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1. Introduction

The concept of symplectic geometry emerged in the early nineteenth cen-
tury in the study of classical mechanical systems, such as planetary orbits.
Many important geometric problems can be naturally formulated in the con-
text of symplectic geometry, thus it is also a widely useful language in mathe-
matical physics, representation theory etc. Over time, it became an important
and independent mathematical subject which is an extension of complex ge-
ometry. A symplectic manifold is a smooth manifold M endowed with a
2-form ω on M which is closed and nondegenerate. The precised definition
and properties may be seen in [14]. A linear symplectic manifold (or a special
symplectic manifold in [6]) is a symplectic manifold E, where E is the total
space of a vector bundle E →M and ω is a linear 2-form on E (see Section 4).
A symplectic vector bundle over a manifold M is a pair (E,ω) consisting of
a real vector bundle q : E →M and a smooth section ω of the vector bundle∧2E∗ → M such that (Ex, ωx) is a symplectic vector space for all x ∈ M .
Each linear symplectic manifold induces a symplectic vector bundle (TE, ω)
over E. Kurek and Mikulski described all natural symplectic structures from
a smooth manifold M to its tangent bundles TM (see [11]) and they studied
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the complete lifts of symplectic structures to tangent bundles of higher order
T rM (see [12]).

Okassa studied the lifts of symplectic structures to bundles of infinitely
near points (see [16]). Lifts of symplectic structures to Frobenius-Weil bun-
dles TAM were studied by several authors namely [2, 3, 4, 9] where the authors
deduced almost symplectic forms on TAM from prolongations of almost sym-
plectic structures on a maniflod M .

In this paper, we study the lifting of symplectic vector bundles, linear sym-
plectic manifolds and the Poisson manifold associated to a linear symplectic
manifold using a Frobenius-Weil functor. We begin by giving an intrinsic de-
scription of the structure of linear k-forms developped in [10]. We then show
that lifts of k-forms, symplectic manifolds and symplectic vector bundles with
respect to tangent functors of high order may be generalized to Frobenius-Weil
functors. Finally, we prove that the complete lift of a symplectic or a semi-
Riemannian connection is also a symplectic or a semi-Riemannian connection.
These results are the continuation of those developped over last 25 years by
many authors, some of whom have been cited above. In particular, symplectic
structures are involved in the Hamilton equation of motion. For this reason
the results of this paper are also interesting from the point of view of theorical
mechanics. This article is divided into two main parts: the preliminaries and
the main results.

2. Preliminaries

Weil algebra [8]: A Weil algebra is a finite-dimensional quotient of
the algebra of germs Ep = C∞0 (Rp,R) (p ∈ N∗). Let us denote by Mp ⊆ Ep
the ideal of germs vanishing at 0; hence (Ep,Mp) is a local algebra. For a
Weil algebra A = Ep/I, there exists a non negative integer k such the ideal I
contains the power Mk

p of the maximal ideal Mp. We denote r the width of
A, i.e., the smallest integer such that I ⊇Mr+1

p ; hence A = R·1A ⊕N where

N =
({
eα, α ∈ Nk, 1 ≤ |α| ≤ r

})
with eα := Xα + I is the vector subspace〈{

eα, α ∈ Nk, 1 ≤ |α| ≤ r
}〉

spanned by vectors eα, |α| ≤ r; N is in fact the
nilpotent ideal of A and (A,N) is a local algebra. Conversely, Given a real
commutative, associative, unital algebra A such that dimR (A) < +∞ and
A = R·1A ⊕ N with N a nilpotent ideal of A, if (X1, . . . , Xp) is a basis of
N and r a non negative integer such that N r+1 = 0, the surjective algebras
homomorphism Ep → A, [f ]0 7→

∑
α∈Np

1
α!Dαf (0) (X1)α1 · · · (Xp)

αp induces an

algebra isomorphism Ep/I → A with I its kernel.
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Example 2.1. R = Ep/Mp and D = E1/M1 are Weil algebras; more
generally, Drp := Ep/Mr+1

p is Weil algebra isomorphic to the algebra Jr0 (Rp,R)
of jets of smooth functions on Rp vanishing at 0.

Frobenius-Weil algebra: A Weil algebra A = R·1A ⊕ N is called a
Frobenius-Weil algebra if there is a nondegenerate bilinear form
σ : A × A → R such that σ (ab, c) = σ (a, bc), for all a, b, c in A. Equiv-
alently, A is a Frobenius-Weil algebra if there exists a linear map λ0 : A→ R
such that kerλ0 contains no nonzero ideal of A. More precisely, when σ is
given, λ0 (a) = σ (a, 1A) = σ (1A, a) and when λ0 is given, σ (a, b) = λ0 (ab).
Let I(A) be the set of non trivial ideal of an algebra A. A minimal element of
(I(A),⊆) is called a minimal ideal, i.e., a non zero ideal I of A which contains
no other non zero ideal. The socle of a Weil algebra A = R·1A ⊕N is the set
Soc (A) of a in A such that au = 0A, for all u in N ; Soc (A) is an ideal and
hence a vector subspace of A. Each minimal ideal I of A is contained into
Soc(A) [3, Proposition 2], since 1A − u is invertible for all nilpotent element
u. The correct wording of [3, Proposition 3] is: “Minimal ideals of A are
1-dimensional vector subspaces of Soc (A).” Indeed, for a non zero element
x of Soc (A), I = R·x is clearly a minimal ideal. Conversely, given a non
zero element x of a minimal ideal I, the relation {0A} 6= (x) ⊆ I implies
I = (x) = Ax = {tx : t ∈ R} = Rx, since x ∈ Soc (A). By [3, Proposition 4],
A is a Frobenius-Weil algebra if and only if A has a unique minimal ideal.

Example 2.2. When A = Drp, Soc (A) is the vector subspace spanned

by eα, |α| = r hence dimR Soc (A) =
(
p+r−1
r

)
. Thus Drp is a Frobenius-Weil

algebra if and only if p+ r − 1 = r, i.e., p = 1.

Covariant description of a Weil functor TA :Mf → FM: Let
us denote byMf the category of finite dimensional differential manifolds and
mappings of class C∞, FM the category of fibered manifolds and fibered
manifolds morphisms and VB ⊆ FM the subcategory of vector bundles and
morphisms of vector bundles. Let A = Ep/I be a Weil algebra and consider a
manifold M . In the set of smooth maps ϕ ∈ C∞(Rp,M) such that ϕ(0) = x,
one defines an equivalence relation ∼

x
by: ϕ ∼

x
ψ if and only if [h]x◦ [ψ]0− [h]x◦

[ϕ]0 ∈ I, for all germs [h]x ∈ C∞x (M,R). The equivalence class of ϕ is denoted
by jAϕ and is called the A−velocity of ϕ at 0; the class jAϕ depends only on
the germ of ϕ at 0. The quotient set is denoted by (TAM)x and the disjoint
union of (TAM)x, x ∈M by TAM . The mapping πA,M : TAM →M , jAϕ 7→
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ϕ(0), defines a bundle structure on TAM and for any differentiable mapping
f : M → N , one can associate a bundle morphism TAf : TAM → TAN over
f by: TAf

(
jAϕ

)
= jA(f ◦ ϕ). The correspondence TA : Mf → FM is a

product-preserving bundle functor ([8]).

Example 2.3. When A = Jr0 (Rp,R), then TA is equivalent to the functor
T rp of (p, r)-velocities and when A = E1/M2

1, then TA = T is the tangent
functor.

Remarks 2.4. (1) Weil functors preserve immersions, embeddings, sub-
mersions, surjective submersions, transversal maps, . . .

(2) Let TA, TB : Mf → FM be Weil functors. Hence TA ◦ TB is
also a Weil functor; its corresponding Weil algebra is canonically isomorphic
to the tensor product B ⊗R A of A and B. Moreover there is a bijective
correspondence between the set of natural transformations TA → TB and the
set of all algebra homomorphisms A→ B.

For a Weil algebra A = R·1A ⊕ N , we fix a subset Λ ⊆
{
α ∈ Np :

1 ≤ |α| ≤ r
}

such that eα := jA (zα), α ∈ Λ constitute a basis N ; hence
(eα)α∈{0}∪Λ is a basis of A = TAR.

Local coordinate system: For a local coordinate system
(
ui
)

1≤i≤m
on U of a differential manifold M , one can associate an adapted local coordi-

nate system
(
ui, uiβ

)
defined on π−1

A,M (U) by


ui(jAϕ) = ui(ϕ(0)),

uiβ(jAϕ) = 1
β!Dβ(ui ◦ ϕ)(0) +

∑
|α|≤r

α/∈{0}∪Λ

1
α!Dα(ui ◦ ϕ)(0)λβα , (2.1)

for 1 ≤ i ≤ m, β ∈ Λ, where eα =
∑
β∈Λ

λβαeβ , for all α ∈ Np\Λ and 1 ≤ |α| ≤ r.

The flow operator of TA : For a smooth vector field X on a differ-
ential manifold M , let us denote FlX : Ω → M its maximal flow. One can
define a smooth vector field on TAM by:

Xc(u) =
d

dt
TA(FlXt )(u) |t=0 .
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This vector field is called the complete lift of X related to TA. One defines
in this way a natural operator (see [8]), FA : T  TF , given for all manifold
M by: (

FA
)
M

: X(M) −→ X(TAM), X 7−→ Xc, (2.2)

called the flow operator of TA.

Remark 2.5. Xc is a projectable vector field since the following diagram

TAM
Xc

−−−−→ TTAM

πAM

y yT (πAM )

M
πM−−−−→
X

TM

commutes. In particular, (2.2) is a Lie algebra homomorphism.

The canonical flow natural equivalence κ : TA ◦T → T ◦TA [8]:
Let A = Ep/I be a Weil algebra. A natural transformation i : TA◦T → T ◦TA
is called a flow natural transformation if the following diagram

TAM
FAX−−−−→ TTAM

TAX

y iM
↗

yπTAM
TATM −−−−→

TAπM
TAM

commutes for all manifold M and all vector field X on M .

Now, let M be a manifold. For any ζ = jAϕ ∈ TATM , there is a dif-
ferentiable mapping Φ : Rp×R → M such that ϕ(z) = d

dtΦz(t) |t=0, in a
neighbourhood of 0 ∈ Rp (see [8]). By this result, one can define a natural
equivalence

κ : TA ◦ T −→ T ◦ TA (2.3)

as follows:

κM (ζ) =
d

dt
η(t) |t=0 ,

where η : R → TM , t 7→ jAΦt, in a neighbourhood of 0 ∈ R. (2.3) is called
the canonical flow natural equivalence associated to the bundle functor TA.
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Natural transformations sf : TA◦T ∗ → T ∗◦TA [2]: Let us consider
a linear map function f : A→ R; there is a natural transformation

sf : TA ◦ T ∗ −→ T ∗ ◦ TA (2.4)

defined for all manifold M as follows:[
(sf )M

(
jAϕ

)] (
κM

(
jAη

))
:= f

(
jA 〈ϕ, η〉TM

)
,

for all jAϕ ∈ TAT ∗M , jAη ∈ TATM such that TAπ∗M
(
jAϕ

)
= TAπM

(
jAη

)
with 〈, 〉TM : TM ⊕ T ∗M → R the usual pairing.

Frobenius-Weil functors: A Frobenius-Weil functor is a Weil func-
tor TA with A a Frobenius-Weil algebra. Given two Frobenius-Weil functors
TA and TB, the fiber product TA ⊕ TB defined by

TA ⊕ TB (M) = TAM ×M TBM ,

TA ⊕ TB (f) = TAf ×f TBf ,

is Frobenius-Weil functor; the composition TA ◦ TB is also a Frobenius-Weil
functor.

The internalization map of a vector bundle: Let TA be a Frobe-
nius-Weil functor with λ0 : A→ R as the associated linear function.

For a vector bundle (E,M, q), let us consider the vector bundles(
TAE, TAM,TAq

)
,
(
TAE∗, TAM,TAq∗

)
and the non-degenerate bilinear form

〈〈, 〉〉E : TAE ⊕TAM TAE∗ → R given by 〈〈, 〉〉E := λ0 ◦ TA 〈, 〉E . The induced
vector bundles isomorphism

IAE : TAE∗ −→
(
TAE

)∗
(2.5)

over TAM is called the internalization map of (E,M, q) associated to TA.
•When TA = T , IE = IDE : TE∗ → T •E is an isomorphism of double vec-

tor bundles over E∗ and TM from (TE∗;E∗, TM ;M) to (T •E;E∗, TM ;M)
the horizontal dual of (TE;E, TM ;M) (see [13]).
• When E = TM is the tangent bundle of M , it is clear that (sλ0)M =(

κ−1
M

)∗◦ITM , where (κM )∗ denotes the transpose over TAM of κ−1
M : TTAM →

TATM ; the natural equivalence sλ0 is often denoted

εA : TA ◦ T ∗ −→ T ∗ ◦ TA (2.6)

and called the Tulczyjew natural isomorphism associated to TA. Moreover,
by [3, Proposition 6], (2.4) is a natural equivalence if and only if A is a
Frobenius-Weil algebra (with the associated linear form f).
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3. Prolongation of some tensor fields

In all the section, TA is a Weil functor.

Natural transformations χα : TA → TA : Given a vector bundle
(E,M, q), the fibered multiplication mE : R × E → E is a vector bundle
morphism over the projection R × M → M ; the induced map TA

(
mE
)

:
A× TAE → TAE determines for each a in A a natural transformation

Q(a) : TA −→ TA (3.1)

by Q(a)E := TAmE(a, ·).
When eα = jA (zα), α ∈ Np, the natural transformation Q(eα) is denoted

χα : TA → TA. It is clear that

(χα)E
(
jAϕ

)
= jA (zαϕ) , (3.2)

for all smooth map ϕ : Rp → E.

Prolongation of functions: Let us recall these tools of [4].
Let f : M → R be a smooth function. The λ-lift of f is f (λ) := λ ◦ TAf ,

for λ : A → R a linear map. It is easy to check that (f ◦ h)(λ) = f (λ) ◦ TAh,

for h : N → M a smooth map and (f1 + f2)(λ) = f
(λ)
1 + f

(λ)
2 , for all smooth

functions f1, f2 on M . One denotes

f (α) := e∗α ◦ TAf (3.3)

the lift of f ∈ C∞ (M,R) associated to the linear form e∗α, α ∈ {0} ∪ Λ, with
the convention f (α) = 0, for all α in Zp\{0} ∪ Λ. f c := f (0) = f ◦ pAM is

called the complete lift of f . In particular when
(
ui, uiβ

)
is the adapted local

coordinate system (2.1) of TAM associated to
(
ui
)
, we have{ (

ui
)(0)

= ui,(
ui
)(α)

= uiα for α in Λ .

This implies that functions f (α), α ∈ {0}∪Λ generates the algebra C∞
(
TAM

)
of smooth functions on TAM .

In particular, when f : E → R is constant or linear on fibres of a vector
bundle q : E →M , the λ-lift of f is also constant or linear on fibres.
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Prolongation of vector fields: For a vector bundle (E,M, q), a
smooth section σ ∈ Γ (E) and an element a of A, one can define a smooth
section

σ(a) := Q(a)E ◦ TAσ (3.4)

of the vector bundle
(
TAE, TAM,TAq

)
. In particular, given a smooth vector

field X on M , one can associate a vector field on TAM ,

X(a) = κM ◦Q(a)TM ◦ FX = Q(a)M ◦ FMX, (3.5)

where Q(a) : TTA → TTA is the natural affinor defined by Q(a)M = κM ◦
Q(a)M ◦ κ−1

M .

Let λ : A → R a linear map and λa : A → R the linear map given by
λa (x) = λ (ax), for a ∈ A. The following equalities hold (see [4]):

X(a)
(
f (λ)

)
= (X (f))(λa) (3.6)

and [
X(a), Y (b)

]
= [X,Y ](ab) , (3.7)

for all smooth function f , vector fields X,Y on M and a, b in A.

Similarly, one denotes

X(α) := Q(eα)M ◦ FMX (3.8)

the lift of X ∈ X (M) associated to the vector eα, α ∈ Np; its is clear that
X(α) = 0, for |α| > r. We have



X(0)
(
f (β)

)
= [X (f)](β) if β ∈ {0} ∪ Λ ,

X(α)
(
f (0)

)
= 0 if 0 6= α ∈ Np,

X(α)
(
f (β)

)
= [X(f)](0) +

∑
γ∈Λ, α+γ∈Λ

δβα+γ [X(f)](γ)

+
∑

γ∈Λ, α+γ 6∈Λ

δβα+γ [X(f)](γ) if α, β ∈ Λ .

In particular, we have Xc (f c) = (X (f))c.
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Local expression: Let X ∈ X (M) with X |U=
m∑
i=1
Xi ∂

∂ui
; we have

Xc
(
ui
)

=
(
X
(
ui
))(0)

= Xi ◦ pAM ,

Xc
(
uiβ
)

=
(
Xi
)(β)

, β ∈ Λ ,

X(α)
(
ui
)

= 0 if α ∈ Np, α 6= 0 ,

X(α)
(
uiβ
)

= Xi ◦ pAM +
∑

γ∈Λ, α+γ∈Λ

δβα+γ

(
Xi
)(γ)

+
∑

γ∈Λ, α+γ 6∈Λ

λβα+γ [X(f)](γ) if α, β ∈ Λ ;

hence

Xc |TAU = Xi ◦ pAM
∂

∂ui
+
∑
β∈Λ

(
Xi
)(β) ∂

∂uiβ
(3.9)

and

X(α) |TAU =
∑
β∈Λ

[
Xi ◦ pAM +

∑
γ∈Λ

α+γ∈Λ

δβα+γ

(
Xi
)(γ)

+
∑
γ∈Λ

α+γ /∈Λ

λβα+γ

(
Xi
)(γ)

]
∂

∂uiβ
,

for α 6= 0 in Np.
One may also deduce that

(
∂

∂ui

)c
=

∂

∂ui
and

(
∂

∂ui

)(α)

=
∂

∂uiα
, 1 ≤ i ≤ m and α ∈ Λ .

Prolongations of k-forms: Each k-form ω on a manifold M may
be viewed as a skew symmetric k-linear function ω̃ :

⊕k TM → R. Since
κM : TATM → TTAM is an isomorphism of vector bundles over TAM , one
defines in [4] a k-form ω(λ) on TAM by:

ω̃(λ) = λ ◦ TA (ω̃) ◦
⊕k

κ−1
M , (3.10)

for a linear fonction λ : A→ R. The following properties are satisfied by ω(λ):
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Proposition 3.1. ([4]) For all a1, . . . , ak ∈ A, all X1, . . . , Xk ∈ X(M)
and all smooth function f on M , we have:

ω(λ)
(
X

(a1)
1 , . . . , X

(ak)
k

)
= (ω (X1, . . . , Xk))

(λa1...ak),(
TAf

)∗ (
ω(λ)

)
= (f∗ω)

(λ)

,

dω(λ) = (dω)
(λ)

.

(3.11)

In particular, if ω is closed, then ω(λ) also closed.

Remark 3.2. Since ω may also be viewed as a skew symmetric (k − 1)-
linear morphism ω[ :

⊕k−1 TM → T ∗M , ω(λ) is also given by[
ω(λ)

][
= (sλ)M ◦ T

A
(
ω[
)
◦
⊕k−1

κ−1
M , (3.12)

where sλ : TAT ∗ → T ∗TA is the natural transformation (2.4). In particular,
when (M,ω) is a symplectic manifold, TA a Frobenius-Weil functor and λ0

the associated linear function, hence[
ω(λ0)

][
:= εAM ◦ TA

(
ω[
)
◦ κ−1

M

is a vector bundle isomorphism over idTAM , so ω(λ0) is a closed nondegenerate
2-form on TAM , i.e.,

(
TAM,ω(λ0)

)
is a symplectic manifold. ω(λ0) is denoted

ωc and called the complete lift of ω to TAM .

4. Some linear tensor fields on vector bundles

Double vector bundle:

Definition 4.1. (See [13] or [6]) A double vector bundle is a system
(D;A,B;M) of four vector bundle structures

D
qDB−−−−→ B

qDA

y yqB
A

qA−−−−→ M

(4.1)

where D is a vector bundle on bases A and B, which are themselves vector
bundles on M , such that each of the four structure maps of each vector bun-
dle structure on D (projection, addition, scalar multiplication and the zero
section) is a vector bundle morphism with respect to other structure.
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Remark 4.2. The double tangent vector bundle of a vector bundle (E,M, q)

TE
Tq−−−−→ TM

πE

y yπM
E

q−−−−→ M

(4.2)

allows the concept of linear vector fields, i.e., sections of TE → E that
are morphisms of vector bundles with respect to the vector bundle structure
TE → TM . This may be generalize to an arbitrary double vector bundle.

The vertical dual of the tangent double vector bundle: Given
a vector bundle (E,M, q), the vertical dual

T ∗E
rE−−−−→ E∗

π∗E

y yq∗
E

q−−−−→ M

(4.3)

of the tangent double vector bundle (4.2) is defined as follows: T ∗E → E
is the dual of the tangent bundle TE → E; if τE : E ×M E → V E ⊂ TE,
(e, e′) 7→ d

dt (e+ te′) |t=0 is the vertical lift ([8]) of E, rE = p2 ◦ τ∗E where
p2 : q∗ (E∗) → E∗ is the canonical projection. The fiber over θ ∈ E∗x is the
set of all linear functions Φ : TeE → R (e ∈ Ex) such that Φ ◦ τE (e, ·) = θ.
Moreover given a local coordinate system

(
xi, yj

)
of E deduced from a fibered

chart, {
rE
(
dxi
)

= 0E
∗ ◦ q ,

rE
(
dyj
)

= εj ◦ q ,
(4.4)

where 0E
∗

: M → E∗ is the zero section and εj the local section corresponding
the linear function yj . Finally, the addition and the multiplication of T ∗E →
E∗ are defined on fibres by

(
Φ +
E∗

Φ′
)

(ξ′′) = Φ (ξ) + Φ′ (ξ′) ,(
s ·
E∗

Φ

)(
s ·
TM

ξ

)
= sΦ (ξ) ,

(4.5)

where Φ ∈ T ∗eE, Φ′ ∈ T ∗e′E, ξ′′ ∈ Te+e′E, ξ′′ = ξ +
TM

ξ′ with ξ ∈ TeE

and ξ′ ∈ Te′E.
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Linear k-forms: Let (E,M, q) be a vector bundle. A smooth
k-form ω : E →

∧k T ∗E (k ≥ 1) is said linear if the associated morphism
of vector bundles ω[ :

⊕k−1 TE → T ∗E over E is also a morphism of vector
bundles ⊕k−1 TE

ω−−−−→ T ∗E⊕k−1 Tq

y yrE⊕k−1 TM
ω−−−−→ E∗

over a smooth multilinear map ω :
⊕k−1 TM → E∗. Equivalently, if

ω̃ :
⊕k TE −→ R⊕k TeE 3 (ξ1, . . . , ξk) 7−→ ω (e) · (ξ1, . . . , ξk)

denotes the corresponding multilinear function, hence ω is linear if and only
if ω̃ is a morphism of vector bundles⊕k TE

ω̃−−−−→ R⊕k Tq

y y⊕k TM −−−−→ {pt}

over a constant map (see [10]). In local coordinate
(
xi, yj

)
of E, each linear

k-form (ω, ω) can be written

ω |q−1(U) =
1

(k − 1)!
ωi1...ik−1j

dxi1 ∧ · · · ∧ dxik−1 ∧ dyj

+
1

k!
ωi1...ikjy

jdxi1 ∧ · · · ∧ dxik ,
(4.6)

where ω
(

∂
∂xi1

, . . . , ∂

∂xik−1

)
= ωi1...ik−1j

εj with
(
εj
)

the local frame of E∗

associated to linear functions yj : q−1(U)→ R.

The structure of linear k-forms [10]: We give there an intrinsic
description of the structure of a linear k-form on E. Let us denote Ωh (M ;G)
the module of G-valued h-forms on M , i.e., the module of smooth sections
of the vector bundle

∧h T ∗M ⊗ G over M . If `E : Γ (E∗) → C∞` (E) is the
canonical isomorphism of modules over C∞ (M), we have `q∗(E) (q∗ (σ))e =
`E (σ)q(e) and there exists a morphism of modules over C∞ (M),

Ωh (E; q∗ (E∗)) −→ Ωh (E) , ϕ 7−→ ϕ̃ ,
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given by ϕ̃ (X1, . . . , Xk−1) = `q∗(E) (ϕ (X1, . . . , Xk−1)).

Let (ω, ω) be a linear k-form on E. ω :
⊕k−1 TM → E∗ is a E∗-valued

(k − 1)-form on M , i.e., ω ∈ Ωk−1 (E;E∗); its pull-back by the projection

q : E → M is q∗ (ω) ∈ Ωk−1 (E; q∗ (E∗)), hence ω̃ := q̃∗ (ω) is a (k − 1)-form
on E. If locally ω |U= 1

(k−1)!ωi1 . . . ik−1jdx
i1 ∧ · · · ∧ dxik−1 ⊗ εj , it is clear by

(4.6) that ω̃ |q−1(U)=
1

(k−1)! ωi1...ik−1j
◦ qyjdxi1 ∧ · · · ∧ dxik−1 ; let us consider

µ := (−1)k−1 ω̃ ∈ Ωk−1(E).

Proposition 4.3. We have

ω = dµ+ ν ,

where ν ∈ Ωk−1 (E;T ∗E) is a linear k-form over the zero map. Moreover, in
the case of closed k-forms, ω determines ω.

Proof. Indeed ν := ω − dµ is clearly a linear k-form on E and since dµ =
1

(k−1)!∂ikωi1...ik−1j
yjdxi1 ∧ · · · ∧ dxik + 1

(k−1)!ωi1...ik−1j
dxi1 ∧ · · · ∧ dxik−1 ∧ dyj ,

ν |q−1(U):=

(
1

k!
ωi1...ikj −

1

(k − 1)!
∂ikωi1...ik−1j

)
yjdxi1 ∧ · · · ∧ dxik

is a linear k-form on E |U over the zero multilinear map by (4.4). Moreover,
dω = 0 iff dν = 0, i.e., ν = 0, hence ω = dµ is entirely determined by ω.

Remark 4.4. For each morphism of vector bundles ρ : E → T ∗M , the
pull-back of the Liouville 1-form λM ∈ Ω1 (T ∗M) by ρ is equal to ρ̃∗, i.e.,
ρ∗ (λM ) = ρ̃∗. Indeed if λM |π∗−1

M (U)= pidx
i and ρ∗ (∂i) =ωijε

j , we have

ρ∗ (λM ) |q−1(U)= pi ◦ ρd
(
xi ◦ ρ

)
= pi ◦ ρdxi; but

pi ◦ ρ (e) = ρ (e)
(

(∂i)q(e)

)
= yj (e) ρ (εj)

(
(∂i)q(e)

)
= yj (e)ωkj (q(e)) dxk

(
(∂i)q(e)

)
=
(
ωij ◦ qyj

)
(e),

hence ρ∗ (λM ) |q−1(U)= ωij ◦ qyjdxi.

Symplectic forms: Now, let (ω, ω) be a linear 2-form on E; hence ω is
a morphism of double vector bundles over E and ω; let us denote ρ : E → T ∗M
its core morphism. Since the transpose ω∗ of ω is a morphism of double vector
bundles over E and ρ with ω∗ as core morphism ([13, Proposition 9.2.1]), the
equality ω∗ = −ω implies ρ∗ = −ω. The following result follows:
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Proposition 4.5. ([6]) ω is closed if and only if ω is the pull-back of the
canonical symplectic form ωM on T ∗M by ρ, i.e., ρ∗ωM = ω.

Proof. ω is closed if and only if ω = d (−ω̃) by Proposition 4.3; moreover

ρ∗ = −ω hence ω = d
(
ρ̃∗
)

= d (ρ∗ (λM )) = ρ∗ (dλM ) = ρ∗ (ωM ).

Euler vector field of a vector bundle: Let (E,M, q) be a vector
bundle.

The group of homotheties induces a 1-parameter group

h : R× E −→ E , (t, u) 7−→ et · u ;

the associated vector field ξE ∈ X(E) is given by:

ξE (u) =
d

dt
et · u |t=0 .

Moreover ξE is a linear vertical vector field since

E
ξE−−−−→ TE

q

y yT (q)

M
0TM−−−−→ TM

is a morphism of vector bundles. If
(
xi, yj

)
is local coordinate system of E

deduced from a fibered chart
(
q−1 (U) , ϕ

)
and ξE |q−1(U)= ξj ∂

∂yj
, we have

ξj (u) =
·
yj ◦ ξE (u) =

d

dt
yj
(
et · u

)
|t=0 =

d

dt
etyj (u) |t=0 = yj(u) ,

for all u ∈ q−1 (U), hence

ξE |q−1(U) = yj
∂

∂yj
.

ξE is called the Euler-Liouville vector field associated to E ([5]). ξE is
clearly complete and for all vector bundle morphism f : E → F , ξE and ξF
are f -related.

Remarks 4.6. (1) Let us denote q∗C∞ (M) = {h ◦ q : h ∈ C∞ (M)} the
module of smooth functions E → R constant on fibres and C∞` (E) that of
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functions linear on fibres. Since each linear vector field is determined by its
values on q∗C∞ (M) and C∞` (E) (see [13]), it is also clear that ξE is the only
linear vertical vector field on E such that

LξEf = ξE (f) = f, (4.7)

for all f ∈ C∞` (E).

(2) More generally, let ϕ : E →
∧k T ∗E be a linear k-form, i.e., a k-form

such that ϕ :
k⊕
TE → R is a linear function when TE is endowed with its

vector bundle structure on TM . Hence

LξEϕ = ϕ .

Indeed for all u in E,

LξEϕ(u) =
d

dt

(
FlξEt

)∗
ϕ(u) |t=0

=
d

dt
ϕetu ◦

k
⊕
[
et ·
TM

idTE

]
|t=0

=
d

dt
etϕu |t=0 (since ϕ is linear)

= ϕu .

5. Main results

In this section, TA is a Frobenius-Weil functor with λ0 as the associated
linear form

Prolongations of Euler vector fields: Let E be a vector bundle.
According to (3.8), one can define some lifts

ξ
(α)
E := Q(eα)E ◦ FEξE , (5.1)

of the Euler-Liouville vector field ξE of E, associated to eα, α ∈ Np.

Proposition 5.1. ξ
(0)
E = (ξE)c is the Euler-Liouville vector field ξTAE of

the vector bundle
(
TAE, TAM,TAq

)
.
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Proof. In a fibered chart (q−1(U), xi, yj) of E, ξE |q−1(U) = yj ∂
∂yj

then in

the local coordinate (xi, xiα, y
j , yjα) of TAE, we have

(ξE)c |TAq−1(U)= yj ◦ pAE
∂

∂yj
+
∑
β∈Λ

yjβ
∂

∂yjβ
,

according to (3.9).

Corollary 5.2. (i) ξTAE is the only linear vertical vector field on TAE
such that ξTAE(f (α)) = f (α), for all f in C∞` (E) and α ∈ Np.

(ii) Moreover for any linear k-form on E, we have:

Lξ
TAE

ϕ(α) = ϕ(α), α ∈ {0} ∩ Λ .

Proof. (i) By Remark 4.6 (1), ξTAE is the only linear vertical vector field
on TAE such that ξTAE(f̃) = f̃ , for all f̃ in C∞`

(
TAE

)
and since this module

is generated by lifts f (α), α ∈ Np of f in C∞` (E), ξTAE is the only linear
vertical vector field on TAE such that ξTAE(f (α)) = f (α), for all f in C∞` (E)
and α ∈ Np.

(ii) By Remark 4.6 (2) since ϕ(α) is a linear k-form.

Proposition 5.3. For any vector bundle morphism f : E → F , Euler
vector fields ξTAE and ξTAF are TAf -related.

Proof. Indeed

TTAf ◦ ξTAE = TTAf ◦ κE ◦ TA (ξE)

= κF ◦ TATf ◦ TA (ξE) (since κ is a natural transformation)

= κF ◦ TA (Tf ◦ ξE)

= κF ◦ TA (ξF ◦ f) (since ξF are f -related)

= ξTAF ◦ TAf,

hence TTAf ◦ ξTAE = ξTAF ◦ TAf .

Prolongations of linear k-forms: For a linear k-form (ω, ω) on E,
let us consider its complete lift ωc on TAE given in Remark 3.2 by:

[ωc][ = εAE ◦ TAω[ ◦
⊕k−1

κ−1
E .
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Theorem 5.4. Hence (ωc, ωc) is a linear k-form with ωc = IAE ◦ TAω ◦⊕k−1 κ−1
M . In particular, if (ω, ω) is a linear symplectic form, (ωc, ωc) is also

a linear symplectic form with the core morphism ρc := εAM ◦ TAρ.

Proof. ωc is a k-form on TAE by Remark 3.2 and since rTAE = IAE ◦TArE ◦(
εAE
)−1

: T ∗TAE →
(
TAE

)∗
, the second part of the proof is clear.

Let (ω, ω) be a linear 2-form on E and ρ : E → T ∗M a morphism of vector
bundles over M .

Corollary 5.5. Hence ωc is closed if and only if (ρc)∗ ωcM = ωc, where
ωcM denotes the complete lift of the canonical symplectic form ωM on T ∗TAM .

Prolongations of symplectic vector bundles: Let (E,M, q) be
a vector bundle of rank 2n.

A symplectic form on (E,M, q) is a fibrewise smooth bilinear function
ω : E ⊕ E → R endowed with a symplectic structure on each fiber. A
pair (E,ω) is called a symplectic vector bundle if ω is a symplectic form on
(E,M, q). Given two symplectic vector bundles (E,ω) and (E′, ω′), a vector
bundle isomorphism f : E → E′ is called a symplectomorphism if f∗ (ω′) = ω,

i.e., f∗x

(
ω′f(x)

)
= ωx, for all x in M . It is clear that each symplectic manifold

(M,ω) induces a symplectic vector bundle (TM,ω).

Let ω[ : E → E∗ be the vector bundle isomorphism associated to a sym-
plectic form ω on (E,M, q); there is a well-defined symplectic form ωA on the
vector bundle (TAE, TAM,TAq) induced by the vector bundle isomorphism
IAE ◦ TAω[ : TAE →

(
TAE

)∗
. We have

ωA = λ0 ◦ TAω : TAE ⊕ TAE −→ R . (5.2)

Proposition 5.6. Hence
(
TAE,ωA

)
is a symplectic vector bundle.

Definition 5.7. ωA is called the complete lift of ω to TAE → TAM .
The symplectic vector bundle

(
TAE,ωA

)
is called the complete lift of (E,ω)

to TAE → TAM .

Proposition 5.8. Let (E,ω), (F, µ) be two symplectic vector bundles and
f : E → F a symplectomorphism. Then TAf : TAE → TAF is also a
symplectic isomorphism.
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Proof. Indeed

(TAf)∗µA = (f∗µ)A = ωA.

So TAf is a symplectomorphism.

Prolongations of symplectic connections: Let (E,ω) be a sym-
plectic vector bundle. A linear connection on (E,M, q) given by its covariant
derivative ∇ : (X,σ) 7→ ∇Xσ is said symplectic if its covariant derivative
∇Xω along each smooth vector field X on M vanishes, i.e.,

∇Xω (σ1, σ2) := X · ω (σ1, σ2)− ω (∇Xσ1, σ2)− ω (σ1,∇Xσ2) = 0 .

In [17] the author defined the complete lift T AΓ of an arbitrary connec-
tion on a fibered manifold. In the particular case of linear connections on a
vector bundle (E,M, q), the following results are generalizations of some
results of [1]:

Proposition 5.9. ([15]) Let Γ be a linear connection on (E,M, q), ∇ its
covariant derivative, T AΓ the complete lift of Γ to (TAE, TAM,TAπ) and ∇A
the covariant derivative associated to T AΓ. Then T AΓ is the unique linear
connection on (TAE, TAM,TAπ) such that

∇A
X(α)σ

(β) = (∇Xσ)(α+β), α, β ∈ Np, (5.3)

for all smooth sections σ : M → E and X ∈ X(M).

Corollary 5.10. ([15]) Let Γ be a linear connection on M , ∇ its co-
variant derivative, Γc the image of T AΓ by the vector bundles isomorphism
κM : TATM → TTAM . Then Γc is the unique linear connection on TAM
such that

∇c
X(α)Y

(β) = (∇XY )(α+β), α, β ∈ Np, (5.4)

for all vector fields X, Y ∈ X(M).

Now, let Γ be a linear connection on (E,M, q).

Theorem 5.11. If Γ is a symplectic connection on (E,ω) then T AΓ is
also a symplectic connection on

(
TAE,ωA

)
. In particular, the complete lift

Γc of a symplectic connection Γ on TM is a symplectic connection on TTAM .
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Proof. Indeed, for all smooth sections σ1, σ2 : M → E and X ∈ X(M),

∇A
X(α)ω

A
(
σ

(β)
1 , σ

(γ)
2

)
= X(α) · ωA

(
σ

(β)
1 , σ

(γ)
2

)
− ωA

(
∇A
X(α)σ

(β)
1 , σ

(γ)
2

)
− ωA

(
σ

(β)
1 ,∇A

X(α)σ
(γ)
2

)
= X(α) · (ω (σ1, σ2))

(
(λ0)eβ+γ

)
− ωA

(
(∇Xσ1)(α+β), σ

(γ)
2

)
− ωA

(
σ

(β)
1 , (∇Xσ2)(α+γ)

)
= [X · ω (σ1, σ2)]

(
(λ0)eα+β+γ

)
− [ω (∇Xσ1, σ2)]

(
(λ0)eα+β+γ

)

− [ω (σ1,∇Xσ2)]

(
(λ0)eα+β+γ

)

= [X · ω (σ1, σ2)− ω (∇Xσ1, σ2)− ω (σ1,∇Xσ2)]

(
(λ0)eα+β+γ

)

= [∇Xω (σ1, σ2)]

(
(λ0)eα+β+γ

)
,

by the definitions, (3.11), (3.6) and (5.3). Since the set of all sections σ(α),
σ : M → E smooth section of E and α ∈ Np, spans the module of smooth
sections of the vector bundle (TAE, TAM,TAπ), the result follows.

Remark 5.12. Replacing (E,ω) with a semi-Riemannian vector bundle
(E, g), a linear connexion ∇ on (E,M, q) is called a metric connection if
the covariant derivative ∇Xg of g along each smooth vector field X on M
vanishes. The tangent bundle TM of a semi-Riemaniann manifold (M, g) is a
semi-Riemannian vector bundle (TM, g).

Now, let Γ be a linear connection on (E,M, q).

Corollary 5.13. If Γ is a semi-Riemaniann connection on (E, g) then
T AΓ is also a semi-Riemaniann connection on

(
TAE, gA

)
. In particular,

the complete lift Γc of a semi-Riemaniann connection Γ on TM is a semi-
Riemaniann connection on TTAM .

Applications in Hamiltonian mechanics: Let (E,ω) a linear sym-
plectic manifold and ω[ : TE → T ∗E its associated morphism of double
vector bundles. The Poisson morphism of the induced linear Poisson mani-
fold (E, π) is π] = (ω[)−1 : T ?E → TE. Hence, {G,H} = ω (XG, XH), where
XG := π](dG), XH := π](dH) are the Hamiltonian vector fields associated
to functions G,H ∈ C∞ (E). In particular if H ∈ C∞` (E) is linear on fibers,
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then XH is a linear vector field. H is called a Hamiltonian function and XH

the Hamiltonian vector field associated to H.
Let Hc = H(0) = H ◦ pAE , the complete lift of H to TAE; it is clear that:

1. (H ◦ h)c = Hc ◦ TAh, for any morphism of vector bundles h : F → E.

2. (H1 +H2)c = Hc
1 +Hc

2 and dHc = (dH)c, for all H1, H2, H ∈ C∞` (E).

Remark 5.14. Let
(
TAE, πc

)
be the Poisson manifold associated to the

linear symplectic manifold
(
TAE,ωc

)
; we have{

(πc)] = κE ◦ TAπ] ◦ (εAE)−1 : T ∗TAE → TTAE ,

XHc = (XH)c ,
(5.5)

for all H ∈ C∞l (E). Indeed (πc)] =
[
(ωc)[

]−1
= κE ◦ TAπ] ◦ (εAE)−1 and

XHc = (πc)] (dHc) = κE ◦ TAπ] ◦ (εAE)−1 ((dH)c)

= κE ◦ TAπ] ◦ (εAE)−1
[
εAE ◦ TA (dH)

]
= κE ◦ TAXH = (XH)c ,

hence XHc is the complete lift of XH to TAE.

Proposition 5.15. {Gc, Hc} = {G,H}c, for all G,H ∈ C∞l (E).

Proof. Indeed

{Gc, Hc} = XGc(H
c) = (XG)c (Hc)

= (XG (H))c = {G,H}c ,

hence {Gc, Hc} = {G,H}c, for all G,H ∈ C∞l (E).

Definition 5.16. Let (E,ω) a linear symplectic manifold and H∈ C∞` (E)
a Hamiltonian function.

(1) The triple (E,ω,H) is called a Hamiltonian mechanical system.

(2) An integral of motion for (E,ω,H) is a function f with {H, f} =
XH(f) = 0, i.e., f is constant on any trajectory generated by XH .
Note that H itself is an integral of motion for (E,ω,H) ( conservation
of energy). The integrals of motion for (E,ω,H) form a sub-Poisson
algebra of C∞(E).
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Remarks 5.17. (a) Let ϕt be the flow of XH . Then ϕ∗tω = ω for all t ∈ R,
i.e., ϕt is symplectic. Hence ϕct is symplectic.

(b) Let (E,ω,H) be a Hamiltonian mechanical system and (TAE,ωc, Hc)
its complete lift. Hence, if f is an integral of motion for (E,ω,H) then f c is
also an integral of motion for (TAE,ωc, Hc).
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