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unique Fréchet algebra topology. The result is applied to show that the action of any non-algebraic

analytic function may fail to be uniquely defined among other useful applications. We give an affir-

mative answer to a question of Loy (1974) for Fréchet algebras. We also obtain the uniqueness of
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1. Introduction

The objective of this article is to provide an elementary method for con-
structing commutative Fréchet algebras which admit two inequivalent Fréchet
algebra topologies. In the Fréchet case, the only example of this kind so far
known was that of Read [22], primarily constructed to display the breakdown
of the Singer-Wermer conjecture (the commutative case), which holds in the
Banach algebra case (see [24]). This example is F∞ = C[[X0, . . . , Xn, . . . ]],
the algebra of all formal power series in infinitely many commuting indeter-
minates X0, . . . , Xn, . . . , and has a Fréchet algebra topology τR with respect
to which the natural derivation ∂/∂X0 is discontinuous with the range the
whole algebra. The other Fréchet algebra topology on F∞ is the topology τc
of coordinatewise convergence with respect to which the derivation ∂/∂X0 is
continuous. Thus Read exhibits that the situation on Fréchet algebras is sig-
nificantly distinct from that on Banach algebras, and that a structure theory
for Fréchet algebras acquits in a very peculiar manner from Banach algebras.
For example, the distinguished Michael’s problem is still stayed unsolved since
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1952 (see [12] for the recent progress); Banach algebras are easily seen to be
functionally continuous. In fact, the author is finalizing the manuscript on an
affirmative solution to Michael’s problem in which the prime idea is to view
the test case for this problem, the commutative, semisimple Fréchet algebra
Hol(`∞) of all entire functions on `∞ [12, §5, §9, §10] in terms of weighted
Fréchet symmetric algebra V̌WE over the Banach space E = `1 (called the
Dales-McClure Fréchet algebra in Section 4 below).

Further we recall that in automatic continuity theory, we would normally
like to examine when and how the algebraic structure of the algebra A deter-
mines the topological structure of A, in particular, the continuity aspect (and
more particularly, the uniqueness of the topology of A; see [4, 6, 12, 17, 18, 20]
for more details). So it is natural to expect that the non-uniqueness of the
topology would reflect some properties of the algebraic structure of A. In [14],
Feldman constructed a Banach algebra with two inequivalent complete norms,
in order to display the breakdown of the Wedderburn Theorem. This example
is `2 ⊕ C with one norm in which `2 is dense.

It is easy to give uncountably many inequivalent Fréchet space topologies
to a very familiar Fréchet spaces, namely, spaces of holomorphic functions [25].
However the same space is also a Fréchet algebra of power series, and so, it
admits a unique Fréchet algebra topology [17]. Thus it is expected that the
case of having inequivalent Fréchet algebra topologies by some Fréchet algebra
should be rare, and the former situation should be common. We here note
that the same space turns out to be a Fréchet algebra once we equip it with the
zero product, and then, those uncountably many inequivalent Fréchet space
topologies are now inequivalent Fréchet algebra topologies. We also remark
that not every derivation on a commutative Fréchet algebra is continuous. For
example, let A be an arbitrary Fréchet space with the zero product. Then it is
a commutative Fréchet algebra, and every linear operator on A is evidently a
derivation. But, of course, not every operator on a Fréchet space is continuous.
However, we are certainly not interested in such examples equipped with the
zero product.

On the contrary, as discussed above, the (dis)continuity of a derivation
on a Fréchet algebra F∞ has a direct connection with an (in)equivalency
of the two topologies on F∞. In fact, construction of a suitable topology,
however, was not simple; it required the axiom of choice (AC), an essential
development because without the AC, one normally assumes that ALL lin-
ear maps between Fréchet spaces are continuous [22]. Indeed, author shows
in [19] that the algebra F∞ has countably many inequivalent Fréchet algebra
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topologies, followed by Read’s bizarre method. Below, we take this mission
one step forward, in order to give an elementary method for constructing two
inequivalent Fréchet algebra topologies on a Fréchet algebra.

Loy gave a method for constructing commutative Banach algebras with
two inequivalent complete norm topologies, and we implement that idea in
this paper, so we shall feel free to use the terminology, conventions, a couple
of arguments and proofs of theorems from [16] in order to keep our argument
short for the Fréchet algebra case here. We use the discontinuity of derivations
to give a Fréchet algebra A other, inequivalent, Fréchet algebra topologies.
Although the Fréchet algebra topology τR+τR of F∞⊕F∞ is not attainable by
our way (see below), other inequivalent Fréchet algebra topologies on F∞⊕F∞
may be constructed [19].

This elementary method for constructing commutative Fréchet algebras
with non-unique Fréchet algebra topology surprisingly also enables the demon-
stration of the uniqueness of the Fréchet algebra topology of certain Fréchet
algebras with finite-dimensional radicals in Section 3. In the Fréchet case,
though there are a few results on the uniqueness of the Fréchet algebra topol-
ogy (see [4, 6, 12, 17, 18]), a class of Fréchet algebras with finite dimensional
radicals for this result appears to be treated for the first time in this pa-
per. Of course, in the Banach case, we have results on the uniqueness of the
complete norm topology of Banach algebras with finite dimensional radicals
(see [9, 21]); however, the hypotheses and results are very different.

In Section 4, we obtain an affirmative answer to a question of Loy from
1974, but in the Fréchet case. In [13], Domar constructed a Banach algebra
with a quasinilpotent non-nilpotent radical; however, his approach was differ-
ent and used an entire function argument. In particular, the question whether
the construction of a Banach algebra with a quasinilpotent non-nilpotent radi-
cal using the method of the higher point derivations of infinite order is possible,
is a very good question. At present, we do not know the answer. In the end,
we discuss a particular example of a semisimple Fréchet algebra. Surprisingly,
we note that the converse of Theorem 4.3 below does not hold.

2. Inequivalent Fréchet algebra topologies

Let A be a commutative, metrizable, locally multiplicatively convex-
algebra whose topology τ may be defined by a sequence (pk)k≥1 of semi-
norms, and let M be a commutative Fréchet A-module, or just A-module,
whose topology τ ′ may be defined by a sequence (p′k)k≥1 of seminorms
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(assumed increasing without loss of generality), so M is a Fréchet space which
is a commutative A-module such that the map (x,m) 7→ x ·m is continuous
from A ×M to M . Moreover, throughout the paper, we shall impose a con-
dition on the seminorms p′k of M that they are submultiplicative with respect
to the module action; i.e.,

p′k(x ·m) ≤ pk(x)p′k(m) (k ∈ N)

for all x ∈ A and all m ∈ M (in [15], they call such an M smooth). This
condition is mild in the sense that M will be a commutative Fréchet algebra
in most of the cases below. Also, any commutative algebra A is itself a
commutative A-module, and so, the Arens algebra Lω is the best example to
exhibit the necessity of this condition, since the multiplication operation in Lω

is jointly continuous, but the seminorms ‖·‖p, p ≥ 1, are not submultiplicative;
i.e., for each p ≥ 1, we do not have ‖fg‖p ≤ ‖f‖p‖g‖p [2, §4]. Thus, the Arens
algebra Lω is not smooth [15].

For such A and M , let H1(A,M) (resp., H1
C(A,M)) denote the first al-

gebraic (resp., continuous) cohomology group (where the cochains are re-
quired to be bounded). Thus with the usual conventions H1(A,M) (resp.,
H1

C(A,M)) is the space of (continuous) derivations of A into M , that is,
linear mappings D : A → M satisfying D(xy) = x · D(y) + y · D(x). As
two simple examples, first take M = C with module action x · λ = λφ(x) for
some multiplicative linear functional φ on A. If φ 6= 0, then H1(A,C) is the
point derivation space at φ. In the second case, we call D a derivation of A,
if M = A.

There is a beautiful exposition of the motive for the study of derivations
in [15]; for an extensive study of derivations on certain GB∗-algebras, see
[26, 27, 28, 29, 30, 31]. In particular, Weigt and Zarakas studied unbounded
derivations of GB∗-algebras in [30, 31]. We briefly recall that the first coho-
mology group measures how much the space of all (continuous) derivations
of A in M differs from the space of all (continuous) inner derivations of A in
M (a derivation is inner if there exist an m ∈ M such that D = Dm, where
Dm(a) = am −ma for all a ∈ A). In particular, there are important appli-
cations of such results to cohomology theory concerning contractibility and
amenability. Further, If A has an identity, then derivations of A, give rise to
automorphisms of A. The set Aut(A) of automorphisms of A is a subgroup of
the group of all invertible operators on A. Moreover, such automorphisms are
basically utilized for the proof of the well-known Singer-Wermer Theorem; see
[15, §3] for the most elegant consequences in the theory of Fréchet algebras.
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A couple of avatars of the Singer-Wermer conjecture in this theory such as a
weaker version, a stronger version (namely, Kaplansky’s conjecture), and/or
an extended version, are recently discussed by author in [19]. There is also a
connection between derivations and quantum physics via Aut(A), which has
its self-adjoint elements as the observables of the quantum system [15]. Most
importantly, in view of our interest in studying discontinuous derivations, the
motive for the study of unbounded derivations was provided by the problem
of constructing the dynamics in statistical mechanics.

For A and M as taken in the beginning of the section, the constant

lk = sup
{

1, p′k(xm) : pk(x) = p′k(m) = 1
}

(k ∈ N),

is finite (in fact, lk = 1, M being smooth), and if A is the completion of A
under (pk), M is evidently an A-module. Let A denote the vector space direct
sum A⊕M with product

(x,m)(y, n) = (xy, x · n+ y ·m)

and seminorms
qk((x,m)) = pk(x) + p′k(m).

For each D ∈ H1(A,M), the functional

qk,D : (x,m) 7−→ pk(x) + p′k(D(x)−m)

is defined on the subalgebra A⊕M of A and is readily seen to be a submul-
tiplicative seminorm thereon. If D = 0 the completion of A⊕M under (qk,D)
is, indeed, just A. For arbitrary D we observe that the map

θD : (x,m) 7−→ (x,D(x)−m)

is an isometric isomorphism of A ⊕M under (qk,D) into A, and so extends
uniquely to a map of the completion AD of A ⊕M into A. In particular,
if ι : x 7→ (x, 0) is the natural embedding of A into A ⊕M then q′k,D : x 7→
qk,D(ι(x)) is a seminorm on A and θD ◦ ι extends to an isometric isomorphism

of AD, the completion of A under q′k,D, with Gr(D), the closure (in A) of the
graph of D.

Now if D is continuous, then (qk,D) is equivalent to (qk) on A ⊕M and
(q′k,D) is equivalent to (pk) on A. Thus AD = A and AD = A. In the discon-
tinuous case, q′k,D is a discontinuous seminorm on A and ι is a discontinuous
isomorphism. This latter result has been used in the Fréchet case as follows:
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let A be the algebra of polynomials on a fixed open neighbourhood U of the
closed unit disc ∆ with the compact-open topology, M = C with module ac-
tion p · λ = λp(1) for (p, λ) ∈ A ⊕M and D : p 7→ p′(1). Here AD is a singly
generated Fréchet algebra with spectrum U and one dimensional radical (for
the Banach case, see [11, 16]).

Suppose now that D is discontinuous. If M is finite dimensional, then
it readily follows that Gr(D)

⋂
{0} ⊕ M 6= {0}, and if A is complete this

holds for general M by the closed graph theorem for Fréchet spaces. Thus
if A is a Fréchet algebra with H1(A,M) 6= H1

C(A,M) for some M , then
A has a completion with a non-trivial nil ideal. For example, A = F∞ is
a Fréchet algebra under the Fréchet algebra topology τR imposed by Read,
then H1(A,M) 6= H1

C(A,M) for M = F∞, since the derivation ∂/∂X0 is
discontinuous with respect to this topology. Thus F∞ has a completion with
a non-trivial nil ideal. We remark that if A is a semisimple Fréchet algebra,
then H1(A,M) = H1

C(A,M) [5]. However we do not know an example of a
(semisimple) non-Banach Fréchet algebra such that H1(A,M) = 0 for any A-
module M ; the Singer-Wermer conjecture holds for commutative semisimple
Banach algebras. Banach algebras with H1(A,M) = H1

C(A,M) are discussed
in [3]. Now we include one more hypothesis to these considerations to obtain
the following result.

Theorem 2.1. Let A be a commutative Fréchet algebra, D a non-zero
derivation of A into a commutative Fréchet A-module M . If D vanishes on
a dense subset of A then the algebra AD admits two inequivalent Fréchet
algebra topologies.

Proof. The proof is the same as that of Loy’s Theorem 1.

As a corollary, we have the following special case

Corollary 2.2. Let A be the Fréchet algebra F∞ under the Fréchet
algebra topology τR and let D be the natural derivation ∂/∂X0. Then (F∞)D
admits another Fréchet algebra topology τD, generated by (qk,D), different
from τR + τR, generated by (qk).

Proof. By [22, Theorem 2.5], ∂/∂X0 is, on (F∞, τR), a discontinuous
derivation which vanishes on a dense subset of (F∞, τR) since Xn → X0

in (F∞, τR); X0 lies in the closure of A0 = C[[X1, . . . , Xn, . . . ]], the coefficient
algebra of F∞ = C[[X0, . . . , Xn, . . . ]]. Thus, by Theorem 2.1, F∞ ⊕ F∞ is
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also a Fréchet algebra under τD, generated by (qk,D), different from τR + τR,
generated by (qk).

Remark A. In view of the above corollary, [19, Theorem 3.1] provides a
more general result.

In fact, we have a more general result than Theorem 2.1 as follows. Let
A be a commutative Fréchet algebra, and let M be a Fréchet A-module. Set
U = A ⊕M , where (a, x)(b, y) = (ab, a · y + b · x) for a, b ∈ A and x, y ∈ M .
Then U is a commutative algebra with RadU = RadA⊕M . Let D : A→M
be a derivation, and set

qk((a, x)) = pk(a)+p′k(x), qk,D((a, x)) = pk(a)+p′k(D(a)−x) (a ∈ A, x ∈M).

Theorem 2.3. The algebra U is a Fréchet algebra with respect to
both (qk) and (qk,D). The two topologies are equivalent if and only if D
is continuous.

Proof. Certainly (U , (qk)) is a Fréchet algebra and qk,D is a seminorm on
U for each k ∈ N. For (a, x), (b, y) ∈ U , we have

qk,D((a, x)(b, y)) = pk(ab) + p′k(a · (D(b)− y) + b · (D(a)− x))

≤ (pk(a) + p′k(D(a)− x))(pk(b) + p′k(D(b)− y))

= qk,D((a, x))qk,D((b, y)),

and so qk,D is a submultiplicative seminorm on U for each k ∈ N. We now
show that (U , (qk,D)) is a Fréchet algebra. Let ((an, xn)) be a Cauchy sequence
in (U , (qk,D)). Then (an) and (D(an)− xn) are Cauchy sequences in (A, (pk))
and (M, (p′k)), respectively. Since A and M are Fréchet spaces, there exists
a ∈ A and x ∈ M such that an → a and D(an) − xn → x. Then (an, xn) →
(a,D(a)− x)) in (U , (qk,D)) and so (U , (qk,D)) is a Fréchet algebra.

Suppose that D is continuous. Then, for each m ∈ N, there exists
n(m) ∈ N and a constant cm > 0 such that

qm,D((a, x)) ≤ pm(a) + cmpn(m)(a) + p′m(x)

≤ (1 + cm)qn(m)((a, x)) ((a, x) ∈ U),

and so the two topologies are equivalent, by the open mapping theorem for
Fréchet spaces.
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Conversely, suppose that the two topologies are equivalent on the algebra
U . Then, for each m ∈ N, there exists n(m) ∈ N and a constant cm > 0 such
that qm,D((a, x)) ≤ cmqn(m)((a, x)) ((a, x) ∈ U). Hence

p′m(D(a)) ≤ qm,D((a, 0)) ≤ cm qn(m)((a, 0)) = cm pn(m)(a) (a ∈ A),

and so D is continuous.
Alternatively, we remark from the above discussion that θD is an isomet-

ric isomorphism of (U , (qk)) onto (U , (qk,D)), and so, the two topologies are
equivalent whenever D is continuous, and vice-versa.

As corollaries, we have the following results.

Corollary 2.4. There is a commutative algebra with a one-dimensional
radical which is a Fréchet algebra with respect to two inequivalent Fréchet
algebra topologies.

Proof. Let A be a Fréchet function algebra with a discontinuous point
derivation D at a continuous character φ. Then C is a Fréchet A-module
with respect to the operation (f, z) 7→ φ(f)z, A × C → C, and so we are in
a situation where Theorem 2.3 applies: U = A⊕ C is a Fréchet algebra with
respect to the product

(f, z)(g, w) =
(
fg, φ(f)w + φ(g)z

)
and each of the topologies generated by (qk) and (qk,D), respectively, where
qk((f, z)) = pk(f)+ | z | and qk,D((f, z)) = pk(f)+ | D(f)− z |.

As above, RadU = {0} ⊕ C, and so RadU is one dimensional.

Remark B. As discussed in Section 1, Feldman’s example in the Banach
case has a one dimensional radical. In the above corollary, an example in
the Fréchet case appears to be treated for the first time in this paper. The
significance of such an example in the Fréchet case is also explained at the
end of this section. Also, we need to consider a discontinuous point derivation
D at a continuous character in the above proof, because, as is well-known,
every character on a commutative Banach algebra is continuous, but this is
not known in the Fréchet case, and is the most prestigious Michael’s problem.

Corollary 2.5. Let A be the Fréchet algebra F∞ under the Fréchet
algebra topology τc and let D be the natural derivation ∂/∂X0. Then the
two topologies τD, generated by (qk,D), and τc + τc, generated by (qk), are
equivalent on the algebra F∞ ⊕F∞ if and only if D is continuous.
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Proof. Clearly, ∂/∂X0 is a continuous derivation on (F∞, τc). Thus, by
Theorem 2.3, the two topologies τD, generated by (qk,D), and τc+τc, generated
by (qk), are equivalent on the algebra F∞ ⊕F∞. Converse is trivial.

Remark C. As discussed in Section 1, we construct two examples of
Fréchet algebras with countably many inequivalent Fréchet algebra topologies.
The first example is the algebra F∞, and the second example is the algebra
F∞ ⊕F∞ [19].

As an application of this method, let A be the algebra Hol(U) of holomor-
phic functions on the open unit disc U , with the compact-open topology. Let
O be the algebra of functions holomorphic in a neighbourhood of U , and let
ψ : A → O be the monomorphism ψx(λ) = x(λ/2), x ∈ A, |λ| < 2. Finally
let M be a Banach space, T an endomorphism of M with norm at most 1.
Then, following Loy’s argument on p. 412, M is an A-module. In particular,
we may consider the situation developed in [7] but in the Fréchet case, where
M = C[0, 1] and T is the operator of indefinite integration. Non-zero linear
mappings β : O →M are constructed to vanish on polynomials and satisfy

β(fg) = f(T )β(g) + g(T )β(f) (f, g ∈ O).

Letting D = βψ we have that D : A→M is a derivation vanishing on polyno-
mials. Since D 6= 0, it is necessarily discontinuous (which answers a question
of [3] in the Fréchet case).

We also remark that A and D here satisfy the hypothesis of Theorem 2.1
since polynomials are dense in A. Thus AD has two inequivalent Fréchet
algebra topologies with infinite dimensional radical (by the construction of
β). Indeed algebras with finite dimensional radical have unique functional
calculus by the Fréchet analogue of [7, Theorem 1] so that the argument above
shows that any derivation of A into a finite dimensional A-module vanishing
on polynomials must be zero. In fact, such a derivation is continuous, since
A is an algebra of class B (see [10]) with A ⊕ M a strongly decomposable
Fréchet algebra with finite dimensional radical M , and so θDι is continuous
by Theorem 3.1 below.

Remark D. The results established by Dales in [7] have appropriate ana-
logues in the Fréchet case.

Using the present example we can show that the exponential function in
such an algebra is not independent of the Fréchet algebra topology (see Loy’s
argument on p. 413 for details).
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We recall that the first discontinuous functional calculus map was con-
structed by Allan (see [1, Theorem 8]). The algebras satisfying this theorem
are L1

loc(R+), L1(R+,W ) and C∞(R+). It follows from proof of the theo-
rem that the above condition is sufficient on an algebra A for the existence
of a discontinuous functional calculus homomorphism. However, the algebra
U = Hol(U) ⊕ C shows that it is not a necessary condition. In fact, it is
shown in [1, Theorem 8] that there is an incomplete metrizable topology on
Hol(U) which dominates the compact-open topology, and the completion of
Hol(U) in such a topology has a nilpotent radical, as discussed before. Such
a result is impossible for F = C[[X]] (since X is locally nilpotent) and C(U)
(no adequate theory of point derivations).

3. Uniqueness of the Fréchet algebra topology

In the above incidents the ideal adjoined was consistently nilpotent of
index 2. Now we view how to get more general ideals.

Let A and M be as in Section 2, and let M be also a commutative Fréchet
algebra. Let D = {D1, . . . , Dr} be a higher derivation of rank r of A into M .
In parallel to A let Ar denote the vector space A⊕M r with product(

x, {mi}
) (
y, {ni}

)
=

(
xy,
{
xni + ymi +

∑i−1

j=1
mjni−j

})
and seminorms

qk
((
x, {mi}

))
= pk(x) +

∑r

i=1
p′k(mi).

We also have the seminorms qk,D on A⊕M r,

qk,D
((
x, {mi}

))
= pk(x) +

∑r

i=1
p′k(Di(x)−mi),

the isomorphism θD :
(
x, {mi}

)
7→
(
x, {Di(x)−mi}

)
and the completion AD

of A under q′k,D : x 7→ qk,D((ι(x)). We consider a specific case below.
Let A be the algebra of polynomials on a fixed open neighbourhood U

of the closed unit disc ∆, with seminorms pk generating the compact-open
topology, M = C with module action as before and a higher point derivation

D = {D1, . . . , Dr} of rank r given by Dip = p(i)(1)
i! , so that

qk,D
′(p) = pk(p) +

r∑
i=1

∣∣p(i)(1)
∣∣

i!
.
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Then, Loy’s arguments for the Banach case can also be applied to the Fréchet
case to see that AD has a radical which is nilpotent of index r.

We remark that in this example Ar, and hence AD, is a strongly decom-
posable Fréchet algebra of class B with finite dimensional radical and so has a
unique Fréchet algebra topology by Corollary 3.3 below. We note that Section
5 of [10] could be extended in the Fréchet case (up to Proposition 5.5). In
particular, we have the following

Theorem 3.1. Let B be an algebra of class B and let A be a strongly
decomposable Fréchet algebra with finite dimensional radical R. Then any
homomorphism θ : B → A is continuous.

Proposition 3.2. Let A be an algebra of class B with finite dimensional
radical R. Then any decomposition of A is a strong decomposition.

Then, as a corollary to Theorem 3.1, we have the following result.

Corollary 3.3. If A is a decomposable Fréchet algebra of class B with
finite dimensional radical R, then A has a unique Fréchet algebra topology.

In contrast to this we have the following

Theorem 3.4. Let A be a commutative Fréchet algebra, D = {D1, . . . ,
Dr} a higher point derivation of rank r of A into C such that {D1, . . . , Dr} is
a set of discontinuous functionals. Then AD admits two inequivalent Fréchet
algebra topologies and has nilpotent elements of index r.

Proof. We first follow an analogous argument preceding to Theorem 2.3
in this case (i.e., for A and M = C, the product and the seminorms as taken
in the beginning of the section). Now apply an alternative approach from the
proof of Theorem 2.3. Hence the proof.

4. Answer to Loy’s question in the Fréchet case

In 1974, Loy raised the question of whether quasinilpotent non-nilpotent
radicals are obtainable in some analogous fashion. We now answer this ques-
tion for a more general case of Fréchet algebras as follows. We remark that
the Jacobson radical in a commutative Fréchet algebra A may also be defined
as the set of quasinilpotent elements, that is, RadA = {x ∈ A : r(x) = 0},
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where r(x) = supk∈N rk(xk), x = (xk) ∈ A = lim
←−

Ak, the Arens-Michael

representation of A [17].
First, we consider the Banach algebra situation. So let A be a commutative

normed algebra, M an A-module which is also a commutative Banach algebra,
D = {D1, D2, . . . } a higher derivation of infinite order of A into M , so that
for x, y ∈ A and s ∈ N,

Ds(xy) = xDs(y) + yDs(x) +
∑s−1

i=1
Di(x)Ds−i(y).

In parallel to Ar let A∞ denote the vector space A⊕M∞ with product(
x, {mi}

) (
y, {ni}

)
=

(
xy,
{
xni + ymi +

∑i−1

j=1
mjni−j

})
and metric

d
((
x, {mi}

)
, 0
)

= ‖x‖+

∞∑
i=1

2−i‖mi‖
′

1 + ‖mi‖′
.

We also have the metric dD on A⊕M∞,

d
((
x, {mi}

)
, 0
)
D

= ‖x‖+

∞∑
i=1

2−i‖Di(x)−mi‖
′

1 + ‖Di(x)−mi‖′
,

the isomorphism θD :
(
x, {mi}

)
→
(
x, {Di(x)−mi}

)
and the completion AD

of A under the metric x 7→ d(ι(x), 0)D. We consider a specific case below.
Let A be the algebra of polynomials on the closed unit disc ∆, with the

uniform norm ‖ · ‖∞, M = C with module action as before and a higher

point derivation D = {D1, D2, . . . } of infinite order given by Dip = p(i)(1)
i! , so

M∞ = C0[[X]], with powers in M∞ move to the right due to the convolution
product (and thus, they would eventually be zero in M r, r ∈ N); of course,
continuity of multiplication is apparent if one thinks of the usual coordinate-
wise convergence topology τc on C[[X]], which is equivalent to d. We wish to
show that given a sequence (αi) of complex numbers, there exists a sequence
(pn) in A with ‖pn‖∞ → 0 and Di(pn) → αi for each i. By Loy’s arguments
on p. 415, for each fixed k ∈ N, there is a sequence (pkn) in A such that
‖pkn‖∞ → 0 and Di(p

k
n)→ αi for i = 1, . . . , k. For each k ∈ N, choose a poly-

nomial pk = pkn from the sequence (pkn) by taking n sufficiently large such that
‖pk‖∞ < 1

k and |Di(pk) − αi| < 1
k for i = 1, . . . , k. Then we have a sequence

(pk) such that ‖pk‖∞ < 1
k and for i ∈ N, for any k > i, |Di(pk)−αi| < 1

k . Thus
‖pk‖∞ → 0 and for every i ∈ N, Di(pk) → αi. The existence of the required
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sequence (pn) is now clear. Now let Θ denote the extension by continuity of
the isomorphism θDι to AD. Then if (x, {αi}) ∈ A⊕M∞ we have

(x, {αi}) = (x, {Dix}) + (0, {αi −Dix}) ∈ Θ(AD),

and since Θ is an isometry and AD is complete, it follows that Θ maps AD

onto A∞ = A⊕M∞ which contains the radical {0} ⊕M∞ (note that, by an
analogous argument, preceding to Theorem 2.3, RadA∞ = RadA ⊕M∞ =
{0} ⊕M∞). Thus AD has a radical which has quasinilpotent non-nilpotent
elements. We do not know whether AD has a unique Fréchet algebra topology.
However we have the following result whose proof we omit (see [8, 2.2.46 (ii)]
for details on the Dales-McClure Banach algebra, and to know about the two
inequivalent Fréchet algebra topologies on AD, follow either Theorem 3.4 or
Theorem 2.3).

Theorem 4.1. Let A be the Dales-McClure Banach algebra, D = (Di)
a totally discontinuous higher point derivation of infinite order at a charac-
ter φ. Then AD admits two inequivalent Fréchet algebra topologies and has
quasinilpotent non-nilpotent elements.

Remark E. Since Θ above is an isometric isomorphism, AD is always a
Fréchet algebra, and it can never be a Banach algebra, even if A is a normed
(resp., Banach) algebra. This happens because D = {D1, D2, . . . } is a totally
discontinuous higher point derivation of infinite order (with M = C), and so,
by [12, Theorem 11.2], we have an epimorphism onto M∞ = FX. In other
words, Loy’s question cannot have a solution in the Banach case. However,
we do not know whether Loy’s question can have a solution in the Banach
case otherwise (cf. a question raised in Introduction).

Now we can consider the Fréchet case by combining the situations given
in Section 3 and in the Banach case above. We consider a specific case below.

Let A be the algebra of polynomials on a fixed open neighbourhood U
of the closed unit disc ∆, with seminorms pk generating the compact-open
topology, M = C with module action as before and a higher point derivation
D of infinite order as above, so that

q′k,D(p) = pk(p) +
∞∑
i=1

∣∣p(i)(1)
∣∣

i!
.

Following the arguments given in the Banach case above, we see that AD has
a radical which has quasinilpotent non-nilpotent elements. We do not know
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whether AD has a unique Fréchet algebra topology. However we have the fol-
lowing result whose proof we omit. We note that the Dales-McClure Fréchet
algebra can be constructed along the lines of the Dales-McClure Banach al-
gebra by replacing a weight ω on Z+ by an increasing sequence W = (ωk)
of weights on Z+. Thus, V̌WE =

⋂∞
k=1 V̌ωk

E, is an analogue of the Beurling-
Fréchet algebra (see [4, Example 1.2]).

Theorem 4.2. Let A be the Dales-McClure Fréchet algebra, D = (Di) a
totally discontinuous higher point derivation of infinite order at a continuous
character φ. Then AD admits two inequivalent Fréchet algebra topologies and
has quasinilpotent non-nilpotent elements.

We now obtain some special results when A is the algebra of polynomials
on a fixed open neighbourhood U of the closed unit disc ∆. Let (Mk) be a
sequence of positive reals such that

Mk

k!
≥ Mi

i!

Mk−i
(k − i)!

for 1 ≤ i < k so that, in particular, the sequence k 7→ ( k!
Mk

)
1
k is monotonic

decreasing, with limit γ ≥ 0. Consider the seminorms qk on A given by

qk(p) = pk(p) +

∞∑
i=1

∣∣p(i)(1)
∣∣

Mi

and let A∞ be the completion of A under (qk). Then we have the following
result (see Loy’s Theorem 3 for details in the Banach case).

Theorem 4.3. A∞ is semisimple if γ > 0. For each k ∈ N, (A, qk) is
natural if and only if γ = 0.

Proof. Let A∞ = lim
←−

(
A∞

)
k

be the Arens-Michael representation of A∞,

then for each k ∈ N,
(
A∞

)
k

satisfies Loy’s Theorem 3 (and hence, the use of
(Mk) is implicit and necessary for the Fréchet case). Thus, for each k ∈ N,(
A∞

)
k

is semisimple if γ > 0, and so, A∞ is also a semisimple Fréchet algebra.
Moreover, for each k ∈ N, (A, qk) is natural if and only if γ = 0.

Remark F. In this case, the inverse limit algebra (A, (qk)) is also natural.
However we note that for the inverse limit algebra (A, (qk)) to be natural, then
it is not necessary that each (A, qk) is natural. We exhibit this interesting case
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as follows. For each fixed k ∈ N, let
{
Mk

i

}
be a sequence of positive reals

with properties as given above. Consider the seminorms q′k on A given by

q′k(p) = pk(p) +
∞∑
i=1

∣∣p(i)(1)
∣∣

Mk
i

and let A∞ be the completion of A under (q′k). We select the sequence
{
Mk

i

}
of sequences of positive reals such that the limit γk > 0 for each fixed k, but
γk → 0 as k → ∞, that is, γ = lim γk = 0. Thus, by Loy’s Theorem 3,
each (A, q′k) is not natural and the completion

(
A∞

)
k

is semisimple. Then

A∞ = lim
←−

(
A∞

)
k

is a semisimple Fréchet algebra. This shows that the con-

verse of Theorem 4.3 does not hold. Also the inverse limit algebra (A, (q′k))
is natural. To exhibit the above situation, take Mk

i = kii! so that γk = 1
k

with lim γk = 0. On the other hand, Rolewicz in [23] constructed an example
of a semisimple Fréchet algebra which is not an inverse limit of semisimple
Banach algebras. So it is possible to have A∞ = lim

←−

(
A∞

)
k

a semisimple

Fréchet algebra such that each
(
A∞

)
k

is not a semisimple Banach algebra,
and so, by Loy’s Theorem 3, γk = 0 for each k (with γ = lim γk = 0) which im-
plies that each (A, q′k) is natural and so is the inverse limit
algebra (A, (q′k)).

Acknowledgements

The author thanks Professor Richard J. Loy of the Australian Na-
tional University (Canberra) for fruitful comments, especially for his
valuable comments pertaining to my attempt to his question. Thanks are
also due to Professor Ajit Iqbal Singh (Delhi) for her valuable comments.
He is also grateful to the referee for a careful reading of the manuscript.

References
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