(t) in (3.10) is the following cubic polynomial in t with coeffi-
cients in R[tA, tB ]:

Q(t) = − 4(1 − tA + tB) t3 + ((t2
B + 12tB + 1) − (1 + tB)tA) t2

− 2tB(tB + 4tA + 1) t + tB(3tA(tB + 1) − 2tB).

We claim that Q has exactly one zero in (0, 1). To prove this, we shall apply Sturm’s theorem 
([3, Theorem 2.50]), but first we need to introduce some additional notation.

Let S be the following four-term sequence:

S0 = Q(t),
13
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S1 = Q′(t),

S2 = −Rem(S0,S1),

S3 = −Rem(S1,S2),

where Rem(Si , Si+1) is the remainder of dividing Si by Si+1 as polynomials in t . The sequence 
S is the so-called signed remainder sequence of Q(t) and Q′(t) (see [3, Definition 1.7])).

Lemma 4.3. With the above notation, S3 > 0.

Proof. A direct computation shows that S3 is equal to

36(1 − tA)(1 − tB)2tB(tA − tB)(1 − tA + tB)
f (tA, tB)

g2(tA, tB)

where

f (tA, tB) = 3t4
B − 6tAt3

B + 3t2
At2

B + 506tAt2
B − 506t2

B−
− 506t2

AtB + 506tAtB + 3t2
A − 6tA + 3

and

g(tA, tB) = t4
B − 2tAt3

B + t2
At2

B − 98tAt2
B + 98t2

B+
+ 98t2

AtB − 98tAtB + t2
A − 2tA + 1.

Since 0 < tB < tA < 1, we have that the sign of S3 is the same as the sign of f (tA, tB). Now, it 
suffices to observe that

f (tA, tB) = (3tB(tA − tB) + 506(1 − tA))tB(tA − tB) + 3(1 − tA)2 > 0

to get the desired result. �
Proposition 4.4. The cubic polynomial Q(t) has exactly one zero in (0, 1). Moreover, this zero 
lies in (tB, 1).

Proof. Let us see that Q(t) has exactly one root in (tB, 1). On the one hand, the number of sign 
variations of S at tB , Var(S, tB), is 2. Indeed, when evaluating S at tB one has

S0 = Q(tB) = 3(1 − tB)2tB(tA − tB) > 0,

S1 = Q′(tB) = −10(1 − tB)tB(tA − tB) < 0,

S3 > 0,

where the last inequality follows by Lemma 4.3. Notice that the number of sign variations at tB
is equal to two regardless of the sign of S2 at tB . On the other hand, the number of sign variations 
of S at 1, Var(S, 1), is 1. Indeed, when evaluating S at 1 one has
14
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S0 = Q(1) = −3(1 − tA)(1 − tB)2 < 0,

S1 = Q′(1) = −10(1 − tA)(1 − tB) < 0,

S3 > 0,

where the last inequality follows by Lemma 4.3. Again notice that the number of sign variations 
at 1 is equal to one regardless of the sign of S2 at 1.

Now, by Sturm’s theorem ([3, Theorem 2.50]) we conclude that the number of real roots of 
Q(t) in (tB, 1) is equal to

Var(S, tB) − Var(S,1) = 1.

Next we prove that Q(t) has no roots in (0, tB ] by using the Budan-Fourier theorem ([3, 
Theorem 2.35]). Let Der(Q) be the list Q(t), Q′(t), Q′′(t), Q′′′(t). Let us compute the number 
of sign variations of Der(Q) at the borders of the intervals.

• Var(Der(Q), 0) = 3. Indeed, since 0 < tB < tA < 1, we have that

Q(0) = tB(tA(3tB + 1) + 2(tA − tB)) > 0,

Q′(0) = −2tB(4tA + tB + 1) < 0,

Q′′(0) = (2tB + 2)(1 − tA) + 2tB(tB + 11) > 0,

Q′′′(0) = −24(1 + tB − tA) < 0.

• Var(Der(Q), tB) = 3. Indeed, since 0 < tB < tA < 1 and tB < 1/2, we have that

Q(tB) > 0,

Q′(tB) < 0,

Q′′(tB) = 22tB(tA − tB) + 2(1 − tA) > 0

Q′′′(tB) = Q′′′(0) < 0.

Therefore, by the Budan-Fourier theorem, we obtain that the number of roots of Q in (0, tB ] is 
less than or equal to

Var(Der(Q),0) − Var(Der(Q), tB) = 0,

i.e., Q(t) has no roots in (0, tB], so we conclude. �
Proposition 4.5. Let t̄ ∈ (tB, 1) be the unique real root of Q(t) in (0, 1). Then

v(t̄, x) = 0

has no positive solutions. In particular, (C3) holds.
15
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Proof. First we note that

v(t̄, x) = 4A2(t̄)B(t̄)x2 + 4A(t̄)B2(t̄)x + 4(A′(t̄)B(t̄) − A(t̄)B ′(t̄)).

We distinguish three cases:

(1) If t̄ ∈ (tB, tA) then A2(t̄)B(t̄) < 0, A(t̄)B2(t̄) < 0, and A′(t̄)B(t̄) − B ′(t̄)A(t̄) < 0 by 
Lemma 4.1. So all the coefficients in x of v(t̄, x) are negative, and we conclude that v(t̄, x)

has no positive roots.
(2) If t̄ = tA then v(t̄, x) = A′(tA)B(tA) �= 0.
(3) If t̄ ∈ (tA, 1) then P(t̄) < 0 by Proposition 4.2. Now we only need to observe that the dis-

criminant of v(t̄, x) is equal to −A2(t̄)B(t̄)P (t̄) < 0 to conclude that v(t̄, x) has no real 
roots.

By Lemma 4.1, A′(t)B(t) − A(t)′B(t) < 0 for all t ∈ (0, 1). Also, v(0, x) = −tAtB < 0, 
v(1, x) = −(1 − tA)(1 − tB) < 0, and v−1(0) ∩ v̇−1(0) = ∅ by Corollary 3.3. So, by Proposi-
tion 3.2, we are done. �

Since (C1), (C2), (C3) hold, Theorem 1.1 implies that if u(t, x̃) is a singular solution of (1.1)
then uxx(T , x̃) < 0.

4.2. Number of limit cycles

Developing u(1, x) in power series with respect to x (see, e.g., [1] or [4]),

u(1, x) =x +
⎛
⎝ 1∫

0

B(t) dt

⎞
⎠x2 +

⎛
⎝ 1∫

0

A(t) dt

⎞
⎠x3

+
⎛
⎝ 1∫

0

A(t)

t∫
0

B(s) ds dt

⎞
⎠x4 +O

=x + 3tB − 1

6
x2 + 2 − 3tA

6
x3 + −16 + 21tA + 54tB − 75tAtB

360
x4 +O,

where O denotes higher order terms in x, tB − 1/3, and tA − 2/3.
In particular, if tA = 2/3 and tB = 1/3 then u(t, x) − x = −x4/540 +O(x5), while the signs 

of the coefficients of x2 and x3 depend on tB and tA respectively. Hence, there is a double Hopf 
bifurcation of the origin giving rise to two positive closed solutions for tA < 2/3 and tB < 1/3.

To prove that the maximum number of positive closed solutions is two, we shall apply Theo-
rem 2.1. To this end, let us think of −tA as parameter λ ∈ (λ1, λ2), with λ1 = −1 and λ2 = −tB , 
so that

F(t, x,λ) = t (t + λ)x3 + (t − tB)(t − 1)x2,

and Fλ(t, x, λ) = tx3 > 0, for all t ∈ (0, 1) and x > 0.
16
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For λ = λ2, as was mentioned at the beginning of the section, (1.5) has at most one positive 
closed solution. Since for tB �= 1/3 the stability of the origin does not change, Theorem 2.1
implies that (1.5) has at most two positive closed solutions for every tB �= 1/3 and tB < tA < 1.

To conclude, note that Fλ(t, x, λ) is monotonic with respect to −tB , and that singular positive 
closed solutions have the semistability given by Theorem 1.1, so that if equation (1.5) has more 
than two positive closed solutions for tB = 1/3 and some tB < tA < 1 then a small perturbation 
of tB would keep or increase that number of positive closed solutions, in contradiction with the 
maximum of two positive closed solutions for tB �= 1/3.

5. Linear trigonometric coefficients

Consider the Abel equation (1.6), i.e., x′ = A(t)x3 + B(t)x2, where

A(t) = a0 + a1 sin t + a2 cos t and B(t) = b0 + b1 sin t + b2 cos t,

with ai, bi ∈ R, i = 0, 1, 2. We prove that Theorem 1.1 holds in a region where two positive 
limit cycles bifurcate from the origin, obtaining an upper bound of two positive limit cycles.

Equation (1.6) has at most one simple positive limit cycle when A or B have definite sign [16,
12], when there is a linear combination of A, B having definite sign [2], or when the coefficients 
ai, bi , i = 0, 1, 2, belong to certain regions [4, Theorem 1.2], in particular when a0b0 = 0. Note 
that the first condition corresponds to A or B having at most one zero in [0, 2π). Let us check 
that the second condition holds either whenever A or B have at most one zero in [0, 2π) or when 
there is no zero of A (resp. B) between the two zeros of B (resp. A). Therefore, we may assume 
that A, B have exactly two simple zeros in [0, 2π) which are interleaved.

Proposition 5.1. Assume that A or B have at most one zero in [0, 2π), or that there is no zero of 
A (resp. B) between the two zeros of B (resp. A). Then there exist α, β ∈ R such that αA(t) +
βB(t) ≥ 0 for all t ∈ R.

Proof. If A has at most one zero in [0, 2π) then A(t) has definite sign in [0, 2π), so the result 
follows by choosing α = ±1 and β = 0. The same argument applies if B has at most one zero in 
[0, 2π).

Assume now that A, B have two zeros in (0, 2π), and that there is no zero of B between 
the zeros of A (with the other case being analogous). The change of variables z → tan(t/2)

transforms A, B into rational functions with denominator 1 + z2 and numerator a second degree 
polynomial. Moreover, the relative position of the roots of A, B are preserved. So we may assume 
that, after the change of variables, A and B become Ā(z) = a(z−zA1)(z−zA2) and B̄(z) = b(z−
zB1)(z−zB2), respectively. Then αĀ+ B̄ has definite sign if and only if d(α) := Disc(αĀ+ B̄) ≤
0. Since d(α) is a degree two polynomial in α with positive leading coefficient, there exists α
such that d(α) ≤ 0 if and only if Disc(d(α)) ≥ 0. From

Disc(d(α)) = 16a2b2(zA1 − zB1)(zA2 − zB1)(zA1 − zB2)(zA2 − zB2),

we conclude. �
From Remark 1.2, we may assume that A(0) = 0, A′(0) < 0, and B(0) > 0 since the remain-

ing cases are similarly studied. Moreover, rescaling x, it is not restrictive to assume A′(0) = −1. 
Hence, in what follows we shall consider the equation
17
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x′ = (a0 − sin t − a0 cos t) x3 + (b0 + b1 sin t + b2 cos t) x2, (5.11)

where b0 + b2 > 0. Developing the solution of (5.11) in power series, we obtain

u(2π,x) =x + 2b0πx2 + (2a0π + 4b2
0π

2)x3

+ π(3a0b1 − b2 + 8b3
0π

2 + 2b0(1 + 5a0π))x4 +O(x5).
(5.12)

In particular, there is a change of stability when b0 = 0 or a0 = 0, whereas when a0 = b0 = 0 we 
have that u(t, x) < x for x > 0 close to the origin, which implies that at least two limit cycles 
bifurcate from the origin with a0 > 0 and b0 < 0.

Actually, when a0 = b0 = 0, u(2π, x) < x for x > 0 whenever u(2π, x) is defined, as the 
following result establishes.

Proposition 5.2. [6, Theorem 2.4] For a0 = b0 = 0, the Abel equation (5.11) has no positive limit 
cycles. Moreover, u(2π, x) < x for any x > 0 such that u(t, x) is defined for t ∈ [0, 2π].

Let u(t, x, a0, b0) be the solution of (1.6) determined by u(0, x, a0, b0) = x. Note that the fam-
ily (5.11) is monotonic with respect to both a0 and b0, so that the same holds for u(t, x, a0, b0). 
In particular, we obtain the following result.

Corollary 5.3. If a0, b0 < 0 then (5.11) has no positive limit cycles.

Now we verify that (1.6) satisfies the hypotheses of Theorem 1.1 for a0, b0 close to zero.
In the next subsection, we will show that, while Proposition 3.1 can be used to show that (C2)

holds for certain values of b1, b2, the hypotheses of Proposition 3.2 do not hold completely in 
this case. The reason is that both of these propositions much be verified on [0, 2π] × [0, +∞), 
while conditions (C2), (C3) only need to be satisfied for the singular closed solutions. To avoid 
this problem, we use continuity arguments, studying the behaviour of the solutions at infinity in 
order to bound the region where there might be singular closed solutions.

Proposition 5.4. For each b1, b2 with b2 > 0 there exists a neighbourhood of (a0, b0) = (0, 0)

such that (5.11) satisfies (C1), (C2), and (C3) for any singular positive closed solution.

Proof. Fix a neighbourhood U = [−ε1, ε1] × [−ε2, ε2] of (a0, b0) = (0, 0) in which the func-
tions A and B have two zeros in [0, 2π) and are interleaved. So, for any b1, b2 �= 0 and any a0, b0
in that neighbourhood, (C1) holds.

To prove (C2), note that B has a simple zero in each of the intervals (0, tA) and (tA, 2π]. 
Thus, we can choose δ0 > 0 so that, for any positive smooth function w satisfying

|w(t)|, |w′(t)| < δ0 for all t ∈ [0,2π],

the function 2Aw + B also has a simple zero in each of the intervals (0, tA) and (tA, 2π].
Denote

u∞(t, a0, b0) = sup{u(t, x, a0, b0) : u(·, x, a0, b0) being bounded in [0,2π]}.
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Then u∞(·, a0, b0) is well-defined except for certain values of t where the supremum is in-
finite. Moreover, it is a solution of (1.6) in each interval where it is defined. We will show in 
Appendix A that u∞(t, a0, b0) is defined and is continuous for t > 0 and (a0, b0) in a neighbour-
hood of (0, 0), and that

lim
t→∞u∞(t,0,0) = 0.

Therefore, there exists n ∈N and a neighbourhood U of (0, 0) such that u∞(t + 2πn, a0, b0) <
δ0 for all t ∈ [0, 2π] and (a0, b0) ∈ U , and

| (a0 − sin t − a0 cos t) x3 + (b0 + b1 sin t + b2 cos t) x2| < δ0

for all t ∈ [0, 2π], x ∈ [0, u∞(t + 2πn, x0, a0, b0)], and (a0, b0) ∈ U .
Let u(t, x̃, a0, b0) be any singular positive closed solution of (1.6) with (a0, b0) ∈ U . Then 

u(t, x̃, a0, b0) = u(t + 2πn, x̃, a0, b0) < u∞(t, a0, b0) < δ0, and condition (C2) holds.
The last step is to prove that (C3) holds. It suffices to show that, for each b1, b2, with b2 > 0, 

there exists a neighbourhood of (a0, b0) = (0, 0) such that the graph of any singular positive 
closed solution ũ is disjoint with v−1(0). Hence, the sign of v(t, ũ(t, x)) does not change and is 
the same as the sign of A′(0)B(0) (negative in this case).

Since v(t, 0) = 4(B(t)A′(t) − B ′(t)A(t)), then v(t, 0) = −4b2 < 0 for a0 = b0 = 0. Making 
δ0 and U smaller if necessary, we have v(t, x) < 0 for any 0 < x ≤ δ0 and (a0, b0) ∈ U . To 
conclude, it suffices to prove that every singular positive closed solution ũ(t, x) satisfies ũ(t, x) ≤
δ0. But that holds by the previous discussion, so there exists a neighbourhood of a0 = b0 = 0 such 
that (C3) holds. �

Let us prove that the maximum number of positive closed solutions is two in a neighbourhood 
of (a0, b0) = (0, 0) in the quadrant where the double Hopf bifurcation occurs.

Theorem 5.5. Assume there exists ε > 0 such that for every −ε < b0 < 0 < a0 < ε, (5.11) satis-
fies (C1), (C2), and (C3) for any singular positive closed solution. Then (5.11) has at most two 
positive closed solutions for every −ε < b0 < 0 < a0 < ε.

Proof. By Theorem 1.1, uxx(t, x̃) < 0 for every singular positive closed solution u(t, x̃).
Let

F(t, x) = (a0 − sin t − a0 cos t) x3 + (b0 + b1 sin t + b2 cos t) x2.

The derivative of function F respect to b0 is strictly positive for all t ∈ (0, 2π), and there is at 
most one simple positive closed solution of (5.11) for any a0 > 0 and b0 = 0 (see [4, Theorem 
1.2]).

Fix 0 < a0 < ε. Then Theorem 2.1 implies that, for every −ε < b0, (1.6) has at most three pos-
itive closed solutions. Moreover, if there are three positive limit cycles, one of them corresponds 
to a Hopf bifurcation at the origin and another to a Hopf bifurcation at infinity.

From (5.12), we have that the origin is unstable for b0 = 0. If there is a positive closed solution 
for b0 = 0, it is stable, so that infinity is unstable, and therefore, for b0 < 0, the infinity remains 
unstable, so that there is no bifurcation at infinity and the maximum number of positive closed 
solutions is two. �
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If we could prove that (5.11) satisfies (C1), (C2), and (C3) for any singular positive closed 
solution whenever A, B have two interleaved zeros, then a similar argument would prove the 
upper bound of two positive closed solutions for (5.11) with no additional conditions.

The main drawback of Theorem 5.5 is that there is no clear way to estimate the value of ε
for which the theorem holds. A possible way of doing that would be to bound the homoclinic 
connection at infinity, following [10] for instance, or improving the results in Section 3. In the 
following, we shall illustrate the limitations of these results.

5.1. Algebraic computation of the conditions

To conclude the section, we explore the applicability of Propositions 3.1 and 3.2 to Abel 
equation (5.11) with b0 + b2 > 0.

Proposition 3.1 applies in a certain region of the parameter space.

Proposition 5.6. Assume condition (C1) holds and let

q =
√

b2
1 + b2

2

b
1/3
2

− 22/3.

If |a0| and |b0| are small enough and either q < 0 or b2 > 2, then condition (C2) holds.

The next figure (Fig. 4) helps to visualize the regions described in Proposition 5.6.

Fig. 4. Graph of q = 0.

Before proving Proposition 5.6, we need some preliminary results. By the change of variable 
t = 2 atan(z) + π , we obtain that

Ā(z) := A(2 atan(z) + π) = 2(z + a0)

z2 + 1

and

B̄(z) := B(2 atan(z) + π) = (b0 + b2)z
2 − 2b1z + b0 − b2

z2 + 1
.

Notice that Ā(z) has only the zero −a0 and that B̄(z) has the two zeros
20
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z±
B :=

b1 ±
√

b2
1 − (b2

0 − b2
2)

b0 + b2
,

and, since 2 atan(z) + π is strictly increasing, b0 + b2 > 0, and the zeros of A and B are inter-
leaved, we have that

B̄(−a0) = (b0 + b2)a
2
0 + 2b1a0 + b0 − b2

a2
0 + 1

< 0.

Moreover, one can easily check that this change of variable transforms the function P(t)

defined in (1.4) into the rational function P̄ (z) such that (z2 + 1)3P̄ (z) is a polynomial of degree 
six in z.

Let a0 = b0 = 0. In this case, set zB := z = z+
B > 0, so that

b1 = b2(z
2
B − 1)/(2zB), z−

B = −1/zB.

With this notation, (z2 + 1)3P̄ (z)|a0=b0=0 = (b2/z
3
B) p(z) where

p(z) =(b2
2 − 4)z3

B + 3b2
2z

2
B(z2

B − 1)z + 3(−4z3
B + b2

2(zB − 3z3
B + z5

B))z2

+ b2
2(z

2
B − 1)(z4

B − 8z2
B + 1)z3 − 3(4z3

B + b2
2(zB − 3z3

B + z5
B))z4

+ 3b2
2z

2
B(z2

B − 1)z5 − ((b2
2 + 4)z3

B)z6

The discriminant of p(z) is

� := 186624b8
2(b

2
2 + 4)z15

B (z2
B + 1)12(b4

2(z
2
B + 1)6 − 210 z6

B

)
. (5.13)

Since zB, b2 > 0, the sign of � is equal to the sign of

b
2/3
2 (z2

B + 1) − 25/3 zB = 2zB

(
b

2/3
2 (z2

B + 1)

2zB

− 22/3

)

whose sign agrees with the sign of

b
2/3
2 (z2

B + 1)

2zB

− 22/3 =
√

b2
1 + b2

2

b
1/3
2

− 22/3 = q.

Therefore the number of roots of p(z) remains constant in each of the two connected regions 
determined by q = 0.

• For b1 = 0 and b2 = 1 we have that q < 0, and in this case p(z) = −5z6 − 9z4 − 15z2 − 3
has no real roots. Hence P̄ (z)|a0=b0=0 has no real zeros when q < 0, and the same holds for 
P̄ (z) for |a0|, |b0| small enough and q < 0.

• In the region where q > 0, the polynomial p(z) has exactly two real roots (take, for example, 
b1 = 1 and b2 = 2). Hence P̄ (z)|a0=b0=0 has two real zeros when q > 0, and the same holds 
for P̄ (z) for |a0|, |b0| small enough and q > 0.
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Lemma 5.7. If 2a0b1 + (a2
0 + 1)(b0 + 2) < (1 − a2

0)b2 and P̄ (z) has two real zeros then they are 
separated by the zero of Ā(z).

Proof. Since B̄(−a0) < 0, the leading coefficient of (z2 + 1)3P̄ (z) is equal to −(b0 + b2)((b0 +
b2)

2 + 4) < 0, and

P̄ (−a0) = B̄(−a0)(4 − B̄(−a0)
2),

we conclude that P̄ (−a0) > 0 if 2 + B̄(−a0) < 0, or equivalently 2a0b1 + (a2
0 + 1)(b0 + 2) <

(1 − a2
0)b2. Therefore, if P̄ (z) has two real zeros and 2a0b1 + (a2

0 + 1)(b0 + 2) < (1 − a2
0)b2

then the two zeros of P̄ (z) are separated by −a0, which is the zero of Ā(z). �
Proof of Proposition 5.6. On the one hand, if q < 0 then the function P has no zeros in (0, tB1)

and (tA, tB2). By continuity, it also holds for |a0|, |b0| small enough.
On the other hand, since the limit of 2a0/(1 − a2

0)b1 + (a2
0 + 1)(b0 + 2)/(1 − a2

0) as (a0, b0)

tends to (0, 0) is 2, if b2 > 2, then q > 0 and there exist a0, b0 small enough such that 2a0b1 +
(a2

0 + 1)(b0 + 2) < (1 − a2
0)b2. In this case, by Lemma 5.7, P has at most one zero in each of 

the intervals (0, tB1) and (tA, tB2).
In both cases, by Proposition 3.1, we conclude that (C2) is fulfilled. �
Finally, let us show that Proposition 3.2 does not apply in the case of Abel equation (5.11)

with b0 + b2 > 0.

Proposition 5.8. For a0 = b0 = 0 and every b1, b2, the set v−1(0) ∩ v̇−1(0) is not empty.

Proof. In this case, the function Q(t) in Corollary 3.3 is equal to

3b2(b2 sin(t) − b1 cos(t)).

Thus Q(t) has exactly two roots t1 < t2 = t1 + π in [0, 2π). In particular, t1 ∈ [0, π) and t2 ∈
[π, 2π). Now, if we replace b1 by b2 tan(ti) in v(ti , x), i = 1, 2, and solve the resulting quadratic 
equations in x, we obtain the following solutions:

x±
i =

b2 ±
√

b2
2 + 4 cos(ti)3

sin(2ti )
, i = 1,2.

Let us show that at least one of them is positive. For this, we distinguish two cases:

• If t1 ∈ (0, π/2) then x+
1 > 0.

• If t1 ∈ (π/2, π) then t2 ∈ (3π/2, 2π) and x−
2 > 0.

Hence, we conclude that t1 or t2 determines a real positive solution of v(t1, x) = 0 or of v(t2, x) =
0, respectively.

Now, substituting b1 = b2 tan(ti), i = 1, 2, in both v(t, x) and v̇(t, x), we obtain that

v̇(ti , x) = x

(
b2 − sin(2ti )x

)
v(ti , x), i = 1,2.
cos(ti)
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Thus, by the previous argument, v−1(0) ∩ v̇−1(0) �= ∅. �
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Appendix A. Stability at infinity in the trigonometric case

In this appendix, we study the stability at infinity following [5, Subsection 3.1] adapted to our 
case. A first observation is that by the change of variables y = 1/x, we have that (5.11) for x > 0
is equivalent to

y′ = −B − Ay−1. (A.14)

Therefore, for y > 0 the phase portrait of the integral curves of (A.14) is the same as the phase 
plane of the planar system

{
t ′(s) = y

y′(s) = −B(t)y − A(t).
(A.15)

The equilibrium points in (t, y) ∈ [0, 2π) ×R, are (0, 0) and (tA, 0). The linearization matrix at 
(0, 0) is

(
0 1
1 −(b0 + b2)

)

with eigenvalues λ− < 0 < λ+. Since (0, 0) is a saddle point, there exists a unique analytic 
invariant unstable manifold tangent to the line 〈(1, λ+)〉 at (0, 0). The branch of the manifold in 
{(t, y) : t ∈ [0, 2π], y > 0} is defined by the solution of (A.15) that satisfies

lim
s→−∞(t (s), y(s)) = (0,0), lim

s→−∞
y′(s)
t ′(s)

= λ+.

Hence, there exists a unique analytic solution of (A.14), v∞(t), defined in an interval (0, α) such 
that

lim+ v∞(t) = 0, lim+
∂v∞

(t) = λ+.

t→0 t→0 ∂t
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From the parametric unstable manifold theorem (see, e.g., Theorem 5.13 of [17]), this function 
is continuous with respect to a0, b0.

The linearization matrix at (tA, 0) is

J (tA,0) =
(

0 1
−A′(tA) −B(tA)

)
.

Taking into account that the trace and the determinant of J (tA, 0) are −B(tA) > 0 and A′(tA) > 0
respectively, we have that (tA, 0) is an unstable node or focus.

Since (2π, 0) is also a saddle point, there exists a unique analytic stable manifold tangent to 
the line 〈(1, λ−)〉 at (2π, 0). The branch of the manifold in {(t, y) : t ∈ [0, 2π], y > 0} is defined 
by the solution of (A.15) that satisfies

lim
s→∞(t (s), y(s)) = (2π,0), lim

s→∞
y′(s)
t ′(s)

= λ−.

Thus, there exists a unique analytic solution of (A.14), w∞(t), defined in an interval (β, 2π)

such that

lim
t→2π− w∞(t) = 0, lim

t→2π−
∂w∞
∂t

(t) = λ−.

Since the stable and unstable invariant manifolds are unique, v∞(t) or w∞(t) are defined in 
(0, 2π). Moreover, both are defined in (0, 2π) if and only if v∞(t) = w∞(t). Note that the set of 
bounded solutions of (5.11) is limited by either v∞(t) or w∞(t).

We say (a0, b0, b1, b2) is a bifurcation value at infinity if v∞(t) = w∞(t). In this case a 
Poincaré map of (A.14) is defined for y > 0 close to zero as

P(y) = v(2π,y),

where v(0, y) is the solution of (A.14) such that v(0, y) = y. The stability of the solution v∞(t) =
w∞(t) is established in the following result.

Proposition A.1. Assume (a0, b0, b1, b2) is a bifurcation value at infinity. Then, for these values 
of the parameters,

sgn(P (y) − y) = − sgn(b0 + b2),

for every y > 0 small enough.

Proof. As the functions A, B are 2π -periodic, the system can be considered inside the cylinder. 
Then the solution v∞ is a homoclinic loop, and its stability is given by the sign of the trace of 
the linearization matrix at (0, 0) (see for instance Section 10.3 of [7]). �
Proposition A.2. There exists a neighbourhood U of (a0, b0) = (0, 0) such that, for each 
(a0, b0) ∈ U , u∞(t, a0, b0) is defined for all t > 0 and is continuous. Moreover,

lim u∞(t,0,0) = 0.

t→∞
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Proof. As a direct consequence of Proposition A.1 for a0 = b0 = 0 there is no periodic solution 
at infinity, otherwise the stability would be opposite to the stability of the origin, and conse-
quently there would be a limit cycle, in contradiction with Proposition 5.2. In particular, v∞ is 
defined in (0, ∞), v∞(t) → +∞ as t → ∞, and is continuous with respect to a0, b0. Taking into 
account that u∞ = 1/v∞, we conclude. �
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