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F. Marcos b,*

a Institute of Meat and Meat Products, Universidad de Extremadura, 10003, Cáceres, Spain
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A B S T R A C T

Traditional pig breeds, known for their sustainability and superior meat quality, are experiencing growing
consumer preference. The lipid fraction composition of these meats plays a fundamental role in their health
benefits and excellent organoleptic properties. Accordingly, accurate characterisation of intramuscular fat is
crucial for maintaining quality standards and combating fraudulent practices. This study employs benchtop
nuclear magnetic resonance (NMR) spectroscopy to delineate the lipidic profiles of various cuts from two
emblematic Spanish autochthonous pig breeds. The implementation of chemometric and machine learning
models enabled the classification of pork samples based on cut and breed of origin. Moreover, this investigation
pioneers the coupling of benchtop NMR with machine learning models for quantitative purposes, achieving
precise quantification of polyunsaturated, monounsaturated and saturated fatty acids in intramuscular fat. This
novel approach holds promise for enhancing the traceability and authentication of traditional pig products,
fostering consumer confidence and promoting sustainable livestock practices.

1. Introduction

Over the past few years, there has been an increasing demand for
meat products that are both healthy and environmentally friendly.
Consumers are seeking high-quality products that align with the values
of animal welfare and sustainability (Vitale et al., 2020). Locally pro-
duced autochthonous breeds often fulfil these demands by relying on
ancient techniques passed down through generations (Thompson et al.,
2023). These breeds, raised in extensive production systems, contribute
to local ecosystem maintenance, reduced emissions, and cultural heri-
tage preservation (García-Gudiño, N. T. R. Monteiro, Espagnol,
Blanco-Penedo, & Garcia-Launay, 2020; Plieninger et al., 2021). Addi-
tionally, their unique genetic makeup contributes to exceptional product
quality (Pugliese & Sirtori, 2012). This combination fosters high-value
products with a positive local economic impact.

Within the Iberian Peninsula, indigenous pig breeds (Sus scrofa
domestica) can be classified into two distinct genetic lineages: Mediter-
ranean and Celtic (Gama et al., 2013). The Iberian pig exemplifies the
Mediterranean lineage, traditionally raised in the dehesa ecosystem of

the southwest of the Iberian Peninsula (Ortiz et al., 2021) and known for
its high-quality products, especially dry-cured specialties, which have
achieved wider commercial recognition. In contrast, the Celta pig, a
highly resilient breed perfectly adapted to the forests of the northwest
Iberian Peninsula, represents the Celtic lineage (Temperan, Lorenzo,
Castiñeiras, Franco,& Carballo, 2014). While both breeds are valued for
their unique sensory and flavour characteristics, the Celta pig’s com-
mercial presence may be less extensive, although it is steadily growing.
A characteristic that distinguishes these traditional breeds is their high
intramuscular fat content, which enhances meat juiciness, flavour, and
tenderness. (Scollan, Price, Morgan, Huws, & Shingfield, 2017). We
have recently reported that intramuscular fat (IMF) in Iberian and Celta
pigs ranges between 19 and 26% of the dry weight, with no statistical
differences between breeds (Ramiro et al., 2024). These values are
consistent with those previously reported for other southern European
pig breeds (Pugliese et al., 2012).

A comparative characterisation of these two prized Iberian Peninsula
breeds, the Iberian pig and Celta pig, focusing on the meat quality, could
elucidate the similarities and differences arising from environmental
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conditions, genetic determinants and production practices. This
knowledge would be particularly valuable for understanding the role of
these factors in shaping the lipid profile of intramuscular fat (IMF), a
critical determinant of meat flavour, texture and oxidative stability, all
of which significantly impact consumer acceptance (Wood et al., 2008).

Here, Nuclear Magnetic Resonance (NMR) spectroscopy (Cao et al.,
2021; Pajuelo et al., 2022) emerges as a powerful alternative to the
traditional Gas Chromatography with Flame Ionisation Detection
(GC-FID) method (Ramiro et al., 2024). Unlike GC-FID, which requires
tedious derivatisation (Sandler& Karo, 1992, pp. 83–91), NMR provides
a comprehensive characterisation of the lipid fraction in a single
experiment, offering valuable qualitative and quantitative data.
Furthermore, NMR requires minimal sample preparation and eliminates
the need for calibration curves (Zaukuu, Benes, Bázár, Kovács, & Fodor,
2022). The combination of NMR analysis with chemometrics (Wang
et al., 2022) or machine learning techniques (Corsaro et al., 2022) offers
an exceptional approach to face modern challenges in food science,
particularly for complex food matrices like meat.

Recent advancements in affordable and user-friendly benchtop NMR
spectrometers open new avenues for food analysis (Giberson, Scicluna,
Legge, & Longstaffe, 2021). Combined with chemometrics, benchtop
NMR has been successfully applied to differentiate food products and
assess quality (Galvan, de Aguiar, Bona, Marini, & Killner, 2023; Galvan
et al., 2021; Migues, Rivas, Moyna, Kelly,& Heinzen, 2022; Soyler et al.,
2021). However, its application in meat quality analysis remains largely
unexplored beyond initial studies (Jakes et al., 2015; Pajuelo et al.,
2023).

Multivariate statistical analysis, such as Principal Component Anal-
ysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA),
offer powerful tools for extracting meaningful information from com-
plex datasets like NMR data (Wang et al., 2022). On the other hand,
diverse machine learning algorithms have emerged to resolve classifi-
cation and regression problems on food samples. These techniques have
been widely applied over the last few years for discrimination, classifi-
cation, fraud detection and quality control of foods using data obtained
by different analytical methods (Jiménez-Carvelo, González-Casado,
Bagur-González, & Cuadros-Rodríguez, 2019). While less common,
successful applications of NMR spectral data with machine learning
have been reported for predicting the geographical origin of various
products, such as hazelnuts (Bachmann, Klockmann, Haerdter, Fischer,
& Hackl, 2018), black tea (Cui et al., 2023), asparagus (Klare et al.,
2020) and rice (Saeed et al., 2022). Surprisingly, to our knowledge,
machine learning regression algorithms have never been used on NMR
data for quantification, despite NMR being an inherent quantitative
technique.

This study aims to develop chemometrics and machine learning
models using 1H NMR spectral data of pork lipid fractions. Specifically,
these models will be tailored to achieve two key objectives: 1) classi-
fying commercially important raw pork cuts (loin -Longissimus thoracis-,
presa -Serratus ventralis-, cheek, and liver) from Iberian and Celta pigs,
and 2) accurately predicting the fatty acid profiles of these same pork
cuts based on the same 1H NMR data.

2. Materials and methods

2.1. Reagents and standards

All chemicals were of analytical grade and were used as received
without any further purification. Chloroform, methanol and sodium
sulphate from Scharlau were used for the lipid extraction. n-Hexane,
methanol, sodium methoxide, sulphuric acid from Scharlau, sodium
chloride from Panreac, Supelco 37-component FAME mix and trideca-
noic acid from Sigma were used in the transesterification procedure.
Deuterochloroform (CDCl3) containing 1% tetramethylsilane (TMS)
from Sigma was used in the NMR analysis.

2.2. Experimental design

This study used meat from five Iberian and five Celta pigs (Sus scrofa
domestica) sourced from two separate meat industries. The animals,
between 12 and 16 months old and weighing approximately 140–160
kg, were humanely slaughtered at an industrial abattoir in Guijuelo
(Salamanca, Spain) under approved procedures. Portions (50 g each)
taken from the central part of fresh liver, cheek, presa (Serratus ventralis)
and loin (Longissimus thoracis) were individually minced, yielding a total
of 40 samples. To guarantee triplicate analysis, three 5 g subsamples
were taken from each sample. The resulting 120 samples were vacuum-
sealed and frozen at − 80 ◦C until analysis.

2.3. Lipid extraction

Intramuscular fat (IMF) was extracted following the method of Folch,
Lees, and Stanley (1957) modified by Perez-Palacios, Ruiz, Martin,
Muriel, and Antequera (2008).

2.4. Determination of fatty acids by gas chromatography

The lipid extracts were transesterified with methanol and the
resulting fatty acid methyl esters (FAME) were analysed in a Hew-
lett–Packard HP-5890A gas chromatograph coupled to flame ionisation
detector (GC-FID) as previously described (Ramiro et al., 2024). Quan-
tification of fatty acids (FA) was performed using the external calibra-
tion curve method and the results, expressed in % mol, were calculated
using the exact weight of the sample and the molecular weight of each
FAME.

2.5. 1H NMR spectroscopy

A portion of extracted lipids from each sample (25 mg) was dissolved
in 500 μL of CDCl3 containing 1% TMS as internal reference and placed
in standard 5 mm NMR tubes. 1H NMR spectra were recorded in a
Magritek Spinsolve 80 MHz Carbon Ultra spectrometer, using a spectral
width of 5000 Hz. Acquisition was carried out at 298 K, collecting 32768
data points after 256 scans, with a relaxion delay of 38.79 s and pulse
width of 11.6.

The spectra were processed using MestreNova software (Mestrelab
Research, 2019). A gaussian apodisation of 0.4 MHz was applied to free
induction decay data prior to Fourier transformation. Automatic phase
correction employing Metabonomics and Regions Analysis algorithms in
conjunction with Whittaker Smoother baseline correction gave the best
results and were routinely applied to all spectra. The spectra were then
aligned using TMS signal as a reference, cut between 5.5 ppm and 0.6
ppm and normalised to the sum of all the area. To ensure a homogeneous
treatment of the spectra, a process template was used to carry out the
spectra processing. 1H NMR signals were assigned according to previous
studies (Pajuelo et al., 2022, 2023) and integrated individually.

2.6. Chemometrics

The processed 1H NMR spectra were divided into bins of 0.1 ppm
width, which were integrated yielding 49 variables per sample for the
entire dataset (n = 120). This data was then subjected to sparse Partial
Least Squares Discriminant Analysis (sPLS-DA) using the mixOmics
package in R v.4.3.1 (R Core Team, 2023). sPLS-DA models were con-
structed for each of the four cut type subsets to classify the samples
based on their breed of origin.

2.7. Machine learning modelling

2.7.1. Classification
The entire binned spectral dataset was also analysed using Machine

Learning (ML) classification models (Sarker, 2021) implemented in the
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caret, random forest and gbml packages in R v.4.3.1 (R Core Team,
2023). A comparative evaluation of various machine learning models
was conducted to identify the one that yielded the most accurate clas-
sification performance. The models examined included Support Vector
Machine (SVM), K-Nearest Neighbours (KNN), Random Forest (RF),
Linear Discriminant Analysis (LDA), Gradient Boosting Regression Trees
(GBRT) and Naïve-Bayes (NB).

SVM models employ hyperplanes to delineate class boundaries,
achieving optimal separation by identifying the hyperplane that maxi-
mises the margin between classes and minimises the distance to training
data points. KNN, one of the simplest machine learning algorithms,
classifies observations by identifying observations in the training set that
are similar to the test observation (nearest neighbours) and assigning the
predominant class among those neighbours as the predicted class.
Random Forest models consist of a set of individual predictive models
formed by binary rules (decision trees), each trained with a slightly
different sample of the training data generated through bootstrapping.
LDA is designed to identify a linear combination of features that effec-
tively discriminates between distinct categories. GBRT models, also an
ensemble learning approach, construct a series of decision trees, each
iteratively improving upon the errors of the previous trees. NB models
employ Bayes’ theorem to estimate the probability that an observation
belongs to each class and assign it to the class with the highest predicted
probability.

2.7.2. Quantification
For fatty acid quantification purposes, eight peaks A, B, D, E, F, P, G

and I, identified in the 1H NMR spectra based on chemical shifts and
corresponding to specific lipid protons, were integrated using Mestre-
Nova software (Mestrelab Research, 2019). The integration intervals for
these peaks are summarised in Table S1 (Supplementary Material). The
resulting integrals for each of the 120 samples served as independent
variables in a dataset used to construct ML regression models (Sarker,
2021) implemented using R software (R Core Team, 2023). These
models were then used to predict the concentrations of PUFA, MUFA and
SFA obtained from the separate GC analysis.

The ML regression models used for quantification included Linear
Support Vector Machines (SVML), Support Vector Machine with kernel
radial basis function (SMV-RBF), K-Nearest Neighbours (KNN), Random
Forest (RF), Generalised Linear Model (GLM), which is a multiple
regression algorithm, and Gradient Boosting Regression Trees (GBRT).

2.8. Evaluation of the chemometric and machine learning models

To evaluate the performance of chemometric and ML models, 10-fold
cross-validation was carried out, and relevant statistical metrics were
collected for each case. For the ML models, the complete spectral in-
tegrals dataset was randomly split into a training set, which represents
the 80% of samples, and a test group consisting of the remaining samples
(20%), ensuring a representative distribution of pig breeds and cuts
across both subsets. The training set was used to construct and validate
the models, while the test set was employed to assess their generaliz-
ability on unseen data.

Chemometric classification models were evaluated by four key
metrics: accuracy, kappa, sensitivity, and specificity. ML classification
models were evaluated by accuracy and kappa. Accuracy is a measure of
how close a classification model’s predictions are to the actual values. It
is calculated as the ratio of the number of correct classifications to the
total number of samples predicted (equation (1)). Sensitivity is a sta-
tistical measure that describes the proportion of samples belonging to a
particular class A, which is defined as positive, that are correctly clas-
sified as positive (equation (2)). Specificity is a statistical measure that
describes the proportion of samples belonging to the negative class B
that are correctly classified as negative (equation (3)). In this study, the
positive class A was arbitrarily assigned to Iberian pork samples, while
the negative class B was assigned to Celta pork samples. Kappa (equation

(4)), a more stringent measure than accuracy, evaluates the proportion
of agreements beyond what would be expected by chance alone
(Cuadros-Rodríguez, Pérez-Castaño, & Ruiz-Samblás, 2016).

Accuracy = (TP + TN) / (P + N) (1)

Sensitivity = TP / P (2)

Specifity = TN / N (3)

Kappa = (Pa – Pch) / (1-Pch) (4)

P = the number of real positive cases in the data, N = the number of
real negative cases in the data, TP = true positives, TN = true negatives,
Pa = the agreement probability and Pch = the chance-agreement
probability.

A confusion matrix was generated using the cvms package in R
v.4.3.1 to assess the discriminative ability of the optimal machine
learning model (R Core Team, 2023).

To assess the performance of quantitative methods, we computed
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the
coefficient of determination (R2) in both the training and test datasets.
These metrics provide a measure of the difference between predicted
and actual values. Mean Absolute Error (MAE) is the average of the
absolute differences between the predicted and actual values (equation
(5)). Root Mean Square Error (RMSE) is the square root of the average of
the squared differences between the predicted and actual values
(equation (6)). The coefficient of determination (R2) is a measure of how
well the data fit the regression model (equation (7)).

MAE=

∑n

i=1
|ŷi − yi|

n
(5)

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

n

√
√
√
√
√

(6)

R2 =1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1

(

yi −
1
n
∑n

i=1
yi

)2 (7)

ŷi = predicted value for sample i, yi = true value for sample i, n =

sample size.
FA quantities obtained by GC and 1H NMR derived ML algorithms,

were statistically compared employing the parametric t-test for inde-
pendent samples or the non-parametric U-Mann Whitney test, basing of
normality distribution criteria of samples estimated with Shapiro-Wilk
test, using a significance level of 95% (p-value 0.05).

3. Results and discussion

3.1. 1H NMR spectra assignment

The whole set of samples was analysed by GC-FID and benchtop 1H
NMR spectroscopy. Fig. 1 shows representative 80 MHz 1H NMR spectra
corresponding to the lipid extract of each Iberian and Celta pig cut. The
characteristic bands of different protons of triacyl glycerides and phos-
pholipids are easily identified and have been tagged following an
alphanumerical nomenclature. The signals were assigned according to
reported assignations in benchtop and high field 1H NMR spectra
(Supplementary Material, Table S1) (Pajuelo et al., 2022, 2023).

Peaks A though F and I are due to the different protons of FA chains.
The triplet A between 0.72 ppm and 1.03 ppm corresponds to the ter-
minal methyl group of the FA chains. Due to the limited resolution of
low-field NMR spectra, it is not possible to distinguish between the
signal associated with ω3 FA and that of other FA, as they both merge
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into peak A. The large peak B corresponds to all the CH2 protons of FA
that are not next to a double bond or in α or β to the carboxylic group.
Peaks C and E correspond to FA CH2 groups respectively in β and α to the
carboxylic group. Band D results from allylic protons, and signal F
corresponds to bis-allylic protons of polyunsaturated fatty acids (PUFA)
and is significantly larger in tissues that contain a larger proportion of

phospholipids (PL), such as cheek and especially liver. Finally, peak I is
due to the vinylic protons of unsaturated FA (UFA). Furthermore, peaks
G and G’ result from the CH2 protons of the glyceryl skeleton of tri-
acylglycerides (TAG) and PL, respectively, while peak H, which corre-
sponds to the CH signal for glycerol, shows quite different chemical
shifts when belongs to TAG or PL. On the other hand, peak P comprises

Fig. 1. Benchtop 1H NMR spectra assignment of lipid extract from different tissues derived from Iberian and Celta pigs. Chol. CH3, cholesterol C-18. A FA terminal
CH3, B FA (CH2)n, C β-CH2, D MUFA and PUFA allyl CH2, E FA α-CH2, F PUFA bis-allyl CH2, P phosphatidylcholine N(CH3)3 and phosphoethanolamine CH2NH3, G
TAG glyceril CH2, G′ PL glyceril CH2, H TAG glyceril CH and PL glyceril CH, I MUFA and PUFA vinyl CH.

Fig. 2. sPLS-DA two-dimensional scores plots for each pork cut. Samples cluster according to breed.

J.L. Ramiro et al.
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the signals of phosphatidylcholine N(CH3)3 and phosphatidylethanol-
amine CH2 next to the amine group.

3.2. Benchtop 1H NMR, chemometrics and machine learning analysis as
classification tools for Iberian and Celta pig cuts

Although the NMR spectra of the different cuts reveal clear differ-
ences in composition, discerning variations between spectra of the same
cut from distinct breeds can be challenging at first inspection. This
observation aligns with previous findings on FA composition disparities
within the Iberian pig cheek, loin, and presa cuts reported by Mor-
cuende, Estevez, Ruiz, and Cava (2003) and variations between loin and
liver observed by Benitez et al. (2015). Similarly, R. Domínguez, Mar-
tínez, Carballo, and Franco (2014) described compositional heteroge-
neity across several Celta pig muscles. We reasoned that chemometric
and machine learning techniques could help to determine the breed of
origin of the different cuts.

To achieve this goal, the four subsets of 1H NMR bin data corre-
sponding to each pork cut were analysed using sparse Partial Least
Square Discriminant Analysis (sPLS-DA). Fig. 2 shows the two-
dimensional score plots representing the two first components for each
cut. A clear breed-based clustering pattern is observed in all meat cuts,
although this distinction is less evident in the case of presa samples.
Accuracy, Kappa, Sensitivity, and Specificity were computed to assess
the performance of the models. Most of these metrics showed values
between 0.9 and 1.0, except in presa cuts, which presented slightly lower
values, although always over 0.8 (See Supplementary Material Table S2
for more details).

Multivariate analysis has been used before to breed discrimination of
pork using lipidomic data obtained by GC and HPLC-MS analysis (Li
et al., 2021).

The Variable Importance in Projection (VIP) score provides a mea-
sure of the importance of single variables in the sPLS-DA model (See
Supplementary Material Fig. S1) (Chong & JunC, 2005). Interestingly,
the variables with higher VIP scores indicate the main 1H NMR spectral
regions that allow for discrimination of breeds in the different pork cuts.

Key differentiation variables for breed classification in presa and loin
samples are bis-allylic protons, derived from both ω-3 and ω-6 PUFAs.
This difference likely reflects variations in the ω-6 to ω-3 FA ratio, which
has been previously shown to distinguish loin meat from Pulawska and
Polish Landrace pigs (Kasprzyk, Tyra, & Babicz, 2015). Additionally,
phospholipid glyceride protons and FA α-CH2 protons are important
variables, potentially indicating a distinction in the TAG to phospholipid
ratio between Iberian and Celta pigs. This characteristic might be related
to IMF deposition (Gkarane et al., 2018). However, in a previous study,
we did not find significant differences in fat content between Iberian and
Celta pig muscles (Ramiro et al., 2024). Therefore, we cannot defini-
tively conclude that this is a reliable marker for breed differentiation
based solely on NMR data. Still, the prominence of phosphatidylcholine
and phosphatidylethanolamine signals in the VIP of loin samples further
strengthens the hypothesis of a TAG/phospholipid ratio difference. In
cheek samples, the key differentiation markers are peaks corresponding
to (CH2)n and terminal CH3, common to all FA. Notably, the cholesterol
peak appears as a crucial discriminator between Celta and Iberian cheek,
further supporting the influence of breed-related genetic factors on
cholesterol content in pork, as demonstrated by Liu et al. (2009). In
contrast to other cuts, the primary differentiation markers in liver
samples appear to be spectral regions associated with mono- and diac-
ylglycerides and caproleic acid. The presence of mono and diac-
ylglycerides in liver is not surprising, as these molecules can result from
TAG lipolysis or serve as direct TAG biosynthetic precursors in this tissue
(Yi, Huang, Wang, & Shan, 2023). On the other hand, caproleic acid has
not been often detected in pork products. However, it has been reported
as a marker to differentiate fresh from cured Toscano PDO hams (Sirtori
et al., 2020). These signals are readily identifiable in the 500 MHz 1H
NMR spectra of liver samples (see Supplementary Materials, Fig. S2)

(Boccia, Cusano, Scano, & Consonni, 2020), although they are not
evident in low-field spectra. Despite their invisibility in low-field
spectra, these signals still contribute to the overall spectral shape. This
demonstrates the ability of multivariate analysis to uncover spectral
information that is undetectable by the naked eye.

In order to simultaneously classify the samples from the whole
dataset according both to breed and cut, we have then trained and tested
various ML models. These include Supported Vector Machines (SVM), K-
Nearest Neighbour (KNN), Naïve-Bayes (NB), Linear Discriminant
Analysis (LDA), Random Forest (RF) and Gradient Boosting Regression
Trees (GBRT). Hyperparameters of each model were tuned for optimal
performance, which was evaluated by the prediction accuracy on the
test set (Table 1).

Evaluating the performance metrics revealed a progressive
improvement in performance. NB often struggles with complex datasets
like ours (Wickramasinghe & Kalutarage, 2020), although exhibited the
lowest overall accuracy and other metrics, suggesting it may not be
well-suited for this classification task. KNN and RF models yielded slight
improvements, potentially due to their ability to capture some
non-linear relationships in the data (Vigneau, Courcoux, Symoneaux,
Guérin, & Villière, 2018). However, LDA and GBRT demonstrated a
significant leap in performance compared to NB, KNN, and RF. This
could be attributed to LDA’s strength in handling well-separated classes
and GBRT’s ability to learn complex decision boundaries (Sarker, 2021).
Finally, the SVM model surpassed all other models in terms of training
accuracy, kappa statistic, and even achieved a 0% error rate on the test
set. The corresponding confusion matrix (Supplementary Information,
Fig. S3) offers further insights into the model’s generalizability by
illustrating its performance on unseen data. Examining the confusion
matrix shows that all predictions for each cut matched the true class of
the samples, with an accuracy of 100% for each class. Overall, the
exceptional performance on both training and test data, coupled with
SVM’s ability to handle non-linear relationships potentially present in
our data, suggests its suitability for accurate classification of meat cut
and breed in new samples. This success aligns with previous studies
demonstrating the effectiveness of SVM for classification tasks using 1H
NMR spectroscopy. Notably, SVM was successfully applied to classify
wines (Nyitrainé Sárdy, Ladányi, Varga, Szövényi, & Matolcsi, 2022),
asparagus (Klare et al., 2020), rice (Saeed et al., 2022) and eggs (Bischof,
Januschewski, & Juadjur, 2024) according to various characteristics.
However, to our knowledge, this is the first application of machine
learning models based on 1H NMR spectroscopic data to classify meat
products.

3.3. Machine learning models for the fatty acid quantification in Iberian
and Celta pig meat

The quantitative nature of NMR techniques relies on the values of the
peak integrals, which are proportional to the number of protons
contributing to each peak. This allows for calculating the proportion of
different types of FA from the integrals of 1H NMR peaks that correspond
to different functional groups. In previous studies, we have used this
approach successfully to quantify the proportion of SFA, MUFA and
PUFA from both high field (Pajuelo et al., 2022) and low field (Pajuelo

Table 1
Performance metrics of machine learning algorithms for classification of tradi-
tional pig tissues using benchtop 1H NMR spectral data.

ML
model

Accuracy
(training)

Kappa
(training)

Accuracy
(test)

Kappa
(test)

Prediction
error rate

NB 0.71 0.66 0.71 0.67 29.17%
KNN 0.78 0.74 0.83 0.81 16.67%
RF 0.81 0.78 0.88 0.86 12.5%
GBRT 0.83 0.81 0.92 0.91 8.33%
LDA 0.90 0.88 0.92 0.91 8.33%
SVM 0.90 0.88 1.00 1.00 0%
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et al., 2023) NMR spectra of Iberian cured hams. Other groups have also
used NMR spectra in quantitative lipid analysis of different foods
(Castejón, Mateos-Aparicio, Molero, Cambero, & Herrera, 2014; Hajjar,
Haddad, Rizk, Akoka, & Bejjani, 2021; Mannina et al., 2008; Nie-
va-Echevarría, Goicoechea, Manzanos, & Guillén, 2014).

For instance, PUFA content in pork meat could be directly estimated
from the integral of 1H NMR peak F, which corresponds to bis-allylic
protons. The major PUFA in pork meat samples are arachidonic and
linoleic acids, each possessing six and two bis-allylic protons, respec-
tively; however, their relative proportions differ substantially across
various pig tissues. Additionally, other PUFA with varying proton counts
also contribute to peak F and their exact ratios remain unknown.
Therefore, solely relying on peak F limits the determination of precise
PUFA content.

Other NMR signals important for quantification are peaks D and E.
Peak D corresponds to the allylic protons of MUFA and PUFA, while
peak E accounts for the total content of FA. Unfortunately, limitations in
resolution and peak overlap make it difficult to estimate FA concentra-
tion accurately, particularly in phospholipid-rich samples like liver or
cheek. To overcome these challenges, more advanced methods are
necessary.

3.3.1. Machine learning regression algorithms to quantify FA from
benchtop NMR

ML techniques can extract hidden information from large amounts of
data by using different algorithms (Sarker, 2021). Predictive models for
FA quantification could be created using ML techniques based on the 1H
NMR spectra of lipid extracts from meat samples. For this, the integra-
tion intervals corresponding to the different NMR peaks (A, B, D, E, F, P,
G, I) were carefully delimited to reflect as closely as possible the pro-
portion of each type of protons in the samples. The resulting integrals
were used as independent variables to feed ML models with the aim of
correlating them with the concentrations of PUFA, MUFA and SFA
determined by GC-FID. Independent models were trained to estimate the
percentages of PUFA, MUFA and SFA, respectively. Interestingly, while
this paper was under revision, Hernández-Jiménez, Revilla, Hernán-
dez-Ramos, and Vivar-Quintana (2024) reported a conceptually similar
approach for the prediction of the FA profiles of Iberian pig products
applying Artificial Neural Networks with Near Infrared Spectroscopy
(NIR). The exploration of ML combined with diverse spectroscopic
techniques underscores the potential for rapid and reliable quality
assessment methods in this important food sector.

Different ML algorithms were explored, including K-Nearest Neigh-
bours (KNN), Random Forest (RF), Gradient Boosting (GBRT), Gener-
alised Linear Model (GLM), Supported Vector Machines (SVML) and
SVM with radial basis function (SVM-RBF). Hyperparameters were
tuned for each model using a systematic trial-and-error procedure to
optimise their performance metrics (Table 2). Finally, the best model
was selected for FA quantification.

The K-Nearest Neighbours (KNN) models developed in this study
exhibited moderate ability to approximate the ratio of PUFA, MUFA, and
SFA in pork meat samples. However, the models’ performance was
hindered by high root-mean-square error (RMSE) and mean absolute

error (MAE) values, particularly for the test dataset (Table 2). These
elevated error metrics indicate that the KNN models often made inac-
curate predictions, leading to substantial discrepancies between pre-
dicted and actual fatty acid ratios. The low R2 values for both training
and test datasets further underscore the models’ shortcomings.

Methods based on trees, such as RF and GBRT (Table 2), performed
much better, but R2 values for SFA were still relatively low. GLM showed
better results than previous algorithms, especially for SFA, where it
shows an R2 value of 0.82 in the test database, with also fairly good MAE
and RMSE both in the training and test subsets. (Table 2).

SVM models show high capability to treat high dimensionality data,
often encountered in spectroscopic analyses like NMR. This character-
istic makes them particularly advantageous for fatty acid quantification
in pork meat samples. Additionally, SVM’s inherent ability to handle
non-linear relationships is crucial (Brereton & Lloyd, 2010). Fatty acid
ratios might not have a simple linear relationship with the complex
spectral data from NMR. Here, the use of the Radial Basis Function (RBF)
kernel in SVM-RBF plays a key role. This kernel function allows SVM to
capture these non-linear relationships, leading to more accurate pre-
dictions (Scholkopf et al., 1997). An interesting property of SVM is its
low tendency to overfitting, even when a large number of samples are
not available for training (Deris, Zain, & Sallehuddin, 2011). The
developed SVM models present a predictive capacity and experimental
correlation quite similar to that found with GLM for all the classes
(Table 2). SVM applying kernel radial basis function (SVM-RBF) usually
performs better than other kernel functions and was also tested
(Table 2). SVM with RBF kernel demonstrated strong predictability for
FA quantification, achieving low MAE and RMSE in training and test
datasets for PUFA and MUFA, with high values of R2 (0.95–0.97). Be-
sides, it shows low error metrics and much better R2 values (0.84–0.89)
than other models for SFA datasets. These results highlight the effec-
tiveness of SVM-RBF in capturing the complex relationship between
NMR data and fatty acid ratios, leading to superior quantification ac-
curacy for all fatty acid classes. Support vector machine regression has
been previously successfully used for quantification of different food
parameters, such as some edible oil FA from Terahertz spectroscopic
data (Jiusheng, 2010), physicochemical characteristics of Bísaro pig loin
using NIR (Vasconcelos et al., 2023) and sweetness of sugars and arti-
ficial sweeteners from molecular descriptors (Zhong, Chong, Nie, Yan,&
Yuan, 2013).

As shown in Fig. 3A there is a high correlation between the values of
PUFA, MUFA and SFA predicted by the SVM with RBF kernel for the test
data set and the values measured by GC-FID, with R2 values of 0.97, 0.95
and 0.84, respectively. Furthermore, statistic t-test U-Mann Whitney test
showed there are no significant differences between the predicted and
GC-measured values for each type of FA as evidenced by Fig. 3B. The
calculated p-values for PUFA, MUFA and SFA are 0.983, 0.893 and
0.698, respectively. Fig. 3A and B confirm the SVM model’s ability to
accurately predict FA content, particularly for PUFA and MUFA. While
the correlation for SFA is slightly lower, the lack of significant difference
between predicted and measured values suggests acceptable prediction
in practice.

Our SVM-RBF model accurately quantified PUFA, MUFA, and SFA in

Table 2
Performance metrics of ML algorithms for FA quantification using benchtop 1H NMR spectral integrals.

PUFA MUFA SFA

Training Test Training Test Training Test

ML model MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

KNN 2.60 3.57 0.84 3.41 5.62 0.67 3.40 4.62 0.82 4.32 6.80 0.71 1.61 2.03 0.59 1.91 2.78 0.38
RF 1.70 2.49 0.91 1.74 2.38 0.95 2.35 3.27 0.90 2.07 2.94 0.94 1.25 1.60 0.74 1.44 2.31 0.52
GBRT 1.67 2.39 0.92 1.38 1.78 0.97 2.27 3.06 0.93 2.49 3.34 0.93 1.15 1.46 0.78 1.87 2.59 0.43
GLM 1.63 2.26 0.94 1.64 2.03 0.96 2.20 2.82 0.94 2.24 2.97 0.95 1.32 1.79 0.71 1.13 1.40 0.82
SVM 1.51 2.157 0.95 1.50 2.18 0.97 2.27 2.88 0.94 2.61 3.27 0.94 1.292 1.70 0.78 1.20 1.45 0.81
SVM-RBF 1.36 1.83 0.97 1.21 2.05 0.97 1.70 2.15 0.97 1.92 2.66 0.95 1.06 0.82 0.89 1.12 1.45 0.84
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all samples, demonstrating high concordance with GC-FID measure-
ments (Table 3). Complete quantitative FA molar percentages obtained
from the SMV-RBF model are provided in Table S3 (Supplementary
Material).

Fig. 4 presents the corresponding PUFA, MUFA and SFA profiles for
different cuts and breeds. Two-way analyses of variance with a non-

parametric aligned rank transformed data test on the SVM-RBF model
outputs revealed significant differences (p-values <0.05) in the PUFA,
MUFA and SFA content due to breed, cut and their interaction.

Profile graphs (Fig. 4) evidenced pronounced variation across cuts,
while breed-specific differences within cuts were less obvious. The most
notable disparity was in PUFA content, with multiple comparisons

Fig. 3. A) Measured FA against predicted FA percentages based on the SVM-RBF model on the test set. B) Comparison between test set values predicted by SVM-RBF
and experimental GC-FID values.
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revealing significant differences between specific breed-cut combina-
tions, particularly PUFA and MUFA (Table S4, Supplementary Material).
This variation can likely be attributed to a combination of genetic factors
(Corominas et al., 2013; Valdés-Hernández et al., 2023) and feeding
practices (Yi et al., 2023). Iberian pigs are characterised by a high MUFA
content, potentially due to both the exceptional desaturation capacity of
the breed (Benitez et al., 2015) and the consumption of acorns
(González-Domínguez, Sayago, & Fernández-Recamales, 2020; Pajuelo
et al., 2023; Pérez-Palacios, Ruiz, Tejeda, & Antequera, 2009).
Conversely, a chestnut-based diet is likely responsible for the elevated
concentration of both MUFA and PUFA in Celta pigs (Bermudez, Franco,
Franco, Carballo, & Lorenzo, 2012; Ruben Domínguez, Martínez,
Gómez, Carballo, & Franco, 2015). Consistent with this, Celta presa and
loin displayed a higher PUFA content compared to Iberians. However,
no significant differences in PUFA, MUFA and SFA were observed be-
tween Celta and Iberian cheeks and between Celta and Iberian livers, nor
in SFA content between Celta and Iberian loins.

As expected, both breeds exhibited elevated PUFA levels in liver
tissue, reaching approximately 30%. MUFA content also displayed
notable breed-related variations across cuts, generally favouring Ibe-
rians over Celta pigs. MUFA levels ranged from 23% to 24% in livers to
54% in Iberian loin, with all other cuts containing levels of nearly 50%.
SFA content remained consistent across breeds for the different cuts.

Liver demonstrated the highest SFA content (46%), constituting the
primary lipid component in this cut. Notably, despite its high SFA con-
tent, liver maintained a favourable PUFA/SFA ratio of 0.65, exceeding
the recommended minimum of 0.4 for optimal health (Wood et al.,
2008). This ratio dipped to just below 0.4 in Celta cheeks and just over
0.3 in Iberian cheeks, and was considerably lower in presa and loin,
despite their reduced SFA content. Interestingly, no significant differ-
ences were observed in PUFA, MUFA and SFA content between Celta
presa and loin. In contrast, these FA contents displayed significant var-
iations between the same cuts of Iberian pigs. These FA profiles align
with previous reports on Iberian and Celta breeds, but differ from
commercially reared pork, exhibiting higher MUFA and lower PUFA
content (Ruben Domínguez et al., 2015; Ramiro et al., 2024; Rey, Daza,
López-Carrasco, & López-Bote, 2006).

4. Conclusion

This study pioneers the application of benchtop NMR, coupled with
chemometrics and machine learning, for the complete characterisation
of the lipid fraction in raw meat from Iberian and Celta pigs. Notably, the
implemented benchtop NMR technique successfully resolved spectral
signatures corresponding to PUFA, MUFA, SFA, TAG, cholesterol and
phospholipids. 1H NMR spectral data provided a powerful tool for

Table 3
Mean values of PUFA, MUFA and SFA in different Iberian and Celta pork cuts, referred to the whole dataset. Values are expressed in molar percentages. GC and NMR
results are shown together with p-values derived from statistical treatment comparing both methods.

PUFA MUFA SFA

GC SVM-RBF P GC SVM-RBF P GC SVM-RBF P

Iberian Liver 30.56 ± 1,66 30.17 ± 2.35 0.605 23.23 ± 2.04 23.37 ± 1.68 0.885 46.21 ± 1.13 46.52 ± 1.47 0.516
Celta Liver 29.82 ± 2.61 29.63 ± 2.23 0.821 24.38 ± 4.47 24.46 ± 4.68 0.958 45.79 ± 2.76 45.71 ± 2.56 0.932
Iberian Cheek 12.52 ± 0.70 12.56 ± 0.85 0.897 47.75 ± 1.13 47.75 ± 1.29 0.997 39.51 ± 0.87 39.59 ± 0.94 0.805
Celta Cheek 15.94 ± 4.01 15.79 ± 3.80 0.775 43.55 ± 5.46 44.01 ± 8.31 0.806 40.51 ± 1.63 40.19 ± 5.10 0.624
Iberian Presa 7.36 ± 1.94 7.75 ± 2.33 0.617 49.71 ± 2.19 49.34 ± 2.15 0.650 42.94 ± 2.16 42.76 ± 1.55 0.800
Celta Presa 11.34 ± 1.31 10.79 ± 1.07 0.210 47.39 ± 2.40 48.36 ± 2.44 0.114 41.26 ± 1.30 40.97 ± 1.09 0.527
Iberian Loin 5.41 ± 0.59 5.41 ± 0.65 0.969 54.13 ± 2.99 53.53 ± 2.33 0.539 40.46 ± 3.28 40.50 ± 2.75 0.870
Celta Loin 10.32 ± 1.13 11.10 ± 1.85 0.250 49.49 ± 1.89 48.21 ± 2.57 0.174 40.17 ± 0.91 40.74 ± 0.99 0.111

Fig. 4. Profile graphics for the PUFA, MUFA and SFA mean predicted values across cuts of both pig breeds.
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precise discrimination between Iberian and Celta breeds across indi-
vidual meat cuts, facilitated by sPLS-DA models. Furthermore, machine
learning classification models, particularly Support Vector Machines
(SVM), allowed seamless differentiation between individual meat cuts
regardless of breed, demonstrating robustness against the inherent
complexity of meat samples and eliminating the need for prior meat cut
separation.

Fatty acid quantification was achieved by developing regression
models based on benchtop NMR peak integrals. Support Vector Ma-
chines with a Radial Basis Function kernel (SVM-RBF) emerged as the
most effective approach for this purpose.

In summary, this work establishes the feasibility of chemometrics
and machine learning for analysing benchtop spectroscopic NMR data
for meat classification and FA content quantification. This approach
offers a simple and efficient method requiring minimal sample prepa-
ration, potentially applicable to a wide range of food matrices.
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Folch, J. M. (2013). Analysis of porcine adipose tissue transcriptome reveals
differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid
composition. BMC Genomics, 14(1), 843–857. https://doi.org/10.1186/1471-2164-
14-843

Corsaro, C., Vasi, S., Neri, F., Mezzasalma, A. M., Neri, G., & Fazio, E. (2022). NMR in
metabolomics: From conventional statistics to machine learning and neural network
approaches. Applied Sciences, 12(6), 2824–2862. https://doi.org/10.3390/
app12062824
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