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A B S T R A C T   

In this study, near-infrared (NIR) spectra were employed to monitor the ripening process of two kinds of soft 
cheese produced in the Extremadura region of Spain, manufactured by two different producers, “Torta del Casar” 
and “Queso de la Serena”. Spectra were collected from the interior of the cheeses and the rind and analysed using 
appropriate chemometric techniques to distinguish between the two varieties and among different weeks of the 
maturation process. Different chemometric tools, including multivariate curve resolution with alternating least- 
squares (MCR-ALS), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and feed-forward 
artificial neural networks (FF-ANN), were utilised, resulting in outstanding discrimination outcomes with 
sensitivity, precision, specificity, and accuracy reaching values c.a. 1.00 in optimal scenarios. More compre-
hensive information was acquired from the rind spectra analysis, indicating that the sampling process can be 
performed without disturbing the cheese in a non-destructive way. Remarkably, the capability to distinguish 
between various weeks of ripening for both cheeses could enable manufacturers to produce market-ready 
products earlier than the typically established timeline.   

1. Introduction 

Two renowned cheeses, crafted in the Extremadura region, Spain, 
using raw ewe milk, “Torta del Casar” (TC, from Cáceres) and “Queso de 
la Serena” (QS, from Badajoz), are distinguished by the prestigious 
protected designation of origin (PDO). These cheeses represent the 
essence of culinary excellence and cultural heritage and are a part of the 
appreciated soft to semi-soft Spanish cheese tradition. Controlled under 
specific regulations (EC, 1491/2003 for “Torta del Casar” [1] and 1107/ 
96 for queso de la Serena [2]) these cheeses adhere to rigorous stan-
dards, ensuring authenticity and preserving the rich tradition of cheese- 
making in Extremadura. 

During the ripening process of this kind of cheese, only a vegetable 
coagulant extracted exclusively from Cynara cardunculus is used, 
avoiding any additional starter culture. With the exclusive use of Merino 
ewe raw milk and vegetable rennet, this process bestows their distinctive 

flavour profiles and textures. Throughout this process, the cheese fats 
and proteins undergo a series of physical and chemical transformations, 
ultimately shaping the sensory characteristics of the finished product. 

These cheeses are usually consumed after 60 days of ripening. 
However, an extended ageing period, generally up to 120 days, allows 
their flavours to deepen and complexities to unfold. In this regard, 
implementing online monitoring techniques to track the evolving 
composition of cheese constituents is a valuable tool for comprehending 
the ripening process. This approach not only aids in characterising 
cheeses but also enables effective discrimination between various vari-
eties based on their unique development trajectories [3]. 

Near-infrared (NIR) spectroscopy could be considered one of the 
most broadly used process analytical technologies (PAT) in the dairy 
industry since it can detect molecular overtone and combination vi-
brations associated with C-H, N-H, O-H and S-H that are the most 
common groups in food constituent molecules [4]. Particularly in cheese 
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manufacturing processes, NIR spectroscopy can be implemented to 
monitor parameters like moisture, protein, fat, and salt contents at 
various production stages. The strengths of this technique include its 
non-destructive nature, rapid analysis capabilities, cost-effectiveness, 
and ability to provide comprehensive compositional analysis. 

In food analysis, pattern recognition methods emerge as a powerful 
tool that provides analysts with a qualitative or semi-quantitative binary 
response that aids the characterisation of samples. Such an approach 
does not entail quantifying individual chemical species but rather 
modelling measured data, compressing a segment of the composition of 
samples. 

Pattern recognition techniques are categorised into two main sub-
categories: unsupervised and supervised methods. Unsupervised pattern 
recognition methods discover hidden patterns or structures in data 
without being told what to look for. On the other hand, supervised ap-
proaches teach to recognize patterns by providing labeled examples. 
They can be classified into discriminating or one-class modelling 
methods [5]. In particular, discriminant models are distinguished from 
class modelling methods by establishing linear or nonlinear boundaries 
between the modelled classes. Consequently, these techniques excel in 
addressing issues where all pertinent classes are clearly defined and 
adequately sampled, with balanced representation among them. 

When developing a pattern recognition method, preliminarily 
assessing whether the data can effectively differentiate samples from 
different target classes is crucial. In addition, establishing the appro-
priate preprocessing data protocol and identifying outlier samples is an 
essential step in the method development. Principal component analysis 
(PCA) emerges as a simple, albeit reliable, exploratory method to eval-
uate the classificatory potential of the data. 

One of the first stages of pattern recognition methods in multidi-
mensional data analysis is data compression, PCA being the most utilised 
approach for this goal [6]. However, while increasing the complexity 
and the order of the data, other strategies can be implemented to 
compress or select variables, thereby reducing the data volume. For 
instance, the successive projection algorithm (SPA) is utilised when the 
number of variables must be reduced due to mathematical requirements 
[7]. Moreover, when second-order data are utilised, multivariate curve 
resolution with alternating least-squares (MCR-ALS) [8] or parallel 
factor analysis (PARAFAC) emerges as strategic approaches for data 
compression, with the advantage of getting chemically interpretable 
outcomes [9]. Pertinent examples of using MCR-ALS to model first-order 
data can be found in Ref. [10–12]. When using these algorithms, two 
kinds of outcomes are obtained: on the one hand, the scores are directly 
related to the contribution of the individual constituents, and on the 
other, the loadings are directly related to the chemical behaviour of the 
constituents, e.g., the spectral profiles. The latter aids in gaining deeper 
insights into the system and comprehending better its physicochemical 
characteristics. Moreover, leveraging information derived from con-
centration variations throughout a process has proven to be a potent tool 
for effectively modelling discrimination among various samples [13]. 

In supervised methods, the subsequent phase involves deciding 
whether to adopt a discriminating or modelling approach. Notably, 
considerable advancements have been achieved in distinguishing 
discriminant methods from modelling techniques within the domain of 
classification models. Discriminant methods, which employ multiclass 
(two or more) during the training phase, tend to exhibit greater effec-
tiveness than stringent one-class models in generating models with 
higher specificity and sensitivity. Some of the most common discrimi-
nant methods are linear discriminant analysis (LDA) [14], Partial least- 
squares discriminant analysis (PLS-DA) [15] and quadratic discriminant 
analysis (QDA) [16] which follow a specific model, i.e., linear and 
quadratic, respectively. Nevertheless, in cases where no specific model is 
followed, a nonparametric approach, such as artificial neural networks 
(ANN), emerges as an alternative [17,18]. 

In the present work, first-order NIR data were subjected to MCR-ALS 
analysis. The resulting outcomes served as inputs for various 

discriminant methods, including LDA, QDA, and feed-forward artificial 
neural networks (FF-ANN). These methods were employed to discrimi-
nate between the ripening stage and the origin of two PDO cheeses. 

2. Materials and methods 

2.1. Samples 

Cheese samples were sourced from two distinct dairies representing 
the PDO regions in Extremadura, Spain: “Torta del Casar” PDO cheese, 
from Cáceres, and “Queso de la Serena” PDO cheese, from Badajoz. 

For each type of soft cheese, a batch was randomly selected, and 
three samples were collected weekly throughout the ripening process 
until reaching day 60, considered suitable for commercialisation. In 
total, 30 samples of each cheese type were analysed. 

2.2. Apparatus 

A portable MicroNIR Pro 1700 (VIAVI, Santa Rosa, California, USA) 
equipped with two small tungsten light bulbs as a radiation source and a 
linear-variable filter (LVF) directly connected to a linear indium gallium 
arsenide (InGaAs) array detector was used for NIR spectra acquisitions. 

Before spectra acquisition, an automatic dual-point calibration was 
accomplished using a Spectralon ceramic material as the white reference 
(100 % reflectance) and air as the dark current (0 % reflectance), placing 
the device, in this case, no closer than 0.5 m from any object. 

The spectra acquisition was carried out in reflectance mode between 
1100 and 1700 nm, with a 6 nm spectra resolution. A total of 50 scans 
were averaged for each spectrum. The measurements were made using 
the windowed collar as a protective accessory with a sapphire window 
placed at ~ 3 mm distance to the MicroNIR input to provide a consistent 
sample presentation in non-rigid materials. 

Spectra were recorded using MicroNIRTM Pro v.2.3 software (VIAVI, 
Santa Rosa, California, USA). 

2.3. Sample spectra acquisition 

The cheeses were analysed immediately after arrival at the labora-
tory. For each cheese, spectra were recorded at 10 different points of the 
rind and the centre of the cheese, as depicted in Fig. 1, performing 
several replicates. For the rind analysis, the spectra were directly ac-
quired from the top of the cheese without the intervention of the piece, 
whereas to analyse the centre of the cheese, an approximately 1 cm- 
thick slice was extracted from the middle of the piece. 

Spectra were collected over 7 weeks for TC (from day 1 to day 57 of 
the ripening process) and 10 weeks for QS (from day 1 to day 64 of the 
ripening process). This resulted in 517 NIR spectra obtained from the 
interior of TC samples, 402 from the rind of TC samples, 555 from the 
interior of QS samples, and 569 from the rind of QS samples. The fact of 
taking a number of different weeks and a variable number of spectra 
during the ripening process leads to the irregularity of the dimensions of 
the matrices generated to process the data. 

2.4. Chemometric analysis 

Data analysis was accomplished in MATLAB R2016B (The Math-
Works Inc., USA). LDA, QDA, and FF-ANN were applied using the 
Classification toolbox for MATLAB freely available at https://michem. 
unimib.it/download/matlab-toolboxes/classification-toolbox-for-ma 
tlab/ [15]. MCR-ALS 2.0 toolbox was utilised for MCR-ALS analysis [8], 
which was freely downloaded from https://mcrals.wordpress.com/ 
download/mcr-als-2–0-toolbox/. The SPA algorithm was implemented 
with the MATLAB codes acquired upon request from the authors [7]. 
Data preprocessing was implemented using codes written in MATLAB in 
our lab. 
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3. Theory 

3.1. Multivariate curve resolution-alternating least squares 

MCR-ALS is a family of algorithms that perform a bilinear decom-
position of a two-dimensional matrix D (I × J) containing the chemical 
responses of the system into the product of the two sub-matrices, C and 
ST, as follows: 

D = CST +E (1) 

In spectroscopy, this expression is tied to the premise of Lambert- 
Beer’s law; thus, C and ST would contain information about the system 
constituent’s concentration and spectral behaviour, respectively. 

In the particular case of the NIR monitoring of the ripening process of 
a cheese, the matrix D comprises the NIR spectra (row) acquired for each 
ripening stage (columns). Hence, the columns of C (I × A) would 
correspond to the abundance of the A individual components along the 
ripening process and the rows of ST (A × J), the NIR spectral profiles of 
the A individual components. E (I × J) is a matrix containing the models’ 
residuals in all cases. 

3.2. Linear and quadratic discriminant analysis 

LDA and QDA are boundary discriminant methods used in machine 
learning and statistics, which aim to find boundaries that separate 
groups or classes of samples. 

The LDA algorithm computes a separating surface between sample 
groups by establishing a linear discriminant function that maximises the 
ratio of between-class and within-class variances [14]. Classes are 
assumed to adhere to a multivariate normal distribution and be linearly 
separable. 

For the X matrix of dimensions I × J, which contains the J variables 
measured on I samples, and the dummy matrix Y of dimensions I 
(samples) × K (number of categories), the optimal representation is 
achieved by maximising the ratio of the between-class variance (Bc) 
matrix to the within-class variance (Wc) matrix. The latter matrices can 
be expressed as: 

Bc = (k − 1)− 1ATY
(
YTY

)− 1YTX (2)  

Wc = (I − k)− 1[XTX − (k − 1)Bc
]

(3) 

It can be demonstrated that the canonical variate (CV) scores 
encapsulate the progressively maximised ratio of between-groups 

variance to within-groups variance, which are obtained by principal 
component analysis of the matrix (Wc− 1Bc) and projection of the data 
matrix X onto the first loadings. 

The samples are subsequently visualised in a two or three- 
dimensional space delineated by the first canonical variate (CV) scores 
for each sample. It is imperative to acknowledge that the dimensionality 
of matrix X is I × J. Consequently, before employing LDA, variable se-
lection (with SPA for example) or data compression (by PCA or MCR- 
ALS), as will be shown below, and utilisation of scores should be 
executed to ensure that the condition I > J is met. 

Unlike LDA, QDA does not assume equal covariance matrices across 
classes, allowing for more flexibility in modelling further complex re-
lationships between variables. Thus, each class is modelled by its 
multivariate normal distribution, estimating parameters from a set of 
training data. QDA captures nonlinear relationships between predictors, 
being more flexible than LDA. 

The QDA classification score (Qij) is estimated using the var-
iance–covariance matrix for each class k and an additional natural log-
arithm term, as follows: 

Qik = (xi − xk)
TΣk

− 1(xi − xk)+ loge|Σk| − 2logeπk (4)  

where xi is an unknown measurement vector for a sample, xk is the 
average measurement vector of class k, Σk is the variance–covariance 
matrix of class k, and loge |Σk| is the natural logarithm of the determinant 
of variance–covariance matrix Σk. The prior probability (πk), pooled 
covariance matrix (Σpooled) and variance–covariance matrix (Σk) are 
calculated as follows [16]. 

πk =
Nk

N
(5) 

Σpooled = 1
N
∑K

k=1NkΣ k (6) 

Σk =
1
Nk

∑Nk

i=1
(xi − xk)(xi − xk)

T (7)  

where Nk is the number of objects of class k, N is the total number of 
objects in the training set, and K is the total number of categories, as was 
commented above. 

3.3. Feed-forward artificial neural networks 

FF-ANN emulate the functioning of neurons in the human brain, 
making them a powerful tool in machine learning. They are structured 

Fig. 1. Spatial zones of the cheese where spectra were recorded: (A) on the rind and (B) on a central slice of the product.  
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into layers, each comprising interconnected nodes with activation 
functions. Input vectors are fed into the network through the input layer, 
which then passes them through one or more hidden layers. Here, the 
actual computation occurs through a network of weighted connections. 
Various learning rules are employed in neural networks, with back- 
propagation (BP) being the focus of this study, in which the learning 
is supervised and unfolds with each epoch, where the network processes 
new input patterns through forward activation flow and adjusts weights 
via backward error propagation [17]. 

The fundamental approach of BP learning involves updating network 
weights and biases along the direction where the performance function 
decreases most rapidly, namely the negative gradient. The following 
equation succinctly captures one iteration of this algorithm: 

wk+1 = wk − αkgk (8)  

where wk is a vector containing the current weights and biases, gk is the 
current gradient, and αk is the learning rate. In this study, gradient 
descent with momentum was utilised, applying the mean square error 
(MSE) as the performance function. The latter figure quantifies the 
average squared discrepancy between the network outputs and the 
actual output, serving as a crucial metric for optimisation. 

In the basic gradient descent algorithm, adjustments to weights and 
biases align with the negative gradient of the performance function. 
Incorporating momentum into gradient descent often accelerates 
convergence. Momentum enables the network to not only respond to 
local gradients but also capture recent trends in the error surface, 
facilitating navigation through shallow local minima towards the global 
minimum. To integrate momentum into back-propagation learning, 
weight updates are computed as the sum of a fraction of the previous 
weight change and the new change suggested by the back-propagation 
rule. In this work, the inputs to feed the FF-ANN were the scores ob-
tained by the MCR-ALS procedure described above, unlike what is 
usually done using PCA scores. However, the networks were also trained 
using PCA scores, but the results (not shown) were of lower quality than 
those obtained using the MCR-ALS scores, a fact that was repeated when 
using LDA and QDA. 

3.4. Successive projection algorithm 

As commented above, given the X matrix of dimensions I × J, which 
contains the J variables measured on I samples, variable selection should 
be executed before employing LDA or QDA to ensure that the condition I 
> J is met. This variable selection process starts by considering each of 
the J variables in the dataset X. Then an ordered chain of variables Kc is 
built, ensuring that each selected variable minimises collinearity with 
the previously chosen ones. Collinearity is assessed by calculating the 
correlation between the column vectors of matrix X. Importantly, a 
constraint is set: no more than Kc variables can be included in the chain. 
From each of the J chains, it is possible to extract Kc subsets of variables. 
These subsets consist of one up to Kc elements, arranged in the order 
they were selected during the variable selection process. Hence, a total 
of J × Kc subsets of variables can be generated. To determine the optimal 
subset, a cost function represented by the average risk G of misclassifi-
cation through LDA when utilising the evaluated subset of variables, is 
employed. For further elaboration, please refer to Ref. [7]. 

3.5. Figures of merit 

Classification outcomes can be depicted using a confusion matrix, a 
square matrix with dimensions (K × K), where K represents the number 
of classes. This matrix provides insights into the correspondence be-
tween actual and predicted classifications, assuming a classifier that 
assigns each sample exclusively to one of the available classes. The 
element nKk in the matrix denotes the count of samples belonging to 
class K and assigned to class k. Diagonal elements (e.g., nKk) indicate 

correct predictions, while off-diagonal elements signify mis-
classifications. Binary classification, prevalent in numerous scenarios, 
simplifies complex problems into yes/no outcomes. In this context, 
samples are usually categorised as positive or negative, condensing the 
confusion matrix into a succinct 2 × 2 numerical table, as will be 
observed when discriminating between both types of cheeses. On the 
other hand, when discriminating between sampling weeks, confusion 
matrices of 7 × 7 for TC and 10 × 10 for QS were generated (see below). 

Various established class indices, such as sensitivity, specificity, and 
precision, can be derived from this matrix. These metrics offer insights 
into the classification performance for each individual class. However, it 
is crucial not to rely solely on any single measure to assess the predictive 
capability of a model. Since each metric captures different aspects of the 
overall classification performance, simultaneously evaluating them is 
essential for a comprehensive assessment of classification quality [19]. 
Figures of merit are computed using the following equations: 

a) Sensitivity (Sn): is also identified as true positive rate (TPR), and 
defined as the ratio between true positive (TP) and the total number of 
positive samples (TP + FN), where FN is the number of false negative 
samples: 

Sn =
TP

TP + FN
(9) 

b) Specificity (Sp): is also known as true negative rate (TNR), and 
termed as the ratio between true negative (TN) and the total number of 
negative samples (TN + FP), where FP is the number of false positive 
samples: 

Sp =
TN

TN + FP
(10) 

c) Precision (Pr): is also known as positive predictive rate (PPR), and 
calculated as the ratio of TP and the total number of samples predicted as 
positive: 

Pr =
TP

TP + FP
(11) 

d) Accuracy (Acc): is defined as the ratio of the sum of TP and TN over 
the total number of samples: 

Acc =
TP + TN

TP + TN + FP + FN
(12) 

Three widely recognised class-specific metrics (sensitivity, speci-
ficity, and precision) serve to gauge the classification performance 
within each class. Computed individually for each class, these metrics 
encapsulate distinct facets of classification accuracy. Sensitivity mea-
sures a classifier’s capability to accurately identify. 

The precision of a class reflects its purity, indicating the classifier’s 
proficiency in minimising erroneous predictions within that specific 
class. Conversely, the specificity of a class signifies the classifier’s apti-
tude in discriminating against samples from other classes. 

4. Results 

4.1. NIR spectra and preprocessing 

One of the most common artefacts on NIR spectra is the scattering 
effects caused by sample heterogeneity or particle size variations. These 
effects introduce undesired variations in the data unrelated to the sys-
tem’s chemical properties. Therefore, data needs to be subjected to some 
corrections before data modelling to remove or minimise the effects of 
these artefacts. The most common preprocessing procedure utilised in 
NIR spectra to achieve this goal is the multiplicative scattering correc-
tion (MSC). Fig. 2 shows the spectra obtained from the centre of three 
samples (see Fig. 1B) of QS at the beginning of the ripening process 
before and after applying MSC. As can be seen, the preprocessing cor-
rects the dispersions observed in Fig. 2A, giving more homogeneity to 
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the set of spectra taken on the same day of the maturation process. 
An analysis of the pretreated spectra allowed us to match with re-

ports that shed light on the composition of the cheeses. According to da 
Silva Medeiros et al. [3], the different absorption peaks present in the 
NIR spectra obtained for cheeses can be attributed to a) O–H stretching 
in the second and first overtone of the water band (1450 nm), b) C – H 
stretching in the first and second overtone of aliphatic chains of fat (CH, 
CH2, CH3; 1130 – 1240 nm) and unsaturated fatty acids (HC = CH; 1400 
and 1660 nm), and c) N – H elongation in the first overtone of proteins 
(1510 nm). 

4.2. MCR-ALS modelling 

The initial step of the process consisted of building up four 
augmented column-wise matrices D from the individual spectra by 
setting one on top of the other and keeping the column vector space in 
common. This procedure was carried out for the four sets built with 
signals registered in the centre and on the surface of two cheeses. The 
dimensions of these data matrices were a) TC, inside (402 × 96) and 
surface (517 × 96); and b) QS, inside (555 × 96) and surface (569 × 96). 
From now on, these matrices will be called DTCc, DTCr, DQSr and DQSc, 
respectively. 

The first step of MCR-ALS analysis involves determining the number 
of components that explain an acceptable level of total variance within 
the four individual D matrices described above. In this study, a 
compromise was made by selecting 99 % of the total explained variance, 
balancing the number of components against computational time con-
siderations. The number of components in each matrix was determined 
using the singular value decomposition (SVD) algorithm. This process 
suggested 4 principal components (PCs) for DTCc and DQSc and 5 PCs for 
DTCr and DQSr. This fact primarily suggests some variations in the 
chemical composition of the different parts of the cheeses. 

Spectral initial estimates obtained through the ‘purest variables’ al-
gorithm, with a noise level set at 0.1 [20], were used to initiate the ALS 
procedure. Then, non-negativity constraints were applied to concen-
tration and spectra during the iterative optimisation to obtain chemi-
cally meaningful solutions. 

Figure SM1 displays a screen generated by the graphical interface, 
following the application of MCR-ALS on the DTCc matrix containing 402 
spectra recorded from the rind of a TC sample throughout the ripening 
process. As can be seen, five components were identified, showcasing 

varying trends. 
An analysis of the MCR-ALS spectral profiles obtained for the rind of 

a TC cheese (Fig. 3) enables the identification of some specific bands 
related to previously mentioned compounds, whose variation during the 
cheese ripening process allows us to formulate the hypothesis that it is 
possible to discriminate between both types of cheese and, even more, 
among weeks of cheese involved in the process. For example, the band 
corresponding to water, which can be assumed to be the blue band 
(Fig. 3), has its centre at 1450 nm, corresponds to the blue concentration 
profile of Fig. SM1. As can be seen in the later figure, the concentration 
decreases with time, indicating the effect of the maturation process in 
making the product firmer. 

After decomposition, the areas under the concentration profiles for 
each component at every sampling date were obtained from the MCR- 
ALS scores matrices. Each value represents the area of the ath compo-
nent on the ith sampling day. Fig. 4 illustrates the progression of the five 
components during the ripening process obtained from the MCR-ALS 

Fig. 2. . Several spectra gathered in different parts of the centre of three samples of Queso de la Serena at the beginning of the ripening process. A) Raw spectra. B) 
After application of MSC. 

Fig. 3. Spectral profiles retrieved with MCR-ALS modelling, corresponding to 
NIR spectra taken on the surface of a Torta del Casar cheese sample. 
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analysis of the data obtained from the rind of both cheeses. One evident 
fact is the rising of some components while others decrease with the 
ripening process of about 60 days, as commented above for the water. 

A visual examination of the profiles depicted in Fig. 4A-B suggests 
that the discernible variability, evident in the evolution of the main 
compounds, could serve as crucial background knowledge. This vari-
ability may enable the differentiation between the two types of cheeses 
and among the different weeks of ripening when analysed using 
appropriate discrimination algorithms. 

4.3. Application of an unsupervised pattern recognition tool: PCA 

An unsupervised algorithm, PCA, was applied to perform an 
exploratory study of the data sets composed of corrected spectral values 
(after MSC application) and scores gathered by MCR-ALS modelling of 
the later spectra. Four matrices corresponding to TC were analysed: a) 
TC_spectra_inside (460 × 96 wavelengths), b) TC_spectra_surface (402 
× 96 wavelengths), c) TC_MCR_4components_inside (460 × 4), and d) 
TC_MCR_5components_surface (402 × 5). Similarly, other four matrices 
corresponding to QS samples were subjected to PCA analysis: a) 
QS_spectra_inside (555 × 96 wavelengths), b) QS_spectra_surface (569 
× 96 wavelengths), c) QS_MCR_4components_inside (555 × 4), and d) 
QS_MCR_5components_surface (569 × 5). The first three principal 
components in the PCA models captured c.a. 95 % of the total variance 
in all the cases. Figure SM2 shows the representation of the samples in 
the space defined by the PC1 vs. PC2 for the MCR-ALS scores of both 
cheeses corresponding to measurements on the surface. (TC = 402 
samples, and QS = 569 samples). As evident, while there are slight 
differences between the two types of cheese, variations are noticeable 
across different weeks for both types. However, it should be kept in mind 
that an unsupervised tool is being applied, which only provides pre-
liminary information, allowing us to think about the good performance 
of supervised models, especially to differentiate weeks of maturation. 
On the other hand, it is also evident that powerful tools should be 
applied when performing a supervised analysis with the diverse types of 
data used to differentiate between cheese varieties. 

PCA analysis was also implemented to detect outliers, i.e. samples 
that are somewhat disturbing or unusual, which can be outright erro-
neous. In this regard, just one sample was detected to be an outlier. It 
was confirmed using the influence plot, which is obtained by plotting Q 
against Hotelling’s T2 residuals [6]. The first one is the sum squared 

residuals of each sample to look for samples that are not well-described 
by the PCA model. The second one is a diagnostic statistic that can be 
seen as an extension of the t-test and can also be applied to the scores of a 
PCA model. The mentioned plot allows us to detect samples that are far 
from the rest of the samples. In the present case, only two samples (QS # 
337, and TC # 340) had to be removed. Fig. 3SM shows the influence 
plot in which TC samples are marked in red, while QS samples are 
marked in blue. 

4.4. Application of discriminant tools to differentiate both cheese varieties 

The Kennard-Stone (K-S) algorithm was applied to split the sets of 
spectra corresponding to samples taken both inside and on the surface of 
the cheeses. The splitting was performed to generate training and vali-
dation sets for testing the discrimination algorithms. To perform the 
partitioning, matrices of (1015 × 4) and (971 × 5) were built by pooling 
the MCR-ALS scores obtained by analysing the spectra of cheeses 
recorded inside and, on the surface, respectively. In the case of samples 
taken inside the cheeses, a training set of 750 samples was generated 
(350 for TC and 400 for QS). The validation set consisted of 265 samples 
(110 for TC and 155 for QS). On the other hand, in the case of cheese 
rind samples, a training set of 700 samples was created (300 for TC and 
400 for QS). The validation set comprised 271 samples (102 for TC and 
169 for QS). The procedure was repeated for matrices containing the 
complete spectra and the variables selected with the SPA algorithm (see 
below). 

To implement the discrimination algorithms, four vectors were 
constructed containing the numbers 1 or 2 according to the class (1 for 
TC and 2 for QS). The dimensions of the two vectors for measurements 
inside of the cheeses were: training = 750 × 1, and validation = 265 × 1. 
The dimensions of the two vectors for measurements on the surface of 
the cheeses were: training = 700 × 1, and validation = 271 × 1. 

To compare and evaluate the classification ability among the models 
built with LDA, QDA and FF-ANN using MCR-ALS scores, SPA variables 
and whole NIR spectra, the following figures of merit (see the descrip-
tion above) were analysed: sensitivity (Sn), specificity (Sp), precision 
(Pr) and accuracy (Acc). In addition, the evaluation of the confusion 
matrix obtained for training and prediction results in every case was 
considered. 

For training evaluation, the Venetian blind cross-validation (VBCV) 
technique was implemented, which comprises splitting the dataset into 

Fig. 4. Evolution of the five components during the ripening process extracted from the spectra recorded on the surface of both kinds of cheese (A: Torta de Casar and 
B: Queso de la Serena). 
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multiple partitions. The data is divided into a fixed number of folds (in 
this case, five), each of them containing an equal number of samples 
from each class present in the dataset. This guarantees that each parti-
tion is representative of the overall distribution of the data. After that, 
the model is trained on one partition and tested on the other, and this 
process is repeated for each pair of folds. 

Table 1 displays the performance metrics achieved through the 
application of LDA, QDA, and FF-ANN. In the subsequent table, only the 
outcomes derived from the analysis of matrices constructed with MCR- 
ALS scores are provided. This is due to the unsatisfactory results ob-
tained when employing modelling on matrices constructed with vari-
ables selected using SPA (six variables) or with the complete NIR spectra 
compressed with PCA, which are not shown here. 

As depicted in the table, the outcomes achieved with LDA are un-
satisfactory. However, a notable enhancement is observed with the 
application of the nonlinear QDA algorithm. This indicates the potential 
for further improvement through the utilisation of FF-ANN. Indeed, 
implementing FF-ANN yields excellent results. Notably, the most 
notable improvements are observed when modelling data generated 
from spectra collected from the surface of the cheeses. This enhance-
ment is likely attributed to MCR-ALS modelling capturing an additional 
component on the cheese surface compared to the interior. This dis-
covery holds significant interest as it implies that sample destruction for 
measurements may not be necessary, offering notable economic bene-
fits, particularly for high-priced products such as these. The FF-ANN 
modelling was implemented using one hidden layer containing five 
neurons, a learning rate of 0.01 and a moment (alpha) equal to 0.5. The 
optimum model was reached after 300 epochs. 

The confusion matrices for the three mentioned models are depicted 
in Table 2. It is evident that only the FF-ANN model enables a highly 
accurate differentiation between the two types of cheese. 

NIR data were subjected to PCA, and PC scores were used to train the 
ANN. This approach served as a reference methodology aiming at 
proving the efficiency of the MCR-ALS-ANN strategy in the classification 
analysis. PCA-ANN and MCR-ALS-ANN classification results were 
compared, and they were highly similar in terms of classification effi-
ciency. This comparison helped to assert that MCR-ALS provides useful 
information for classification purposes, with the addition of qualitative 
spectral details that enable a more comprehensive physicochemical 
evaluation of the system under study. 

A previous study recently published reports a successful distinction 
between the two types of cheese according to the PDO by employing 
excitation-emission matrix (EEM) fluorescence spectroscopy with par-
allel factor analysis (PARAFAC) and LDA modelling techniques. 
Notably, the best precision in differentiation was reached in samples 
with 36 or more days of maturation [9]. Interestingly, in the work 
presented here, NIR spectra obtained inside and on the rind of two 
cheeses were used to differentiate between the two varieties. The out-
comes of our study highlight that richer information is obtained when 
measurements are taken from the cheese rind, indicating a non- 
destructive sampling approach. Furthermore, it was possible to 

differentiate between weeks of ripening for both cheeses, which could 
allow the manufacturers to obtain products ready to be marketed before 
the date that is usually established. 

It is worth mentioning that PLS-DA was used to model NIR data, as it 
is one of the most widely used algorithms for discrimination analysis 
with multivariate data. However, the results were similar to those ob-
tained with LDA, shedding light on the fact that linear-based approaches 
were unsuitable for these systems. 

4.5. Application of discriminant tools to differentiate among weeks of 
maturation 

To discriminate between weeks of ripening, it was decided to work 
only with data obtained on the rind of the cheeses, since there is no need 
to destroy the sample and it adds more value to the process, especially 
from the point of view of cost and speed. In the case of TC, the 402 
samples were divided into 280 and 122 for training and validation, 
respectively. In turn, as the aim was to discriminate between 7 different 
weeks, the training set consisted of 40 samples for each week, while the 
validation set was composed of 17, 18, 19, 17, 17, 17 and 17 samples, 
respectively. 

In the case of QS, the 569 samples were split into 400 and 169, 
respectively. In turn, as in this case we wanted to discriminate between 
10 different weeks, the training set was composed of 40 samples for each 
week, while the validation set comprised 7, 14, 19, 18, 20, 21, 18, 17, 17 
and 18 samples for the consecutive weeks. 

To implement the discrimination algorithms, four vectors were 
constructed: a) for TC, containing the numbers 1, 2, 3, 4, 5, 6 and 7 
according to the seven weeks, with dimensions of (280 × 1) and (122 ×
1) for training and validation sets, respectively; and b) for QS, con-
taining the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 according to the ten 
weeks, with dimensions of (400 × 1) and (169 × 1) for training and 
validation sets, respectively. 

It is well documented that one of the most appropriate strategies for 
multi-class discrimination is to construct several models to discriminate 
one class against the rest, utilizing only 1 index for the target class and 
0 indexes for the rest [21–23]. This strategy was implemented to 
discriminate between weeks by building 7 models for TC and 10 for QS. 
Here, it is worth mentioning that the Classification toolbox requires the 
information comprised in a vector, as mentioned above, to label the N 
classes, which then automatically constructs a dummy matrix contain-
ing 1 index for the target class and 0 index for the rest. For instance, in 
the 7-class system, the dummy matrix includes 7 columns (one for each 
class) using binary code to indicate the target class, e.g., the (0 0 1 
0 0 0 0) codification refers to the class 3. Consequently, the model 
predicts output values between 0 and 1, which can be considered the 
likelihood of belonging to the target class. If the classification is suc-
cessful, the outputs of samples belonging to a target class will be close to 
the class index. As seen in Figure SM4, all samples belonging to class 1 
render outputs close to 1, samples of class 2 render outputs close to 2, 
and so on. 

Table 1 
Quality performance features for the modelling to discriminate between “Torta del Casar” (Class 1) and “Queso de la Serena” (Class 2).  

Modelling Quality performance featuresa  

Validation during the training Validation with test set  
Sn Sp Pr Acc Sn Sp Pr Acc  

Cheese rind samples 
MCR- LDA 0.91/0.90 0.90/0.91 0.87/0.93  0.90 0.72/0.90 0.90/0.72 0.81/0.84  0.83 
MCR- QDA 1.00/0.97 0.97/1.00 0.96/1.00  0.98 1.00/0.97 0.97/1.00 0.95/1.00  0.98 
MCR- ANN 1.00/1.00 1.00/1.00 1.00/1.00  1.00 1.00/1.00 1.00/1.00 1.00/1.00  1.00  

Cheese inside samples 
MCR- LDA 0.57/0.95 0.95/0.57 0.90/0.72  0.77 0.37/0.99 0.99/0.37 0.95/0.72  0.75 
MCR- QDA 0.57/0.94 0.94/0.57 0.90/0.71  0.77 0.22/0.99 0.99/0.22 0.96/0.68  0.70 
MCR-ANN 0.96/0.94 0.94/0.96 0.94/0.97  0.95 0.93/0.99 0.99/0.93 0.99/0.96  0.97  

a Sn: sensitivity; Sp: specificity; Pr: precision; Acc: accuracy. Sn, Sp and Pr results presented in the following format: Class 1/Class 2. 
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In this scenario, it is interesting to note that the data generated from 
NIR measurements, and subsequently processed with MCR/ALS, enables 
precise differentiation among the various weeks of ripening when 
modelled using the LDA algorithm. Surprisingly, even more robust in-
dicators are achieved compared to those obtained with nonlinear algo-
rithms such as QDA and ANN. 

For the reasons mentioned above, Table 3 shows the confusion 
matrices corresponding to the modelling of test data of TC and QS with 
the LDA algorithm. Interestingly, the values computed for all the figures 
of merit, i.e. Sn, Sp, Pr and Acc for Class 1 to Class 7 in the case of TC 
were equal to 1.00. On the other hand, the values computed for the ten 
weeks of QS were not as favourable, particularly during the initial four 
weeks. As can be seen in Table 3, the performance is exceptional for TC. 
On the contrary, while the results for QS are not as conclusive, the lower 
accuracy during the initial phase of the process suggests that the out-
comes remain acceptable. It is especially significant considering that the 
richness of information could potentially streamline the overall duration 
of the process. In other words, it is crucial to differentiate the final weeks 
effectively. These findings could significantly impact production 

processes. With straightforward NIR spectral measurements, a staple 
tool in food quality laboratories, it becomes feasible to ascertain the 
completion of the process and the readiness of the product for market 
release. 

5. Conclusions 

The current investigation showcases the efficacy of NIR spectros-
copy, in conjunction with proper chemometric modelling, as a potent 
means to monitor soft cheeses like “Torta del Casar” PDO and “Queso de 
la Serena” PDO. Leveraging NIR spectra as unique sample fingerprints 
offers distinct advantages, notably in their facile acquisition, bypassing 
the need for sample treatment and facilitating real-time monitoring for 
effective quality control measures. 

Interestingly, the MCR-ALS decomposition of NIR spectra yields 
scores whose modelling using appropriate algorithms has demonstrated 
the ability to discriminate not only between both types of cheeses but 
among different maturation weeks with a high degree of accuracy. 
Consequently, it can be concluded that this methodology holds promise 

Table 2 
Confusion matrix for the modelling to discriminate between “Torta del Casar” (Class 1) and “Queso de la Serena” (Class 2).  

Modelling Validation during the training Validation with the test set  
Real/ 
Predicted 

Class 1 Class 2 Not 
assig a 

Real/ 
Pred 

Class 1 Class 2 Not 
assig a  

Cheese rind samples 
LDA-MCR Class 1 272 28 0 Class 1 73 29 0  

Class 2 40 360 0 Class 2 17 152 0 
QDA-MCR Class 1 299 1 0 Class 1 102 0 0  

Class 2 12 388 0 Class 2 5 164 0 
ANN-MCR Class 1 300 0 0 Class 1 102 0 0  

Class 2 0 400 0 Class 2 0 169 0  
Cheese inside samples 

LDA-MCR Class 1 199 151 0 Class 1 85 9 6  
Class 2 21 379 0 Class 2 4 160 1 

QDA-MCR Class 1 199 151 0 Class 1 87 8 5  
Class 2 21 379 0 Class 2 3 161 1 

ANN-MCR Class 1 333 13 4 Class 1 88 7 5  
Class 2 23 377 0 Class 2 1 164 0  

a Not assig: not assigned to any class. 

Table 3 
Confusion matrix corresponding to the test sets for the modelling to discriminate between weeks of ripening for “Torta de Casar” (Class 1 to Class 7) and “Queso de la 
Serena” (Class 1 to Class 10).  

Real/ 
Predicted 

Class 
1 

Class 2 Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

Class 
9 

Class 
10 

Not assiga  

“Torta de Casar”  

Class 1 17 0 0 0 0 0 0 – – – 0 
Class 2 0 18 0 0 0 0 0 – – – 0 
Class 3 0 0 19 0 0 0 0 – – – 0 
Class 4 0 0 0 17 0 0 0 – – – 0 
Class 5 0 0 0 0 17 0 0 – – – 0 
Class 6 0 0 0 0 0 17 0 – – – 0 
Class 7 0 0 0 0 0 0 17 – – – 0   

“Queso de la Serena”  

Class 1 1 0 0 0 0 0 0 0 0 0 6 
Class 2 0 14 0 0 0 0 0 0 0 0 0 
Class 3 0 0 0 0 0 0 0 0 0 0 19 
Class 4 0 0 0 1 0 0 0 0 0 0 17 
Class 5 0 0 0 0 20 0 0 0 0 0 0 
Class 6 0 0 0 0 0 21 0 0 0 0 0 
Class 7 0 0 0 0 0 0 18 0 0 0 0 
Class 8 0 0 0 0 0 0 0 17 0 0 0 
Class 9 0 0 0 0 0 0 0 0 17 0 0 
Class 10 0 0 0 0 0 0 0 0 0 18 0  

a Not assig: not assigned to any class. 
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as a viable option for authentication purposes in the final product. 
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Pattern recognition techniques in food quality and authenticity: A guide on how to 
process multivariate data in food analysis, TrAC - Trends in Analytical Chemistry 
164 (2023) 117105, https://doi.org/10.1016/j.trac.2023.117105. 

[6] R. Bro, A.K. Smilde, Principal component analysis, Anal. Methods 6 (2014) 
2812–2831, https://doi.org/10.1039/c3ay41907j. 

[7] M.J.C. Pontes, R.K.H. Galvão, M.C.U. Araújo, P.N.T. Moreira, O.D.P. Neto, G. 
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[13] G.G. Siano, I.S. Pérez, M.D.G. García, M.M. Galera, H.C. Goicoechea, Multivariate 
curve resolution modeling of liquid chromatography-mass spectrometry data in a 
comparative study of the different endogenous metabolites behavior in two tomato 
cultivars treated with carbofuran pesticide, Talanta 85 (2011) 264–275, https:// 
doi.org/10.1016/j.talanta.2011.03.064. 

[14] E.K. Kemsley, A genetic algorithm (GA) approach to the calculation of canonical 
variates (CVs), Trends Anal. Chem. 17 (1998) 24–34. 

[15] D. Ballabio, V. Consonni, Classification tools in chemistry. Part 1: linear models, 
PLS-DA, Analytical Methods 5 (2013) 3790–3798, https://doi.org/10.1039/ 
C3AY40582F. 

[16] S.J. Dixon, R.G. Brereton, Comparison of performance of five common classifiers 
represented as boundary methods: Euclidean Distance to Centroids, Linear 
Discriminant Analysis, Quadratic Discriminant Analysis, Learning Vector 
Quantization and Support Vector Machines, as dependent on data structure, 
Chemom. Intel. Lab. Syst. 95 (2009) 1–17, https://doi.org/10.1016/j. 
chemolab.2008.07.010. 

[17] Z. Ramadan, P.K. Hopke, M.J. Johnson, K.M. Scow, Application of PLS and Back- 
Propagation Neural Networks for the estimation of soil properties, Chemom. Intel. 
Lab. Syst. 75 (2005) 23–30, https://doi.org/10.1016/j.chemolab.2004.04.009. 

[18] W. Wu, B. Walcmk, D.L. Massart, S. Heuerding, F. Erni, I.R. Last, K.A. Prebble, 
Artificial neural networks in classification of NIR spectral data: Design of the 
training set, Chemometrics and Intelligent Laboratory Systems 33 (1996) 35–46. 
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