
PHD THESIS:

ARQUITECTURAS MULTICAPA: ACERCANDO EL

DISEÑO A LA IMPLEMENTACIÓN

JOSE GARCIA-ALONSO

DEPARTMENT OF COMPUTER AND TELEMATIC

SYSTEMS ENGINEERING

Conformity of the Supervisor:

Signed: D. Juan Manuel Murillo Rodŕıguez

Associate Professor

Department of Computer and Telematic Systems Engineering

University of Extremadura

2014

To Isabel, for her unconditional support.

To Adrián, who makes it all worth it.

Acknowledgement

The journey to become PhD is not an easy one. Fortunately, I can say that I have

enjoyed every little step of it, mostly thanks to the people who have accompanied

me along it. I hope these paragraphs serve to show my gratitude to everyone who

has supported me over this years.

I still remember my first years as a computer science student at the University of

Extremadura. I already loved computers and software back then, but I was fortunate

to meet a fantastic group of teachers, passionate about their work, that started to

teach me the wonders of software engineering. These teacher had something in

common, all of them belonged to the Quercus Software Engineering Group. In these

early years I decided that, if the opportunity arose, I would become a member of

the Quercus group. After being a member for seven years, I have not regretted that

decision and I can only show my gratitude to all of the Quercus members for their

continued support, and especially to its director Juan Hernandez.

One of the best experiences I have had over these years has been the creation

of Gloin. What started as a crazy idea has become a reality that has allowed me

to develop new facets of my profession, to live a multitude of new experiences and,

especially, to meet and work with a lot of wonderful people. Thanks guys for sharing

part of your lives with me.

Usually, the development of a thesis is a lonely job. However, in my case I have

been fortunate to have someone that have shared this journey with me from the

beginning. If anyone knows all aspects of this journey, all the ups and downs, that’s

Javier Berrocal. Without his support and company it would have been impossible

ii

to get here.

I have no words to describe the gratitude to my supervisor Juan Manuel Murillo.

We have been working together for almost ten years and in all this time I have not

stopped learning from him. Working with him, not only allowed me to get here, but

has taught me a more positive way of coping with challenges and difficulties and has

made me a better professional and a better person. Thank you.

Finally, none of this would have been possible without my family. My mother,

who taught me to always have my feet on the ground and instilled in me the re-

sponsibility needed to finish a PhD. My father, who taught me to have my mind on

the stars and gave me the hunger for knowledge and the love for science needed to

start a PhD. Isabel, who has understood and encouraged me in every decision, even

in the most difficult for her, and has suffered all the negative aspects of this journey

without complaining. Finally Adrian, who has suffered my constant absences, but

has also given me the strength I needed to get here Infinite thanks.

iii

Abstract

In the last years Extremadura has become a privileged location for software devel-

opment companies. The low cost of living and the abundance of qualified workers

have led several of the country’s leading development companies to create impor-

tant distributed development centers in the region. Several collaborations made

with these centers during the last years have allowed the authors of this thesis to

work on the common problems they face. Specifically, this thesis started with a col-

laboration project with the regional government of Extremadura and the company

Indra Software Labs.

The main goal of this project was to solve the problems affecting the regional

government related with the architectural and technological variability that can

be found in multi-layer applications. These problems were also aggravated by the

high staff rotation suffered by the regional government. Companies like Indra, with

distributed development center, shared these same problems.

After analyzing the causes of these problems, related with the ever increasing

complexity of software architectures and the fast pace of evolution of the develop-

ment technologies, different approaches were studied to try to solve them. None of

these proposals solved all the problems faced by the regional government, especially

when taking into account the high staff rotation suffered by this organization. This

lack of solutions led to the start of this thesis with the following goals:

• To identify and organize the most common architectural decisions in the de-

velopment of framework based multi-layer applications.

• To simplify the use of design pattern and frameworks in the development of

iv

such applications.

• To automatically generate an specific design of the applications tailored to the

to the architectural decisions taken by the software architect starting from the

requirements of the application.

• To automatically generate a significant amount of the application source code.

These goals have been achieved in this thesis by presenting ArchLayer, a develop-

ment process designed to help software architects and developers of these companies.

The proposed process allows software architects to convert an initial design of an

application, completely agnostic to the architecture or technology with which it will

be implemented, into a specific design for a given multi-layer architecture and a

set of development frameworks. ArchLayer is supported by an architectural deci-

sions repository that contains the architectural knowledge needed to develop this

kind of applications. Additionally, a framework information meta-model is used to

gather the technical knowledge needed to correctly use development framewoks. Fi-

nally, a set of model-to-model and model-to-text transformation is provided to help

architects and developers during the development process.

To validate the proposed process, it has been used by a software development

company in the development of two commercial projects. This validation has proved

the feasibility, completeness and the effort required to apply the contributions pre-

sented in this thesis.

v

Resumen

En los últimos años Extremadura se ha convertido en un enclave privilegiado para

las empresas de desarrollo de software. El bajo coste de la vida y la abundancia de

personal cualificado han llevado a varias de las empresas de desarrollo más impor-

tantes del pais a instalar en la región centros de desarrollo distribuidos. Diversas

colaboraciones realizadas con estos centros durante los ultimos años han permitido

a los autores de esta tesis trabajar en los problemas habituales en este contexto.

En concreto, esta tesis comenzó como un proyecto de colaboración entre el gobierno

autonómico de Extremadura y la empresa Indra Software Labs.

El objetivo principal de este proyecto consist́ıa en solucionar los problemas que

afectaban al gobierno autonómico relacionados con la variabilidad arquitectónica y

tecnológica presente en las aplicaciones multicapa. Estos problemas eran empeora-

dos por la elevada rotación de personal sufrida por el gobierno regional. Empresas

como Indra sufŕıan los mismos problemas en sus centros de desarrollo distribuidos.

Tras analizar las causas de estos problemas, relacionadas con la siempre creciente

complejidad de las arquitecturas software y el elevado ritmo de evolución de las

tecnoloǵıas de desarrollo, se estudiaron varias propuestas para tratar de resolverlos.

Ninguna de estas propuestas permit́ıan solventar todos los problemas abordadods,

especialmente si se teńıa en cuenta la elevada rotación de personal sufrida por dicha

organización. Esta falta de soluciones llevó al inicio de esta tesis con los siguientes

objetivos:

• Identificar y organizar las decisiones arquitectónicas más comunes para el de-

sarrollo de aplicaciones multicapa basadas en frameworks.

vi

• Simplificar el uso de patrones de diseño y frameworks de desarrollo en el de-

sarrollo de este tipo de aplicaciones.

• Generar automáticamente un diseño especifico de la aplicación adaptado a las

decisiones arquitectónicas tomadas por el arquitecto a partir de los requisitos

de la aplicación.

• Generar automaticamente una parte significativa del código fuente de la apli-

cación.

Estos objetivos se cumplen en esta tesis con la presentación de ArchLayer, un

proceso de desarrollo diseñado para ayudar a los arquitectos y desarrolladores de

este tipo de compañ́ıas. El proceso propuesto permite convertir un diseño inical

de una aplicación, completamente agnóstico de la arquitectura o tecnoloǵıas con la

que se va a implementar, en un diseño especifico para una arquitectura concreta y

un conjunto de frameworks de desarrollo. ArchLayer se basa en un repositorio de

decisiones arquitectónicas que contiene el conocimiento arquitectónico necesario para

desarrollar este tipo de aplicaciones. Adicionalmente, un metamodelo de información

de los frameworks es utilizado para recopilar el conocimiento técnico necesario para

utilizar correctamente los frameworks de desarrollo. Por último, se proporciona un

conjunto de transformaciones modelo a modelo y modelo a texto para ayudar al

arquitecto y a los desarrolladores durante el proceso de desarrollo.

Para validar el proceso propuesto, este ha sido utilizado por una compañ́ıa de

desarrollo software en el desarrollo de dos proyectos comerciales. Esta validación

ha permitido comprobar la viabilidad, la completitud y el esfuerzo requerido para

aplicar las contribuciones presentadas en esta tesis.

vii

Contents

List of Figures xiii

List of Tables xv

List of Code Listings xvi

1 Introduction 1

1.1 Thesis origins . 2

1.2 Research context . 3

1.3 Problem statement . 5

1.3.1 Multi-layer architectures problems 6

1.3.2 Development framework problems 7

1.3.3 Distributed development problems and competitiveness in the

software development industry 8

1.3.4 Final outcome . 9

1.4 Thesis goals . 10

1.5 Proposed solution . 11

1.6 Thesis context . 14

1.6.1 Research projects . 14

1.6.2 Publications . 16

1.6.3 Collaborations . 17

1.7 Structure of this dissertation . 18

2 Related work 20

2.1 Introduction . 21

viii

CONTENTS

2.2 Model-Driven engineering . 21

2.2.1 Foundation . 22

2.2.2 Web engineering . 24

2.2.3 Discussion . 38

2.3 Development frameworks . 39

2.3.1 J2EE Development Frameworks 40

2.3.2 Server-centric Web frameworks 41

2.3.3 Programmer Questions about Framework 42

2.3.4 Framework Usage Templates 43

2.3.5 Framework Specific Modeling Languages 44

2.3.6 Discussion . 46

2.4 Variability management and architectural decisions 46

2.4.1 Variability management . 47

2.4.2 Architectural decisions . 48

2.4.3 Discussion . 50

2.5 Conclusions . 50

3 ArchLayer: Bridging the gap between design and implementation 53

3.1 ArchLayer overview . 54

3.1.1 Running example . 57

3.1.2 Marking the initial design with quality attributes 58

3.1.3 Modeling architectural variability 61

3.1.4 Choosing the application layers 64

3.1.5 Tailoring the design to a multi-layer architecture 66

3.1.6 Choosing design patterns and technologies 67

3.1.7 Relating the chosen architecture and the system model 71

3.1.8 Additional technological information 72

3.1.9 From multi-layer to framework-based 73

3.1.10 Code generation . 75

3.2 Marked design . 75

3.2.1 Annotating the initial dessign 76

3.3 Architectural decisions repository . 79

ix

CONTENTS

3.3.1 Architectural decisions repository structure 79

3.3.2 Example of a possible architectural decisions repository . . . 83

3.3.3 Enriched architectural decisions repository 83

3.3.4 Reuse of architectural decisions 87

3.4 Framework information meta-model 88

3.4.1 Meta-model design rationale 88

3.4.2 Framework information meta-model 90

3.4.3 Flexibility of the meta-model 95

3.5 Model to model transformations . 97

3.5.1 Layer suggestion transformation 98

3.5.2 From initial design to layered design transformation 100

3.5.3 Design patterns and frameworks suggestion 102

3.5.4 From layered design to specific design transformation 105

3.5.5 Flexibility of the transformations 106

3.6 Conclusions . 108

4 JACA Code Generation Tool 111

4.1 Motivation . 112

4.2 Integration with ArchLayer . 114

4.3 Initial configuration generation . 117

4.4 Concept implementation generation 124

4.5 Additional material and use of the tool 129

4.6 Conclusions . 130

5 Validation 132

5.1 Validation context . 133

5.2 Validation characteristics and sub-characteristics 134

5.2.1 Validation goal: feasibility . 135

5.2.2 Validation goal: completeness 138

5.2.3 Validation goal: effort . 139

5.3 Industrial projects . 140

5.3.1 BeeFun . 140

5.3.2 NimBees . 142

x

CONTENTS

5.3.3 Features of the industrial projects 143

5.4 Validation results . 144

5.4.1 Validation goal: feasibility . 144

5.4.2 Validation goal: completeness 150

5.4.3 Validation goal: effort . 153

5.4.4 Further observations . 156

5.5 Discussion . 157

5.5.1 Summary of results . 158

5.5.2 Threats to validity . 160

5.5.3 Lessons learned . 161

5.6 Conclusions . 163

6 Conclusion 166

6.1 Conclusions . 166

6.2 Publications . 169

6.2.1 Published Papers . 169

6.2.2 Pending Papers . 171

6.3 Future Works . 171

6.4 Final Reflections . 173

A Architectural Decisions Repository 175

B Framework information model 177

C Model transformations 181

C.1 Layer suggestion transformation . 181

C.2 Layered design transformation . 189

C.3 Design patterns and framework suggestion transformations 196

C.4 Specific design transformation . 214

D Additional material 223

xi

CONTENTS

References 224

xii

List of Figures

1.1 Overview of the thesis contributions. 12

3.1 Archlayer, the process proposed for the development of multi-layer

applications. 55

3.2 Use case diagram of the example application 59

3.3 Activity diagram of the Check Order use case 60

3.4 Annotated use case diagram of the example application 62

3.5 Annotated activity diagram of the Check Order use case 63

3.6 Suggested layers . 65

3.7 Layered activity diagram . 68

3.8 Excerpt of the configuration of the feature model with the selected

design patterns. 70

3.9 Excerpt of the configuration of the feature model with the selected

technologies. 71

3.10 Excerpt of the configuration of the feature model with the selected

technology usage technique. 72

3.11 Excerpt of the model adapted to the technologies that will be used in

the application’s development process. 75

3.12 Excerpt of the profile for modeling the relationships with quality at-

tributes in use case diagrams. 77

3.13 Excerpt of the profile for modeling the relationships with quality at-

tributes in activity diagrams. 78

3.14 Architectural Decisions Repository meta-model. 82

3.15 Example of a possible architectural decisions repository 84

xiii

LIST OF FIGURES

3.16 Meta-model for modeling the additional information needed about

the development frameworks. 91

3.17 Excerpt of the Hibernate information model. 96

3.18 Layer Suggestion Transformation application diagram 98

3.19 Layered Design Transformation application diagram 101

3.20 Design Patterns and Frameworks Suggestion Transformation applica-

tion diagram . 102

3.21 Technology Specific Design Transformation application diagram . . . 105

4.1 Map showing the spanish regions with its own reference architecture. 113

4.2 JACA preferences page. 115

4.3 Link between a framework on the architectural decisions repository

and its framework information model. 117

4.4 New JACA Project Wizard in an Eclipse instance with the JACA

plugins installed. 118

4.5 Basic project information page of the JACA wizard. 119

4.6 Layer selection page of the JACA wizard. 119

4.7 Design pattern selection page of the JACA wizard. 120

4.8 Framework selection page of the JACA wizard. 121

4.9 Example of a JACA multi-layer framework based project structure. . 123

4.10 Available framework concepts implementation wizards for a set of

frameworks. 124

4.11 JACA wizard for the generation of services in the business logic layer

of a project. 125

4.12 JACA wizard for the generation of web services. 128

A.1 Feature model containing the architectural decisions repository. . . . 176

xiv

List of Tables

1.1 Summary of the published papers and their relevance. 16

3.1 Essential framework information used in the creation of the architec-

tural decisions repository. 81

3.2 Template for the architectural information of a framework 86

3.3 Template for the effects of a combination of frameworks on a system

QAs . 87

3.4 Development frameworks analysed for the creation of the meta-model. 89

5.1 Summary of the project features. 143

5.2 Summary of the results for the feasibility validation goal. 164

5.3 Summary of the results for the completeness validation goal. 165

5.4 Summary of the results for the effort validation goal. 165

xv

List of Listings

3.1 Persistence layer suggestion transformation 99

3.2 Security layer suggestion transformation 99

3.3 Alternative security layer suggestion transformation 100

3.4 Activity partition inclusion for each selected layer 101

3.5 Actions present in the persistence layer transformation 102

3.6 Framework suggestion transformation 104

3.7 Specific design transformation . 107

B.1 Hibernate framework information model 177

C.1 Layer suggestion transformation . 181

C.2 Excerpt of the layered design transformation 189

C.3 Excerpt of the design patterns suggestion transformation 196

C.4 Excerpt of the framework suggestion transformation 205

C.5 Excerpt of the specific design transformation 214

xvi

Chapter 1

Introduction

I don’t care if I pass your test, I don’t care if I follow your rules.

If you can cheat, so can I. I won’t let you beat me unfairly - I’ll

beat you unfairly first.

Ender’s Game, Orson Scott Card.

The layer architectural pattern allows software architects to decompose a system

into decoupled components called layers. Each layer provides services to the layer

above and uses the services of the layer below. The use of this pattern benefits

the modifiability, portability, and reusability of the final system (Avgeriou & Zdun,

2005). Therefore, multi-layer architectures are those in which the system has been

decomposed into two or more decoupled components in a vertical manner.

This thesis focuses in the industrial development of systems using such archi-

tectures. Specifically, this work is centered in the gap between the initial design

of a system and the detailed design that is needed in order for the system to be

implemented. To explain this situation in detail, this introduction is organized as

follows. Section 1.1 reports the origins of this thesis and the reasons why it was

started. Section 1.2 presents the research context in which this work was conducted.

Section 1.3 details the problems that this work aims to solve. Section 1.4 specifies

the concrete objectives that have been addressed in this thesis. Section 1.5 provides

a general vision of the proposed solution for the addressed problems. In section 1.6

the information related to the development of this work is stated. Finally, section

1

Chapter 1 Introduction

1.7 presents the structure of this thesis.

1.1 Thesis origins

The research work leading to the thesis presented here has a clear industrial moti-

vation. This thesis originated from a contact between the regional government of

Extremadura and the supervisor of this thesis.

The regional government was trying to modernize their development processes

focusing on multi-layer architectures and Java development frameworks. However,

they were facing significant problems.

First, the regional government has a high rate of staff rotation. Due to the type

of contract made by the government, its staff has great mobility. This leads to its

staff making numerous department changes and even city changes within the region

every year. This staff rotation in itself does not pose a problem. However, when

combined with a modernization process as the one being conducted by the regional

government, it poses significant challenges. Mainly, the difficulty of training its staff

in the new processes and technologies that were being implemented.

And second, most of the software used by the regional government is not de-

veloped by the government itself. Usually, the software is developed by software

development companies hired by the regional government and the it only handles its

operation and maintenance. Again, this in itself does not pose a problem. However,

the government was realizing that each hired development was using a very different

architecture and development technologies, complicating its maintenance.

This were the problems that led the regional government to seek help from the

University of Extremadura, and specifically from the supervisor of this thesis due to

his previous experience in framework based multi-layer applications and the man-

agement of distributed development centers. The efforts to solve these problems

have resulted in the thesis presented here.

2

Chapter 1 Introduction

1.2 Research context

The search for talent anywhere in the world and the attempt to reduce labor costs

has caused the rise of distributed software development. This kind of development

involves development teams whose members work together but are geographically

distributed (Prikladnicki, Audy, & Shull, 2010). Particularly relevant to this work is

the nearshore model. With this model companies obtain some of the benefits of the

distributed software development, such as the cost reduction, while mitigating the

difficulties imposed by distance and cultural differences (Carmel & Abbott, 2007).

Similarly to the nearshore model, the rural outsourcing model proposes building

development centers in remote domestic locations for several reasons, including to

access a more stable, lower-cost workforce (Lacity, Carmel, & Rottman, 2011).

In this context, Spain has established itself as one of the stronger nearshore

locations in Europe. The large labor pool in the IT market, the abundance of

industrialized software factories and the potential to scale in Latin America make

Spain an ideal candidate to use this model (Davis, Parker, & Shanahan, 2009).

Specifically, in recent years Extremadura has become a key destination for the

rural outsourcing model. Both, national and international companies looking for

lower costs and skilled staff have established development centers here.

• Indra. In 2004 Indra, the largest Spanish company in the IT sector, opens a

Software Lab in Extremadura which currently employs more than 300 qualified

workers, 70% of them coming from the local university (I. P. Release, 2012).

Since 2007 this center has a branch within the University of Extremadura.

This collaboration is managed from the university by this thesis supervisor.

• Teseo. In 2005 Teseo Software Factory opens as a development center inside

the University of Extremadura in collaboration with SGAE, the main man-

agement body of musical copyright in Spain (of Extremadura Press Release,

2005). This development center was directed by this thesis supervisor and the

thesis author was one of the center developers for more than a year.

• IBM. In 2007 Insa-IBM opens a center of technological innovation in Ex-

3

Chapter 1 Introduction

tremadura where, currently, more than 250 employees are working (I.-I. P. Re-

lease, 2007)

• Accenture. In 2008 Accenture establishes a collaboration with some regional

companies sets its own development center in Extremadura (de Extremadura

Press Release, 2008)

• Ibermática. In 2013 Ibermática opens a development center in Extremadura

with more than 60 software developers (I. P. Release, 2013).

Collaboration with these entities, especially with Teseo Software Factory and

Indra Software Lab, with which several research projects were conducted, have help

the development of this work.

The key features of these development centers make the use of multi-layer archi-

tectures particularly suitable. Dividing a system into decoupled components that

communicate only through predefined interfaces perfectly fits the business model,

the distribution and industrialization of the developments of these organizations.

Another important event to be considered in the context of this work is the rise

of the development frameworks. Development frameworks meaning “large, abstract

applications in a particular domain that can be tailored for individual applications.

A framework consists of a large structure that can be reused as a whole for the

construction of a new system” (Bosch, Molin, Mattsson, & Bengtsson, 1997).

The rise of the Internet led to the creation of numerous web frameworks to sim-

plify the development of web applications. These frameworks aim to provide reusable

solutions to several common problems in the development of web applications. To do

this, they provide the implementation of different design patterns, general reusable

solutions to commonly occurring problems within a given context (Gamma, Helm,

Johnson, & Vlissides, 1995).

The early web frameworks focused on simplifying the implementation of the pre-

sentation logic in web applications, Struts 1 being the first to have a broad success.

This was followed by frameworks to manage persistent information, like Hibernate

1http://struts.apache.org

4

http://struts.apache.org

Chapter 1 Introduction

2 and to provide Inversion of Control (IoC, also known as dependency injection),

like Spring 3. The industrial success of these frameworks was quickly followed by

the appearance of numerous alternatives and frameworks to cover different aspects

of web applications (Johnson, 2005). The increasing complexity of web applica-

tions and the wide acceptance of frameworks by the developer community has led to

the appearance of dozens of frameworks covering every aspect of these applications

(Vosloo & Kourie, 2008).

This kind of frameworks fits perfectly with the use of multi-layer architectures in

distributed development centers. One or more frameworks are used in the implemen-

tation of each individual layer and development centers, or even teams within them,

can specialize in the use of certain frameworks advancing in the industrialization of

their developments.

This work specifically focuses on such developments. The development of frame-

work based, multi-layered web applications taking place in distributed development

centers. The results of this thesis are transferable to any technology and framework

of this type. However, due to its wide acceptance the remainder of this work focuses

on Java development frameworks.

1.3 Problem statement

Given the context described in the previous section, the development of frameworks

based multi-layer applications has significant benefits but it also has a number of

drawbacks. These drawbacks are derived from three different sources. Problems

derived from the use of multi-layer architectures, problems derived from the use

of development frameworks and problem derived from the distributed development

model. Each of these problems are described in the following subsections respec-

tively.

2http://hibernate.org
3http://projects.spring.io/spring-framework/

5

http://hibernate.org
http://projects.spring.io/spring-framework/

Chapter 1 Introduction

1.3.1 Multi-layer architectures problems

A considerable number of the applications being developed today, specially in dis-

tributed development center as the ones mentioned above, are enterprise applica-

tions. These are large software systems that deal with a wide range of processes in an

organization. They are usually complex, scalable, distributed systems with multiple

user interfaces or access methods (web, mobile, APIs, etc). Such applications are

characterized by a fairly strict set of non-functional requirements regarding reliabil-

ity, performance, integration, security, etc., reflecting their function in supporting

critical processes within the organization (Fowler, 2002).

Multi-layer architectures are one of the most common solutions to develop such

projects since they allow developers to focus on the application’s business logic

instead of its structural details. However, the responsibility for the effective use of

these architectures lies with each individual development team (Pressman, 2000).

Specifically, the figure of the software architect takes on particular importance since

the architecture plays a very important role in the way the application will be

developed (Northrop, 2003).

This situation is only getting worse, as developments are becoming more complex

every day. Especially since the boom in cloud computing and mobile devices that

makes application architectures increasingly complex and with more layers to take

into account.

Thus, a development success will largely depend on the architect’s experience,

expertise, and skill in avoiding the introduction of potential errors (Dalgarno, 2009).

”The right architecture paves the way for system success. The wrong architecture

usually spells some form of disaster” (Northrop, 2003). “Examples of the most

serious computer-related accidents in the past 20 years such as Therac-25 and Ariane

5 can be attributed to flawed system and software architectures” (Wu & Kelly, 2006).

Defining the architecture requires the architect to follow an arduous and complex

process for getting information on the system requirements and for making decisions

about how to structure the application to comply with them (Bengtsson, 1998; Bass,

Clements, & Kazman, 2003; Clements et al., 2007). Firstly, the architect has to

6

Chapter 1 Introduction

acquire a great knowledge on the requirements and the relationships between them

(Capilla, Babar, & Pastor, 2012). Subsequently, the knowledge extracted from the

analysis of the requirements is used as the basis for making decisions about how to

structure the system (Clements, 2001; Lung & Kalaichelvan, 2000). This implies

that the architect cannot make these decisions based on a single requirement, she

must have a complete view of all the requirements and how they interact. This

conjuncture complicates the architect’s work and exposes her to situations in which

a misinterpretation can lead to the selection of an incorrect architectural pattern.

Moreover, architectural patterns and development technologies are closely in-

terrelated. The application of a given pattern favors the selection of other patterns

(Harrison & Avgeriou, 2010). Therefore, the incorrect selection of a pattern can lead

the architect to make incorrect decisions during the refinement of the architecture.

This may cause the final design to fail the requirements of the system, jeopardizing

the success of the project.

1.3.2 Development framework problems

Development frameworks have become one of the most used tools in complex soft-

ware development. Although their presence in scientific literature is not too prolific

nowadays (it was during the late nineties), their proliferation (Vosloo & Kourie,

2008; Shan & Hua, 2006), the number of versions released annually, the traffic gen-

erated in forums and mailing lists, and the job offers that require their skills (Raible,

2012) demonstrate it.

However, their own success is the cause of one of its major drawbacks. The

increasing amount of frameworks and their rapid evolution rate (Raible, 2007) make

it really difficult to keep up-to-date knowledge about them. This problem affects

not only software developers, who have to devote more effort to stay updated, but

it’s really detrimental to software architects. They should know not only the latest

technologies and their impact on the developed projects, but should also understand

the effects of the combination of several technologies on the same project (Harrison

& Avgeriou, 2010).

7

Chapter 1 Introduction

Other problems emerging from the use of development frameworks, like the inte-

gration of multiple framework or the difficulty of understanding one of these tech-

nologies, are well know (Bosch et al., 1997; Mattsson, Bosch, & Fayad, 1999). How-

ever, problems like the difficulty of integrating frameworks from different vendors

remain present. Software architects with years of experience in the use of these tech-

nologies still have to devote significant efforts to incorporate new frameworks or new

versions of existing frameworks into their projects, even in cases where the frame-

works belong to the same vendor (Paraschiv, 2013). Evidence of this can be found

in the number of queries in this regard in professional development forums or in

the importance given to this aspect by some of the most representative frameworks

developers like Spring (Johnson et al., 2013a, 2013b).

1.3.3 Distributed development problems and competitiveness in

the software development industry

As mentioned above, the use of multi-layer architectures and development frame-

works fits perfectly with the distributed software development model. However, this

development model poses its own drawbacks (Prikladnicki, Audy, Damian, & de

Oliveira, 2007).

One of the main goals pursued by companies with distributed development cen-

ters is cost reduction. In an industry like software development, where developers

work hours are the main raw material, this implies that the cost reduction achieved

by these development models comes largely from the lower labor costs in the places

where they are located. Competitiveness to offer cheaper development rates causes

high staff rotation since a significant number of developers will move to places where

they can obtain a better salary (Ågerfalk & Fitzgerald, 2008). The relationship of

the author of this thesis with several development centers in the region serves to

confirm this problem locally.

Internal rotation should be added to this external rotation. In this kind of de-

velopment centers several projects are conducted simultaneously and it is common

that the staff change from one project to another every few months. This high

8

Chapter 1 Introduction

staff rotation makes the training costs rise, thus decreasing the effectiveness of the

development model.

Large software development organizations have tried to minimize the problems

caused by staff rotation by using reference architectures. These architectures enable

organizations to specify a core software architecture that can be used in multiple de-

velopments. Therefore, all projects developed using the reference architecture have

a similar structure and use the same set of technologies. This allow organizations

to decrease their training costs since they only have to train their staff in the tech-

nologies included in their architecture. Also, managing staff rotation and reusing

previously developed components becomes easier.

Proof of the success of these reference architectures can be found in Spain, where

several regional governments have defined their own reference architectures. These

architectures are imposed in outsourced projects so local development centers should

use them. Some examples of the most relevant are openFWPA from Asturias (de As-

turias, n.d.), MADEJA from Andalucia (de Andalućıa, n.d.), AMAP from Cantabria

(de Cantabria, n.d.) or JAVATO from Murcia (de Murcia, n.d.). Private companies

have used the same solution to similar problems in a less public way. Thanks to the

author’s collaboration with some of the local development centers it can be assured

that at least two of them use their own reference architecture.

However, reference architectures have some major drawbacks of their own. Tech-

nological evolution makes these architectures become outdated very quickly and the

costs to stay updated grow with the complexity and richness of the architecture. This

implies that most of these architectures become obsolete within a few years after its

creation. Additionally, these architectures restrict the technological spectrum of the

organization know-how, focusing it on the technologies included in the architecture.

This becomes a problem when a better technology appears or when a development

has specific technological requirements which differ from the architecture.

1.3.4 Final outcome

Each of the problems stated in the previous sections can usually be resolved.

9

Chapter 1 Introduction

The complexity of multi-layer architectures is counteracted by the software ar-

chitects experience. The job of a software architect requires decision making that

play an important role in the success or failure of projects (Kruchten, 2008). That

is why such position is usually occupied by people with proven experience and able

to face the challenge of designing a complex architecture.

The quick evolution rate of development frameworks is barely faster than the

general evolution of software engineering. A significant part of software engineering

has been changing dramatically each decade (Boehm, 2006). This implies that

software development professionals are, normally, used to the quick evolution of the

technologies used and training in new technologies is considered part of their regular

work.

The continuous staff rotation in distributed development centers is balanced by

the industrialization of the developments. This industrialization involves a stan-

dardization that allows to replace staff with little cost, as long as the staff know

the standards employed. As mentioned above, reference architectures also help to

mitigate the staff rotation problem, as long as enough resources can be allocated to

keep them updated.

The real difficulties occur when these conditions come together. Projects use

increasingly complex multi-layer architectures, development frameworks with high

evolution rate and are developed by staff not necessarily experienced, including the

software architect. This thesis is focused in such situation

1.4 Thesis goals

This thesis focuses on mitigating the problems described in the previous section.

The development of multi-layer application in development centers with high staff

rotation, the complexity of the multi-layer architectures and the quick evolution of

development technologies can be overcome with mechanisms to help the software

architect and developers of such applications.

By studying the state of the art regarding the problems mentioned in the previous

10

Chapter 1 Introduction

section, a set of concerns has been identified that constitutes the goals to be achieved

in this thesis. In particular, the objectives of this work are the following:

• Identify the most common architectural decisions in the development of frame-

work based multi-layer applications.

• Organize such architectural decisions in a common taxonomy that can be used

to help software architects.

• Facilitate the reuse of architectural knowledge obtained during the develop-

ment of a project in future developments.

• Analyze the integration and usage patterns of a significant number of devel-

opment framework.

• Specify a common set of rules for the usage and integration of the largest

possible number of frameworks.

• Define a process that simplifies obtaining a specific design for a multi-layer

architecture, starting from an architectural and technological independent de-

sign.

• Provide a mechanism to help the architect to define such specific design.

• Provide a mechanism to automatically generate part of the applications being

developed from the specific design.

• Develop tools to support the fulfillment of all the above objectives.

1.5 Proposed solution

To solve the problems mentioned in Section 1.3 and fulfill the goals detailed in

Section 1.4 the ArchLayer development process is proposed. This process can be

used by distributed development centers for building framework based multi-layer

applications. Figure 1.1 shows a diagram of the ArchLayer process highlighting the

specific contributions of this thesis.

The contributions of this thesis are divided into two categories: contributions and

11

Chapter 1 Introduction

F
ig

u
re

1.
1:

O
ve

rv
ie

w
of

th
e

th
es

is
co

n
tr

ib
u

ti
on

s.

12

Chapter 1 Introduction

technical contributions. Contributions present a scientific advance over the current

state of the art. Technical contributions represent the application of state of the art

techniques into the context of framework based multi-layer applications developed

in distributed centers.

The ArchLayer process begins with a preliminary design of the application to be

developed. This design has to be refined by the architect or requirements experts,

in the activity 1 in the diagram, to include information about the quality attributes

of the system.

Once the architect has the refined design, the next task is to define the soft-

ware architecture best suited to the applications requirements. In order to simplify

this task a repository containing common architectural decisions is offered to the

architect. Such repository is the first contribution of this thesis, it contains an orga-

nized set of common architectural and technological decisions in the development of

multi-layer applications. This contribution has been published in (Garćıa-Alonso,

Olmeda, & Murillo, 2012).

The second contribution of this thesis consists in a mechanism to automatically

suggest the architect, based on the refined design and the architectural decisions

repository as shown in activity 2 in the diagram, an initial multi-layer architecture.

After the architect has validated, in activity 3, and refined, in activity 5, the sug-

gested architecture, the architectural decisions taken by the architect are stored so

traceability can be maintained to the source code of the project developed and so

that they can be used as a basis for decision-making in future developments. A

mechanism to store and reuse such architectural decisions is the first technical con-

tribution of this thesis. These contributions have been published in (Garćıa-Alonso,

Olmeda, & Murillo, 2013).

The second technical contribution of this thesis is a set of model transformations

for converting the refined design into a design tailored to the architectural decisions

made by the software architect. This transformation is performed in two steps.

The first, represented by activity 4 in the diagram, provides a design tailored to the

architecture layers. The second, represented by activity 7, provides a design tailored

13

Chapter 1 Introduction

to the specific technologies that will be used in the system development. This

contribution is currently under review to be published in (Garćıa-Alonso, Olmeda,

& Murillo, 2014a).

To perform this second transformation two additional elements are needed. First,

the architect must link the technological decisions with the design elements to which

they affect, as shown in activity 6. Second, specific information is needed about

how the technologies chosen by the architect should be integrated and used in the

project. This is precisely the third contribution of this thesis, a common language

for specifying the usage information of different development frameworks. This

contribution has been published in (Garćıa-Alonso, Olmeda, & Murillo, 2014b).

Finally, the third technical contribution of this thesis consists of a set of code

generation transformations. These transformation take as input the tailored design

and the specific information about the technologies and provide a significant part of

the source code of the application, corresponding to activity 8 in the diagram. This

contribution has been published in (Garćıa-Alonso, Olmeda, & Murillo, 2010).

1.6 Thesis context

This thesis has been developed in the context of the Quercus Software Engineering

Group of the University of Extremadura, where the author holds a position of assis-

tant professor. As a member of this group the author has participated, during the

development of this thesis, in several research projects that have resulted in several

publications and contributions, always related to the objectives of this work.

The following sections detail the research projects in which the author has par-

ticipated, the publications obtained related to the major contributions of this thesis

and the collaborations conducted.

1.6.1 Research projects

The work of this thesis has been developed as part of the following research projects,

both regional and national:

14

Chapter 1 Introduction

• Model-driven development of business process in software facto-

ries: applications to the Web 2.0 and J2EE multi-tier architectures

(TIN2008-02985). In this project development processes used in distributed

development centers were analyzed. From this work, we began to define how

model-driven development (MDD) techniques could simplify such processes.

• JACA. Java for the regional government applications (PDT08A034).

This project was conducted in collaboration with the regional government

and Indra local development center. The objective of this project was to

develop the software architecture to be used in all projects commissioned by

the government. Specifically, the project consisted of developing a reference

architecture as the ones described in Section 1.3.3. The development was based

on Indra reference architecture and a set of tools was built implementing a large

part of the contributions of this work.

• Updating the development of framework based multi-layer applica-

tions: Integrating MDD and PL techniques (TIN2011-24278). In

this project, product lines (PL) techniques were used to manage the variabil-

ity of architectural decisions in the development of multi-layer applications.

The first step to use this technique in a MDD process were done during this

project development.

• PATTERN. Product lines and transformation techniques in the multi-

layer architectures design (TIN2012-34945). In the context of this

project, we develop the set of transformation to bind PL artifacts contain-

ing architectural decisions with the design of a multi-layer application.

• Product lines in the development of multi-layer applications (ACVII-

08). In this project, we define how to use product lines techniques to store

the architectural decisions taken during the development of multi-layer appli-

cations for its future use.

• Methodology for use case extraction from business processes (ACVII-

09). In this project we contribute to define an annotated use case model that

would include information about the quality attributes (QAs) each use case

15

Chapter 1 Introduction

should meet.

1.6.2 Publications

Table 1.1 shows a summary of the papers published and the forums in which they

have been published. The complete list of papers published in the context of the

thesis is detailed in Section 6.2. The importance of the conferences is obtained from

the Computing Research and Education Association of Australasia (CORE)4. The

importance of the journals is obtained from the Journal Citation Report (JCR)5.

As can be seen in Table 1.1, in the development of this thesis a total of fourteen

papers has been published, of which eight have national scope and six have inter-

national scope. Eleven of these papers were published in conferences/workshops, of

which two were accepted in conferences indexed in the CORE ranking. Finally, the

other three papers were published in journals, of which one is indexed in JCR, with

an impact factor of 1,616.

Table 1.1: Summary of the published papers and their relevance.

Forum Type Scope Num CORE JCR

DSDM Workshop Nat 1 - -

JENUI Conference Nat 1 - -

JCIS Conference Nat 1 - -

JISBD Conference Nat 4 - -

Wiki4SE Workshop Int 1 - -

FOSD Conference Int 1 - -

ICSEA Conference Int 1 C -

SERA Conference Int 1 C -

REICIS Journal Nat 1 - -

Agile PME Journal Int 1 - -

IEEE Software Journal Int 1 - 1,616

Total
2 Works. 8 Nat.

14 2 19 Conf. 6 Int.
3 Journal

4http://core.edu.au/index.php/categories/conference%20rankings
5http://thomsonreuters.com/journal-citation-reports/

16

http://core.edu.au/index.php/categories/conference%20rankings
http://thomsonreuters.com/journal-citation-reports/

Chapter 1 Introduction

1.6.3 Collaborations

During the course of this thesis, there have been numerous collaborations with dif-

ferent organizations. Following are those most relevant to the development of this

work:

• GEPRODIST. Distributed project management. This project was de-

veloped in collaboration with Indra development center. The project goal was

to build a system that would facilitate the management of distributed projects.

The system take as input the software process to be used and is responsible

for adapting it to the specific needs of each development. The development

process proposed in this work was one of those used in the creation of this

system.

• GLOCO. Global connector. Some of the ideas detailed in this thesis were

applied in this project for the development of a system that connectedthe

various sources of information used by LatinAutor, the organization grouping

the Latin American musical copyright societies.

• DCI.Data clean-up and integrity. This project involved the development

of an application that would support a set of processes to manage and verify

the data quality of musical copyright societies. To develop this application

some of the ideas proposed in this thesis were applied.

• Gloin. During the development of this thesis, the company Gloin was co-

founded by the author of this thesis, its supervisor and another research part-

ner. One of the company’s goals is to bring companies the research advances

made in the research group. The process proposed in this thesis has been

successfully used by the company in several commercial projects.

Moreover, during the development of this thesis the author made a five months

research stay at the IT University of Copenhagen. This university is considered a

top institution on system and software engineering.

This stay was supervised by Prof. Muhammad Ali Babar. The main research

areas of Prof. Babar include the development and/or rigorously evaluation of ap-

17

Chapter 1 Introduction

proaches and tools for supporting the design, analysis, and evolution of complex and

dependable software intensive system and services that meet both the functional and

non-functional requirements as derived from the quality goals.

As a result of this stay, and thanks to the experience and contributions of Prof.

Babar, we have improved the management of quality attributes in this work as well

as the way architectural decisions affect these attributes in the final system.

1.7 Structure of this dissertation

This dissertation is organized as follows:

Chapter 1 Introduction. It comprises this introduction, which contains the

research context of the work developed needed to understand the content of this

dissertation, a detailed statement of the most common problems in such context

and the goals to be achieved with this work. Additionally, it contains a summary of

the proposed solution to achieve the aforementioned goals and a description of the

context in which this thesis has been developed.

Chapter 2 Related work. It provides specific information about relevant

scientific works in the scope of the research context of this work. Specifically, this

chapter provides a detailed description of works in the areas of web engineering and

development frameworks summarizing all the issues identified. Additionally, the

concepts related to variability management and architectural decisions that are the

works on which this thesis is based are introduced.

Chapter 3 Bridging the gap between design and implementation. It

details the process proposed in this dissertation to solve the problems stated in the

previous chapter. Specifically, a running example is used to illustrate the proposed

process and the different activities and artifacts that compose it are thoroughly

detailed.

Chapter 4 JACA Code Generation Tool. It describes the tool developed to

automatically generate part of the source code of multi-layer framework based web

application based on the process described in the previous chapter. Specifically, the

18

Chapter 1 Introduction

context and motivation behind the development of this tool is detailed and its use,

both as part of the proposed process and as an independent tool, is explained.

Chapter 5 Validation. It describes the validation performed to evaluate the

process usefulness. Specifically, the two industrial projects in which the proposed

process was used are detailed and the results of the application of the process are

presented and discussed.

Chapter 6 Conclusion. It includes the main conclusions and reflections drawn

after development of this thesis.

Appendix A Architectural Decisions Repository. It shows the complete

architectural decisions repository that was built as part of the research work done

during this thesis.

Appendix B Framework information model. It shows an example of a

complete framework information model.

Appendix C Model transformations. It shows the ATL model transforma-

tions that support the process presented in this thesis.

Appendix D Additional material. It includes a detailed list of the additional

material presented alongside this thesis.

19

Chapter 2

Related work

In the moment when I truly understand my enemy, understand

him well enough to defeat him, then in that very moment I also

love him. I think it’s impossible to really understand somebody,

what they want, what they believe, and not love them the way

they love themselves.

Ender’s Game, Orson Scott Card.

As far as the author knows, there are no other works focused on the develop-

ment of framework based multi-layer applications in distributed development cen-

ters. However, this thesis, like any other scientific work, is based on previous works.

These works have enabled the author to develop a solution to the problems detailed

in the previous chapter.

This chapter reviews the state of the art related to this thesis. This review in-

cludes works from different fields and disciplines related to model driven engineering,

product lines, software architecture and development frameworks. The review of this

works is organized as follows. Section 2.1 summarizes the problems that drive the

development of this thesis and, therefore, the analysis of the related works. Section

2.2 provides a detailed description of works in the area of model-driven engineering

given their proximity to the work presented here. Section 2.3 discusses the most

relevant works dealing with development frameworks. Section 2.4 introduces the

concepts related to product lines and architectural decisions that are the basis of

this work. Finally, Section 2.5 presents the conclusions of this chapter.

20

Chapter 2 Related work

2.1 Introduction

As stated in the previous chapter, companies developing framework based multi-

layer applications in distributed development centers face three main problems.

• Multi-layer architectures are very complex and have a high degree of variability.

This requires companies to have expert software architects and, therefore, they

become very dependent on them.

• Development framework evolves very quickly, with new frameworks or new

versions of the existing frameworks appearing constantly. This requires com-

panies to devote significant resources to the continuous training of its staff.

Again, this makes companies become very dependent on their trained staff.

• The business model used in distributed development centers causes a con-

tinuous staff rotation. Companies face this problem by industrializing their

development process and by using reference architecture. This requires com-

panies to spend resources on training the rotating staff and in keeping the

reference architecture updated.

As can be seen, these problems are tightly coupled. Each one of them magnifies

the others, worsening the situation.

Multiple research works try to solve any of these problems or a combination of

them. The rest of this chapter will review the most relevant of them in relation to

the work presented in this thesis.

2.2 Model-Driven engineering

Model-driven engineering techniques are designed to rise the abstraction level at

which architects and developers work by focusing in the use of models at a higher

abstraction level than code-oriented models. These techniques have been used to

help mitigate the problems of technological evolution and complexity of the develop-

ments stated above. In this section, the model-driven proposal related to the work

presented in this thesis are reviewed.

21

Chapter 2 Related work

2.2.1 Foundation

Model-Driven Engineering (MDE) is a paradigm for increasing the abstraction level

in the development of different projects by the systematic use of models as primary

artifacts. With a model being a simplification of a system built with an intended

goal in mind and able to answer questions in place of the actual system (Bézivin &

Gerbé, 2001). In the specific case of software development, MDE proposes the use of

models to obtain a higher abstraction level than the one provided by programming

languages (Schmidt, 2006).

The use of MDE techniques to solve the problems faced during the development

of multi-layer applications is a natural step. Models are already used by distributed

development centers to represent projects requirements, generally use case diagrams

(Jacobson, Booch, & Rumbaugh, 1999; Leffingwell & Widrig, 2003).

Within the MDE paradigm there are numerous proposals for software develop-

ment. One of the most representative examples is the Model Driven Architecture

(MDA) architectural framework (Miller & Mukerji, 2003) from the Object Manage-

ment Group (OMG), an international, open membership, not-for-profit technology

standards consortium (http://www.omg.org). MDA promotes the creation of highly

abstract models that are developed independently of the implementation technol-

ogy. This models can be automatically transformed into less abstract models, code

skeletons or other artifacts (Kleppe, Warmer, & Bast, 2003).

In MDA models of a system are grouped into three categories. Computation

Independent Models (CIMs) are views of a system from a computation independent

viewpoint. Platform Independent Models (PIMs) are views of a system from a

platform independent viewpoint. A PIM exhibits a specified degree of platform

independence so as to be suitable for use with a number of different platforms of

similar type. Platform Specific Models (PSMs) are views of a system from a platform

specific viewpoint. A PSM combines the specifications in the PIM with the details

that specify how that system uses a particular type of platform (Miller & Mukerji,

2003).

Closely related to MDA, there are a others standards and technologies relevant

22

http://www.omg.org

Chapter 2 Related work

to the work presented in this thesis. In MDA, models are first-class artifacts and,

therefore, they should be defined in a common language that allows their manip-

ulation by all involved in the development. Meta-Object Facility (MOF), another

OMG standar, provides the basis for model management (OMG, 2011b).

MOF proposes a four layer infrastructure that support the generation and rep-

resentation of arbitrary meta-models (Atkinson & Kühne, 2003). The Meta-Meta-

Model Layer or M3 contains the MOF language, which is used to describe the

structure of metadata (and, also, of MOF itself). It provides a meta-meta-model at

the top layer. The Meta-Model Layer or M2 contains definitions for the structure

of meta-data. The M3-model is used to build meta-models on level M2. The Model

Layer or M1 contains definitions of data in the information layer. The meta-models

of level M2 describe the structure of elements of the M1- layer. The Model Layer

or M0 contains objects or data in the information layer (Andova, van den Brand,

Engelen, & Verhoeff, 2012).

MOF is the international standard to define and manipulate a set of interoper-

able meta-models and their corresponding models (ISO, 2005). In particular, the

more widespread implementation of the standard is the Eclipse Modeling Frame-

work (EMF), which has become very popular and has an extensive tool support

(Steinberg, Budinsky, Paternostro, & Merks, 2009).

Aditionally, within MDE, model transformations are one of the key elements.

Model transformations can be defined as programs that takes as input a model

conforming to a given source meta-model and produces as output another model

conforming to a target meta-model (Ruscio, Eramo, & Pierantonio, 2012). There are

numerous proposals for model transformation languages and techniques (Czarnecki

& Helsen, 2006; Taentzer et al., 2005). However, there is no model transformation

standard accepted by the vast majority yet (Ruscio et al., 2012).

The Atlas Transformation Language (ATL) (Jouault, Allilaire, Bézivin, Kurtev,

& Valduriez, 2006) is usually used over other proposals such as the OMG standard

Query/View/Transformation (OMG, 2011a) or others because its extensive tool sup-

port (Jouault, Allilaire, Bézivin, & Kurtev, 2008) and its wide acceptance by the

23

Chapter 2 Related work

MDE community (http://www.eclipse.org/atl/usecases/).

Finally, the remaining piece in the MDE mosaic is the Object Constraint Lan-

guage (OCL). OCL is another OMG standar (OMG, 2012) that has become a key

component of any MDE process. OCL is frequently used to express model trans-

formations, well-formedness rules or code generation templates (Cabot & Gogolla,

2012).

2.2.2 Web engineering

Web engineering can be defined as “the establishment and use of sound scientific, en-

gineering and management principles and disciplined and systematic approaches to

the successful development, deployment and maintenance of high quality Web-based

system and applications” (Murugesan & Deshpande, 1999). In this area a significant

number of works have successfully applied MDE techniques to the development of

web applications (Moreno, Romero, & Vallecillo, 2008).

A significant portion of the framework based multi-layer applications being de-

veloped in distributed development centers are web applications. Additionally, web

engineering works usually use multi-layer architectures implicit in the models of

the different proposal. And also, although it is not explicit in these works, most

web engineering approaches generate applications source code using development

frameworks (Vosloo & Kourie, 2008).

Therefore, in this section the most important works in this area are detailed.

Most of these works present a complete process for developing web applications. In

this review the focus is set on the models used by each proposal, by themselves these

models provide a lot of information about the architecture used by the applications

developed, and in the proposed process for the development of web applications,

for the similarities or differences these processes can have with ArchLayer. Special

attention will be paid to the contributions of these proposals to try to solve the

problems mentioned in Section 2.1

24

http://www.eclipse.org/atl/usecases/

Chapter 2 Related work

Web Modeling Language

Web Modeling Language (WebML) is one of the more successful web engineering

techniques. It was conceived to support the design and implementation of data

intensive web applications using MDE techniques (Ceri, Fraternali, & Bongio, 2000).

Its goal is to allow web developers to express the core features of a web application

at a high abstraction level, without having to focus on the architectural details. To

this end, WebML proposed the use of four different models:

1. Structural model. This model is used to express the data content of the

web applications, including the relevant entities and the relationships between

them. Instead of proposing a new modeling language for modeling the data

contents of the applications, WebML was made compatible with some classical

notations like UML class diagrams or entity–relationship models.

2. Hypertext model. This model is composed of two sub-models to describe

the hypertexts of the application being developed.

(a) Composition model. This model is used to specify the different pages

composing a hypertext and the content units forming each page. Initially,

six types of content units were defined to compose the pages. They range

from publishing the information of a single object to different ways of

representing a set of objects. On top of these content units, composition

units were defined to link the content units with the underlying entity in

the structural model providing the content.

(b) Navigation model. This model describes how pages and content units

are linked to form a hypertext. Links can be non-contextual, if they

connect independent pages, or contextual, if the destination link depends

on the content of the source.

3. Presentation model. This model is used to express the layout and graphical

design of the application pages. This model is intended to be independent of

the language and device used to actually render the page. This model includes

two presentation specifications. Page specific presentations are used on a single

25

Chapter 2 Related work

page and include references to its content and generic presentations are based

on predefined models independent of the page content and include reference

to generic content elements.

4. Personalization model. This model is used to represent the application

user and user groups so group-specific or individual content can be used to

customize the application. The personalized content can be used to customize

the composition model as well as the presentation model.

These models are used in an iterative and incremental process to develop web ap-

plications. The first phase of the process involves the requirements analysis. Using

the business requirements as input, the main results of this phase are the identifica-

tion of the group of users addressed by the applications, the functional requirements,

the core information objects and the decomposition of the application into views.

Any format can be used to specify the requirements of the applications, including

use case diagrams and activity diagrams, which are used in the work presented in

this thesis with the same purpose.

The next phase on the development process is the conceptual modeling phase. It

consists of defining conceptual schemes that express the organization of the appli-

cation at a high level of abstraction, specifically the data design and the hypertext

design are modeled in this phase using the above mentioned models. For the cre-

ation of these models the requirements obtained in the previous phase are used.

These requirements or initial design of the system must be adapted to the level of

detail required by WebML models. This is a significant gap, since these models

have to be sufficiently detailed to allow the generation of the source code of the

application, that must be bridged by the developers without any specific support of

this approach. From these models the application is then implemented, tested and

evaluated in the remaining phases of the iterative process.

WebML is a clear example of the success of model-driven web engineering. Since

its inception, this model-driven technique has been constantly improved and ex-

panded with new features. Throughout the years, WebML has been widely expanded

for example with support for representing business actions triggered by users navi-

26

Chapter 2 Related work

gation or the support of web service interaction and workflow modeling primitives

(Brambilla, Comai, Fraternali, & Matera, 2008; Ceri, Brambilla, & Fraternali, 2009).

In addition to its presence in the research world, WebML also has a strong indus-

trial presence. A company was created in 2001 to bring WebML to the industrial

world. The result of this industrialization was the creation of a tool called We-

bRatio1. A commercial tool implementing the different WebML models and able to

automatically generate the source code of the web application from such models.

In recent years, the WebML creators have achieved another important milestone.

WebML has been used as the basis to define a new OMG standar. The Interac-

tion Flow Modeling Language (IFML) is designed for expressing the content, user

interaction and control behavior of the front-end of software applications (OMG,

2013).

Heavily based on WebML, an IFML model is formed by one or more view con-

tainers representing web pages. A view container contains view components, which

represent the publication of content or interface elements for data entry. View

components can have input and output parameters. Containers and views can be

associated with events denoting the support of user interaction.

The adoption of this new standard represents the creation of a common frame-

work that can be used by the different model driven web engineering proposals to

contribute to the area progress (Rossi, 2013).

The use of this proposal helps to greatly reduce the complexity of developing

framework based multi-layer applications. However, to do that WebML signifi-

cantly reduces the architectural variability. The software architecture used by all

the applications developed with WebML is implicit in the set of model used during

the development and cannot be changed or adapted to the application requirements.

Technological variability is also constrained since it completely depends on the avail-

able transformations and no simple extension mechanism is provided to support new

frameworks. Finally, the use of the WebML models, while practical and efficient for

it purposes, causes an overload on staff training.

1http://www.webratio.com

27

http://www.webratio.com

Chapter 2 Related work

UML-Based Web Engineering

UML-Based Web Engineering (UWE) was designed with the idea of finding a stan-

dard way for building analysis and design models of web applications. (Hennicker

& Koch, 2000). Its original goal was to propose an UML-based design methodol-

ogy for hypermedia applications. To this end, UWE proposes a UML extension for

hypermedia and a three steps iterative design process. This process produces four

different models:

1. Conceptual model. This model is built taking into account the functional

requirements captured with use cases. Traditional techniques are used to con-

struct this model, such as finding classes, defining inheritance hierarchies, etc.

2. Navigation space model. This model is based on the conceptual model.

It specifies the objects in the conceptual model that can be visited through

navigation in the web application. Two modeling elements are used in the

construction of this model. Navigational classes model the instances of a class

that are visited by the users during navigation. Direct navigability associations

model the existence of a navigational path from the source class to the target

class in the web application.

3. Navigational structure model. This model details how the objects present

in the navigation space model can be reached by the users. For this purpose

various elements are used. Specifically, indexes, guided tours and queries.

Navigational choices are represented by menus.

4. Presentation model. This model defines how the information within the

navigation space is presented to the users. The presentation model focuses on

the structural organization of the presentation and not on its physical appear-

ance and it is based on the use of framesets.

UWE proposes the use of at least one kind of UML diagram or an extension of

them for the visualization of each of these models. Additionally, other diagrams are

used to represent behavioral aspect of the application.

28

Chapter 2 Related work

The process for the developing of web applications proposed by UWE follows the

MDA approach and is based on OMG standards. The process start with a CIM used

to specify the requirements of the application. These requirements are modeled, as

in this thesis, using use cases and activity diagrams.

From this initial model the PIMs are derived using model transformations. Specif-

ically, the design models represent the different concerns of the application compris-

ing the content, the navigation, the business process or the presentation. These

models are combined in a single model representing the big picture of the applica-

tion.

Finally, from this combined model different PSMs can be generated using model

transformation. These PSMs are specific of the technology used to the implementa-

tion and are used as the starting point for code generation.

Over time, UWE has been continuously adapted to new features of web appli-

cations such as transaction-based application, personalization, context-awareness or

asynchrony (Koch, Knapp, Zhang, & Baumeister, 2008). Aditionally, a tool has been

developed supporting the described models and the proposed development process,

ArgoUWE (Knapp, Koch, & Zhang, 2005).

The use of UML based models, helps UWE reduce the overhead of training the

development staff in the use of new models, since UML is widely known in the

software industry and extensively used in distributed development centers. How-

ever, it still lacks mechanisms to manage architectural variability and technological

evolution.

Object Oriented Web Solution

Object Oriented Web Solution (OOWS) is an extension of the OO-Method, an

object-oriented model-based software production method, that introduces the ex-

pressiveness needed for the development of web applications. To this end OOWS is

based on the three models proposed by OO-Method:

1. Structural model. This model defines the system structure and the rela-

29

Chapter 2 Related work

tionships between the system elements by means of a class diagram.

2. Dynamic model. This model is used to describe the valid object-life se-

quences for each class of the system using state-transition diagrams. Interac-

tion between objects are represented in this model using sequence diagrams.

3. Functional model. This model captures the semantics of state change to

define service effects. To this end a textual formal specification is used.

To provide support to the web applications specifics properties, three additional

models were added to OOWS:

1. User model. This model is used to specify the types of users that can interact

with a web application. This model customize the navigation of the different

users in the application.

2. Navigational model. This model was introduced to specify the view over

the system for each kind of user defined in the previous model. This model is

built in two phases, the first one to define a global view over the navigation

and the second one to make a detailed description of the elements previously

defined.

3. Presentation model. This model is used to represent the presentation re-

quirements of web applications. It is based on the previous model, it uses the

navigational information to define the presentation properties.

These models are used to generate web applications.

First, the OO-Method models are used to generate an application using a three-

layer architecture. The layers are a persistence layer to implement the access to

persistent data and to hide the details of data repository, an application layer to im-

plement the business logic of the application, and a presentation layer to implement

the graphical interface.

Then, the OOWS specific models provide all the information needed to generate

the interface of a web application. The generated interface is used to replace the

presentation layer of the application generated from the OO-Method while keeping

the other two layers (Fons, Pelechano, Pastor, Valderas, & Torres, 2008).

30

Chapter 2 Related work

As the above proposals, this technique has also been extended to accommodate

the evolution of web applications. Enhancements such as web requirements model-

ing, business processes, semantic web and service-oriented architectures have been

incorporated into this method (Torres, Pelechano, & Pastor, 2006).

Again, the architectural variability and technological evolution mechanisms pro-

vided by this approach is very limited. A three layer architecture is always used

and it cannot be adapted by the architect to meet the application requirements.

However, OOWS presents an advantage over the previously analyzed works, since

its based in a general proposal it can be used to develop not only web applications

but any kind of multi-layer application.

Object Oriented Hypermedia Design Method

The Object Oriented Hypermedia Design Method (OOHDM) is another model-

based approach to develop web applications (Schwabe & Rossi, 1998). It allows the

developer to specify a web application seen as an instance of a hypermedia model.

To this end, several models, each focused on a different aspect of the application,

are used:

1. Requirement model. This model is used to gather the stakeholder require-

ments. User interaction diagrams are used to represent the use cases if the

system. This model provides a representation of the information flows be-

tween the user and the application.

2. Conceptual model. Based on the requirement model, this model captures

the application domain information using object-oriented modeling principles.

This model is expressed used a extended version of UML.

3. Navigational model. This model is used to define the navigational structure

of each user. It reflects the objects and relationships in the conceptual model

that each user can reach.

4. Abstract interface model. This model defines the objects containing infor-

mation to be presented to the users. The element in this model are linked to

31

Chapter 2 Related work

elements in the navigationa model from which they iobtain the information to

be shown.

5. Implementation model. This model is used to map the interface and nav-

igational model to run-time objects. Different technologies can be used to

generate the source code of the implementation model.

The process proposed by OOHDM to build web application is composed of five

steps, corresponding with the five model previously described. This models can be

used to generate the source code that implements the application. This proposal is

also continuously extended to accommodate new aspects of web applications (Rossi

& Schwabe, 2008; Nascimento & Schwabe, 2013)

This proposal was one of the first to promote the use of a navigational model to

define the navigational structure of the applications developed. As mentioned above,

a similar approach was later used by others like WebML or UWE. However, it does

not provide any support for architectural variability management or technological

evolution.

Model-Driven Approach for the Semi-automated Generation of Web-

based Applications from Requirements

The main goal of this proposal is the semi-automated generation of design models

related to web based application from requirements (Fatolahi, Somé, & Lethbridge,

2008). In order to achieve this goal, the authors propose a process that begins with a

requirements model which is transformed into increasingly specific models following

the MDA standard. Specifically, the models used in the proposed process are:

1. Computation independent model. At the CIM level, author propose the

use of use case description and default domain objects. This elements are used

to represent the application requirements.

2. Platform independent model. From the previous model, a PIM is gen-

erated using model transformations. This model includes state machine dia-

grams, an user interface model and a refined domain model.

32

Chapter 2 Related work

3. Platform specific model. The PSM is obtained from the PIM by applying

a mapping to the specific platform used. In (Fatolahi et al., 2008), authors

show this transformation using some existing tool to adapt the PIM to a

platform composed of a two-layer architecture using a fixed set of well-known

development framework.

Finally, the last model can be used to generate the source code of the application.

Over time, this proposal has led to the definition of a meta-model for model-driven

web development. This meta-model can be used to model web applications with a

higher abstraction level than the one offered by other proposal, and later transformed

into more specific model, like the ones proposed by WebML (Fatolahi, Somé, &

Lethbridge, 2012).

In contrast to the previous approaches, this one is focused on obtaining the

models to develop an application from its requirements. The same approach is used

in the process proposed in this thesis. However, like the proposal above this one does

not provide any support for architectural variability management or technological

evolution.

Interactive Dialogue Model

The Interactive Dialogue Model (IDM) is a dialogue-based design model to shape

interactive applications, including web applications (Bolchini & Paolini, 2006). This

approach is derived from a previous Hypertext Design Model (Garzotto, Paolini, &

Schwabe, 1993). IDM is based in the description of the dialog between the user

and the application that has to be supported to meet the requirements. For this

purpose, IDM uses the following models:

1. Conceptual model. This model represents a conceptual schema of the appli-

cation. It must contain all the necessary dialogue strategies without focusing

on technical details. The primitives used to compose this model include the

topic of the conversation, the kind of topic, etc.

2. Logical model. This model is used to represent the decisions that are depen-

dent on the channel used to establish a dialogue, for example a web application.

33

Chapter 2 Related work

More than one logical model can be defined for the same conceptual model,

one for every channel that is going to be used.

3. Page model. This model is used to define the elements to be communicated

to the user in a single dialogue act. This model is based on a logical model and

include all aspects that contribute to define the visual communication strategy

of the application.

Unlike the above, the main goal of this proposal is not to facilitate the develop-

ment of applications, but serve as a communication tool with stakeholders. That is

why the nomenclature used differs greatly from other approaches and the concept

of dialogue is used to model the applications (Bolchini & Garzotto, 2008). By being

more focused in the users of the application, this approaches helps the application

developed meet its user requirements but it does not provide support to help the

software architect or development team during the development process.

Hera

Hera is another model-driven methodology for the design of web applications (Vdovjak,

Frasincar, Houben, & Barna, 2003). It is organized around three design phases: inte-

gration, data retrieval and presentation generation. The integration phase manages

the gathering of data from different source. The data retrieval phase handles the user

queries and produces the data that represent the result. The presentation generation

phase transform the result obtained in the previous phase into a web presentation.

Specifically, the model used in Hera are:

1. Domain model. This model is used as the starting point of the Hera method-

ology and it describes the structure of the content data. The main purpose of

this model is to define the semantic structure of the content data.

2. Application model. This model is based on the domain model and it de-

scribes the navigation structure over the content. Its goal is to deliver and

present the content to the user in a semantically effective way.

3. Context model. This model is used to personalize or adapt the navigation

34

Chapter 2 Related work

structure defined in the application model. This adaptation is done dynami-

cally based on the information represented in this model.

4. Presentation model. This model contains the concrete presentation details

of the applications. It is used in combination with the application model and

the context model to generate a suitable representation of the information.

With this approach, Hera specializes in the personalization and adaptation of

web application as well as in the inclusion of external data sources (Houben et al.,

2008).

A different of the proposal presented above, Hera models are based on the RDF

standard (Klyne & Carroll, 2004). However, like the previous ones the software

architecture of the applications being developed is inherent to the models used and

cannot be modified by the software architect.

Web Semantics Design Method

The Web Semantics Design Method originates in a design method for the develop-

ment of web sites (Troyer & Leune, 1998). Over the years, WSDM has evolved to

focus in the development of semantic web applications. To develop these applications

WSDM proposes the following models:

1. Audience model. This model is used to identify and classify the users into

audience classes. This classification is based on the users requirements.

2. Task and information model. This model is used to represent the require-

ments of each of the audience classes defined in the previous model. In it, the

information and functionality needed to satisfy the different requirements is

modeled. Additionally, the different tasks that each audience class need to be

able to perform are also represented in this model.

3. Navigational model. This model is used to define the conceptual structure

of the web application and to represent how the different audience classes can

navigate through the application.

35

Chapter 2 Related work

4. Site structure model. This model represents how the components from the

navigational model will be grouped into pages.

5. Page model. In this model the look and feel of the web application as well

as the layout of each page is defined.

6. Logical data model. This model is used represent the structure of the

information provided by the web application. This model is incrementally

constructed during the definition of the previous models and takes the form of

a reference ontology.

This approach allows developers to generate semantically annotated web applica-

tion by means of one or more ontologies, contributing to the semantic web (Troyer,

Casteleyn, & Plessers, 2008). However, it does not provide support for architectural

variability or technological evolution.

The WebSA approach

The Web Software Architecture (WebSA) approach proposes to incorporate in web

engineering techniques, as the ones detailed above, a new concern who has been

lacking for other proposal, an architectural concern (Meliá & Gómez, 2006). They

propose an extension to these methods to make then more architecturally flexible.

To achieve this goal new models with architectural information are used. Specifically,

the proposed models are:

1. Subsystem model. This model represent the subsystems that will compose

the application. The subsystem decomposition proposed on this approach is

based on the layer architectural pattern and makes use of additional architec-

tural patterns to determine the best layer distribution for the application.

2. Configuration model. This model defines an architectural style based on

a structural view of the web application using the web components and the

connections between them.

3. Integration model. This model is the result of merging the two previous

model with the functional models of the application. This approach proposes

36

Chapter 2 Related work

the use of functional model from other well established web engineering ap-

proaches like WebML or OOWS.

This approach complements the existing web engineering techniques improving

the control over the software architecture of the web applications.

In a more recent work, the same authors made a similar proposal to increase

the technological and architectural variability of web engineering methodologies for

the development of rich internet applications (RIAs) (Meliá, Gómez, Pérez, & Dı́az,

2010). In this approach they propose the use of two new models:

1. RIA feature model. This model is used to represent the architectural and

technological variability of rich internet applications. To represent this infor-

mation a feature model, as the one described in Section 2.4.1 is used.

2. RIA component model. This model is used to define the architectural style

of the application, in a similar way as the configuration model was used in the

WebSA approach.

This approach was also designed to complement existing RIAs web engineering

techniques and not as a standalone methodology.

These proposal improves the architectural variability of other web engineering

techniques. However, they do not pay special attention to technological evolution.

Quercus Software Engineering Group

The research group of which the author of this thesis is a member has also made

notable works are in the web engineering area. Although the author has had no direct

connection with these works, they are listed here for their relevance and proximity

to the work done in this thesis.

Of the works done by the Quercus research group stand out those related with

RUX-method (Trigueros, Preciado, & Sánchez-Figueroa, 2007; Preciado, Trigueros,

& Sánchez-Figueroa, 2008). In these works a methodology was proposed for engi-

neering the adaptation of legacy model-based web application to new user interfaces

based on RIAs. The proposal reuses the business logic from the web application

37

Chapter 2 Related work

being adapted and provides a new user interface. Accompanying this methodology

a technology with great commercial success was developed, RUX-Tool.

Another relevant work in this area is the one developed in (Conejero et al.,

2013; Rodŕıguez-Echeverŕıa et al., 2013). A technique is presented in these works to

extract models of legacy web applications, so that applications that have been built

using certain architectures and development frameworks can be reverse engineered

into model-driven web engineering methodologies.

2.2.3 Discussion

This section has detailed the best established works in the area of web engineering.

The number of works, their continuous enhancement over time and the commercial

success of the tools derived from them prove that web application development is a

domain where MDE techniques are particularly well suited.

However, the complexity of the web applications being developed keep growing.

New requirements are imposed on web applications and new technologies emerge to

cope with them. This causes the detailed proposals to have certain limitations.

Many of these proposals were originally conceived to develop a specific type of

web applications. Therefore, they are prepared to deal with a fixed set of concerns.

However, they are not prepared to deal with new concerns that may arise (Moreno

et al., 2008). By itself, this does not pose a serious problem for these techniques.

The research community is very active in this area and each time that a significant

evolution in the development of web applications has emerged, every proposals has

been updated to support it or external additions to the existing proposals has been

developed by other researchers. Proof of this are the many proposals that have been

adapted with the boom of RIAs (Preciado, Trigueros, Sánchez-Figueroa, & Comai,

2005; Fraternali, Rossi, & Sánchez-Figueroa, 2010).

However, adding extensions to the different proposals whenever there is an evolu-

tion in web applications can lead to overly complex or poorly cohesive methodologies.

This has led to proposals such as IDM having to be reinvented after becoming too

complex trying to cover too many concerns of web applications (Bolchini & Garzotto,

38

Chapter 2 Related work

2008).

Another problem with this type of proposal is that, even when several of them are

very similar, each one uses its own modeling languages. This problem is mitigated

by the use of the OMG standards that allows researchers to transforms models from

a proposal to another or to define extensions that can be applied to more than

one proposal. In this regard, a proposal has been made to try to unify various

methodologies with little success (Moreno & Vallecillo, 2008). The recent approval

of the IFML standard by the OMG can help to mitigate this problem.

Finally, all the proposals discussed here, except WebSA, are tied to a partic-

ular architectural style and a limited set of technologies. They do not allow the

development of web applications using different platform technologies and software

architectures (Moreno et al., 2008). In the rapidly changing world of web applica-

tions and development frameworks this problem must be addressed.

That is, precisely, one of the problems addressed in this thesis. The management

of architectural and technological variability of web applications in a model-driven

process. In this respect, this work has many similarities with the WebSA proposal.

The main differences are that the work presented here can be used for all multi-layer

applications not only web applications or RIAs and that it pays special attention to

technology evolution, while WebSA allows developer to select the technology to be

used but does not provide any facility for the incorporation of new technologies.

2.3 Development frameworks

Development frameworks are a widespread tool in the industry of web application

development. However, their presence in scientific literature is quite limited in recent

years, even though the authors of related topics implicitly assume the availability of

development frameworks (Vosloo & Kourie, 2008).

Most of the ideas and arguments regarding development frameworks take place

in blogs, newsgroups or discussion forums. Therefore, it seems that most of the

evolution of this technologies happens in the world of technical discussion forums

39

Chapter 2 Related work

and projects. Existing development frameworks are tangible results of this process.

The multi-layer application on which this thesis is focused are implemented using

development frameworks. Therefore, in this section the most important works in this

area are detailed focusing on how they help solve some of the problems stated in

Section 2.1.

2.3.1 J2EE Development Frameworks

In (Johnson, 2005) Johnson describes the beginning of the process that led to the

current success of frameworks, especially in the field of web applications developed

in Java. The shortcomings of the standards to embrace the changing requirements

of web applications, its slow evolution and the fast innovation provided by open

source projects led to the creation of the first successful frameworks.

Traditionally, many organizations have used in-house frameworks to solve differ-

ent platform shortcomings. The increased maturity in web application development

led to consensus about the generic problems that required a generic solution. Many

development frameworks were built to solve these problems.

Struts2 was one of the first successful frameworks. It was created to handle

the deficiencies in the development of the presentation layer of web applications.

Its release made a significant change in the development of such applications. By

covering significant deficiencies in the Java standards, Struts quickly became a de

facto standard, accepted by developers and organizations alike. This success paved

the way for the emergence of development frameworks.

Some time later, Hibernate3 appeared to support other area not covered by spec-

ifications. Specifically, Hibernate focuses on the implementation of the persistence

layer of web applications and the access to databases. As Struts, Hibernate or similar

frameworks were quickly accepted in the development community.

The appearance of Spring4 was another important step in the acceptance of

2http://struts.apache.org
3http://hibernate.org/orm/
4http://projects.spring.io/spring-framework/

40

http://struts.apache.org
http://hibernate.org/orm/
http://projects.spring.io/spring-framework/

Chapter 2 Related work

frameworks. Spring was designed to support the business logic layer of web appli-

cations by providing inversion of control and aspect oriented programming. Spring

along with Hibernate and Struts can give support to the more usual layers of a

web application using only development frameworks. The popularity that these ini-

tial frameworks had along with the important advantages they provided led to the

appearance of hundreds of frameworks supporting any aspect of a web applications.

This work provides support to the rationale for the work done in this thesis. It ex-

plains the emergence and success of development frameworks that partly motivated

the work presented here.

2.3.2 Server-centric Web frameworks

In (Vosloo & Kourie, 2008) the authors present a survey of 80 server-centric web

frameworks, development frameworks that support the development and execution

of web-based user interfaces. As a result of this survey two taxonomies are presented

reflecting two orthogonal ways of characterizing a framework.

The first taxonomy is based on the strategies used by frameworks for handling the

view concerns of web applications. The basic problem addressed by these strategies

is how web applications that receive a request can generate a response to display

part of the user interface in a browser.

The second taxonomy is based on the strategies used by frameworks for routing

events between the view and the model while keeping them synchronized but de-

coupled. The basic problem addressed by these strategies is how to relay the events

generated in the browser to the model and how to generate a view in response.

The taxonomies presented in this paper are interesting in themselves and allow

for better categorization of server-centric web frameworks. Besides, this article is

relevant to the work presented in this thesis by another set of reason.

• This work demonstrates the explosion in the number of available frameworks.

It analyzes 80 frameworks covering a single specific aspect of web applications.

Part of the problems addressed in this thesis comes from the large number of

41

Chapter 2 Related work

frameworks available.

• In this work, the lack of research on development frameworks is emphasized.

Numerous research works use development frameworks in different contexts,

but in most cases the frameworks themselves are not discussed. When they

are, research papers usually refer to the specifics frameworks used or studied

and they rarely address frameworks as a category with many representatives.

• This paper highlights how model-driven web engineering proposals generate

web application code that uses development frameworks. However, this works

usually do not mention the frameworks used or analyze their impact in the

generated application.

• The taxonomies presented in this papers do not classify frameworks directly

because individual frameworks can employ more than one strategy for dealing

with certain problems. This implies that the same framework can be catego-

rized a number of different ways on each taxonomy depending on how develop-

ers decide to use it. The same situation is contemplated in the work presented

here. This may lead to the same framework appearing more than once in the

repository of architectural decisions, representing the different ways it can be

used to solve the same problem.

2.3.3 Programmer Questions about Framework

In (Hou, Wong, & Hoover, 2005; Hou & Li, 2011) Hou et al. analyze the problems

presented by development frameworks by studying the questions written by develop-

ers in forums and newsgroups. The goal of these studies was to suggest improvements

in the design, documentation and programmer practice of these tools.

Both works focus on the Swing framework, a Java graphical user interface frame-

work that was chosen for being mature, documented, and widely used. Specifically,

the studies are centered on two of the more than 30 components forming Swing.

Authors collected, analyzed, and categorized hundreds of questions related to the

chosen Swing components. As a result, the authors present a set of problematic

features of the framework studied categorized as design problems, documentation

42

Chapter 2 Related work

problems, and people problems.

This work helps validate one of the starting hypothesis of this thesis, development

frameworks are difficult to use. Even Swing, a stable framework that is part of the

standard programming language platform, pose serious problems to developers who

try to use it.

If this example is transferred to the context in which this thesis is developed,

web frameworks evolving rapidly and distributed development centers with high

staff rotation, the complexity of the addressed problems can be better appreciated.

The solutions proposed by the authors of these papers are usually aimed at im-

proving the quality of a framework and the understanding obtained by programmers

when learning a new framework. However, they do not address the problems associ-

ated with the integration of multiple frameworks in a project or caused by changes

that happen in the evolution of a framework.

2.3.4 Framework Usage Templates

As the works described above, in (Heydarnoori, Czarnecki, & Bartolomei, 2009;

Heydarnoori, Czarnecki, Binder, & Bartolomei, 2012) Heydarnoori et al. propose a

technique for simplify the use of a development frameworks. Their approach is used

to automatically extract templates of the implementation of framework concepts

from the traces of sample applications.

Concept implementations templates are pieces of pseudo-code summarizing the

implementation steps for instantiating a given framework concept. These templates

are automatically extracted from execution traces recorded from the interactions

between the code of sample applications and the framework API when the desired

concept is instantiated. The extracted templates can be later used as an entry point

for developers to explore concept implementations in the sample applications.

In these works, the presented approach is used to extract templates of 14 con-

cepts from five widely used Java frameworks. The templates were compared with

framework documentation in aiding developers in performing concept implemen-

43

Chapter 2 Related work

tation tasks. The results obtained suggested that the choice of templates versus

documentation improved the implementation time.

Again, these works help validate the initial hypothesis of this thesis that frame-

works are difficult to use. Moreover, these studies demonstrate that developers

productivity can be improved with better documentation of the framework concepts

to implement.

The work presented in this thesis does not attempt to improve the available

framework documentation. However, similar ideas to those used in these works are

applied. Adapting the initial design of an application to the frameworks chosen

by the software architect for implementation simplifies the work of developers in

locating the necessary documentation. Furthermore, the usage information of de-

velopment frameworks used in the work presented here and mentioned in Section

1.5 is similar in many ways to the templates presented in these works. The main

difference is that in this thesis this information is used by model transformation to

automatically generate a more refined design of the application instead of given to

the developer.

2.3.5 Framework Specific Modeling Languages

In (Antkiewicz, 2007; Antkiewicz, Czarnecki, & Stephan, 2009) Antkiewicz et al.

propose a technique for the creation of frameworks specific modeling languages.

These languages are explicit representations of the concepts provided by frame-

works and they are used for expressing framework specific models of applications

code. These models describe instances of framework provided concepts that are

implemented in the application code.

For each of the frameworks discussed in this work a detailed study is performed

leading to the creation of its specific framework modeling language. These modeling

languages are defined as cardinality-based feature models where a feature represent a

distinguishing characteristic among framework concepts instances. These languages

can be subsequently used for purposes such as generating part of the source code

of an application from a model, generating a model from the source code of an

44

Chapter 2 Related work

application to facilitate it being understood by developers or simplifying learning

a new framework for developer since they can analyze the language instead of the

framework itself.

These studies are particularly relevant to the work presented in this thesis for

several reasons:

• Again, they emphasize the problems arising from the use of development frame-

works. Frameworks are difficult to understand and use, even when sample

applications are available, and tools are needed to helps developers in these

tasks.

• They demonstrate that model-driven engineering techniques can be success-

fully used in combination with frameworks to simplify the use of frameworks.

In these works a meta-models are created, models based on them are defined,

and various transformations are performed involving these models.

• They demonstrate that cardinality-based feature models can be used success-

fully in combination with development frameworks. Both the meta-models and

the models used in this work are represented using this variability management

technique.

All these aspects pose similarities with the work done in this thesis. In this thesis

model-driven engineering techniques are also used to simplify the use of frameworks

and cardinality-based feature models are also used to represent frameworks informa-

tion. However, there are three significant differences between these works and this

thesis.

First, Antkiewicz et al. propose a specific language for each framework. This

approach has the advantage that the modeling language is perfectly adapted to the

characteristics of each framework, which makes it ideal for learning the framework

or for code generation. However, this approach is not the most appropriate in the

context in which this thesis is developed, where a high number of frameworks is used

and they evolve quickly. Which is why, in this thesis, a single modeling language is

used supporting several frameworks.

45

Chapter 2 Related work

Second, the level of abstraction used in these studies is low. The proposed mod-

eling languages are defined at an abstraction level very close to the application code.

Again, this approach is ideal if one’s goal is to automatically generate the source

code of the application from the model or to generate the model from the source

code. However, this approach is not the most appropriate in the context in which

this thesis is developed, where a high abstraction level design of an application has to

be adapted by the architect to the frameworks that will be used during development.

And third, in these studies no attention is paid to the integration of multiple

frameworks in the same project. This is one of the most common situations in the

context of this thesis and therefore one of the issues addressed by it.

2.3.6 Discussion

This section has detailed the most relevant works in the area of development frame-

works. The study of these works helps to highlight the problems affecting develop-

ment frameworks and the lacks in this research area.

One of the most important shortcomings in this area is the lack of a systematic

methodology for the integration of multiple frameworks in the same project. This is

one of the problems addressed in this thesis, along with others like the high number

of frameworks available, making it difficult choosing the optimum for each case, and

their high rate of evolution, that makes techniques or tools that are not originally

designed with this situation in mind become obsolete very quickly.

2.4 Variability management and architectural decisions

Besides the above mentioned research areas, there are other works that face some of

the problems that led to this thesis. Specifically, this section will review some of the

most relevant works in the areas of variability management and architectural deci-

sions focusing on how these works can be applied to solve the problems mentioned

in Section 2.1.

46

Chapter 2 Related work

2.4.1 Variability management

Besides the use of models, the other main feature of the work presented in this thesis

is the management of multi-layer architectures variability. As mentioned in Section

1.3, these architectures support a high degree of variability in terms of the variety

of development frameworks that can be used and their volatility and in terms of the

number of layers and design patterns that can compose them.

There is an area of software engineering that has devoted significant effort to

variability management for quite some time, Product Lines (PL). Product Lines are

a set of software systems with a similar purpose which share a set of features (Bosch,

2000). The scope of a product line is defined as the set of systems that it is made up

of (Clements, 2001). In order to represent this scope, one must identify the common

elements shared by all of the product line’s systems, the core assets, and how such

assets may vary, i.e., their variability. In the domain engineering phase of a product

line, a series of re-usable artifacts are created and maintained. These artifacts are

used during the application engineering phase to build an application (Bosch, 2000;

Pohl, Böckle, & van der Linden, 2005).

There are numerous works presenting different mechanisms for variability man-

agement (Chen & Babar, 2011), even using techniques non directly related with

product lines such as ontologies (Mohan & Ramesh, 2003). In ArchLayer, prod-

uct line techniques are used to represent the architectural variability of multi-layer

framework based applications due to its widespread use and maturity. The pecu-

liarity of this approach is that the core assets defined are not functional elements of

the applications but architectural features.

Specifically, within the area of product lines, this thesis uses feature models. Fea-

ture modeling was first introduced in (Kang, Cohen, Hess, Novak, & Peterson, 1990)

as a method for discovering and representing commonalities among related software

systems. A feature model represents the information of all possible products of a

software product line in terms of features and relationships among them (Benavides,

Segura, & Cortés, 2010).

There are many techniques for feature modeling (Schobbens, Heymans, Trigaux,

47

Chapter 2 Related work

& Bontemps, 2007). This work specifically uses Cardinality-Based Feature Modeling

(Czarnecki, Helsen, & Eisenecker, 2005a). The choice of this technique is based

on the following reasons. First, because this technique was created with staged

configuration in mind, where different product configuration choices can be done in

different stages of the development (Czarnecki, Helsen, & Eisenecker, 2005b). In

ArchLayer a staged configuration of a feature model is done. Second, because it has

support tools for the definition and configuration of feature models (Antkiewicz &

Czarnecki, 2004). Particularly interesting for this work is the fact that these tools

are built using EMF which facilitates their integration with MDE techniques as the

one presented here. And third, because this technique has already been successfully

used in combination with development frameworks as the one discussed in this work

(Antkiewicz et al., 2009).

Finally, in this thesis feature models are used as a important part of a complex

MDE process. In this process different configurations of a feature model (where a

different set of features has been selected) are treated as model based on a meta-

model. The meta-model in which these configuration are based is the feature model.

The idea of using a feature model as the meta-model for its own configurations has

already been used in previous works. Namely, in (Gómez & Ramos, 2010) Gomez

and Ramos present a tool to transform Cardinality-Based Feature model into EMF

meta-model that can be used to instantiate configuration of the feature model as

EMF models. Although this work shares the same perspective on feature models

as this thesis, the tool provided has not been used here since the tools presented in

(Antkiewicz & Czarnecki, 2004) were more mature and seamlessly integrated into a

MDE process.

2.4.2 Architectural decisions

The architectural decisions made in the development of a complex system always

have important consequences (Kazman, Asundi, & Klein, 2001). For this reason,

capturing and documenting these decisions is of vital importance in many cases

(Harrison, Avgeriou, & Zdun, 2007), especially when a project will be maintained

over time or when several similar projects will be developed.

48

Chapter 2 Related work

In this area, there are numerous tools and techniques to manage architectural

decisions (Tang, Avgeriou, Jansen, Capilla, & Babar, 2010). Particularly stand out

for their close relationship with this thesis two works of Zimmerman(Zimmermann,

2011, 2012). They present a framework for the identification and modeling of recur-

ring architectural decisions, and for converting those decisions into design guidelines

for future development projects.

In particular, Zimmerman proposes seven identification rules (IRs) with which

to identify potential recurring decisions. These rules have their direct counterpart

in this work. For example, Zimmerman’s IR1 corresponds to executive decisions,

whose counterpart in this work is the possibility of using different feature models

for different types of projects or situations. Similarly the IRs relating to the selec-

tion and use of design patterns, technologies, and manufacturers have their clear

counterparts in the feature model structure.

The main difference between this work and that of Zimmerman is the use made of

those architectural decisions. In the case of Zimmermann’s work, the main objective

is to gather information for its use in future projects. The focus in this work is on

using that information to simplify the process of obtaining an specific design of the

application on which architectural decisions are made.

Additionally, it is particularly relevant to this thesis the work presented in (Babar,

2004). In this work a set of templates are defined to capture architecturally impor-

tant information about design patterns and document it in such a format, which

makes it readily usable during software architecture design and evaluation activities.

A slightly modified version of these templates are used in this thesis to document

the effects that technological or architectural decisions can have over the final sys-

tem. However, this information is not enough to describe how different technologies

may affect the system. The proposed templates only allows to document individual

elements and, in many cases, the use of two technologies together affects the sys-

tem differently of how they would do it if the technologies were used independently.

This happens because the communication between two technologies is generally not

straightforward or simple, but requires additional mechanisms that may affect the

system. Therefore, this information should also be recorded and a new template is

49

Chapter 2 Related work

used in this thesis for such purpose.

2.4.3 Discussion

This section has described the works forming the basis on which this thesis rests.

Specifically, works on two research areas has been detailed, variability management,

and architectural decisions.

The work presented in this thesis is situated within these areas and therefore it

uses previous works in them. One of the principles followed when developing this

thesis has been to utilize, to the extent possible, existing techniques that could be

applied to the context in which this work is developed and avoid duplication of effort.

The works reviewed in this section show the results of applying this principle.

2.5 Conclusions

In this chapter the most relevant work for the development of this thesis have been

reviewed.

First, the most relevant work in the area of model-driven web engineering have

been reviewed. This is a very close area in which techniques are proposed for the

development of applications with architectures and technologies very similar to those

used in this thesis. Specifically, special attention has been paid to the proposed

models and processes for the development of web applications.

Next, several works have been analyzed in the area of using development frame-

works. The work analyzed were those that are closest to the work done in this

thesis and pose similar problems to those described in this thesis with the use of

frameworks.

Finally, those works that have served as the basis for the proposals presented

in this thesis have been reviewed. Close attention has been paid to the two areas

where more knowledge has been borrowed. Specifically, variability management,

and architectural decisions.

50

Chapter 2 Related work

From this review of the state of the art it can be concluded that, as far as the

author knows, there is no work that is placed in the same context as this thesis

and the following weakness exist in the area that could be resolved with the work

proposed in this thesis:

• Related to the complexity of multi-layer architectures:

– There are several solutions for the development of web applications using

multi-layer architectures. However, in general, they do not permit to

manage the architecture and technologies with which applications are

going to be implemented.

– The complexity of web applications keep growing. Similarly, the complex-

ity of the software architectures used to develop them is also increasing.

However, there are no solutions to simplify architectural decisions making

in such developments.

• Related to the quick evolution of development framework:

– Parallel to the increasing complexity of web applications, the techniques

and technologies used for its development evolve. However, there are no

solutions that are oriented from conception to support the fast pace of

technological evolution.

– The use of model-driven techniques reduces the complexity of using frame-

works. However, there are no common solutions that can be used for a

large number of frameworks.

– In the large majority of web applications developed today, multiple de-

velopment frameworks are used together. However, there are no solutions

that address the problem of integrating multiple frameworks.

• Related to the high staff rotation in distributed development centers:

– A significant portion of multi-layer applications are developed in dis-

tributed development centers with staff rotation. However, there are no

solutions that address these issues in a systematic way.

51

Chapter 2 Related work

ArchLayer aims to address these problems found in the related works. The next

chapter details how the proposed process solve these issues.

52

Chapter 3

ArchLayer: Bridging the gap

between design and

implementation

He’s not a killer. He just wins... Thoroughly.

Ender’s Game, Orson Scott Card.

As seen in the previous chapter, a number of problems working with multi-

layer architectures and development frameworks have not been thoroughly addressed

by the research community. Yet these problems are very relevant in this kind of

development, especially if they are done in a context as the one this thesis is focused

on, distributed development centers with high staff rotation. For these reasons

ArchLayer, a development process for multi-layer framework based application, is

presented in this dissertation. The main goal of this process is to obtain a multi-

layer framework based application from an initial design completely independent of

the architecture or technologies that will be used in the implementation, pursuing at

any time to reduce the need for developers and architects to rely on deep technical

knowledge of the various technologies.

This chapter describes ArchLayer in detail. To make the process easier to under-

stand a simple sample application is used throughout the chapter to demonstrate the

53

Chapter 3 ArchLayer: Bridging the gap between design and implementation

various steps of the process. The description of ArchLayer is organized as follows.

In Section 3.1 a detailed description of the proposed process is presented. Section

3.2 is focused on the characteristic of the initial design of the applications that is

used as starting point of the development process. Section 3.3 describes in detail

the architectural decisions repository and its use throughout the process. Section

3.4 explains the proposed meta-model to contain specific information about each

framework. In Section 3.5 the model transformations proposed to tailor the initial

design of the application to a design specific to the architectural choices are detailed.

Finally, Section 3.6 summarize this chapter focusing on the solutions that ArchLayer

presents to address the previously identified problems.

3.1 ArchLayer overview

As stated above, this section contains a detailed overview of ArchLayer. Figure 3.1

shows a diagram with the different activities and artifacts involved in the process.

Rectangular shapes represent the different artifacts involved in the process, while

rounded shapes represent the activities or steps to be performed. Blue colored

shapes indicate artifacts or activities to be created or performed by the architect

or the developers of the application. Green colored shapes represent automatically

generated artifacts or automated activities.

The main goal of ArchLayer is to obtain a multi-layer framework based applica-

tion from an initial design obtained from the application’s requirements. This initial

design is completely independent of the layers, design patterns and frameworks to be

used in the implementation. During the process a design tailored to the architectural

decisions made by the architect is obtained semi-automatically and used as the basis

for development. As can be seen in the figure, this is a complex process comprising

several steps in which multiple artifacts are involved. The different activities showed

in the figure are numbered in the order in which they will be described here.

The figure shows how ArchLayer begins with two artifacts: an initial design of the

application to be developed and the architectural decisions repository. The whole

process proposed here revolves around these two elements.

54

Chapter 3 ArchLayer: Bridging the gap between design and implementation

F
ig

u
re

3
.1

:
A

rc
h

la
ye

r,
th

e
p

ro
ce

ss
p

ro
p

os
ed

fo
r

th
e

d
ev

el
op

m
en

t
of

m
u

lt
i-

la
ye

r
ap

p
li

ca
ti

on
s.

55

Chapter 3 ArchLayer: Bridging the gap between design and implementation

The initial design represent the requirements of the application to be developed.

As in most of the web engineering techniques analyzed in Section 2.2.2, the initial

design consist of a use case diagram followed by several activity diagrams that pro-

vide insight into the behavior of the use cases. This initial design can be refined in

order to include information about the quality attributes that the system developed

must meet. These quality attributes add to the design information about the sys-

tem’s non-functional requirements. This corresponds to activity diagram 1: Mark

design.

Starting with the initial design including the quality attributes, the architect

should take the first architectural decisions and design the initial software archi-

tecture. To this end, the architectural decisions repository begins to be used. In

order to facilitate this step, an initial architecture is automatically suggested to the

architect, represented by activity diagram 2: Multi-layer Architecture Suggestion.

This initial architecture comprises the layers into which the application will be or-

ganized. It is the architect’s responsibility to validate these suggested layers or to

change them if deemed appropriate. Process step 3: Validate Initial Architecture.

Then, a first model transformation is performed using the information contained

in the initial architecture. This transformation converts the initial design into a

design tailored to the layers in which the application is to be decomposed. Process

step 4: Model transformation.

Once this design has been completed, the architect continues with the design

of the architecture by choosing the design patterns to use in the development of

each layer and the frameworks that support them. Process step 5: Refine Initial

Architecture.

Possibly the architect may choose to use multiple design patterns and frameworks

for a layer’s implementation. If so, the architect should specify, for each task of the

layer in question, the design pattern or framework to be used. Process step 6: Link

decisions to design.

Once the architect has this information, the next stage consists of a model trans-

formation that converts the layered design of the application into a specific design for

56

Chapter 3 ArchLayer: Bridging the gap between design and implementation

the design patterns and technologies selected by the architect. In order to perform

this transformation, additional information about the design patterns and frame-

works must be used. This information is contained in a model that describe the

characteristics of frameworks and design patterns. Process step 7. Model transfor-

mation.

Once the architect has the final design, he or she should validate it and modify

it if necessary. Once validated, the final design can be used either to start a tra-

ditional development process or as a basis for a model-to-text transformation that

will generate a significant part of the project’s source code. Process step 8. Code

generation.

The following subsection detail the requirements of an application that will be

used to exemplify ArchLayer. Later, a detailed explanation of each activity of the

process applied to the example will be discussed.

3.1.1 Running example

This section describes the requirements of the application to be used to illustrate

ArchLayer. Specifically, the development of an e-commerce application will be used.

The application to be developed should have the following features:

• The developed system should be able to get orders through a web portal. The

orders should be validated, the availability of the ordered products should be

checked, the payment of the order should be managed and products related to

the ones ordered should be offered to the customer.

• The system should support the preparation and shipment of the different or-

ders. The preparation of an order should be managed from the moment it is

formalized in the system until it is ready for shipment.

• The system should be integrated with a legacy applications used to manage

the stock in the warehouse and to interact with the shipment company. The

integration should cover the complete period since an order is checked until it

is received by the customer.

57

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Additionally, the developed application should consider the following non-functional

requirements.

• The system should be easy to adapt. Ecommerce evolves rapidly so the appli-

cation should be easy to modify in order to stay current.

• The access to customers data should be secure. The system uses personal and

banking information from customer so the access to it should be protected.

• The system should be easy to use.

• Orders placed in the system should be validated quickly. Customers are usually

impatient so the validation process of an order should be made as quickly as

possible.

These requirements are used throughout this chapter to illustrate ArchLayer and

its contributions.

3.1.2 Marking the initial design with quality attributes

As mentioned above, ArchLayer begins with the initial design of the application to

be developed. This initial design contains a high level description of the system

to be built based on its functional requirements. A common way to represent this

initial design is by using use case diagrams and activity diagrams. This technique

is used by many of the proposals discussed in Section 2.2.2 and also in this work.

Figure 3.2 shows a use case diagram representing the example application discussed

above. The application has been decomposed in five use cases. Each of the use cases

can be defined in greater depth by using an activity diagram. Figure 3.3 show the

acivity diagram of the Check Order use case.

The Check Order use case is responsibility of the seller. Each time an order is

checked its information is retrieved from the datastore where it was stored when the

customer validated it. Then all the information of the order is checked including

the customer data, the ordered products data and the payment data. Once all the

information is checked the order is saved again in the same datastore reflecting its

new state. At the same time, additional products similar to the ones ordered are

58

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.2: Use case diagram of the example application

searched to be offered to the customer later. This search is performed in a different

use case so in the diagram is represented by a different type of action. The products

retrieved by the search are saved in a datastore. Finally, the checked order and

the associated additional products are retrieved from the datastores and sent to the

customer.

As mentioned above, this way of representing the initial design of an application

is widely accepted. However, it has some drawbacks. The information contained

in the diagrams is not enough for the architect to select the system architecture.

The architecture should not only support the functional requirements but also take

into account the quality attributes to be met by the system as well as the relations

between them and the functional requirements.

For this reason the first step of ArchLayer involves adding information about

quality attributes to the initial design of the application. To do so we propose the use

of a technical approach. This technique employs a requirements model marked with

the relationships and constraints imposed by the quality attributes. In this way, the

architect is offered a clear and concise view of the information about the requirements

and their relationships. Additionally, the marks provide information that will be

used later in the process to detect the layers and architectural patterns that best

59

Chapter 3 ArchLayer: Bridging the gap between design and implementation

F
ig

u
re

3.
3:

A
ct

iv
it

y
d

ia
gr

am
of

th
e

C
h
ec

k
O

rd
er

u
se

ca
se

60

Chapter 3 ArchLayer: Bridging the gap between design and implementation

suit the application. A detailed description of this technique will be presented in

Section 3.2.

Hence, applying the marking technique to the diagrams presented in figure 3.2,

a marked diagram is obtained with the additional information about the quality

attributes of the system that is necessary for a good architectural design. Figure

3.4 shows how the use case diagram is left once the marks have been added and the

quality attributes affecting each of the use cases.

Figure 3.5 shows the activity diagram describing the Check Order use case an-

notated with the marks representing the quality attributes affecting the different

actions in the diagram. The figure includes marks that affect the entire use case,

like the modifiability mark, and therefore encompass all the actions in the diagram.

Other, more specific marks, affect only a single action or a reduced set of actions.

For example, the authenticity mark only affects the Check Payment Data action,

since this is the only action in which the customer payment data are processed, or

the timeBehaviour mark encompass the three actions related with the processing of

the order data, meeting the non functional requirements of the application.

By marking the initial design of the application with the quality attributes that

must be met by the application a model is obtained that contains all the information

needed to design the most appropriate software architecture for implementation.

This model is used as the basis for the rest of the process described in this thesis.

3.1.3 Modeling architectural variability

The other key element in the ArchLayer’s execution is the architectural decisions

repository. This repository captures the architectural and technological variability

of framework based multi-layer applications. Thanks to its use throughout various

steps of the process, the architect is assisted in the work of transforming the initial

design of the application into a design tailored to a specific architecture and tech-

nology. In particular, this work is simplified without limiting the architect’s choice

of possibilities in the selection of the design patterns or technologies that will be

used in the development process.

61

Chapter 3 ArchLayer: Bridging the gap between design and implementation

F
ig

u
re

3.
4:

A
n

n
ot

at
ed

u
se

ca
se

d
ia

gr
am

of
th

e
ex

am
p

le
ap

p
li

ca
ti

on

62

Chapter 3 ArchLayer: Bridging the gap between design and implementation

F
ig

u
re

3
.5

:
A

n
n

ot
at

ed
ac

ti
v
it

y
d

ia
gr

am
of

th
e

C
h
ec

k
O

rd
er

u
se

ca
se

63

Chapter 3 ArchLayer: Bridging the gap between design and implementation

The repository consists of a feature model. A detailed description of the process

followed in creating this repository and the reasons behind the selection of feature

modeling techniques will be presented in Section 3.3.

The repository is structured into hierarchical levels. Each of these levels repre-

sents a level of abstraction in a multi-layer architecture. The first level encompasses

the layers that may be included in the application.

Each supported layer contains the design patterns or techniques commonly used

for its implementation in the second hierarchical level of the feature model. The

model’s third level details the technological options available for implementing a

particular design pattern or technique. Sometimes the model contains a fourth

hierarchical level that contains the different ways to use a technology.

This repository is used throughout the entire ArchLayer process. A configuration

of the feature model will be created in different steps and used to help the architect

in tailoring the initial design of the application to the architecture chosen.

3.1.4 Choosing the application layers

The next step in the process of converting the initial design into a specific design

for the chosen architecture and technologies involves selecting the layers that will

conform the application. In order to assist the architect in this task, a set of model

transformations automatically suggests an appropriate set of layers. These trans-

formation take as input the application’s requirements that have been marked with

the quality attributes as described above and the architectural decisions repository.

The output of the transformation is a partial configuration of the feature model

in which the suggested layers have been selected. A detailed description of these

transformation will be presented in Section 3.5.

Starting from the marked use case diagram presented in figure 3.4, an initial

choice of layers is offered to the architect. Figure 3.6 shows the suggested selection

of layers based on the marked use case diagram.

The suggestion given to the architect is the use of five layers for the application’s

64

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.6: Suggested layers

development. These layers are the following:

1. Persistence. The execution of the use case requires the retrieval of data that has

been recorded by other system use cases (such as listing an order information

in the Check Order use case) and the storage of data for later use (such as

the additional products information). The transformation recommends that

the architect include a persistence layer containing all the elements related to

information persistence.

2. Business logic. This is a standard layer in multi-layer applications which in-

cludes elements related to the application’s behaviour.

3. Presentation. Some of the use cases are executed by human users, therefore

the process recommends that the architect include a presentation layer. This

layer includes all the elements related to user interaction.

4. Web services. The Check Stocks use case is carried out by an external sys-

tem. To support the integration with such systems, the transformations rec-

ommends that the architect include a Web services layer that encapsulates

communication facilities with external systems.

5. Security. Checking the payment data of the customer has to be a secure

task. Therefore the transformations recommends that the architect include

a security layer which combines all the elements related to this aspect of the

65

Chapter 3 ArchLayer: Bridging the gap between design and implementation

system.

It can be noted from the above descriptions of the suggested layers that the layer

suggestion process is based on a relatively simple rule set. In particular, a layer is

suggested on the basis of two criteria.

The first criterion considers specific features found in the initial design of the

application. Their presence will determine whether a layer should be suggested

to the architect as part of the application and it can be detected through simply

querying the design model. For example, the process suggests a presentation layer

when a human actor is interacting with a use case.

The second criterion is based on the marks that contain information about quality

attributes. The process proposes the use of a layer when the design has a quality at-

tribute mark suggesting it. The process detects the presence of these marks through

querying the design model. For example, if the process finds a mark stating that an

activity must support authenticity it will suggest a secure layer.

Once the transformations have provided the suggested set of layers, the architect

must validate it or modify it if appropriate. For the example shown in figure 3.6, the

architect may suggest including a test layer which had not been suggested initially

because no quality attribute mark had indicated that it was necessary. The architect

may also choose to eliminate the security layer. If the activity represented by this use

case happened to be the only operation of the entire system needing authenticity,

it would not be necessary to add a layer to support a single operation, and the

elements related with this activity would be included in the existing layers. For

the example in the following sections it is considered that the architect accepts the

layers suggested by the transformations without change.

3.1.5 Tailoring the design to a multi-layer architecture

At this point, a model transformation is performed, taking the initial design marked

with the quality attributes as the source model. The feature model’s first level

configuration is taken as an additional source of information for the transformation.

Again, a detailed description of these model transformations will be provided in

66

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Section 3.5.

After applying the transformations, the architect obtains a design adapted to the

layers specified in the feature model’s configuration. Figure 3.7 shows the result of

applying this transformation to the marked design presented in figure 3.5.

This new model contains the layers chosen by the architect for the application’s

development process. Each action is represented in all the layers in which it is

involved. For example, the action responsible for checking the customer payment

data is represented in the business logic and persistence layers. These are the layers

in which that action should be developed based on the information found in the

marked design and the feature model.

The criteria used for the transformation are similar to those presented above

for the layer suggestion process. The transformation creates the number of layers

that the architect has selected in the feature model. By default, the main flow of

actions is placed in the business logic layer which controls the process execution.

If a presentation layer exist, the start and end action are placed in it in order to

grant the user control over the activity’s execution. Each action is included in all

those layers in which it is present. To determine which action are present in a layer,

similar criteria to the ones used to select the layers are applied. Actions related to

a layer that has been deleted by the architect are re-positioned in the business logic

layer. The layers added manually by the architect are created without any action.

The new model, adapted to the chosen layers, is very interesting for architects

because it allows them to observe the distribution of actions in each of the layers of

the application. However, it provides little information about the actual design of

the application for a specific architecture and set of technologies. Its main utility is

to establish a basis for the subsequent transformations that will be detailed in the

following sections.

3.1.6 Choosing design patterns and technologies

At this point in ArchLayer, the architect has a model of the application to develop

which is adapted to the layers into which he or she decided to split the application.

67

Chapter 3 ArchLayer: Bridging the gap between design and implementation

F
ig

u
re

3.
7:

L
ay

er
ed

ac
ti

v
it

y
d

ia
gr

am

68

Chapter 3 ArchLayer: Bridging the gap between design and implementation

The next step of the process involves choosing the design patterns and technologies

that will be used in the system’s development. For this task, the architect has

available the architectural decisions repository.

Similarly to the case when the layers comprising the application were selected, a

model transformation is used to provide a series of recommendations to the archi-

tect regarding the design patterns and technologies that could be used. To make

appropriate suggestions the transformations need to have in the repository infor-

mation about the quality attributes affected positively or negatively by each design

pattern and development framework. A detailed description of how the architectural

decisions repository is enriched with this information will be presented in Section

3.3.

In this step, however, the decisions made by the architect are much more im-

portant. In many cases the choice of a particular technology or pattern does not

depend on the requirements of the application or the quality attributes of the sys-

tem, but on the company’s internal criteria. For example, one of the most important

factors when it comes to choosing a technology to implement the MVC pattern in

the presentation layer is the developers’ experience. There are many frameworks

that fully cover this role. Given that whichever one is chosen will continue to satisfy

the application’s requirements, the one in which the development team has most

experience is usually picked.

Whatever the case, the transformations provided supports a rule set that allows

it to offer an initial selection to the architect. These are simple rules which may

express the company’s preferences or other criteria for technology selection.

As mentioned above, the burden of this task has to be borne by the architect. The

task is done in two steps. First, the architect selects the design patterns that will be

used in the development of each layer. Figure 3.8 shows a possible selection of design

patterns to be used in the process of building the presentation and Web services layer

of the example application. In this case, the architect decided to use the classic MVC

pattern together with the WebRemoting pattern for the presentation layer. For

the Web services layer, the architect decided to use the REST protocol (Webber,

69

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.8: Excerpt of the configuration of the feature model with the selected design
patterns.

Parastatidis, & Robinson, 2010) instead of SOAP (Snell, Tidwell, & Kulchenko,

2001).

In the second step, the architect should select the technology that will support

the implementation of the chosen patterns. This will simplify the architect’s work

when it comes to deciding which technologies to use. The architect will not have

to choose a framework for the application’s web services from among all those that

are available. Instead the selection will be made only from among those which

support the REST protocol. Figure 3.9 shows a possible technology selection for the

design patterns chosen previously. Here the architect has chosen the Struts (Struts

development framework , n.d.) framework to support the MVC design pattern, DWR

(DWR development framework , n.d.) to support the WebRemoting pattern, and

CXF (CXF development framework , n.d.) as the technology used for the REST web

services.

Sometimes the architect must take an additional step in this task. This is because

a given technology may provide different ways to implement a particular design pat-

tern. In such cases, ArchLayer does not limit the architect’s possibilities, but allows

him or her to choose whichever method is considered most appropriate. Figure 3.10

shows an example of such a situation. The Hibernate development framework allows

the DAO pattern to be implemented using three alternative techniques: with pro-

prietary Java annotations, with XML configuration files, or in a way that complies

with the JPA standard. In the feature model shown in figure 3.10, the architect

decided to use Java annotations in the Hibernate framework to implement the DAO

70

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.9: Excerpt of the configuration of the feature model with the selected
technologies.

design pattern for the application’s persistence layer.

For clarity reason, in this description of ArchLayer the architectural decisions

are taken in a specific hierarchical order. However, the architect could choose a

different order, for example by choosing the frameworks that will be used during

the development before choosing the design patterns. The use of feature models

to specify architectural knowledge and the architectural decisions make it possible

whilst the consistence is kept during the transformation process.

3.1.7 Relating the chosen architecture and the system model

As stated in the previous section, it is possible to develop an application using any

of several design patterns and development frameworks for the implementation of

a single layer. Figure 3.9 shows an example in which the architect has decided

to use two different design patterns (each supported by a development framework)

to implement the presentation layer of an application. When this is the case, an

additional step has to be inserted into ArchLayer.

71

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.10: Excerpt of the configuration of the feature model with the selected
technology usage technique.

This additional step will be responsible for relating the actions within the layer

to the design pattern or framework to be used for its development. Whenever a

single pattern or technology is used to implement a layer, ArchLayer will by default

relate all the actions in that layer to the chosen pattern or technology.

Figure 3.7 shows four tasks involved in the persistence layer. If the software

architect selects more than one framework for the implementation of this layer, he or

she would also have to indicate which of these actions would have to be implemented

using each of the selected frameworks.

To perform this task bindings, i.e., relationships, should be established between

an element of the layered design and a framework in the architectural decisions

repository. These bindings are expressed in the form of annotations in the layered

design indicating the design pattern and framework to be used in the implementation

of a given action.

3.1.8 Additional technological information

At this point in the process the architect knows the design patterns and technologies

that will be used in the development process. Also, thanks to the fine-grained

configuration detailed in the previous section, the architect knows which specific

patterns and technologies are to be used for each action in the layered model of the

application. This information is not enough, however, to perform the last step of

72

Chapter 3 ArchLayer: Bridging the gap between design and implementation

ArchLayer and obtain a specific model for the chosen technologies.

To perform this step, detailed information on the design patterns and in-depth

knowledge of the frameworks that are to be used are required. As noted above,

gaining this knowledge and applying it correctly to each development process is an

arduous task for architects.

In order to make the framework and pattern knowledge explicitly available for re-

use in multiple developments, a meta-model is presented in which the configuration

and usage of these technologies is specified. This meta-model allows architects to

define the configuration and usage of a large number of frameworks.

To model a framework’s behaviour using this meta-model the architect should

identify the version of the framework that will be used. In addition, he or she

must also specify the dependencies involved in the use of that framework. The

configuration files affected by this framework and the code artifacts that will contain

the framework’s code should also be included. Detailed information about this meta-

model will be presented in Section 3.4

In order to use a framework in ArchLayer, the architect will need a model of its

behaviour containing the implementation details of each design pattern or technique

supported by that framework. These models will not be created by the architect,

they will be created by experts in a particular framework and later re-used by other

architects or teams less experienced. The models of all the frameworks used in the

running example are provided by the author. More information about these models

can be found in Appendix D.

3.1.9 From multi-layer to framework-based

At this point, all the information needed to make the final model transformation is

available. The initial model for this transformation will be that of the application

split into the layers previously chosen by the architect.

Additional information is applied to the transformation in the form of the con-

figuration of the feature model containing all the technological and architectural

73

Chapter 3 ArchLayer: Bridging the gap between design and implementation

decisions taken by the architect. In this configuration, the architect has selected the

design patterns that will be used in each layer, the development frameworks that

will support each design pattern, and how each framework will be used.

Accompanying this configuration of the feature model, the fine-grained binding

that relates model elements from the application’s layered design with the architec-

tural and technological features that they should comply with is available. Finally,

the process can count on models that describe the behaviour of the selected frame-

works.

With all this information, a model transformation is applied to the layered model

of the application to obtain a specific model for the architecture and the technologies

chosen by the architect.

The criteria followed in applying this transformation are more complex than those

of the previous transformation. A transformation is applied to each element of the

layered model, and the criteria used to determine which transformation to apply are

based on three elements of information. Firstly, the transformation applied depends

on the layer in which the activity is located; this information is obtained by querying

the model. Secondly, the process will apply the transformation corresponding to the

chosen design pattern; this information is located in the fine-grained binding. And

thirdly, the process needs to know the technology that will support the design pattern

since this will affect the transformation that will be applied. On the basis of these

criteria, the appropriate transformation is applied to each activity.

Figure 3.11 shows the result of completing the transformation of the Check user

permission activity. The transformation applied by the process corresponds to using

the Hibernate framework to implement the DAO pattern with Java annotations.

Applying this transformation to all the activities contained in the intermediate

model results in the creation of a specific model for the chosen technologies and

patterns. By following ArchLayer to this point, the architect will be provided with

assistance in the difficult task of translating the initial design of an enterprise ap-

plication into a specific design for a multi-layer architecture based on development

frameworks. This facilitates the architect’s work and reduces the risk of introducing

74

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.11: Excerpt of the model adapted to the technologies that will be used in
the application’s development process.

errors in the design of the application. Additionally, ArchLayer handles the re-use

of knowledge that is crucial to the development of applications, such as the best way

to use each pattern and framework.

3.1.10 Code generation

Finally, the detailed model obtained as a result of the previous transformations can

be used to automatically generate part of the source code of the application. This

code generation is performed by a model to text transformation that take as input

the model tailored to the frameworks chosen by the architect and produces the code

of the application integrating all the selected frameworks and the instances of the

frameworks concepts needed to implement all the actions in the initial design. More

detailed information about JACA, the tool for automatic code generation, will be

provided in Chapter 4.

3.2 Marked design

This section describes in detail the approach used to annotate the initial design

of an application in order to better support architecture design decision making.

The presented approach provides mechanisms to annotate and model requirements

relations for helping architects gain a relatively complete picture of functional and

non-functional requirements relationships. To annotate the requirements interde-

pendencies, a set of UML profiles for Use Case and Activity Diagrams have been

75

Chapter 3 ArchLayer: Bridging the gap between design and implementation

defined.

The information added by the marks is used later in the process for selecting and

reasoning about appropriate design patterns and frameworks that can help satisfy

both the functional requirements and the quality attributes. In addition, these mod-

els can be reused by tools that can assist architects in making architectural design

decisions. The following subsection detail the proposed technique for annotating the

initial design of the applications.

3.2.1 Annotating the initial dessign

For annotating the requirements relationships, some extensions of the UML dia-

grams that are commonly used to document requirements were defined. Specifically,

profiles have been defined for Use Case and Activity Diagrams. These profiles al-

low the requirements engineer to annotate which functional requirements, or part

of the functional requirements, are affected by quality attributes. Thus, the effort

required of the architect to identify the architectural significant requirements and

their interdependencies and the chance of making errors during this analysis are

both significantly reduced.

These profiles are based on the quality model defined in the ISO/IEC 25010

(SQuaRE) (Organization, 2011). This standard classifies software quality on the

basis of a structured set of characteristics and subcharacteristics. Thus, each pro-

file defines a set of stereotypes allowing the software architect or the requirement

engineer to annotate the requirement models regarding to this quality model.

Annotating use case diagrams

The profile extending the use case diagram, showed in Figure 3.12, defines the set of

stereotypes for modeling the characteristics detailed in the SQuaRE quality model.

These stereotypes extends the ExtensionPoint metaclass. This class is originally

used to document points where the behaviour of a use case is augmented by another

use case. The stereotypes extending this metaclass document points where the

76

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.12: Excerpt of the profile for modeling the relationships with quality at-
tributes in use case diagrams.

behaviour of a use case is restricted by a quality attribute. The ExtensionPoint

class was chosen to represent the relationships because, firstly, it maintains the

readability of the diagrams when the use cases are constrained by a large number of

quality attributes, and, secondly, one can also document the exact use case points

at which the restrictions should be applied.

As Figure 3.12 shows, the ExtensionPoint metaclass is extended by the QA (Qual-

ityAttribute) stereotype. This element defines the general information for the qual-

ity attributes, such as the description of the relationships and its importance. This

stereotype is subsequently specialized using a hierarchy of stereotypes similar to the

hierarchy of quality attributes defined in the SQuaRE standard. The intermedi-

ate nodes of the hierarchy represent the characteristics of the quality model, and

the leaf nodes represent the subcharacteristics. Thus, depending on how deep each

quality attribute is detailed in the system, the requirements engineer can detail the

relationships using characteristics or subcharacteristics.

These annotations must be modeled by the requirements engineer, but are very

useful to the architect for acquiring all the necessary information on the require-

ments without having to analyze in depth all the requirement artifacts. With these

annotations, the risk of misinterpret the requirements, and therefore of reasoning

and selecting wrong patterns or making wrong architectural decisions, is reduced.

In addition, these annotations are used by ArchLayer to assist the architect in the

selection of architectural patterns.

77

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.13: Excerpt of the profile for modeling the relationships with quality at-
tributes in activity diagrams.

Annotating activity diagrams

The profile extending activity diagrams, showed in Figure 3.13, first, defines the QA

stereotype. This stereotype extends the ActivityGroup metaclass. This metaclass is

used to group nodes and edges. The QA stereotype extends this behaviour to groups

the nodes and edges that are restricted by a specific quality attribute. Thus, each

interdependence is documented by means of a rectangle drawn around the nodes

and edges constrained by a specific quality attribute.

The QA stereotype defines the general information for all quality attributes and

is in turn extended by a hierarchy of stereotypes similar to the one detailed for

the use case diagram. These stereotypes specializes the QA stereotype following

the hierarchy of characteristics and subcharacteristics defined the SQuaRE quality

model. In this way, one can annotate which specific actions of each diagram are

restricted by each quality attribute.

Annotating the activity diagrams provides fine-grained information on the re-

quirements’ relationships, as even the actions that have to comply with each quality

attribute are documented. This information is very useful for the architect since it

allows him/her to identify the specific actions that must satisfy each restriction with-

out having to thoroughly analyze the requirements documents. This allows him/her

to make much more accurate architectural decisions, without having to perform an

in-depth analysis of the requirements, and facilitates their application, since he/she

knows the exact actions where apply them. Also, these annotations can also be used

78

Chapter 3 ArchLayer: Bridging the gap between design and implementation

by ArchLayer to automatically suggest the most appropriate architectural decisions.

3.3 Architectural decisions repository

This section describes in detail the architectural decisions repository used in Arch-

Layer. This repository is one of the main tools in assisting the architect in the design

of multi-layer framework based architectures. It captures the architectural and tech-

nological variability of multi-layer applications. The following subsections detail its

internal structure, an example of a possible repository, how it can be enriched with

information about the quality attributes affected by each technology included and

how the results of using it can be used as a knowledge source for future projects.

The architectural decision repository used in this thesis can be found in Appendix

A.

3.3.1 Architectural decisions repository structure

The main goal pursued in the creation of this repository is to incorporate architec-

tural and technological variability into the development of multi-layer applications.

As mentioned in Section 2.4.1, Cardinality-Based Feature Models are used in this

thesis to create the architectural decision repository.

Since the purpose of the repository is to be used as a core part of a model-

driven development process, it need a well-defined structure or conform to some

kind of meta-model so as to be treated automatically later in the process. Such

structure, however, has to be flexible enough to incorporate the large number of

existing technologies. It also has to be capable of incorporating both any new

technology that might arise and the evolution of existing technologies. Indeed,

this was the main criterion imposed on the creation of the architectural decisions

repository.

To obtain a repository that meets these requirements, a bottom-up strategy was

followed. In particular, a significant number of development frameworks were stud-

ied in order to extract concepts that would form the structure or meta-model of the

79

Chapter 3 ArchLayer: Bridging the gap between design and implementation

feature model. For the structure to be as flexible as possible, more than 10 Java

development frameworks were chosen from different developers and with different

roles and goals. These frameworks were selected for being among the most com-

monly used within their scope. Following is the lists of frameworks analysed: Axis,

CXF, DWR, Hibernate, Ibatis, JDBC, JSF, jUnit, Log4j, PicoContainer, Spring,

SpringSecurity, SpringWS and Struts.

The first architectural decision to be taken when building a multi-layer applica-

tion is to determine the layers of which it will be composed. Therefore, the first

criterion used in analyzing the development frameworks was to determine the layer

or layers in which they are used.

After determining the layers that make up the application, the architect usually

define the design patterns to be used in implementing each of them, although, as

mentioned above, the architectural decisions can be taken in the inverse order. In

particular, knowledge of which design patterns a development framework supports

is of particular importance at this stage.

Finally, a framework may allow different kinds of implementation for the same

design pattern. If one does not want to lose the advantages offered by the develop-

ment frameworks, these different implementation techniques need to be taken into

account in the architectural decisions repository.

Given these considerations, the frameworks listed above were studied. The infor-

mation extracted from that analysis is summarized in Table 3.1.

Starting from this information, the structure that the feature model would need

to have was extracted. Figure 3.14 shows a feature model with that structure.

In general, the scope of all the frameworks studied was in a single layer. Even

when the same developer supports multiple layers, this is usually implemented by

being distributed among different frameworks that can be used independently. For

example, the frameworks Spring, Spring Security, and SpringWS belong to the same

developer, but each targets a single layer and is treated as a separate product.

This, together with the fact that the layer is the main architectural pattern applied

in the development of multi-layer applications, makes it reasonable that the most

80

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Table 3.1: Essential framework information used in the creation of the architectural
decisions repository.

Framework Layer Design Patterns Implementation techniques

Axis Web services SOAP NA

CXF Web services REST NA

DWR Presentation Web remoting NA
Page rearrangement NA

Hibernate Persistence DAO JPA
XML
Annotations

Ibatis Persistence DAO NA

JDBC Persistence DAO NA

JSF Presentation MVC NA
Web remoting NA
Page rearrangement NA

jUnit Test xUnit NA

Log4j Log Logger NA

PicoContainer Business logic IoC NA

Spring Business logic IoC XML
Annotations

SpringSecurity Security Authentication LDAP
OpenID
JaaS
HTTP

Authorization Web request
Method invocation
Access to instances

SpringWS Web services REST NA

Struts Presentation MVC NA

81

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.14: Architectural Decisions Repository meta-model.

appropriate would be for the first level of the feature model to consist of the possible

layers of which an application may be composed.

As mentioned above, one or more design patterns are used to simplify the im-

plementation of each layer. Usually these design patterns are specific to each layer.

Therefore, it would be appropriate for each layer present in the feature model to

include the group of features representing the design patterns that can be used.

Usually development frameworks provide support for one or more design pat-

terns. Therefore, each design pattern included in the feature model must specify the

frameworks that can be used to implement it. This may result in the same frame-

work appearing more than once in the feature model, provided that this framework

supports several design patterns. This poses no problem, since the occurrence of a

framework in the model implies that the framework can be used in the implementa-

tion of a particular pattern, but it does not imply that its use for a specific pattern

requires the use of the same framework in all the patterns of a given layer. For

example, the JSF framework supports the implementation of three design patterns

82

Chapter 3 ArchLayer: Bridging the gap between design and implementation

– MVC, web remoting, and page rearrangement. This implies that the framework

will appear thrice in the feature model. Nonetheless, the use of JSF to implement

the MVC pattern in a particular application does not imply that other frameworks

can not be used for the other patterns.

Finally, it is common for a framework to provide different techniques for imple-

menting a design pattern. These techniques generally vary in the syntax used, but

end up providing the same results. An example of this is dependency injection in

the Spring framework. This can be done using Java annotations or using an XML

configuration file. This variability aspect was also taken into account in the feature

model. Where applicable, the feature model offers the techniques supported by a

framework in the implementation of a given design pattern.

3.3.2 Example of a possible architectural decisions repository

Based on the information obtained during the framework analysis (Table 3.1) and

the structure shown in Figure 3.14, a feature model that captures the variability of

the frameworks considered was constructed. A fragment of that model is shown in

Figure 3.15.

This model can not be created solely with the information presented in the pre-

vious section, however. For the model to be representative enough for use in a

development process, it must contain information not only about the frameworks

but also about their interrelationships. Next section details how this information

can be added to the repository.

3.3.3 Enriched architectural decisions repository

The repository of architectural decisions plays a key role in ArchLayer. However,

from the architect viewpoint, the repository described to this point only offers a set

of possibilities for the decisions that must be taken but not help at all when it comes

to taking them. An enriched repository is needed in order for it to be of assistance

to the architect. To accomplish this, additional information has been added to the

83

Chapter 3 ArchLayer: Bridging the gap between design and implementation

F
ig

u
re

3.
15

:
E

x
am

p
le

of
a

p
os

si
b

le
ar

ch
it

ec
tu

ra
l

d
ec

is
io

n
s

re
p

os
it

or
y

84

Chapter 3 ArchLayer: Bridging the gap between design and implementation

repository. The purpose of this information is to ease the decision-making process

for the architect.

It is usual, in applications such as the ones discussed in this work, that multiple

frameworks could be used to implement a functionality. Usually, such frameworks

even implement the same design patterns. Therefore, the choice of one of those

frameworks is not simple. Since functionality can be covered with either one, their

suitability for the project should be measured by how they affect its Quality At-

tributes (QA).

Leaving this decision entirely in the hands of the architects requires from them an

even greater knowledge about the technical details of each framework and especially

of the interactions between them. Adding information to the repository about how

the different framework positively or negatively affect the QAs of an application can

help the architects take these decisions.

The first step adding this information to the repository is to add specific informa-

tion for each framework. To accomplish this task we use a slightly modified version

of the template described here (Babar, 2004). This template was designed to cap-

ture architecturally important information about design patterns and document it

in such a format, which makes it readily usable during software architecture design

and evaluation activities. Table 3.2 shows the modified template.

The template was modified to collect the architectural information about a design

pattern implementation by a framework. Particularly relevant to this work are the

affected quality attributes, that may vary from the same information on the design

pattern depending on the framework implementation details.

Since frameworks usually implement more than one design pattern, there would

be more than one template per framework. They detail how its implementation

of each design pattern affects the quality attributes of the final system. Having

different templates is needed because using a framework for one of its implemented

design pattern or another can have different effects over the final system. Also, this

way to include the information matches with how frameworks are represented in the

feature model, appearing as many times as design patterns they can implement.

85

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Table 3.2: Template for the architectural information of a framework

Framework name: Name of the frame-
work

Pattern name: Design pattern imple-
mented by the framework

Brief description A brief description of the framework

Context The situation for which the framework is recom-
mended.

Problem description What types of problem the framework is supposed to
address?

Suggested solution What is the solution suggested by the framework to
address the problem?

Forces Factors affecting the problem & solution. Justification
for using the framework.

Available tactics What tactics are used by the framework to implement
the solution?

Affected attributes
Positively Negatively
Attributed supported Attributed hindered

Supported gen-
eral scenarios

s1
s2
sn

Usage Examples Some known examples of the usage of the framework
to solve the problems.

Implemented design
patterns

Other design patterns implemented by the same
framework.

86

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Table 3.3: Template for the effects of a combination of frameworks on a system QAs

Framework A name: Name of the
framework A

Framework B name: Name of the
framework B

Communication mech-
anism

A brief description of the mechanism or technique
used to communicate the pair of frameworks

Affected attributes
Positively Negatively
Attributed supported Attributed hindered

Having this information in the decisions repository provides two advantages.

First, architects have all the relevant architectural information about the frame-

work present when taking an architectural decision. Second, since the information

about the rest of design patterns supported by a framework is included, it is easy to

link the different occurrences of a framework in the repository and take advantage

of the frameworks implementing more than one design pattern.

However, as mentioned in Section ?? this information is not enough to describe

how different frameworks may affect the system QAs. Table 3.3 shows the template

used to record the information about the effects the interactions between differ-

ent technologies have in the sustem QAs. This new template does not make the

complexity of the repository grow exponentially, only information about pairs of

frameworks that may effect the system QAs when used together should be included.

Therefore the use of this template is limited only to pairs of frameworks in the same

layer or in adjacent layers, since they are the only ones exchanging information.

Neither is it necessary to consider combinations of more than two frameworks since

complex interactions can always be reduced to a set of interactions between pairs of

frameworks.

All this information is added to the repository so it can be used by the architect

but also by the model transformation suggesting the most adequate frameworks for

an application.

3.3.4 Reuse of architectural decisions

An additional advantage of the use of feature models for the implementation of the

architectural decisions repository is that, once the decision-making process is com-

87

Chapter 3 ArchLayer: Bridging the gap between design and implementation

pleted, a configuration of the feature model containing all the architectural decisions

is provided. This configuration of the feature model has multiple uses.

Firstly, it is used to ensure that the decisions taken by the architect were held in

the project development and properly implemented. This information is very useful,

especially in the context of distributed development centers, to measure different

aspects of the productivity of development teams.

Secondly, it is used to study the results obtained, especially regarding the quality

attributes, in the system. An analysis of the system behavior along with the archi-

tectural decisions made during the development permits continuous adjustment in

the repository that will benefit future projects.

Finally, it is used in the development of similar projects. Again, this is especially

useful in distributed development environments where many similar projects are

developed. A development team with little experience can take advantage of all

the architectural decisions made by a more skilled team in a previously successful

project.

3.4 Framework information meta-model

This section describes the meta-model that captures the implementation details of

frameworks. Models based on this meta-model facilitate the introduction of tech-

nological variability in ArchLayer. These models are used by the transformations

that produce a specific design adapted to whichever technologies are selected by the

architect. The following subsections describe the meta-model design rationale, the

details of the meta-model and its flexibility to support the modeling of new frame-

works. One of the models based in this meta-model used in this thesis can be found

in Appendix B.

3.4.1 Meta-model design rationale

The main goal pursued in the creation of this meta-model is to incorporate techno-

logical variability into the development of multi-layer framework based applications.

88

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Table 3.4: Development frameworks analysed for the creation of the meta-model.

Framework Version

Axis 1.4

CXF 2.2.4

DWR 2.0.3

Hibernate 3.4.0.GA

Ibatis 2.3.4

JDBC 4.1

JSF 1.2.b19

jUnit 4.7

Log4j 1.2.14

PicoContainer 1.2

Spring 3.0.0

SpringSecurity 2.0.4

SpringWS 1.5.10

Struts 1.3.10

Having a meta-model to define the technical details of a framework facilitates this

task. On the one hand the meta-model defines a domain specific language to capture

the technical details of the frameoworks. On the other hand, the use of standard

techniques such as creating MOF-based meta-models allows easy integration of this

meta-model and the corresponding models based on it with the rest of the process.

Additionally, the meta-model has to be flexible enough to incorporate the large

number of existing technologies. It also has to be capable of incorporating both any

new technology that might arise and the evolution of existing technologies. Indeed,

this was the main criterion imposed on the creation of the meta-model.

To obtain a meta-model that meets these requirements, a bottom-up strategy

was followed. In particular, a significant number of development frameworks were

studied in order to extract concepts that would form the meta-model. For it to

be as flexible as possible, more than 10 Java development frameworks were chosen

from different developers and with different roles and goals. These frameworks were

selected for being among the most commonly used within their scope. Table 3.4 lists

the frameworks analyzed and their version.

To carry out this study several multi-layer applications were created. In these

applications we study how to setup the frameworks for their use and how to imple-

89

Chapter 3 ArchLayer: Bridging the gap between design and implementation

ment the functionality offered by each of them. The first aspect to consider when

using a development framework in the implementation of a multi-layer application

is to integrate it with the other frameworks used in the project. Frameworks are

complex tools and the use of several of them into the same project so that they can

communicate and interact with each other is not a trivial task. Therefore, this is

an issue which requires special attention when attempting to create a system where

multiple frameworks coexist. Hence this is one of the key issues that have shaped

the structure of the meta-model presented here.

Moreover, it is useless to configure multiple frameworks in a project if they can

not be used conventionally. The other aspect that has led the creation of the meta-

model is the utilization of the frameworks. Frameworks are commonly used by estab-

lishing framework completion code. This code instantiates domain-specific concepts

provided by the frameworks. The frameworks study has focused specifically on the

general characteristics of this framework completion code and how it can make use

of services provided by other layers and frameworks.

Given these considerations, the frameworks of Table 3.4 were analyzed. The

information extracted from that analysis is what led to the creation of the meta-

model presented here.

3.4.2 Framework information meta-model

Based on the information obtained from the analysis of the frameworks previously

described the meta-model showed in Figure 3.16 was created. Each model based

on this meta-model contains the information required for the use of one or more

frameworks. These frameworks are identified by a name and version number.

The models based on this meta-model contain very low-level information about

the use of a framework. Therefore, they will not be usually created by development

teams during the development of multi-layer applications, they should be created

by experts in each of the frameworks or even by the frameworks developers.

A particular model for a specific framework will contain an unspecified number

of framework concepts. These concepts are identified by their name and they can

90

Chapter 3 ArchLayer: Bridging the gap between design and implementation

F
ig

u
re

3
.1

6:
M

et
a
-m

o
d

el
fo

r
m

o
d

el
in

g
th

e
ad

d
it

io
n

al
in

fo
rm

at
io

n
n

ee
d

ed
ab

ou
t

th
e

d
ev

el
op

m
en

t
fr

am
ew

or
k
s.

91

Chapter 3 ArchLayer: Bridging the gap between design and implementation

be of two possible types: initial configurations or framework completion code. The

following sections provide an insight of each element of the meta-model and of how

the models based on it are used in ArchLayer.

Initial configuration

As mentioned above the initial configuration is one of the most important aspects

when it comes to using a framework. This configuration will enclose, in the project,

all of the elements needed by the framework to work properly in conjunction with

the remaining frameworks being used.

This concept is represented by the InitialConfiguration metaclass in the meta-

model presented in figure 3.16. This type of elements are identified by their name.

This has been designed as such because in certain situations it may be interesting to

have different initial configurations for the same framework. These configurations

can be used to include a framework in projects that use different sets of technologies,

and therefore may require different configurations, or when the same framework can

be used in different ways depending on its initial configuration. The concept of

having multiple initial configurations adds another element of variability in the use

of this meta-model: variability is not only present for the chosen technologies, but

also as an inherent factor of the frameworks.

Each possible initial configuration of a framework is composed of a set of Con-

tents. During the study of the frameworks presented in table 3.4 it was found that

configuring these frameworks for their use in a project implied including content

in several files which could be both plain text and XML configuration files. The

inclusion of these contents in a project may involve creating a new file in the project

or adding content to an existing file.

All these concepts are reflected in the meta-model by the properties of the Con-

tent metaclass. In these properties one can define the name of the file in which the

new content will be included, the path where the file is located within the project,

the content to be added, if it is a file that already exists or it must be created and

in case of an existing file in which position inside the file the new content should be

92

Chapter 3 ArchLayer: Bridging the gap between design and implementation

inserted.

To determine the position in which the new content will be included in the file a

combination of the position and label attributes is used. The position attribute can

take four possible values (before first, after first, before last and after last). These

values refer to the position where to insert the new content in relation to the value

of the label property. This property allows one to specify a label, which can be plain

text or XML, for searching in the file in which the new content will be included.

Content can be included before or after the first or last appearance of the label in

the file. This set of properties is enough to specify the positions in which content

should be added for the initial configurations of all the frameworks shown in table

3.4.

The distinction between plain text and XML contents is done simply to differenti-

ate the types of values that can be found in the content property. This differentiation

simplifies model-to-text transformations when the contents included in the model

have to be inserted into the projects where they are needed.

Additionally, a specialization of the XML content in four different types is in-

cluded. These types are not really necessary for the use of the meta-model, but

their presence is justified in order to simplify the addition of four very common

content types in the configuration of the studied frameworks. Any content of these

four types can also be described using the XML content type. A brief description

of these four types is included below.

• MavenDependencies. This type is used to add dependencies to a project using

the Maven tool. Maven is a widely used project management tool that, among

other functions, facilitates dependency management. If a different dependency

management tool is used, its configuration can be included by using the basic

types of content.

• MavenPlugins. Like the previous type, this type is used to simplify adding

content in projects that use Maven. In this case this type is used to add

Maven plugins to the project.

• WebXML. This type is used to add content to the web.xml configuration file.

93

Chapter 3 ArchLayer: Bridging the gap between design and implementation

This file is the deployment descriptor for web applications that is used for most

of the frameworks listed in table 3.4.

• SpringXML. This type is used to add XML content to Spring configuration

files. Spring is one of the frameworks studied in this work and is especially

relevant because it provides different mechanisms for integration with other

frameworks. These mechanisms can be exploited more easily with this type of

content.

The initial configurations of all the studied frameworks can be created with the

elements that have been described.

Framework completion code

In addition to the initial configuration, in order to manage the technical details

regarding the use of a development framework, information about how the frame-

work’s completion code should be is required. This refers to elements in a project

and not just source code, that are used to instantiate a framework provided concept,

which will usually be an implementation of a design pattern.

The meta-model presented here manages these elements in a very similar way to

the initial configurations. This is done with the FrameworkCompletionCode meta-

class. Like the initial configurations these elements are identified by their name. It

is also common to find several elements of this kind for the same framework, in this

case this is due to two reasons: on one hand, a framework can provide implemen-

tations for different concepts, each of which require an element of this type, and on

the other hand, it is not unusual for a framework to provide different techniques to

implement the same concept. This allows the variability provided by the frameworks

to be maintained in the models.

The other elements of the meta-model for specifying the content of a framework

completion code match the elements that specify the content of the initial configu-

rations. The study of the frameworks found in table 3.4, has allowed us to verify

that the framework completion code required for the use of such frameworks can be

specified with this meta-model. However, an important difference must be noted:

94

Chapter 3 ArchLayer: Bridging the gap between design and implementation

the content of the initial configuration elements in both plain text and XML, is a

static content, since they can only appear once in a given project, whereas in the

case of the framework completion code, it must have certain dynamic attributes.

This is because in the same project it is usual to use the same framework comple-

tion code several times. For example, the DAO pattern implementation provided by

the Hibernate framework will be used as many times as persistent objects exist in a

project.

This issue is solved by the use of templates in the contents of elements of the

FrameworkCompletionCode type. These templates include dinamic values for such

elements in order to differentiate each implementation of a framework completion

code, leaving the rest of the content static. When using these models, dynamic

content can be solved manually by developers for each occurrence of one of these

items or automatically using a template engine such as Velocity (Velocity templating

engine, n.d.) or JET (JET templating engine, n.d.).

Figure 3.17 shows an example of a model based on the described meta-model.

The model shows...

3.4.3 Flexibility of the meta-model

The main goal pursued by the creation of this meta-model is to provide a simple

language to define the technological variability of multi-layer applications based on

development frameworks. Therefore, the main criterion followed whilst defining the

meta-model has been flexibility. This implies that the meta-model should not only

serve to define the technical details of the studied frameworks, but also that it can

be used for the greatest number of frameworks as possible, either existent or future.

In order to verify that the meta-model was flexible enough to describe new frame-

works it was decided to model, based on the meta-model presented, the technical

details of new frameworks, other than those studied. For this we chose the frame-

works used in (Antkiewicz et al., 2009). This work specifies a domain specific lan-

guage for each of the frameworks involved. In our case we modeled the technical

details of each of these frameworks in the meta-model presented. Below are some

95

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.17: Excerpt of the Hibernate information model.

96

Chapter 3 ArchLayer: Bridging the gap between design and implementation

brief conclusions obtained after the creation of each framework-specific model.

• Struts. This is one of the frameworks included in our study so the model was

already available. The study of the language proposed in (Antkiewicz et al.,

2009) does not include any features that were overlooked in our original study.

• Applet. The creation of the specific model for this framework, based on the

meta-model presented here, resulted fairly straightforward. This is mainly due

to it being a relatively simple framework to use which does not require a lot

of configuration elements.

• EJB. Just as in the previous case the modeling of this framework in the meta-

model posed no problems. Additionally, this framework shares some common

concepts with some of the frameworks included in the study which simplified

the process.

• Eclipse workbench part interactions. This framework was the one that posed

most difficulties in the process of describing its technical details based on

the meta-model, from the frameworks included in (Antkiewicz et al., 2009).

This is because this is not a web application development framework, but

a framework for creating Eclipse based user interfaces. This increases the

difficulty of modeling this framework since it uses different concepts than those

usually presented by the studied frameworks. However, although its creation

represented an increased workload, the model with the technical details of the

framework was created without changing the meta-model.

The creation of these additional models shows that the meta-model presented

here has enough flexibility to be used with a wide range of technologies, even those

not intended for the creation of multi-layer applications.

3.5 Model to model transformations

This section describes in detail the different model transformation used throughout

the process. These transformations use all the above mentioned elements, marked

initial design, architectural decisions repository and framework information meta-

97

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.18: Layer Suggestion Transformation application diagram

model, to help tailor the initial design of a system into a specific design for the

architecture and technologies chosen by the architect.

Specifically, four model to model transformations are used in ArchLayer and

thoroughly described in this section. As mentioned above, all the models transfor-

mations have been developed using the ATL transformations language. Extensive

excerpt of the transformations source code can be found in Appendix C.

3.5.1 Layer suggestion transformation

The first model transformation used in ArchLayer is the Layer Suggestion Transfor-

mation. Figure 3.18 shows the elements of the process involved in the application

of this transformation.

The goal of this transformation is to provide to the architect a possible set of

layers to be used in the development of a system. To do this, the transformation

take as input a feature model containing an Architectural Decision Repository as

described in Section 3.3 and the initial design of the system to be developed marked

with information about the QAs the system must fulfill as described in Section 3.2.

With this information, the transformation generates a copy of the Architectural

Decision Repository in which the suggested layer has been selected.

As shown in Figure 3.18, the transformation is designed in such a way that it can

be applied multiple times if the initial design of the system is described in several

models. Each application of the transformation generates an enriched layer sugges-

tion that can be used as the input of the next application of the transformation.

The final result obtained is the set of layers suggested to implement all the elements

98

Chapter 3 ArchLayer: Bridging the gap between design and implementation

1 i f (f . i s P e r s i s t e n c e C o n f i g u r a t i o n ()) {
2 i f (UML! DataStoreNode . a l l I n s t a n c e s () . s i z e ()>0){
3 t . s ta te<−#USER SELECTED;
4 }
5 }

Listing 3.1: Persistence layer suggestion transformation

1 for (s t e r eo type in UCP! Stereotype . a l l I n s t a n c e s ()) {
2 i f (s t e r eo type . name=’ Authent i c i ty ’
3 or s t e r eo type . name=’ Secur i ty ’
4 or s t e r eo type . name=’ C o n f i d e n t i a l i t y ’) {
5 for (useCase in UML! UseCase . a l l I n s t a n c e s ()) {
6 i f (useCase . isAnnotated (s t e r eo t ype)) {
7 t . s ta te<−#USER SELECTED;
8 }
9 }

10 }
11 }
12 for (s t e r eo type in AP! Stereotype . a l l I n s t a n c e s ()) {
13 i f (s t e r eo type . name=’ Authent i c i ty ’
14 or s t e r eo type . name=’ Secur i ty ’
15 or s t e r eo type . name=’ C o n f i d e n t i a l i t y ’) {
16 for (a c t i v i t y P a r t i t i o n in
17 UML! A c t i v i t y P a r t i t i o n . a l l I n s t a n c e s ()) {
18 i f (a c t i v i t y P a r t i t i o n .
19 i sAnnotated (s t e r e o type)) {
20 t . s ta te<−#USER SELECTED;
21 }
22 }
23 }
24 }

Listing 3.2: Security layer suggestion transformation

contained in the different initial design models.

As mentioned above, the transformation will suggest a given layer based on spe-

cific features found in the initial design of the application or based on the marks

containing information about the QAs of the system. Listing 3.1 shows a fragment

of the transformation that suggest the use of a persistence layer if the initial design

model contains any DataStore elements.

Listing 3.2 shows a fragment of the transformation that suggest the use of a

security layer if any element of the initial design model is annotated with the given

QAs.

This simple set of criteria for layers suggestion can be adapted to meet company

99

Chapter 3 ArchLayer: Bridging the gap between design and implementation

1 i f (thisModule . halfUCAnnotated (s t e r eo type)) {
2 t . s ta te<−#USER SELECTED;
3 }
4

5 helper def : halfUCAnnotated (s : UCP! Stereotype)
6 : Boolean =
7 i f (UML! UseCase . a l l I n s t a n c e s ()−>
8 c o l l e c t (ext | ext . extens ionPo int) .
9 f l a t t e n ()−>s e l e c t (exten |

10 not exten . getAppl i edStereotype
11 (s . qual i f iedName) . oc l I sUnde f ined ()) .
12 s i z e ()) / UML! UseCase . a l l I n s t a n c e s () .
13 s i z e () >= 0.5 then
14 true
15 else
16 fa l se
17 endif ;

Listing 3.3: Alternative security layer suggestion transformation

policies or architects preferences by enriching the transformations that suggest each

of the layers. Listing 3.3 shows an alternative to the security layer suggestion that

only select such layer if half or more of the use cases of the initial design are marked

with the given QAs.

The final product obtained by this transformation is a configuration of the fea-

ture model containig the architectural decisions repository in which the suggested

layers are selected. This model will be later use by other transformations to further

advance in the development process and can also be used or modified by the software

architect.

3.5.2 From initial design to layered design transformation

The next model transformation used in ArchLayer is the Layered Design Transfor-

mation. Figure 3.19 shows the elements of the process involved in the application

of this transformation.

The goal of this transformation is to generate a design of the application tailored

to the layers selected by the architect to develop the system. To do this, the trans-

formation takes as input the set of layers selected in the form of a feature model

such as the one generated by the previous transformation and the marked activity

100

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.19: Layered Design Transformation application diagram

1 helper def : l a y e r s : Sequence (UML! A c t i v i t y P a r t i t i o n)=
2 Sequence {} ;
3

4 rule s e l e c t e d L a y e r 2 A c t i v i t y P a r t i t i o n {
5 from f : FMP! Feature
6 (f . i s S e l e c t e d L a y e r C o n f i g u r a t i o n ())
7 to t : UML! A c t i v i t y P a r t i t i o n (name<−f . name)
8 do{
9 thisModule . l aye r s<−thisModule . l a y e r s . append (t) ;

10 }
11 }

Listing 3.4: Activity partition inclusion for each selected layer

diagrams of the system. With this information, the transformation generates new

activity diagrams in which the selected layers are present and the actions in the

activity diagrams are associated to the layers in which they have presence.

This transformation is based on the UML2Copy transformation (UML2Copy ATL

transformation, n.d.) which generates an exact copy of any UML model. In this case,

the Layered Design Transformation generates a copy of the input activity model on

which various modifications are performed.

The first modification performed to the activity diagram is the inclusion of an

activity partition in the diagram for each of the selected layers in the feature model.

Listing 3.4 shows the fragment of the transformation that adds the activity partition

for the selected layers.

Then, the actions in the activity diagram are included in all the layer in which

they have presence. The criteria used to decide in which layers is present a certain

101

Chapter 3 ArchLayer: Bridging the gap between design and implementation

1 i f (not thisModule . getLayer (’ P e r s i s t e n c e ’) .
2 oc l I sUnde f ined ()) {
3 i f (s . outgoing−>s e l e c t (f low | f l ow . t a r g e t .
4 oclIsTypeOf (UML! DataStoreNode)) . s i z e () > 0
5 or s . incoming−>s e l e c t (f low | f l ow . source .
6 oclIsTypeOf (UML! DataStoreNode)) . s i z e () > 0)

{
7 t . i nP a r t i t i o n<−t . i n P a r t i t i o n . append (thisModule .
8 getLayer (’ P e r s i s t e n c e ’)) ;
9 }

10 }

Listing 3.5: Actions present in the persistence layer transformation

Figure 3.20: Design Patterns and Frameworks Suggestion Transformation applica-
tion diagram

action are similar to those used to suggest the presence of a layer in the above trans-

formation. For example, a given action will be present in the persistence layer if it is

connected with a DataStore. Listing 3.5 details the fragment of the transformation

that check this specific criteria.

The layered activity diagram generated by this transformation will be later used

by other transformations to further advance in the development process and can

also be used or modified by the software architect.

3.5.3 Design patterns and frameworks suggestion

The next model transformation used in ArchLayer is the Design Patterns and Frame-

works Suggestion Transformation. Figure 3.20 shows the elements of the process

involved in the application of this transformation.

The goal of this transformation is to provide to the architect a possible set of

102

Chapter 3 ArchLayer: Bridging the gap between design and implementation

design patterns and frameworks to be used in the development of a system. To

do this, the transformation is divided in two. The first one take as input the set

of layers selected and the marked use case diagram. With this information, the

transformation generates a copy of the feature model in which the suggested design

pattern has been selected. The second transformation take as input the previously

generated set of selected design patterns and the marked use case diagram and

generates a copy of the feature model in which the suggested frameworks has been

selected.

The transformation has been divided in two steps in order to give architect the

opportunity to refine or validate each level of suggestion independently. Thus, the

set of selected design patterns using in the second part of the transformation are

not necessarily the ones automatically suggested by the transformation but the ones

validated by the architect, which provides a more appropriate output.

To suggest a particular design pattern or framework the transformation uses the

information about the QAs affected by them included in the architectural decisions

repository, as described in Section 3.3.3. This information is checked against the QAs

the system must fulfill as indicated by the marks included in the use case diagram,

not forgetting the effect the combination of different design patterns and frameworks

has on the final system QAs. Listing 3.6 shows a fragment of the algorithm used to

suggest a framework on the basis of such information.

For each selected design pattern this prioritization algorithm suggest the frame-

work that best helps to fulfill the system QAs based on the framework influence

in the QAs and in the relations with the already selected frameworks. The final

product obtained by this transformation is a configuration of the feature model con-

taining the architectural decisions repository in which the suggested design patterns

and frameworks are selected. This model will be later use by the last transformation

to further advance in the development process and can also be used or modified by

the software architect.

103

Chapter 3 ArchLayer: Bridging the gap between design and implementation

1 −−I t e r a t i o n over the frameworks o f a s e l e c t e d
2 −−de s i g n p a t t e r n
3 for (f e a t u r e in designPatternFrameworks) {
4 QAsMeet<−0;
5 −−C a l c u l a t e s the p r i o r i t y v a l u e o f the framework
6 −−based on the a f f e c t e d QAs
7 prope r t i e s<−f e a t u r e . p r o p e r t i e s . c h i l d r e n ;
8 for (property in p r o p e r t i e s) {
9 −−P o s i t i v e l y a f f e c t e d QAs added to the

10 −−p r i o r i t y v a l u e
11 i f (property . name=’ Pos i t ive lyAf f ec tedQAs ’ and
12 not property . typedValue . oc l I sUnde f ined ()) {
13 affectedQAs<−property . typedValue .
14 s t r ingVa lue . s p l i t (’ , ’) ;
15 for (affectedQA in af fectedQAs) {
16 i f (affectedQA . trim () <> ’ ’) {
17 QAsMeet<− QAsMeet + thisModule .
18 annotatedUC (thisModule .
19 ge tSte r eo type (affectedQA . trim ())) ;
20 }
21 }
22 }
23 −−N e g a t i v e l y a f f e c t e d QAs s u b t r a c t e d to the
24 −−p r i o r i t y v a l u e
25 . . .
26 −−E f f e c t s o f combination wi th p r e v i o u s l y
27 −−s e l e c t e d frameworks added to the p r i o r i t y
28 −−v a l u e
29 i f (property . name=’ CombinationAffectedQAs ’
30 and not property . typedValue . oc l I sUnde f ined ()) {
31 for (relatedFramework in relatedFrameworks) {
32 −−P o s i t i v e l y a f f e c t e d QAs by r e l a t i o n s
33 −−i n c r e a s e the p r i o r i t y v a l u e
34 −−N e g a t i v e l y a f f e c t e d QAs by r e l a t i o n s
35 −−decrease the p r i o r i t y v a l u e
36 }
37 }
38 }

Listing 3.6: Framework suggestion transformation

104

Chapter 3 ArchLayer: Bridging the gap between design and implementation

Figure 3.21: Technology Specific Design Transformation application diagram

3.5.4 From layered design to specific design transformation

The last model transformation used in ArchLayer is the Technology Specific Design

Transformation. Figure 3.21 shows the elements of the process involved in the

application of this transformation.

The goal of this transformation is to generate a design of the application tailored

to the technologies selected by the architect to develop the system. To do this, the

transformation takes as input the set of frameworks selected in the form of a feature

model such as the one generated by the previous transformation, the marked activity

diagrams of the system and the technical information of the selected frameworks

in form of the framework information meta-model described in Section 3.4. With

this information, the transformation generates an UML class model in which the

actions in the activity diagrams are decomposed into the elements that are needed

to implement such actions with the selected technologies.

To determine the elements in which each action of the activity diagram is de-

composed the transformation takes into account the activity partition representing

105

Chapter 3 ArchLayer: Bridging the gap between design and implementation

the layer in which the action is included, as provided by one of the previously de-

scribed transformations. For each layer in which an action has presence a set of

elements will be generated in the class model. The elements generated depend on

the technologies chosen for the implementation of each layer. If only one design

pattern and framework are selected to implement a given layer the transformation

will use the information of such framework provided by the framework information

meta-model. However, if more than one design pattern or framework are selected for

a given layer, the activity diagram should be enriched as described in Section 3.1.7.

the transformation will use this information to select the appropriate information

from the framework information model to generate the appropriate output. Listing

3.7 shows a fragment of the described transformation.

The class diagram generated by this transformation will be later used as the basis

for automatic code generation or by the projects developers as the design tailored to

the architectural decisions taken by the software architect. Being a model at a low

level of abstraction, which contains very detailed information about the technologies

to be used, it can be used by less experienced developers.

3.5.5 Flexibility of the transformations

The main goal pursued by the creation of these transformations is to provide a

mechanism to automatically transfer architectural decisions to the initial design

of a multi-layer application. Therefore, as in other elements of the process, the

main criterion followed whilst creating the transformation has been flexibility. This

implies that the transformations should be useful for applications that use all kinds

of frameworks and implement all kinds of requirements.

The flexibility of the described transformation has been verified in the develop-

ment of several applications using all the frameworks described in the previous sec-

tions and implement a wide range of functionality. More details of the applications

developed will be discussed later, in Chapter 5. However, due to their nature and

how they have been developed the transformations flexibility has some limitations.

Below these limits are described.

106

Chapter 3 ArchLayer: Bridging the gap between design and implementation

1 rule OpaqueAction {
2 from s : UML! OpaqueAction
3 do{
4 for (p a r t i t i o n in s . i n P a r t i t i o n) {
5 se lectedFrameworks <− thisModule .
6 se lectedFrameworks (p a r t i t i o n . name) ;
7 i f (se lectedFrameworks . s i z e () = 1) {
8 framework <− se lectedFrameworks .
9 f i r s t () . name ;

10 des ignPattern <− thisModule .
11 s e l e c t e d P a t t e r n s (p a r t i t i o n . name) ;
12 }
13 else {
14 for (annotat ion in s . eAnnotat ions) {
15 . . .
16 }
17 }
18 f rameworkInformation <− thisModule .
19 getFrameworkInformation (framework) ;
20 for (c in f rameworkInformation . concepts) {
21 for (content in c . content s) {
22 . . .
23 c l a s s <− UML! Class . newInstance () ;
24 model . packagedElement<−
25 model . packagedElement .
26 append (c l a s s) ;
27 for (r e f in content . r e f e r e n c e s) {
28 dependency <− UML! Dependency .
29 newInstance () ;
30 . . .
31 }
32 }
33 }
34 }
35 }
36 }

Listing 3.7: Specific design transformation

107

Chapter 3 ArchLayer: Bridging the gap between design and implementation

• All transformations are based on the use of meta-models. In this particular case

in the UML meta-model, the Cardinality Based Feature Modeling meta-model

and the Framework information meta-model. Any change in any of these meta-

models implies changes in the transformations for them to remain effective.

Likewise, transformations flexibility is limited by meta-models flexibility. If

a particular framework can not be modeled using the framework information

meta-model the transformations can not be applied.

• The criteria to suggest a particular layer and how it applies to the design of

the application are embedded in the transformations. Therefore, if a new layer

is included in the architectural decisions repository the transformations should

be modified accordingly to include the layer specific information.

• Similarly, all the criteria used for suggesting the different architectural decision

are embedded in the transformations. The used criteria come from the author

experience and should be modified to match companies policy or software

architects preferences.

• UML is a complex modeling language containing approximately 200 meta-

classes. The transformations have been designed to work with Use Case di-

agrams and Activity diagrams. If the transformations are going to be used

with other elements of UML or the same elements used differently they must

be adapted accordingly.

• Finally, additional information is used by some of the transformations. Specif-

ically, information about the QAs of a system affected by a given architectural

decisions and information about the technology that shoul be applied to ac-

tions in activity diagrams. If this information is added differently than as

presented in this work the transformations should be modified accordingly.

3.6 Conclusions

Explicar como las contribuciones detalladas en este capitulo permiten resolver los

problemas planteados al final del capitulo dos

108

Chapter 3 ArchLayer: Bridging the gap between design and implementation

In this chapter ArchLayer, the process proposed in this thesis for bridging the gap

between the initial design of an application and its implementation using a frame-

work based multi-layer architecture, has been presented. First there has been a

detailed description of the entire process, using a simple example to facilitate under-

standing. Later special attention has been paid to each of the relevant contributions

of this work.

This process provides a solution to the problems identified in the development of

multi-layer framework based applications stated in Section 2.5.

First, the proposed process provides a mechanism for the model-driven devel-

opment of web applications that allows developers to manage the architecture and

technologies with which applications are going to be implemented. The combina-

tion of the architectural decisions repository, the framework information meta-model

and the model transformations let companies using this process use a wide variety

of architectures and technologies rather than being constrained by an implicit ar-

chitecture imposed by the process.

Second, by providing architectural suggestions the process simplify architectural

decision making. The growing complexity of web applications and the increasingly

important role of architects make necessary any help in this regard.

Third, the process has been designed from the beginning to support the evolution

of development frameworks. Both the decisions repository and the meta-model have

been designed being this one of their primary concerns.

Fourth, the use of the framework information meta-model provides a generic

mechanism for dealing with different frameworks. The meta-model was designed by

analyzing a significant number of frameworks and has demonstrated its usefulness

for modeling more than 10 different Java frameworks.

Fifth, one of the most relevant aspects represented in the framework information

meta-model is the initial configuration of the frameworks. The attention paid to this

aspect make it possible to work in applications that integrate multiple frameworks.

Lastly, the combination of all the previous points make the process suitable for

109

Chapter 3 ArchLayer: Bridging the gap between design and implementation

its use in distributed development environments with high staff rotation.

Following the presentation of this process, the next chapter will detail the JACA

code generation tool. A tool that can be used as the last step of the presented process

to automatically generate part of the source code of framework based multi-layer

applications. The tool can also be used as a standalone tool for the development of

such applications.

110

Chapter 4

JACA Code Generation Tool

I need you to be clever. I need you to think of solutions to

problems we haven’t seen yet. I want you to try things that no

one has ever tried because they’re absolutely stupid.

Ender’s Game, Orson Scott Card.

JACA, from the spanish acronym Java para Aplicaciones Corporativas de la Ad-

ministración or Java for Corporate Applications of the Administration is a tool

developed to serve as reference architecture and set of good practices in the devel-

opment of multi-layer framework based applications for the regional government of

Extremadura. The tool was developed by the research group of the author of this

thesis by request of the regional government to be used as the software architecture

of all the applications developed by and for the regional government. Its develop-

ment caused the start of this thesis, where it is integrated as the code generation

tool that automatizes the last step of ArchLayer.

This chapter describes in details the tool developed to automatically generate

part of the source code of multi-layer framework based web application based on the

process described in the previous chapter. The description of the tool is organized as

follows. Section 4.1 details the reasons behind the development of this tool and how

its creation served as the main inspiration for the development of this thesis. Section

4.2 is focused on the integration between the tool described in this chapter and

ArchLayer. Section 4.3 describes in detail how the tool can be used to automatically

111

Chapter 4 JACA Code Generation Tool

generate the initial configuration of a project based on the architectural decisions.

Section 4.4 explains how the tool can be used to automatically generate the source

code of the different concepts supported by the chosen development frameworks. In

Section 4.5 the use of the tool outside of the environment of this thesis is described

and the different materials provided alongside the tool are detailed. Finally, Section

4.6 summarize this chapter focusing on the benefits provided by the tool.

4.1 Motivation

In 2008 the regional government of Extremadura was immersed in the development

of the PCDAI project, from the spanish acronym Plataforma Corporativa de Desar-

rollo de Aplicaciones Informáticas or Corporate Platform for IT Application Devel-

opment. This project aimed to establish a common platform for the development of

IT applications for and by the government of Extremadura, for which an application

methodology will be defined and a general architecture will be configured to address

development projects whatever their size and coverage.

One of the key elements of this project was the definition of the reference software

architecture for the development of multi-layer applications. Due to the previous

experience of the Quercus Software Engineering Group in developing this kind of

applications, the regional government contacted this thesis supervisor to collaborate

on the development of such architecture.

At that time, the use of reference architectures in the development of applications

for the government was fairly widespread. Figure 4.1 shows a Spain map in which

the various existing reference architectures for regional governments are shown.

Extremadura is shown on the map in a different color because, at that time, it

did not had its own reference architecture yet. However, Indra Software Labs, one

of spanish bigger IT companies had a development center in Extremadura were they

have developed their own reference architecture, ArqOS, from the spanish acronym

Arquitectura Orientada a Servicios or Service Oriented Architecture. The supervi-

sor of this thesis had previously collaborated with Indra in different projects so it

112

Chapter 4 JACA Code Generation Tool

Figure 4.1: Map showing the spanish regions with its own reference architecture.

was decided to incorporate the company to the developing of the regional reference

architecture.

The development of the Extremadura reference architecture was based on the

ArqOS architecture mainly for two reasons. First, for not starting from scratch

which would allow the developers to take the project beyond a standard reference

architecture and make a more complex product. And second, because, at the time,

Indra was developing the most important regional project and therefore the defined

architecture would be compatible with that project from the beginning.

Starting from this point, the development of JACA started with the following

objectives:

• JACA should manage the creation of new projects, automatically integrat-

ing the development frameworks that will be used in the project in a way

transparent to developers.

• JACA should focus on the most widespread frameworks in the industry.

• JACA should be as flexible as possible so the integration of new technologies

that arise in this area is simplified. Such, the maintenance costs of keeping it

updated should not cause a significant overload negating the benefits provided

113

Chapter 4 JACA Code Generation Tool

by having a reference architecture.

• JACA should provide the developers of projects for the regional government of

Extremadura a standardized mechanism for framework usage. Thus, by usign

such mechanism all projects for the regional government will follow common

implementation techniques improving inter-operation and staff rotation.

• JACA should provide training material for any developer about the standard-

ized mechanism for framework usage.

• JACA should help to create a repository of corporate material such that code

reuse is simplified in projects for the regional government.

The following sections describe in detail the different aspect of this tool and its

role in ArchLayer. Nonetheless, is important to stress here the fundamental role

played in this thesis by the development of this project.

The development of this tool, of which this thesis author is software architect

and lead developer, allowed the author to experience firsthand the problems in the

development of framework based multi-layer application. All the problems in this

context, as described in Section 1.3, were experience during the development of

JACA in a real environment with real projects for both the regional government of

Extremadura and the Indra development center.

This experience helped to confirm that new techniques were necessary to avoid

such problems. Specifically, software engineering techniques like model driven devel-

opment or cardinality based feature modeling could help to greatly mitigate them.

This situation led to the beginning of the thesis presented here and helped focus

the JACA tool so it could be easily integrated into a process such as the one described

in the previous chapter.

4.2 Integration with ArchLayer

Besides serving as inspiration for the work done in this thesis, JACA is integrated

into ArchLayer. Specifically, as an automatic code generation tool. This section

114

Chapter 4 JACA Code Generation Tool

Figure 4.2: JACA preferences page.

describes such integration.

The tool itself is developed as a set of plugins for the Eclipse IDE. The tool

was developed in such way because integration with a development environment

provides several advantages. First, IDEs are one of the fundamental tools of software

developers. Therefore, a new tool integrated with their usual environment simplifies

the process of adaptation to it. Second, many IDEs, especially Eclipse, provide

mechanisms for creating plugins that greatly simplify the integration with them,

but they also provide advanced techniques that allows plugin developers to build

powerful applications. And third, thanks to its flexibility and power Eclipse has

become the de facto standard for model-driven development techniques.

JACA integration with ArchLayer passes through the use of the same models

described in the previous chapter. Figure 4.2 shows the preferences page used for

the configuration of the JACA plugins.

On this page two parameters are provided to the tool, the path to the configu-

ration file and the reconnect time. The first parameter must be a URL pointing to

a model containing an architectural decisions repository as described in Section 3.3.

The second parameter is the amount of time, in minutes, the tool would wait until

trying to reconnect with the model if the first connection fails.

These parameters provide a particularly important behavior for the tool role.

Reading the configuration file from a URL provided the regional government of Ex-

tremadura a simple mechanism for controlling the architecture of all its applications,

both developed internally and contracted to third parties.

115

Chapter 4 JACA Code Generation Tool

The architectural decisions repository contains the specific design patterns and

frameworks that can be used in a development. By requiring developers to point to a

specific repository controlled by them, the regional government ensures control over

the software architectures used while it has a mechanism to include new architectural

elements, as a new version of a framework, quickly and easily by updating the model

pointed by the URL. It is even possible to have different models for different types

of projects with different sets of architectural decisions.

To avoid the need for the tool to be always connected, whenever a repository is

read from the indicated URL a local copy is stored. If at a given time the connection

fails, the tool will use the local copy of the model until it can reconnect, waiting the

time specified in the second parameter before trying to connect again.

Besides the architectural decisions repository, in order to automatically generate

source code JACA need access to the frameworks information models, represented as

described in Section 3.4, of all the frameworks included in the architectural decisions

repository. To provide access to these models and simplify the synchronization

between them and the evolving architectural decision repository a link has been

added to the features representing frameworks in the repository. Figure 4.3 shows

the properties view of a feature of the architectural decisions repository representing

the Hibernate development framework and the link to its framework information

model.

The tool works with these models in the same way as it works with the archi-

tectural decisions repository. Each time a framework information model is accessed

through the link provided in the repository a local copy is stored. If at a given

time the connection fails, the tool will use the local copy of the model until it can

reconnect. This mechanism allows the organization controlling the different models

to quickly and transparently make changes in the code generated by the tool and

spread them to all users.

By using these models, JACA has all the information needed to fulfill the role

of model to text transformation tool of the process presented in this thesis. The

following sections describe in details such automatic source code generation.

116

Chapter 4 JACA Code Generation Tool

Figure 4.3: Link between a framework on the architectural decisions repository and
its framework information model.

4.3 Initial configuration generation

As mentioned above, JACA should manage the creation of new projects, automat-

ically integrating the development frameworks that will be used in the project in a

way transparent to developers. This is not only one of the main objectives pursued

in the development of the tool, but it also addresses one of the major problems in

using development frameworks, integrating multiple of them in the same project, as

described in Section 1.3.

To fulfill this function the JACA plugins provide a new project wizard in Eclipse.

Figure 4.4 show the New JACA Project Wizard in an Eclipse instance with the JACA

plugins installed. This wizard will allow developers to easily create framework based

multi-layer applications in their development environment that will be the basis for

the rest of the tool functionality.

The first step to create a project using the JACA wizard is to provide some basic

information about the application to be created. Figure 4.5 shows the first page of

the wizard asking for the basic project information. Specifically, three information

element are required: groupID, artifactID and version. This elements correspond

to the information used by Maven to identify dependencies and are used here with

117

Chapter 4 JACA Code Generation Tool

Figure 4.4: New JACA Project Wizard in an Eclipse instance with the JACA plugins
installed.

the same meaning, to uniquely identify a project. More information about Maven

naming conventions can be found in (Maven guide to naming conventions, n.d.).

At this point, the tool will read the architectural decisions repository, as described

in the previous section. The information contained in the repository is used to shape

the following wizard pages. Specifically, three pages will be shown to the JACA user

containing the three levels of decisions in the repository. The first page shown is the

layer selection page. Figure 4.6 shows an example of this page containing a check-

box for every layer described in the repository. In this page the user will choose the

layers in which the application to be developed will be divided.

Based on the layers selected by the user, the next page of the wizard shows the

design patterns that can be used in the development of the chosen layers. Figure

4.7 shows an example of such wizard page.

Finally, based on the design patterns selected by the user, the last page of the

wizards shows the frameworks that can be used to implement each of the chosen

design patterns. Figure 4.8 shows an example of such wizard page. The figure shows

two automatically selected frameworks because they are marked as mandatory in

the architectural decisions repository.

118

Chapter 4 JACA Code Generation Tool

Figure 4.5: Basic project information page of the JACA wizard.

Figure 4.6: Layer selection page of the JACA wizard.

119

Chapter 4 JACA Code Generation Tool

Figure 4.7: Design pattern selection page of the JACA wizard.

120

Chapter 4 JACA Code Generation Tool

Figure 4.8: Framework selection page of the JACA wizard.

121

Chapter 4 JACA Code Generation Tool

The use of these three pages serves a dual purpose in the tool. On the one hand,

the complexity of the feature model is hidden to the tool users. As described in

the previous chapter, the architectural decisions repository is contained in a feature

model. By using this wizard, JACA users can create configurations of the feature

model without knowing anything about it. On the other hand, these wizard pages

allow the tool to become independent of ArchLayer. If JACA uses a feature model

containing a configuration automatically generated by the model transformations

described in Section 3.5, then the wizard pages will be automatically filled with

the information found in the model and the tool will be used as the last step of

ArchLayer. However, if JACA uses a feature model with no configuration, then the

tool will be used independently as a code generation tool simplifying the development

of multi-layer framework based applications but the architectural decision will have

to be taken by the architect without any help from the tool.

At this point, the tool will read the framework information models pointed from

the architectural decisions repository as described in the previous section. Specifi-

cally, the model to text transformation containing the initial configuration of each of

the frameworks to be included in the new project. As described in Section 3.4, the

initial configuration of a framework included in these models contain all of the ele-

ments needed by the framework to work properly in conjunction with the remaining

frameworks being used.

From this information the tool will generate the complete project structure with

the selected framework perfectly integrated and ready to begin the development.

Figure 4.9 shows an example of a project structure automatically generated from

the architectural decisions shown in the previous figures.

The generated project include all the dependencies and all the configuration files

needed from the selected frameworks to work together. It also includes a version of

the architectural decisions repository with a configuration showing the architectural

decisions used to generate the project. This configuration can be later used to trace

the architectural decisions in the source code of the developed project or to improve

the repository itself, if significant differences are found between the information of

how the different decisions affect the QAs of the system and its real behavior.

122

Chapter 4 JACA Code Generation Tool

Figure 4.9: Example of a JACA multi-layer framework based project structure.

123

Chapter 4 JACA Code Generation Tool

Figure 4.10: Available framework concepts implementation wizards for a set of
frameworks.

The tool will keep working with this project structure to automatically generate

part of the source code of the application being developed. Next section describes

in detail how this code is generated.

4.4 Concept implementation generation

From the project structure generated as described in the previous section, JACA

can automatically generate part of the project source code. For this, the tool need

the information contained in the framework information models. As described in

Section 3.4, these model contains the templates used to generate the source code of

the different concepts that can be implemented by each framework.

For each of the concepts that can be implemented by the frameworks selected for

the development of the project, JACA provides the users a new wizard. Figure 4.10

shows the available wizards for the sample project shown in the previous section.

Each time one of these wizards are executed, the source code of an instance of the

corresponding framework concept will be automatically generated into the project.

Also, an additional wizards is offered to the users allowing them to include a new

framework for the development of the project, if it was not included from the start.

Each of the wizards presents to the user one or more pages to gather the informa-

tion necessary to particularize the generated code for each instance of a concept. For

example, Figure 4.11 shows the page of the wizard used to generate a new service

in the business logic layer of the project.

This page gather the basic information of the service to be generated like the

124

Chapter 4 JACA Code Generation Tool

Figure 4.11: JACA wizard for the generation of services in the business logic layer
of a project.

125

Chapter 4 JACA Code Generation Tool

service’s name or the code package where it should be generated. Using this infor-

mation, and the model to text transformations contained in the framework informa-

tion model used to implement this layer, the tool will generate the source code of

the new service as well as the configuration elements needed for the new element to

be completely operational in the project.

To increase the utility of the code generated by these wizards, their functionality

has been increased in two additional areas.

First, to generate a richer code wizards allow developers to link the new elements

created with other existing elements in the same layer or in the lower layer. For

example, the wizard to generate instances of the DAO design pattern allows the

developer to connect the new instance with other existing DAO instances in the

source code of the project. This allows developers to automatically generated the

source code supporting the complex relations between tables in a relational database.

Obviously, the code generation templates included in the framework information

models should support this complex behavior in order for the tool to be able to

provide it to its users.

Other example of this relation between elements is shown in Figure refJacaBean-

Wizard. The services of the business layer generated through this wizard could make

use of the existing instances of the DAO pattern in the persistence layer. The wiz-

ard not only generates the association between the business service and the selected

DAO instances and all the configuration needed for it to work in the project. It

also allows developers to automatically transfer the CRUD operations of the DAOs

to the business service. This is a very common operation in this type of project

that allows these operations to be exposed to higher layers without breaking the

multi-layer architecture design.

To implement these relationships, wizards sought in the project existing code to

offer its users the existing elements that can be bound with the new element. The

search of the wizards for possible elements to link is not limited to the items created

automatically by the JACA wizards. It also recognizes elements created manually

by the developers, as long as they have been developed following the same criteria

126

Chapter 4 JACA Code Generation Tool

used by the wizards. This provides great flexibility to the tool and makes the wizards

useful in any development, regardless of whether it has followed the model driven

process proposed in this thesis.

And second, some layers in multi-layer architectures can be considered as cross-

cutting. These layers provide services or add functionality to the elements of all

the other layers of the architecture. Example of this layers can be a test layer or a

log layer. They do not provide any functionality of the project by themselves but

complement the elements of the rest of the architecture.

JACA wizards support this kind of layers by complementing the elements gener-

ated for the functional layers. For example, the wizard for the generation of a web

service shown in Figure 4.12 supports this feature. In addition to the basic infor-

mation of the web service to be generated, the elements of the business logic layer

with which the web service will be related and the methods that will be exposed

as web services, the wizard provides users the ability to generate the corresponding

elements for the testing and log layers. This possibility is shown as check-boxes in

the bottom of the wizard page, as can be seen in the figure. If any of the check-boxes

are selected by the user, the wizard will automatically generate the corresponding

elements in the project. Again, the code generation templates included in the frame-

work information models should support this complex behavior in order for the tool

to be able to provide it to its users.

Using the different JACA wizards users can generate a significant portion of the

source code of framework based multi-layer applications. Especially, the configura-

tion and instantiation code of the different concepts implemented by frameworks.

This greatly reduces the need for developers to have deep technical knowledge about

the frameworks, it facilitates staff rotation and all this while keeping the software

architecture flexibility.

127

Chapter 4 JACA Code Generation Tool

Figure 4.12: JACA wizard for the generation of web services.

128

Chapter 4 JACA Code Generation Tool

4.5 Additional material and use of the tool

As described above, JACA was designed as a standalone tool that can be used

without having to follow ArchLayer. As such, the tool was developed for the regional

government of Extremadura and integrated into its development environment.

To simplify the use of the tool in this manner, a relevant amount of additional

material is provided accompanying. More information about the additional material

can be found in Appendix D. Specifically, the additional material provided alongside

the tool is the following:

• Instruction manuals. A set of instruction manuals are provided detailing

in depth the use and maintenance of the tool. Specifically, three instruction

manuals are provided:

– User manual. This document includes all the information a user may

need to correctly install and use JACA in the development of multi-layer

framework based applications.

– Admin manual. This document details the information needed to create

and manage the models read by the tool, so an admin can remotely

modify the tool behavior by changing the models contents or creating

new models.

– Sysadmin manual. This document is directed to the sysadmins who will

maintain projects developed using JACA. It includes the relevant infor-

mation about server configuration and other aspects needed for the cor-

rect functioning of the generated projects.

• Frameworks guides. For each of the development frameworks included in

the list of approved technologies by the regional government of Extremadura,

a best practice guide is provided. These guides detail technical information

about the use of the frameworks and how they should be used in projects for

the regional government.

• General guides. An additional set of guides is provided detailing general

129

Chapter 4 JACA Code Generation Tool

aspects of the development of multi-layer applications for the government of

Extremadura such as a coding conventions guide or a recommended develop-

ment environment guide.

• Models. Finally, a set of models is provided. These models make JACA able

to generate code for the approved frameworks following the guides mentioned

above and meeting the requirements of the general guides.

With this material, the tool can be easily used by any company for the devel-

opment of projects for the government of Extremadura. Although the tool is not a

mandatory requirement for the development of applications for the government of

Extremadura, its use simplifies them greatly. This is due to the application develop-

ments publicly hired by the regional government requiring the use of the frameworks

integrated in the tool in the way described in the above mentioned guides.

Examples of this type of public hiring can be found in (Consejeŕıa Adminis-

tración Pública, 2013) or (Centro de Información Cartográfica y Territorial de Ex-

tremadura, 2013). In both examples of technical specifications for hiring software

development by the regional government, two annexes are included specifying the

need for the use of the PCDAI and the Java development standard of the govern-

ment of Extremadura. As described above, JACA is based and completely support

such technical specifications.

4.6 Conclusions

In this chapter the tool developed for automatically generating part of the source

code of framework based multi-layer web applications has been reviewed. This re-

view has covered both possibilities when using the tool, the use as a last step of

ArchLayer or the use as an independent tool for code generation. Later special

attention has been paid to the additional material provided alongside the tool and

how it can be used for the development of applications for the government of Ex-

tremadura.

The presented tool, as part of ArchLayer, helps to mitigate many of the addressed

130

Chapter 4 JACA Code Generation Tool

problems. By being integrated with the architectural decisions repository and the

framework information models, JACA is able to generate a significant part of the

source code of framework-based application without constraining the software ar-

chitecture of the project. This integration with ArchLayer models also allows the

tool to adapt itself to the technological evolution of developing frameworks.

Additionally, the centralized behavior of the tool when reading ArchLayer models

and its code generation capabilities, both for the initial configuration of the frame-

works and for the implementation of various concepts, make it suitable for its use

in distributed development environments with high staff rotation.

The following chapter discusses the results obtained after applying the tool in

conjunction with ArchLayer to commercial projects.

131

Chapter 5

Validation

You killed more people than anybody in history.

Be the best at whatever you do, that’s what my mother always

told me.
Speaker for the Dead, Orson Scott Card.

Throughout this thesis, ArchLayer, a process for the development of multi-layer

framework based application, has been defined. This process was designed to be

used by software development companies. Specially, by those companies facing the

problems caused by distributed development and high staff rotation.

This chapter describes the validation performed to evaluate ArchLayer useful-

ness. To that end, it has been applied to two industrial projects. As a result of

these projects, qualitative and quantitative information has been obtained on the

use of the defined contributions regarding three different aspects: their feasibility,

their completeness and the effort required to apply them. The rest of the chap-

ter is organized as follows. Section 5.1 details the context in which ArchLayer was

validated. Section 5.2 describes the characteristics, sub-characteristics and metrics

defined to validate ArchLayer. Section 5.3 presents the industrial projects in which it

has been applied. Section 5.4 specifies the results of the defined metrics. Section 5.5

details a summary of the results, the validity of the results and the lessons learned.

Finally, Section 5.6 summarize this chapter focusing on the benefits provided by

ArchLayer.

132

Chapter 5 Validation

5.1 Validation context

This chapter tries to detail the usefulness of the model-driven, variability manage-

ment and architectural decisions techniques presented in this thesis to facilitate

the development of multi-layer framework based applications in the context of dis-

tributed development centers with high staff rotation. To validate the process and

the contributions detailed in this thesis, they have been applied to two industrial

project. Industrial projects were used instead of other validation methods (such as

Controlled Experiments or Slice of Life (Shaw, 2002)) since, to properly ensure the

impact and benefits of ArchLayer, reasonably large projects were needed. Therefore,

it was deemed more appropriate to use real projects and validate ArchLayer in an

environment as similar as possible to that in which it has been designed to work,

rather than to validate it in an artificial environment or using a toy example.

The two projects used for the validation of ArchLayer were developed by Gloin.

As stated in Section 1.6, Gloin is a company co-founded by the author of this thesis,

its supervisor and another research partner. As such, one of the company’s goals is

to bring to the market the research advances. Therefore, two commercial projects

were used to validate the process without causing any inconvenience to the company.

The two projects involved the development of a multi-layer framework based ap-

plication, which fits perfectly with the context of this work. Otherwise, although

Gloin is not a big development company, it also suffers the problems of high staff

rotation and distributed development. High staff rotation because, due to its proxim-

ity to the university, the company has a scholarship program for final year students

where computer science students spend a year learning in the company and then

move on to other jobs. This scholarship program has the same effect in the com-

pany that high staff rotation has in bigger companies. And distributed development

problems because most of the company clients are located outside of Extremadura

and, usually, outside of Spain.

In each of the projects in which the contributions of this thesis have been ap-

plied the following characteristics, or validation goals, have been evaluated: their

feasibility, completeness and the effort required to apply them.

133

Chapter 5 Validation

• With the feasibility characteristics, the author of this thesis evaluated whether

it is possible to use the developed repositories, models, transformations and

tools to bridge the gap between the initial design and the implementation of

framework based multi-layer applications in real projects with medium/large

complexity in a company suffering staff rotation. Special attention is paid in

the evaluation of these characteristic to the improvement provided over other

existing techniques reviewed in Chapter 2.

• The completeness characteristics were defined to evaluate whether the appli-

cation of ArchLayer, along with the tools that support it, allows developers

to obtain a specific design of the application to be developed and a significant

portion of its source code.

• The effort characteristics were defined to assess the amount of work needed to

apply ArchLayer and the amount of effort saved during the design and devel-

opment of the systems. For the evaluation of these characteristic estimates of

the effort required by the projects were used. Although these estimates may

not be totally accurate, they are based on historical company information on

projects of similar complexity and size developed in the same context using a

traditional development process.

Due to the generality, abstraction, and difficulty of measuring of the above char-

acteristics, a set of more focused, specific and measurable sub-characteristics have

been defined to better identify qualitative or quantitatively their compliance. These

sub-characteristics are detailed in the following section.

5.2 Validation characteristics and sub-characteristics

In this section, the characteristics used to validate ArchLayer are refined into sub-

characteristics more specific and easy to evaluate and verify their proper satisfaction.

To perform this refinement, the Goal, Question, Metric (GQM) methodology was

used (Basili, Caldiera, & Rombach, 1994; Van Solingen & Berghout, 1999).

GQM (Goal, Question, Metric) is an approach to software metrics that defines a

134

Chapter 5 Validation

measurement model on three levels:

• Conceptual level (Goal). A goal is defined for an object, for a variety of reasons,

from various points of view and relative to a particular environment.

• Operational level (Question). A set of questions is used to define models of the

object of study and then focuses on that object to characterize the assessment

or achievement of a specific goal.

• Quantitative level (Metric). A set of metrics, based on the models, is associated

with every question in order to answer it in a measurable way.

In this regard, the Goals are the validation characteristics previously defined,

namely feasibility, completeness and the amount of effort required for application of

ArchLayer. The Questions form the sub-characteristics defined to qualitatively or

quantitatively evaluate the Goals compliance. Finally, Metrics have been defined to

quantitatively measure the questions/sub-characteristics. The questions and metrics

defined for each characteristic/goal are detailed in the following subsections.

5.2.1 Validation goal: feasibility

This goal tries to assess the feasibility of using the defined contributions in medi-

um/large complex industrial projects by distributed development companies with

high staff rotation.

To evaluate the feasibility of the contributions related to the architectural de-

cisions that should be taken during the design of a framework based multi-layer

architecture, the following questions and metrics were defined:

• Question 1.1: Is it possible to capture the architectural decisions involved in

the design of a multi-layer framework based application in the architectural

decisions repository?

– Metric 1.1.1: Percentage of architectural decisions that can be captured

with the presented contributions.

• Question 1.2: Is it possible to generate a set of the architectural decisions

135

Chapter 5 Validation

taken during the development of a multi-layer application?

– Metric 1.2.1: Percentage of architectural decisions that can be stored for

future use with ArchLayer.

• Question 1.3: Does the management of architectural decisions provided by

ArchLayer help the knowledge transfer in case of staff rotation?

– Metric 1.3.1: Yes/No.

• Question 1.4: Does the management of architectural decisions provided by

ArchLayer entail improvements over existing techniques?

– Metric 1.4.1: Yes/No.

To evaluate the feasibility of the framework information model created to capture

the technical knowledge about development frameworks, the following questions and

metrics were detailed:

• Question 1.5: Can the knowledge needed to start using a framework in a

multi-layer application be modeled?

– Metric 1.5.1: Percentage of initial configuration knowledge that can be

modeled.

• Question 1.6: Can the knowledge needed to implement a given concept using

the different mechanism provided by a development framework be modeled?

– Metric 1.6.1: Percentage of concept implementation knowledge that can

be modeled.

• Question 1.7: Does the management of framework information provided by

ArchLayer help the knowledge transfer in case of staff rotation?

– Metric 1.7.1: Yes/No.

• Question 1.8: Does the management of framework information provided by

ArchLayer entail improvements over existing techniques?

– Metric 1.8.1: Yes/No.

136

Chapter 5 Validation

With the aim of assessing the feasibility of using the defined model transforma-

tions for helping the architect in the design of a specific architecture, the following

questions and metrics were specified:

• Question 1.9: Is it possible to suggest a feasible set of architectural decisions

from the annotated initial design?

– Metric 1.9.1: Percentage of architectural decisions that can be suggested.

• Question 1.10: Can a specific design be generated from the annotated design

and the set of architectural decisions to be used?

– Metric 1.10.1: Yes/No.

• Question 1.11: Does the model transformations provided by ArchLayer help

the knowledge transfer in case of staff rotation?

– Metric 1.11.1: Yes/No.

• Question 1.12: Does the model transformations provided by ArchLayer entail

improvements over existing techniques?

– Metric 1.12.1: Yes/No.

To evaluate the feasibility of the code generation tool developed to automatically

generate framework specific code, the following questions and metrics were detailed:

• Question 1.13: Is it possible to automatically generate part of the source code

of multi-layer applications from the specific design and the set of architectural

decisions?

– Metric 1.13.1: Yes/No.

Finally, in order to evaluate the feasibility of using the whole proposed process,

the following questions and metrics were defined:

• Question 1.14: Do the users state that the process and its associated tools

and techniques are usable?

– Metric 1.14.1: Average usability of the process (from 0 to 10) according

to the users.

137

Chapter 5 Validation

5.2.2 Validation goal: completeness

This goal tries to asses whether the presented contributions facilitate the develop-

ment of framework based multi-layer applications without restricting the software

architect.

In order to evaluate whether the architectural decisions managed by ArchLayer

are complete and can be used to generate a suitable architecture, the following

questions and metrics were defined:

• Question 2.1: Are all the architectural decisions involved in the development

of a multi-layer application available for the architect?

– Metric 2.1.1: Percentage of architectural decision that are available.

• Question 2.2: Are all the architectural decisions involved in the development

of a multi-layer application correctly suggested?

– Metric 2.2.1: Percentage of architectural decision that are correctly sug-

gested.

To assess if the framework technical knowledge stored in the framework infor-

mation models is complete and can be used to design and develop framework based

applications, the following questions and metrics were specified:

• Question 2.3: Is all the technical knowledge needed for the design and devel-

opment of a framework based application stored in the framework information

models?

Metric 2.3.1: Percentage of technical knowledge stored in the available frame-

work information models.

• Question 2.4: Is all the technical knowledge needed for the design and de-

velopment of a framework based application automatically transferred to the

design by the transformations?

Metric 2.4.1: Percentage of technical knowledge transferred to the application

specific design.

138

Chapter 5 Validation

In order to evaluate whether the source code generation is complete and can be

used to automatically generate framework based applications, the following questions

and metrics were defined:

• Question 2.5: What amount of the application source code can be automati-

cally generated?

– Metric 2.5.1: Percentage of the application source code that can be au-

tomatically generated.

Finally, to validate the completeness of the whole process, the following question

and metric was defined:

• Question 2.6: Is any additional information necessary to design and develop

a multi-layer framework based application?

– Metric 2.6.1: Yes/No.

5.2.3 Validation goal: effort

The goal tries to validate the effort required to apply ArchLayer and the amount of

effort that can be saved in the design and development of framework based applica-

tions. To this end, the following questions and metrics were defined:

• Question 3.1: How much effort is needed for including new architectural deci-

sions not available in the process?

– Metric 3.1.1: Increase in effort (in man-hours and percentage) with re-

spect to the estimations.

• Question 3.2: How much effort is needed for modeling the framework technical

knowledge of a not available framework?

– Metric 3.2.1: Increase in effort (in man-hours and percentage) with re-

spect to the estimations.

• Question 3.3: How much effort is needed for adapting the process model trans-

formations to new architectural decisions or frameworks added to the process?

139

Chapter 5 Validation

– Metric 3.3.1: Increase in effort (in man-hours and percentage) with re-

spect to the estimations.

• Question 3.4: How much additional effort is needed for the overhead caused

by using ArchLayer?

– Metric 3.4.1: Increase in effort (in man-hours and percentage) with re-

spect to the estimations.

• Question 3.5: How much effort is saved in the design and development of a

framework based multi-layer application by using ArchLayer?

– Metric 3.5.1: Decrease in effort (in man-hours and percentage) with re-

spect to the estimations.

• Question 3.6: What is the return on investment (ROI) of applying ArchLayer?

– Metric 3.6.1: M3.1.1 + M3.2.1 + M3.3.1 + M3.4.1 + M3.5.1.

5.3 Industrial projects

This section briefly outlines the two projects in which ArchLayer has been applied.

The two projects are industrial applications of medium/large size and with a medi-

um/high development complexity due to the complexity of their architectures and

the technologies used.

5.3.1 BeeFun

BeeFun1 is a project developed by Gloin applying the latest research made by em-

ployees of the company in Cloud Computing and Mobile Development. BeeFun is

an application for mobile devices that, in contrast with the existing ones, allows its

users to send messages to non static group of users, where the users in the group

depend on their contextual information (such as where they are now or what are

their preferences). Thus, making group messaging more efficient and direct. Addi-

tionally, the same app and its infrastructure can can be used by mobile marketing

1http://beefunapp.com/

140

http://beefunapp.com/

Chapter 5 Validation

companies to send ads to users based on their contextual information. Thus, these

ads will only reach the users interested on them; in return, the users can receive

different rewards for each received message.

This product is divided into two applications, a mobile app and a server applica-

tion. ArchLayer was applied to the later, since it is a framework based multi-layer

application. To develop this application, the company had to gain a significant

amount of knowledge about mobile applications and mobile marketing. All this

knowledge had to be included to the different artifacts involved in the process, as

will be shown later.

Following are the most important requirement that the system ought to meet: the

application should manage the information concerning the mobile users connected

to the server, it should allow communication between those users by employing pre-

defined message templates and geolocated messages, and it should rank the mobile

application users based on the points obtained by their use of the services provided

by the server.

The following are the most important business goals identified: the users/mobile

devices contextual information is private and never had to come out of the mobile

devices and the system had to be efficient in the use of the mobile resources. The

main business processes identified are: to gather the contextual information, to

create predefined messages or ads, to send a message to a group of users and to get

the rewards.

Additionally, some quality attributes were defined for the application. First, the

server application should be reliable since it would be used by a commercial product

and, therefore, should have a high up-time. Second, the server application should

be secure since it would manage users’ private information. And third, it should be

efficient since mobile application users tend to be very impatient with anything but

fast response times from servers.

Based on these requirements and QAs the application was developed using the

contributions of this thesis as follows:

• The initial design of the system included the functional requirements of the

141

Chapter 5 Validation

system and the QAs affecting them in an UML model ready to be used in

ArchLayer.

• This initial design was used in combination with the architectural decisions

repository, the model transformation and the framework information model to

obtain a specific design of the system tailored to the software architecture and

development technologies chosen by the architect

• The obtained specific design was used to automatically generate part of the

source code of the application and as the guide for the rest of the development.

• Finally, the set of decisions taken by the architect in the project was used in

conjunction with the results obtained to improve the company historical data

and to be used in future developments.

5.3.2 NimBees

NimBees2 is another project developed by Gloin aimed at developing an API fa-

cilitating the implementation of a new kind of mobile devices apps. This API im-

plements a new service provisioning model known as People as a Service (PeaaS)

(Guillén et al., 2014). This new model transforms mobile devices into Cloud Plat-

forms providing services on the contextual information of the mobile devices and

their owners (such as their personal data, the visited web pages, the places they

have been, when they have been there, etc.) or inferences obtained from it (such

us, for example, their preferences depending on the visited web pages). Thus, the

applications or services interested in these data can easily access them calling one

of the services already deployed in the cloud enabled mobile device. In exchange for

this information, owners gain economic or social benefits (such as a better control

of sick/elder people through their mobile device). In any case, the mobile device

owners always can manage what information they want to provide and to whom.

This product is also divided into two applications, a mobile API to be used in

the development of mobile apps and a server application. ArchLayer was applied to

the later, since it is a framework based multi-layer application. Additionally, in the

2http://www.nimbees.com/

142

http://www.nimbees.com/

Chapter 5 Validation

Table 5.1: Summary of the project features.

Project BeeFun NimBees

Use Cases 40 35

Non-Functional Requirements 6 4

Use Case Points (UCP) 566 377

Architecture Design 1412 880

Implementation and Tests 3960 2640

development of this product the company could reuse most of the knowledge about

mobile development acquired during the development of BeeFun.

Following are the most important requirement that the system ought to meet: it

should gather data from the mobile device sensors and its usage, users preferences

should be infered from the information gathered and only authorized services or

applications should access such information. The QAs that the system should meet

are similar to the ones of the previous application, specifically: the server application

should be reliable, it also should be secure and efficient.

The results of this thesis were used in the development of this system in the

same way they were used in BeeFun. ArchLayer was used to develop the application

starting from the initial design including the QAs information.

5.3.3 Features of the industrial projects

Table 5.1 shows a summary of the features of each project. It details the number of

use cases and non-functional requirements per project. It also includes the number

of Use Case Points (UCP) (Clemmons, 2006) of each project in order to show their

complexity and to calculate estimations of the effort required to develop them (as

UCP is the technique used in the company to calculate these estimations). Finally,

the table also include the real effort in man-hours devoted in the architecture design

and implementation and test stages.

143

Chapter 5 Validation

5.4 Validation results

In this section, an analysis of the contributions of this thesis is done with respect to

the feasibility of applying them, the completeness of the generated information and

artifacts, and the effort that entails their utilization. This analysis has been made

applying the questions and metrics listed above on the described industrial projects.

5.4.1 Validation goal: feasibility

Below the results of applying the questions assessing the feasibility of the contribu-

tions are detailed.

Question 1.1. Is it possible to capture the architectural decisions in-

volved in the design of a multi-layer framework based application in the

architectural decisions repository?

Metric 1.1.1. Percentage of architectural decisions that can be captured with the

presented contributions.

All the architectural decisions taken during the development of both applications

were reflected in the architectural decisions repository. Thanks to the flexibility of

the repository, every layer, design pattern and framework used in the development

could be included in it, even in those cases that had not been contemplated during

its creation. The development of these applications implied the extension of the

repository with a new layer for mobile communications, including design patterns

and technologies for sending push notifications and text messages. Also additional

patterns and technologies were added to the existent security layer to support OAuth

authentication, an open standard for authorization widely used in mobile applica-

tions. All these new elements were added to the architectural decisions repository,

and consequently to the rest of the process, without making any changes to it.

Question 1.2. Is it possible to generate a set of the architectural deci-

sions taken during the development of a multi-layer application?

Metric 1.2.1. Percentage of architectural decisions that can be stored for future

144

Chapter 5 Validation

use with the detailed proposal.

Once all the architectural decisions were taken and the initial configuration code

of the projects were generated, a set of all the architectural decisions were automat-

ically generated. As described previously, this set of decisions takes the form of a

configuration of the feature model that composes the architectural decisions repos-

itory. The generated configuration included all the architectural decisions taken

during the project development, including the new elements added to the reposi-

tory, as described in the previous question. This architectural decision set is stored

alongside the project with two main goals, serve as documentation of the develop-

ment of the project and be used to improve the repository itself if the behavior of

the application does not match the expected.

Question 1.3. Does the management of architectural decisions pro-

vided by ArchLayer help the knowledge transfer in case of staff rotation?

Metric 1.3.1. Yes/No.

Between the completion of the first and second project a couple of significant

staff changes happened in the company. First, one of the main software architects

involved in the development of the first project left the company after finishing

it and before starting the second project. Also, due to the company scholarship

program part of the development team was different in the two projects. During the

development of the second project both, the architectural decision repository and

the set of architectural decisions taken during the first project, greatly helped the

architects to understand the rationale behind the software architecture of the first

project and to take advantage of it for the second project.

Question 1.4. Does the management of architectural decisions pro-

vided by ArchLayer entail improvements over existing techniques?

Metric 1.4.1. Yes/No.

Most of the existing techniques for the development of multi-layer applications

do not provide any mechanism for the management of architectural decisions. Ar-

chitectural decisions in these proposals are inherent to the models used and can not

145

Chapter 5 Validation

be affected by the architect. Only the WebSA proposal (Meliá & Gómez, 2006)

provides support for architectural variability. In this case, ArchLayer represents an

improvement over WebSA due to the depth of the architectural decisions managed,

WebSA does not include the technologies to be used in the development as architec-

tural decisions, and to the possibility of storing the decisions taken for future reuse

which, as stated above, helps to reduce the effects of staff rotation.

Question 1.5. Can the knowledge needed to start using a framework

in a multi-layer application be modeled?

Metric 1.5.1. Percentage of initial configuration knowledge that can be modeled.

All the information needed to automatically generate the initial configuration

of all the frameworks used in both projects was modeled using the framework in-

formation meta-model presented in this thesis. Even the information of the new

frameworks included specifically for these project, that were not considered during

the process definition, could be modeled. Thanks to the flexibility of the framework

information meta-model, the initial configuration of both project could be automat-

ically generated with all the frameworks involved perfectly integrated.

Question 1.6. Can the knowledge needed to implement a given concept

using the different mechanism provided by a development framework be

modeled?

Metric 1.6.1. Percentage of concept implementation knowledge that can be mod-

eled.

All the information needed to automatically generate the implementation of the

different concepts supported by the frameworks used in both project was modeled

using the framework information meta-model. Even the information of the new

frameworks included specifically for these projects could be modeled. Thanks to

the flexibility of the framework information meta-model, a significant amount of the

code needed to implement the concepts supported by all the frameworks involved

could be automatically generated and integrated in the system architecture, even

using the different mechanism which a framework could have to implement a given

concept.

146

Chapter 5 Validation

Question 1.7. Does the management of framework information pro-

vided by ArchLayer help the knowledge transfer in case of staff rotation?

Metric 1.7.1. Yes/No.

By modeling the knowledge needed to use development frameworks, ArchLayer

greatly helps the knowledge transfer in case of staff rotation. Mainly, the modeled

information simplifies the process of learning how to use a given framework to the

people who joined the company to develop the second project. But also, all contri-

butions added to the framework information models during the first project could be

easily reused in the second, even when the original author did not continue working

for the company.

Question 1.8. Does the management of framework information pro-

vided by ArchLayer entail improvements over existing techniques?

Metric 1.8.1. Yes/No.

Most of the existing techniques for simplifying the use of development framework

are focused on the developers learning process. Techniques like (Antkiewicz et al.,

2009), that includes support for the automatic generation of framework completion

code, are surpassed by ArchLayer since they only focus on a single framework while

ArchLayer provides support for multiple frameworks in the same project.

Question 1.9. Is it possible to suggest a feasible set of architectural

decisions from the annotated initial design?

Metric 1.9.1. Percentage of architectural decisions that can be suggested.

Using the model transformations that are part of ArchLayer, every layer, design

pattern or framework that is included in architectural decision repository can be

automatically suggested to be used in the development of a project. Transforma-

tions had to be updated to include the new architectural decisions included in the

repository, as described in Question 1.1. The feasibility of the suggested decisions

depends on the criteria used in the transformation to automatically suggest each

one of them. Every decisions automatically suggested by the transformation during

the development of both projects was suitable and, therefore, carried out. Oth-

147

Chapter 5 Validation

erwise, some architectural decisions that were taken during the development were

not automatically suggested by the model transformation. This may indicate that

the selection criteria are too strict. However, a broader criteria may lead to false

positives.

Question 1.10. Can a specific design be generated from the annotated

design and the set of architectural decisions to be used?

Metric 1.10.1. Yes/No.

Using the model transformations that are part of ArchLayer, a specific design

tailored to the software architecture and the set of technologies chosen by the ar-

chitect was automatically generate for both projects. The generated design was

obtained from an initial design, including the annotations relating the systems QAs

with the funcitional requirements, and the set of architectural decisions. The specific

design obtained included all the information needed for the initial configuration of

the project and for the different implementations of all the frameworks supported

concepts. This design can be used to automatically generate a significant part of

the code and as a very detailed documentation for developers.

Question 1.11. Does the model transformations provided by ArchLayer

help the knowledge transfer in case of staff rotation?

Metric 1.11.1. Yes/No.

By automatically suggesting a set of feasible architectural decisions and by gener-

ating a specific design for such decisions, the model transformations provided reduce

the training cost of the new staff that joined the company for the development of

the second project. Additionally, the knowledge stored in the transformation, like

the layer suggestion criteria, is easily reused even when the original author leaves

the company.

Question 1.12. Does the model transformations provided by ArchLayer

entail improvements over existing techniques?

Metric 1.12.1. Yes/No.

Most model-driven techniques for the development of multi-layer applications

148

Chapter 5 Validation

only take as input of their model transformations the design of the application.

ArchLayer, by additionally taking as input of the transformation the architectural

decisions and the information about the framework, can generate a more varied

output considering the variability of architectures and technologies. The trans-

formations of the WebSA proposal (Meliá & Gómez, 2006) also take as input the

architectural decisions, however they do not take into account the technological vari-

ability and are limited to the development of multi-layer web applications and RIAs,

while ArchLayer can be used for the development of any multi-layer application.

Question 1.13. Is it possible to automatically generate part of the

source code of multi-layer applications from the specific design and the

set of architectural decisions?

Metric 1.13.1. Yes/No.

In both analyzed projects, a significant part of the applications source code could

be automatically generated using the specific design obtained through the process

and the code generation tool. Specifically, all the initial configuration of the project

and a large part of the framework concept implementation code needed to implement

the system requirements was automatically generated.

Question 1.14. Do the users state that the process and its associated

tools and techniques are usable?

Metric 1.14.1. Average usability of the process (from 0 to 10) according to the

users.

In every project the development team was surveyed to obtain its opinion about

the process usability. During the development of the first project the process received

a lower score on this aspect that during the development of the second project. The

lower score was caused by the need to update most process artifacts due to the

inclusion of new architectural decisions. This made the use of the process cause

a bigger overhead on the development, hence the worse punctuation. During the

development of the second project this overload did not occur, since all the necessary

information was included in the process during the first project, hence the better

punctuation. The fact that the process was used for the first time by most of

149

Chapter 5 Validation

the team during the development of the first project also influenced the outcome.

Regarding the tools, all developers indicated that the tools were usable and that they

facilitated the implementation of the process. However, some usability complains

were raised about the different tools, specially the modeling tools. These complains

can be attributed to the use of research tools that does not have the stability and

usability of the commercial tools commonly used by developers.

Summary

Table 5.2 shows a summary of the metrics obtained applying the feasibility ques-

tions on the two industrial projects.

5.4.2 Validation goal: completeness

Below the results of applying the questions assessing the completeness of the con-

tributions are detailed.

Question 2.1. Are all the architectural decisions involved in the devel-

opment of a multi-layer application available for the architect?

Metric 2.1.1. Percentage of architectural decision that are available.

The answer to this question is entirely dependent on the project being developed

and the technologies that the architect choose to use. For the analyzed projects, the

percentage of architectural decisions available was quite high. During the develop-

ment of the first project, over 80% of the architectural decisions where available. The

decisions missing were those related to the communication with mobile application.

During the second project all the architectural decisions were available, since those

related with mobile communication where added during the first project. However,

due to the nature of ArchLayer, this percentage can reach zero, as software architec-

tures and technologies evolve and different kinds of projects are addressed with this

architectures. Therefore, for the completeness of the process, it may be considered

more relevant the ease to include new decisions, which has already been discussed,

than the actual architectural decisions available.

Question 2.2. Are all the architectural decisions involved in the devel-

150

Chapter 5 Validation

opment of a multi-layer application correctly suggested?

Metric 2.2.1. Percentage of architectural decision that are correctly suggested.

As stated above, the suggested decisions depends on the criteria included in the

model transformation. ArchLayer has been designed in a way that allow these cri-

teria to be tailored to the need and preferences of each company or development

team using the process. For the projects studied, in the first case lower results were

obtained for two main reasons. First, as has been already mentioned, a new set

of architectural decisions had to be added to the process related to the communi-

cation with mobile devices which caused a smaller number of correct suggestions.

And second, since this was the first time that the Gloin development team used

ArchLayer, the model transformation were not fine tailored to their architects pref-

erences. Better results were obtained in the second problem since these problems

were mitigated.

Question 2.3. Is all the technical knowledge needed for the design and

development of a framework based application stored in the framework

information models?

Metric 2.3.1. Percentage of technical knowledge stored in the available framework

information models.

All the technical knowledge about the frameworks used in the development of

the two projects was stored in the framework information models. Evidently, new

models had to be created for the new technologies that were not originally included

in the process. However, the flexibility of the framework information meta-model

allowed the company architect to model all the technical knowledge needed about

the initial configuration and concept implementation of the new frameworks.

Question 2.4. Is all the technical knowledge needed for the design and

development of a framework based application automatically transferred

to the design by the transformations?

Metric 2.4.1. Percentage of technical knowledge transferred to the application

specific design.

151

Chapter 5 Validation

Likewise the previous question, all the technical knowledge about the frameworks

used in the development of the two projects were automatically transferred to the

specific design by the model transformations. In this case, the transformation to

automatically generate a layered design from the initial design need to be changed

to accommodate the new layer added to the process. However, it was not necessary

to modify the transformation to obtain the specific design from the layered design,

since all the technical knowledge was already included in the framework information

models and the transformation get all the information needed from them.

Question 2.5. What amount of the application source code can be

automatically generated?

Metric 2.5.1. Percentage of the application source code that can be automatically

generated.

The code generation tool included in ArchLayer was used in the two projects to

automatically generate a significant part of the applications source code. Specifically,

around 30% of the applications code was automatically generated. This value may

seem small compared to other proposals for automatic code generation. However,

there are two important aspects to be taken into account when interpreting this data.

First, the amount of code that can be automatically generated is usually a trade

off between technological variability and automation level. ArchLayer was designed

focused on variability, greater amounts of code could be generated in exchange for

losing some flexibility. And second, the code automatically generated was focused

on framework implementation concepts and the initial configuration and integration

of the frameworks. This kind of code causes many of the more commons problems

when working with frameworks, as was seen in some of the works discussed in Section

2.3. Therefore, although the amount of generated code is not very large, it is really

relevant for the project developers.

Question 2.6. Is any additional information necessary to design and

develop a multi-layer framework based application?

Metric 2.6.1. Yes/No.

ArchLayer focus on the architectural decisions that need to be taken during the

152

Chapter 5 Validation

development of a framework based multi-layer application and the technical knowl-

edge needed to use such frameworks. Keeping this in mind, much more information

is needed for the development of one of this applications. Especially, a lot of in-

formation is needed about the functionality to be provided by the application. A

significant part of this information is included in the design of the application used

by the process, however additional low-level information is needed for the final im-

plementation of the application.

Summary

Table 5.3 shows a summary of the metrics obtained applying the completeness

questions on the two industrial projects.

5.4.3 Validation goal: effort

Below the results of applying the questions evaluating the effort of using ArchLayer,

as well as the return of investment obtained, are detailed.

The increase/decrease of effort in each development stage is calculated by com-

paring the real effort devoted to the development of each project (using the process)

with the estimation of the effort that should have been spent according to the his-

torical data of the company (without using the process). These data show that

the productivity by UCP is 14 hours, of which 2,8 hours correspond to architecture

design and 7 hours to implementation and testing.

Question 3.1. How much effort is needed for including new architec-

tural decisions not available in the process?

Metric 3.1.1. Increase in effort (in man-hours and percentage) with respect to

the estimations.

The need to add new architectural decisions to the decision repository led to

an increase in the effort spent during the development of the first project. The

effort needed to include the mobile communication decisions was of approximately

60 man/hours. This supposed an increment of slightly more than 1% over the

company estimations for the design and development phases of the project. Since

153

Chapter 5 Validation

all the decisions needed where included in the process during the first project, no

additional effort was required for this matter during the second project.

Question 3.2. How much effort is needed for modeling the framework

technical knowledge of a not available framework?

Metric 3.2.1. Increase in effort (in man-hours and percentage) with respect to

the estimations.

As has been stated before, new frameworks were to be added to the process for the

development of the first project. The effort needed to include the three frameworks

that were needed for the first project was of approximately 250 man/hours. This

supposed an increment of 4.5% over the company estimations for the design and

development phases of the project. Again, since all the frameworks needed where

included in the process during the first project, no additional effort was required for

this matter during the second project.

Question 3.3. How much effort is needed for adapting the process

model transformations to new architectural decisions or frameworks added

to the process?

Metric 3.3.1. Increase in effort (in man-hours and percentage) with respect to

the estimations.

Adapting the model transformations that are part of the process to the new

architectural decisions and frameworks added during the development of the first

project meant an increment of approximately 20 man/hours. Because the majority

of the information is not hardcoded on the transformations, their adaptation is quite

simple. This increase represented less than 0.5% over the company estimations for

the design and development phases of the project. Again, since all the transforma-

tions where adapted during the first project, no additional effort was required for

this matter during the second project.

Question 3.4. How much additional effort is needed for the overhead

caused by using ArchLayer?

Metric 3.4.1. Increase in effort (in man-hours and percentage) with respect to

154

Chapter 5 Validation

the estimations.

The use of ArchLayer in this thesis involves an overhead on the development time.

This overhead is due mostly to the time spent by the development team in learning

how to use the process and its associated tools, but it is also due to some of the task

imposed by the process, such as having to relate the initial design of the application

with the architectural decisions. For the analyzed project the overhead was 120 and

80 hours respectively. An increase of just over 2% of the initial estimations in both

cases. The overhead was lower in the second project mostly due to the experience

on using the process the development team acquired during the first project.

Question 3.5. How much effort is saved in the design and development

of a framework based multi-layer application by using ArchLayer?

Metric 3.5.1. Decrease in effort (in man-hours and percentage) with respect to

the estimations.

Due to the benefits provided by ArchLayer and the techniques and tools used,

a significant amount of effort can be saved during the design and development of

multi-layer applications. For the studied projects the effort saved was more than 8%

of the estimations. Specifically, 475 hours were saved during the first project, over

8.5%, and almost 320 during the second project, over 8.5%.

Question 3.6. What is the return on investment (ROI) of applying

ArchLayer?

Metric 3.6.1. M3.1.1 + M3.2.1 + M3.3.1 + M3.4.1 + M3.5.1.

Considering all the above aspects, the return on investment achieved by the

application of ArchLayer in the design and development of the two applications

analyzed resulted in savings of 25 and over 200 man/hours respectively. These data

translate to a savings of almost 0.5% of the budget for the first project and over

6% for the second project. Applying the usual rates of the company, the savings

resulting from the application of process were almost 1.000e in the first project and

almost 9.000e in the second project.

Summary

155

Chapter 5 Validation

Table 5.4 shows a summary of the metrics obtained applying the effort questions

on the three industrial projects.

5.4.4 Further observations

This section describe additional interesting findings that where observed during the

application of ArchLayer in the industrial projects.

First, it is interesting to note that, due to the size and complexity of the projects

developed during the validation of ArchLayer, it is not possible to provide quan-

titative comparisons with other proposals. As stated above, the effort needed to

develop any of the projects exceeds the three thousand hours of work, making it

unviable to duplicate the work using other proposals. As an alternative to this lack

of quantitative comparison, a qualitative comparison was performed highlighting the

advantages provided by ArchLayer over other existing proposals in the context of

framework based multi-layer applications.

Another important observation was the reduction in the number of bugs detected

during the test phase of the development. The achieved reduction was over 10%

with respect to historical data obtained from other projects. An analysis of this

information showed that a significant part of the bug reduction can be attributed to

the automatically generated framework code and the more detailed design provided

to developers by using the process tools.

Additionally, interviews were conducted with the software architects and devel-

opers involved in the projects halfway through the development and at their end

in order to obtain qualitative information about the proposal. These interviews

consisted of open-ended questions with the following objectives:

• To identify whether ArchLayer provides relevant information to the develop-

ment team.

• To identify whether the use of ArchLayer provides any relevant improvement

in the design and development of multi-layer applications in distributed devel-

opment centers with high staff rotation over other methods previously used.

156

Chapter 5 Validation

• To get information about the proposal’s user experience.

• To obtain some suggestions and improvements that might be incorporated into

the work.

In these interviews, software architects indicated that ArchLayer was sufficiently

relevant since it provides important information and simplify the task of tailoring the

initial design of applications to a framework based multi-layer design, which is usu-

ally hard for them specifically in the fast evolving world of development frameworks.

Also, they stated that the use of the process helped them to design more appropri-

ate architectures thanks to the specific information about how the frameworks affect

system quality attributes and the provided model transformations. Furthermore, in

those cases in which the architectural elements to be used were not in the repository,

the additional work of incorporating them into the process earned the developers a

better understanding of them, and their documentation will make reuse simpler in

future projects.

Developers noted that the architecture designed was very detailed and easy to

implement, specially taking into account the generated code integrating the different

frameworks of a project. However, they had some complaints about some of the

techniques and tools imposed by the process since they had not previous experience

working with them and they are not commercial quality tools.

These observations show the benefits provided by ArchLayer. They also shown

that more efforts have to be devoted to improve the stability and usability of the

tools.

5.5 Discussion

This section summarizes the results obtained, the threats to the validity of the

results and the lessons learned during the application of ArchLayer in the industrial

projects.

157

Chapter 5 Validation

5.5.1 Summary of results

The aim of the validation previously presented was to assess the feasibility, the

completeness and the effort needed for the application of ArchLayer. For each of

these validation goals, statistical data has been used to confirm the validity and the

benefits of the proposal.

The results obtained evaluating the feasibility of the proposal were very positive.

Every architectural decision involved in the development of a multi-layer framework

based application was correctly modeled, and all the decision taken were stored to

be used as input for future projects.

Additionally, all the technical knowledge needed to correctly use development

frameworks was also correctly modeled. Furthermore, all this information was used

to suggest a set of architectural decision, generate a specific design for such decisions

and generate a significant amount of source code.

Finally, all this contributions helped to reduce the drawbacks caused by the

staff rotation that happened during the development of the two project and they

improved the existing techniques for the development of framework-based multi-layer

applications.

The only feasibility drawbacks were found on the usability of the process and

its associated tools and techniques. Some of the detected problems were fixed, but

additional effort is needed in that regard.

In general, the data collected from questions Q1.1 to Q1.14 strongly support

that the elements of ArchLayer are feasible, i.e., the process can be applied

to real-life examples by averagely trained personnel.

The results obtained assessing the completeness of ArchLayer were encourag-

ing. The validation results showed that the elements involved in the process were

complete and very useful.

Most architectural decisions were available for the architect, and a significant

amount of them were automatically suggested. All the technical knowledge was

available in the process models and automatically transferred to the specific design

158

Chapter 5 Validation

of the application. Also, a significant amount of the application source code was

generated from the rest of the artifacts involved in the process.

As discussed before, the goal of ArchLayer never was to include the complete

range of development frameworks, but provide a mechanism flexible enough to admit

all of them. This flexibility has been proved by the inclusion of a complete new layer

and several new development frameworks that were not initially taken into account.

However, this flexibility has some disadvantages, namely the project artifacts will

never be complete because there will always be a new technology to add and there

is trade off between the supported flexibility and the amount of source code that

can be generated. ArchLayer can be fine tuned to find the balance preferred by each

company between these two aspects.

Summarizing, the data collected for questions Q2.1 to Q2.6 strongly support

that the process elements are complete. The process facilitates the use of a

broad range of architectural decisions and development frameworks, which is very

useful for the development multi-layer applications.

The results obtained assessing the effort required to use ArchLayer are very

promising. The use of the process itself causes a small overhead in the effort needed,

but its effect is diluted in the time saved during development.

Additional effort are needed when new architectural decision or technologies have

to be included into the process. These additional effort can be a major drawback

using the process, as in the first developed project where the benefits provided by

the process are almost outweighed by the additional efforts needed.

However, taking into account the context for which the process has been devel-

oped, distributed development centers with a large number of projects, this risk is

mitigated. The potential benefits of the process are shown more clearly in the second

project, where the additional efforts done during the first one could be reused.

Concluding, the data collected for questions Q3.1 to Q3.6 strongly support

the effort needed characteristic, indicating that the use of ArchLayer reduces

the total effort spent in the design and development of multi-layer applications.

159

Chapter 5 Validation

5.5.2 Threats to validity

ArchLayer was evaluated in two industrial projects. Data was collected to evaluate

its feasibility, completeness and the effort needed to apply it. In this section, the

possible threats to validity are discussed according to the four types of possible

threats reported by (Wohlin et al., 2000).

Construct validity

Construct validity is concerned with the relation between a theory and its obser-

vation. Threats to construct validity refer to the extent to which the setting of an

empirical study actually corresponds to the construct under study. In this thesis,

this validity is related to the historical data of the company, the artifacts generated

during the projects development and the researcher’s observation. The main source

of information used during the validation was the historical data on the productiv-

ity of the development teams. Therefore, the threat to the validity of this data was

solved. The artifacts generated during the projects development, and from which

the results of the metrics have been obtained, have been used for the documentation

and implementation of the two systems. Therefore, it can be implied that these ar-

tifact are valid and correct. Finally, researcher’s expectancies are considered to have

been properly addressed because both positive aspects and negative aspects of the

methodological approach were discovered and reported as result of the validation.

Conclusion validity

Conclusion validity is concerned with the relationship between a treatment and the

conclusions drawn from it. Threats to conclusion validity refer to the ability to draw

correct conclusions about relationships between the treatments and the results of

an empirical study. In this thesis, this validity is related to the metrics and data

obtained answering the questions. The data obtained during validation are objective

since they are real values acquired by analyzing the generated artifacts. Only the

questions measuring the effort of applying the process and the return on investment

160

Chapter 5 Validation

obtained are based on the comparison of the real effort data with estimations. The

accuracy of such estimations may involve a threat to the validity of the results.

Nevertheless, large deviations of the estimated effort are unlikely, due to experience

of the company in making this kind of estimations.

Internal validity

Internal validity is concerned with the causal relationship between a treatment and

its results. Threats to internal validity refer to discovery of a causal relationship in

an empirical study that does not exist. In this thesis, these threats are related to

truth of the metrics obtained, and the application of the methodology. The results

obtained during the validation of this methodology have been derived from analysis

of the artifacts generated during the development process. The generation of these

results may have been influenced by the support provided by the researchers to the

development team during the application of the process. Nevertheless, this support

diminished in the second project and the results obtained in this project are better

than in the first one.

External validity

External validity is concerned with the generalization of the conclusions of the vali-

dation. Threats to external validity refer to the ability to generalize the results and

conclusions beyond the setting of the study. In this thesis, this validity is related to

the kind and complexity of the industrial projects. The two industrial projects were

of medium/large size and complexity, but with some differences. BeeFun required

that a lot of new elements were added to the process. NimBees was a medium sized

project based on a known domain with technologies already used.

5.5.3 Lessons learned

The validation of ArchLayer in two industrial projects revealed its strengths and

weaknesses. The main strengths have been already discussed: control over the

161

Chapter 5 Validation

architectural decisions without restricting the architect, less technical knowledge

required about the development frameworks, more detailed specific design tailored to

the architectural decisions and development frameworks chosen by the architect and

automatic code generation. The main weakness identified were: the effort needed

to include new architectural decision or development framework to the process, the

effort needed to keep all the elements of the process synchronized when one of this

elements is included and the need to kept the process constantly updated.

ArchLayer was designed from the begging focused on flexibility. One of the

main goals was always to support any new architectural decision or technology

that may arise. The fulfillment of this goal has been demonstrated during the

validation presented in this chapter, in which a complete new layer with all its

related technologies was added to the problem without any modification. However,

this flexibility is obtained in exchange for an increase in process complexity. Adding

new elements requires, not only a deep knowledge of the elements being added but a

intimate knowledge about the process artifacts. This makes the effort to include new

elements to the project just equals to the effort reduction that it brings, making only

profitable for the company to include elements that are going to be used in more

than one project.

Furthermore, the close connection between the different artifacts of the process

further complicate the inclusion of new elements. Each modification in any artifact

of the process has to be followed by modification to all the related artifact for the

process to keep working. For example, if a new technology is added to the archi-

tectural decisions repository then the models transformations have to be modified

accordingly to be able to suggest it. But, then the information model is needed to

generate the specific design based on the new technology and templates are needed

in order to automatically generate source code for it. Keeping all these elements

synchronized is a difficult and error prone task. Again, this problem is mitigated by

the fact that the modifications should be done only once and they will be shared by

all future projects.

Finally, and due to the constant technological evolution, the process has to be

continuously updated to include new technologies or new versions of existing ones if

162

Chapter 5 Validation

it is not to get outdated. This problem is inherent to the nature of the technologies

used and it is mitigated by the flexibility of the process to support new elements.

5.6 Conclusions

This chapter has presented the validation of the contributions of this dissertation.

They have been applied to two real industrial projects in which the feasibility, the

completeness, and the effort required to apply ArchLayer was evaluated.

This validation demonstrated that variability management and model driven en-

gineering techniques can be applied to improve the development of framework based

multi-layer applications. Specifically, ArchLayer allows developers to model the ar-

chitectural decisions involved in the development of one of this applications and the

technical knowledge needed to implement it using a set of development frameworks.

This information was used to generate a specific design of the application and signif-

icant amount of its source code was automatically generated. Applying this process,

a reduction of more than 6% of the estimated effort was achieved in a development

were all the technologies and decisions were already included in the process.

Finally, this validation also has highlighted the weaknesses of the methodology.

The main identified weaknesses are: the effort needed to include new architectural

decision or development framework to the process, the effort needed to keep all the

elements of the process synchronized when one of this elements is included and the

need to constantly update the process to keep the pace of technological evolution.

Solutions to these weaknesses should be incorporated in future works, making the

process more robust.

163

Chapter 5 Validation

Table 5.2: Summary of the results for the feasibility validation goal.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhQuestion

Project

BeeFun NimBees

Q1.1. Is it possible to capture the architectural decisions
involved in the design of a multi-layer framework based
application in the architectural decisions repository?

100% 100%

Q1.2. Is it possible to generate a set of the architectural
decisions taken during the development of a multi-layer
application?

100% 100%

Q1.3. Does the management of architectural decisions
provided by ArchLayer help the knowledge transfer in
case of staff rotation?

NA Yes

Q1.4. Does the management of architectural decisions
provided by ArchLayer entail improvements over existing
techniques?

Yes Yes

Q1.5. Can the knowledge needed to start using a frame-
work in a multi-layer application be modeled?

100% 100%

Q1.6. Can the knowledge needed to implement a given
concept using the different mechanism provided by a de-
velopment framework be modeled?

100% 100%

Q1.7. Does the management of framework information
provided by ArchLayer help the knowledge transfer in
case of staff rotation?

NA Yes

Q1.8. Does the management of framework information
provided by ArchLayer entail improvements over existing
techniques?

Yes Yes

Q1.9. Is it possible to suggest a feasible set of architec-
tural decisions from the annotated initial design?

100% 100%

Q1.10. Can a specific design be generated from the anno-
tated design and the set of architectural decisions to be
used?

Yes Yes

Q1.11. Does the model transformations provided by
ArchLayer help the knowledge transfer in case of staff
rotation?

NA Yes

Q1.12. Does the model transformations provided by
ArchLayer entail improvements over existing techniques?

Yes Yes

Q1.13. Is it possible to automatically generate part of the
source code of multi-layer applications from the specific
design and the set of architectural decisions?

Yes Yes

Q1.14. Do the users state that the process and its asso-
ciated tools and techniques are usable?

6 7

164

Chapter 5 Validation

Table 5.3: Summary of the results for the completeness validation goal.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhQuestion

Project

BeeFun NimBees

Q2.1. Are all the architectural decisions involved in the
development of a multi-layer application available for the
architect?

85% 100%

Q2.2. Are all the architectural decisions involved in the
development of a multi-layer application correctly sug-
gested?

66% 85%

Q2.3. Is all the technical knowledge needed for the design
and development of a framework based application stored
in the framework information models?

100% 100%

Q2.4. Is all the technical knowledge needed for the de-
sign and development of a framework based application
automatically transferred to the design by the transfor-
mations?

100% 100%

Q2.5. What amount of the application source code can
be automatically generated?

30% 30%

Q2.6. Is any additional information necessary to design
and develop a multi-layer framework based application?

Yes Yes

Table 5.4: Summary of the results for the effort validation goal.

hhhhhhhhhhhhhhhhhhhhhhhhhhhQuestion

Project

BeeFun NimBees

Q3.1. How much effort is needed for including new
architectural decisions not available in the process?

60 hours
1%

0 hours 0%

Q3.2. How much effort is needed for modeling the
framework technical knowledge of a not available
framework?

250 hours
4.5%

0 hours 0%

Q3.3. How much effort is needed for adapting the
process model transformations to new architectural
decisions or frameworks added to the process?

20 hours
0.35%

0 hours 0%

Q3.4. How much additional effort is needed for the
overhead caused by using ArchLayer?

120 hours
2.1%

80 hours
2.1%

Q3.5. How much effort is saved in the design and de-
velopment of framework based multi-layer application
by using ArchLayer?

-475 hours
-8.5%

-316 hours
-8.5%

Q3.6. What is the return on investment (ROI) of ap-
plying ArchLayer?

-25 hours -
0.45%

-236 hours
-6.4%

165

Chapter 6

Conclusion

Humanity does not ask us to be happy. It merely asks us to be

brilliant on its behalf.
Ender’s Game, Orson Scott Card.

The main conclusions and reflections drawn after development of this thesis are

presented in this chapter. It summarizes the main contributions presented, how

they improve different aspects of the design and development of framework based

multi-layer applications and how they impact to other areas and companies. Finally,

it also details how the development of this thesis has contributed to the professional

development of its author.

This chapter is organized as follows. Section 6.1 sums up the contributions that

have been made in this thesis, how they improve different areas of the development

of multi-layer applications and the conclusions drawn. Section 6.2 details the papers

that have been written in the scope of this research. Section 6.3 introduces some

near and future work. Finally, Section 6.4 presents the author’s final reflections

about the whole process behind the writing of this thesis.

6.1 Conclusions

This thesis has addressed some of the problems that occur in distributed develop-

ment centers with high staff rotation. Specifically, the problems faced during the

166

Chapter 6 Conclusion

development of framework based multi-layer applications in such centers, because

such developments are the most widespread.

Different approaches exist that face this kind of developments. However, they

have some limitations. Some of the existing approaches restrict architectural vari-

ability by setting a default software architecture that can not be modified or adapted

to the specific needs of each project. Others do not take into account the fast pace of

evolution of development frameworks, making unfeasible to keep them updated, or

are not prepared to be used in distributed development center where the experience

of the staff is limited due to a high staff rotation. To the best of the author knowl-

edge, there are not comprehensive proposals managing the development of this kind

of applications in the context this thesis is focused.

In this thesis, an architectural decisions repository was defined. The repository

contains an organized set of common architectural and technological decisions for the

development of multi-layer applications and it is used to help the software architect

define the architecture best suited for each project.

To help the architect perform this task, a set of model transformations were de-

fined in this thesis. These transformations take the initial design of the application

and automatically suggest a set of architectural decisions, from the decision repos-

itory, appropriate to meet the functional and non functional requirements of the

application being developed.

Furthermore, a mechanism to store the architectural decisions used for the de-

velopment of an application was presented. The stored decisions can be used to

maintain traceability between the software architecture designed and the final de-

velopment of the project. They also can be used as the basis for decision-making in

future projects and to improve ArchLayer.

Another set of model transformations were defined to help the architect obtain

a specific design of the application being developed, tailored to the specific software

architecture. Additional technical information about the development frameworks is

needed to perform these transformations. This information is provided in framework

information models following the meta-model defined in this thesis.

167

Chapter 6 Conclusion

Finally, a tool for automatic code generation was developed. This tools generate

a significant amount of the code of multi-layer application using the specific design

tailored to the architecture and the technical information about the development

frameworks used. This tool, was developed as a major element of the standard used

by the regional government of Extremadura for software development.

These contributions, and the techniques and tools supporting them, have been

validated in two industrial projects. In every project their feasibility, their com-

pleteness and the effort needed to use them were analyzed. The overall results were

satisfactory and a ROI was obtained in both projects, even when the process needed

to be adapted to new architectural elements. The problems and shortcomings iden-

tified during this validation were addressed or are going to be address in the future

to improve ArchLayer.

In this regard, ArchLayer is already benefiting companies in the context in which

it was developed. First, Gloin is using all the results of this thesis and obtaining a

substantial return, as has been detailed above. But also, other companies and orga-

nizations are benefiting from this work. The regional government of Extremadura

based their standard for the development of Java applications in part of technical

work behind this thesis. Thus, not only the government benefits from this work,

but any company can easily use the contributions of this thesis in government con-

tracted developments. Moreover, part of the work of this thesis was developed in

collaboration with Indra. The standard software architecture of the company was

used as the basis for much of the work done in this thesis, so the integration of the

process in the company developments can be done in a very direct way.

From these facts, along with the good results obtained in the validation of the

process, it can be inferred that this works has fulfilled the main goal set by the

author of this thesis and his advisor at its very begging, contribute to research in an

area that can be easily applied by companies and where they can exploit the results

obtained.

168

Chapter 6 Conclusion

6.2 Publications

All the contributions of this thesis, the works resulting from the application of the

knowledge acquired in other areas, and the collaborations with other companies and

researchers have been published in prestigious scientific forums. All the written

papers are detailed in the following sections: the first one details those that were

accepted and the second one specifies the papers that are in review process when this

thesis was deposited. This information complements to the one detailed in Table

1.1, which specifies a summary of the published papers.

6.2.1 Published Papers

Below the published papers, sorted chronologically, directly related with this thesis

are detailed:

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Zentipede: Una contribución

a la renovación de la gestión del proceso software” 13th Conference on Software

Engineering and Databases. Gijón, Spain, 2008. Pp 391-396.

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Making software process

management agile” Revista Española de Innovación, Calidad e Ingenieŕıa del

Software vol. 4 2008. Pp 122-133.

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Documentation Center: Sim-

plifying the documentation of software project” Third Workshop on Wikis for

software engineering. Oporto, Portugal 2008.

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “ParallelJ: Entorno de de-

sarrollo y simulación de programas paralelos” XIV Jornadas de Enseñanza

Universitaria de la Informática. Granada, Spain, 2008. Pp 571-578.

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Decisiones arquitectónicas

y tecnológicas como ĺıneas de producto en el desarrollo dirigido por mode-

los”. VII Taller sobre Desarrollo de Software Dirigido por Modelos. Valencia,

España, 2010.

169

Chapter 6 Conclusion

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Java para Aplicaciones Cor-

porativas de la Administración”. 15th Conference on Software Engineering

and Databases 2010. Valencia, España, pp:263-266.

• Garcia-Alonso, J., Guillén, J., Berrocal, J., Murillo, J.M. “Modelado de la

variabilidad en arquitecturas multicapa”. 16th Conference on Software Engi-

neering and Databases 2011. A Coruña, España. 5-7 Septiembre 2011, pp:

895-900. Awarded as best short paper of the conference track.

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Architectural Variability

Management in Multi-Layer Web Applications Through Feature Models”. 4th

International Workshop on Feature-Oriented Software Development 2012. Dres-

den, Germany. 24-25 September 2012, pp: 29-36.

• Garcia-Alonso, J., Berrocal, J., Hernández, F. Murillo, J.M. “GEPRODIST:

Gestión de proyectos y desarrollo de software de forma distribuida”. Jornada

de Ciencia e Ingenieŕıa de Servicios, 2013.

• Garcia-Alonso, J., Guillen Melo, J., Miranda, J., Berrocal, J., Hernandez,

F., and Murillo, J.M..“The PMO Tool: An Information Source for Dash-

boards”. ISSN 1946-7338. Agile Product and Project Management Executive

Update, Vol. 14 (2013), No. 4, pp 1-7.

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Architectural Decisions in

the Development of Multi-Layer Applications” 8th International Conference

on Software Engineering Advances. ISBN: 978-1-61208-304-9. October 27 -

November 1, 2013. Venice, Italy (CORE C).

• Guillén, J., Miranda, J., Berrocal, J., Garćıa-Alonso, J., Murillo, J.M.,

Canal, C. “People as a Service: a mobile-centric model for providing collective

sociological profiles” IEEE Software, 21 Nov. 2013. IEEE computer Society

Digital Library. IEEE Computer Society (JCR, 1,616).

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Technological variability by

means of a framework metamodel” 2014 12th International Conference on Soft-

ware Engineering Research, Management and Applications Studies in Compu-

170

Chapter 6 Conclusion

tational Intelligence, (CORE C, to be published).

• Garcia-Alonso, J., Miranda, J., Berrocal, J., Murillo, J.M., Canal, C. “Peo-

ple as a Service: a mobile-centric model for providing collective sociological

profiles”. 19th Conference on Software Engineering and Databases 2014, (to

be published).

6.2.2 Pending Papers

This section contains the papers that were going through a review process when this

thesis was deposited.

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Architectural decisions in the

development of framework-based multi-layer applications: A Project Manage-

ment Office approach” 2014 23nd International Conference on Information

Systems Development (ISD2014) Varazdin, Croatia, September 2-4. (CORE

A).

• Garcia-Alonso, J., Berrocal, J., Murillo, J.M. “Model Transformations for

the Automatic Suggestion of Architectural Decisions in the Development of

Multi-Layer Applications” 9th International Conference on Software Engineer-

ing Advances (CORE C).

6.3 Future Works

Throughout the development of this thesis, and especially during its application

in real industrial projects, certain areas have been identified that could be further

developed in order to make the contributions more robust and to provide a greater

benefit to development companies. The following are the most important areas

identified:

• The validation on industrial projects has shown that using ArchLayer about

30% of the source code of the application can be automatically generated. This

is an area where significant improvements can be achieved, as have been show

171

Chapter 6 Conclusion

by others proposal that achieve a much higher percentage of automatic code

generation but lose architectural and technological flexibility. The integration

of ArchLayer with some of these approaches, especially the standard IFML,

will help to advance the code generation without losing flexibility.

• Another aspect that can be improved to increase the interest of the industry for

ArchLayer is the technique used to relate the architectural decisions with the

initial design of the application. Now, this task has to be done manually, which

represent an additional effort in the development and leads to the possibility

of errors being introduced in the design. This task could be at least partially

automated by a new set of model transformations. These transformations

will need additional information to be added to the architectural decisions

repository, so the right decisions will be related to the design in each case.

Also, additional information will be needed in the initial design to get a more

precise transformation.

• As has been mentioned above, one of the weaknesses of the proposal is the

close relationship between the different elements that compose it and the dif-

ficulty of keeping them synchronized when new elements need to be included.

This problem can be approached in two ways. On one hand, the elements of

the process could be made more independent, making their synchronization

simpler. This approach may be difficult, due to the way the process is de-

signed and would involve major changes to it. On the other hand, this close

relationship between the different elements of the process may be exploited

to simplify the synchronization. Automatic propagation of changes could be

performed on the related elements or at least a set wizards could be developed

to guide the steps of developers when modifying the process.

• In a different research area, some of the ideas and techniques presented in

this thesis are already being successfully applied. Specifically, in the cloud

computing area a similar approach is being applied to the development of

multi-clouds applications. These are applications which components will be

deployed in multiple cloud providers. The variability present in the different

cloud providers is being managed, in a similar way as architectural variability

172

Chapter 6 Conclusion

is managed in this thesis, to develop cloud agnostic applications that can be

automatically deployed in different clouds.

• Finally, a new paradigm has been proposed for enabling mobile devices as cloud

providers, so they can both consume and provide information using the services

deployed on them. Based on this paradigm, a new system may be composed,

among other elements, of services deployed in different mobile devices. In this

context, some of the ideas presented in this thesis are being applied in the

development of these new kind of services to manage the architectural and

technological variability present.

6.4 Final Reflections

The work leading to the writing of this thesis has taken place during the last seven

years. During these years I got not only the deep technical and scientific knowledge

needed to produce a thesis, but also I grew as a person and as a professional.

Young researchers in Spain tend to have a rather precarious situation. In my

particular case, I have been fortunate enough to have regular funding that allowed

me to pursue a quality research work.

Anyway, the lack of stability has led me to perform tasks that have enormously

contributed to my personal growth.

During these years I have actively participated in the application and develop-

ment of research projects of different scope, including regional, national, European

and private research projects. From these experiences I got the skills needed to

obtain funds from both public and private research. I also learned how to work in

collaboration with other research entities and it gave me the opportunity to work in

close collaboration with some of the most important development companies in the

country and to learn the intricacies of transferring research results to the industry.

In this context, I was a founding partner of Gloin alongside my supervisor and a

colleague sharing my same situation. The knowledge and skills gained along the way

of creating and exploiting the company are endless. Some of the most important

173

Chapter 6 Conclusion

lessons I learned during this journey are how a software development company works,

including all the details from the most mundane to the most glamorous, how to

manage a group of intelligent and creative people trying to get the best of them or

how to negotiate with private and business customers.

Furthermore, as a Gloin founder, I participated in a start-up acceleration program

called Launchpad Denmark. A program of the Danish Ministry of Business and

Growth to attract world class entrepreneurs to grow their business in Denmark.

Participating in this program provided me the training and the mindset to work

in and run a start-up company, which requires a very different skill set than a

traditional company.

Finally, in these years I have had the opportunity to teach at the University

of Extremadura and at training courses for very important software development

companies. The variety of subjects that I had to teach and the diversity of students

have allowed me to gain valuable experience both in teaching and in dealing with

all types of people.

All this variety of situations that I have faced in recent years have allowed me to

be better prepared for the future and have taught me to face all kinds of unexpected

and complicated situations.

174

Appendix A

Architectural Decisions

Repository

This appendix shows the complete architectural decisions repository. The repository

was built as part of the research work done during this thesis and it is based on the

architectural decisions and development frameworks detailed in Section 3.3. The

complete model is shown in Figure A.1.

Technically, the repository is built as a feature model. To manipulate and edit

the feature model the fmp Eclipse plugin developed by the Generative Software

Development Lab 1 was used, specifically the version 0.6.6.

A digital version of the architectural decisions repository presented here would be

available for download alongside the other additional material of this thesis detailed

in Appendix D.

1http://gsd.uwaterloo.ca

175

http://gsd.uwaterloo.ca

Appendix A Architectural Decisions Repository

Figure A.1: Feature model containing the architectural decisions repository.

176

Appendix B

Framework information model

This appendix shows an example of a complete framework information model. For

readability reasons, the code generation templates that should be included in the

content element have been omitted . This model was developed as part of the

research work done during this thesis and it is based on the framework information

detailed in section 3.4. The complete code of the model is shown in Listing ??

The model detailed here is based in the framework information meta-model pre-

sented in this thesis. A digital version of this model, including the code generation

templates, and the framework information meta-model would be available for down-

load alongside the other additional material of this thesis detailed in Appendix D.

1 <?xml v e r s i o n =”1.0” encoding=”ASCII”?>
2 <Frameworks : Framework
3 xmi : v e r s i o n=” 2 .0 ”
4 xmlns : xmi=” http ://www. omg . org /XMI”
5 xmlns : x s i=” http ://www. w3 . org /2001/XMLSchema−i n s t anc e ”
6 xmlns : Frameworks=”Frameworks”
7 x s i : schemaLocation=”Frameworks . . / metamodel/

Frameworks . e co re ”
8 name=” Hibernate ”
9 v e r s i on=” 3 . 4 . 0 .GA”>

10 <concepts
11 x s i : type=”Frameworks : I n i t i a l C o n f i g u r a t i o n ”
12 name=” Hibernate I n i t i a l Conf igurat ion ”>
13 <contents
14 x s i : type=”Frameworks : TextContent”
15 f i leName=” h ibe rnate . p r o p e r t i e s ”

177

Appendix B Framework information model

16 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
17 content=””
18 l a b e l=””
19 newFile=” true ”/>
20 <contents
21 x s i : type=”Frameworks : XmlContent”
22 f i leName=” hibernateContext . xml”
23 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
24 content=””
25 l a b e l=””
26 newFile=” true ”/>
27 <contents
28 x s i : type=”Frameworks : XmlContent”
29 f i leName=”daoContext . xml”
30 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
31 content=””
32 l a b e l=””
33 newFile=” true ”/>
34 <contents
35 x s i : type=”Frameworks : SpringXMLContent”
36 f i leName=” app l i ca t i onContext . xml”
37 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
38 content=””/>
39 <contents
40 x s i : type=”Frameworks : MavenPlugins”
41 f i leName=”pom . xml”
42 f i l e P a t h=”/”
43 content=””/>
44 <contents
45 x s i : type=”Frameworks : MavenDependencies”
46 f i leName=”pom . xml”
47 f i l e P a t h=”/”
48 content=””/>
49 </ concepts>
50 <concepts
51 x s i : type=”Frameworks : FrameworkCompletionCode”
52 name=”DataSource”>
53 <contents
54 x s i : type=”Frameworks : XmlContent”
55 f i leName=” hibernateContext . xml”
56 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
57 content=””/>
58 <contents
59 x s i : type=”Frameworks : XmlContent”
60 f i leName=” hibernateContext . xml”
61 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
62 content=””/>

178

Appendix B Framework information model

63 <contents
64 x s i : type=”Frameworks : XmlContent”
65 f i leName=”${ ob je to . dataSourceName}−ds . xml”
66 f i l e P a t h=”/ s r c /main/ c o n f i g / s e r v e r /”
67 content=””
68 l a b e l=””
69 newFile=” true ”/>
70 </ concepts>
71 <concepts
72 x s i : type=”Frameworks : FrameworkCompletionCode”
73 name=”DAO”>
74 <contents
75 x s i : type=”Frameworks : TextContent”
76 f i leName=”${ ob je to . nombreClaseMayuscula } . java ”
77 f i l e P a t h=”/ s r c /main/ java / $ob je to . paquete /”
78 content=””/>
79 <contents
80 x s i : type=”Frameworks : TextContent”
81 f i leName=”${ obje to2 . t i po } . java ”
82 f i l e P a t h=”/ s r c /main/ java / $obje to2 . paquete /”
83 content=””
84 p o s i t i o n=”BEFORE LAST”
85 l a b e l=”}”/>
86 <contents
87 x s i : type=”Frameworks : TextContent”
88 f i leName=”${ obje to2 . t i po } . java ”
89 f i l e P a t h=”/ s r c /main/ java / $obje to2 . paquete /”
90 content=””
91 p o s i t i o n=”AFTER FIRST”
92 l a b e l=” ; ”/>
93 <contents
94 x s i : type=”Frameworks : XmlContent”
95 f i leName=”daoContext . xml”
96 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
97 content=””
98 p o s i t i o n=”BEFORE LAST”
99 l a b e l=”&l t ; / beans>”/>

100 <contents
101 x s i : type=”Frameworks : XmlContent”
102 f i leName=” hibernateContext . xml”
103 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
104 content=””
105 p o s i t i o n=”BEFORE FIRST”
106 l a b e l=”&l t ; / l i s t >”/>
107 <contents
108 x s i : type=”Frameworks : XmlContent”
109 f i leName=” app l i ca t i onContext . xml”

179

Appendix B Framework information model

110 f i l e P a t h=”/ s r c /main/ r e s o u r c e s /”
111 content=””
112 l a b e l=”&l t ; context : component−scan base−package=&

quot ; ”/>
113 <contents
114 x s i : type=”Frameworks : TextContent”
115 f i leName=”/${ ob je to . nombreClaseMayuscula}DAO. java

”
116 f i l e P a t h=”/ s r c /main/ java / $ob je to . paquete /dao/

i n t e r f a z /”
117 content=””
118 l a b e l=””
119 newFile=” true ”/>
120 <contents
121 x s i : type=”Frameworks : TextContent”
122 f i leName=”${ ob je to . nombreClaseMayuscula}DAOImpl .

java ”
123 f i l e P a t h=”/ s r c /main/ java / $ob je to . paquete /dao/ impl

/”
124 content=””
125 l a b e l=””/>
126 <contents
127 x s i : type=”Frameworks : TextContent”
128 f i leName=”${ ob je to . nombreClaseMayuscula}Test . java

”
129 f i l e P a t h=”/ s r c / t e s t / java /${ ob je to . paquete }/”
130 content=””
131 l a b e l=””
132 newFile=” true ”/>
133 </ concepts>
134 </Frameworks : Framework>

Listing B.1: Hibernate framework information model

180

Appendix C

Model transformations

This appendix shows the ATL model transformations that support the process pre-

sented in this thesis and that have been described in Section 3.5. A digital version of

the model transformations presented here would be available for download alongside

the other additional material of this thesis detailed in Appendix D.

C.1 Layer suggestion transformation

The model transformation that suggest a set of layers based on the initial design of

an applications is showed in Listing C.1

1 −− @path UCP=/Transformations /Models/ UCProfi le . p r o f i l e .
uml

2 −− @nsURI FMP=h t t p :/// fmp . ecore
3 −− @nsURI UML=h t t p ://www. e c l i p s e . org /uml2 / 4 . 0 . 0 /UML
4

5 module LayerSuggest ionTransformat ion ;
6

7 create FeaturesOUT : FMP from Features In : FMP,
UMLDiagramIn : UML, UCProf i le In : UCP, ADProf i leIn :
AP;

8

9 rule projectCopy {
10 from f : FMP! Pro j e c t
11 to t : FMP! Pro j e c t (model<−f . model , metaModel<−f .

metaModel , metaMetaModel<−f . metaMetaModel)
12 }

181

Appendix C Model transformations

13

14 rule featureCopy {
15 from f : FMP! Feature
16 to t : FMP! Feature
17 (max<−f . max ,
18 min<−f . min ,
19 id<−f . id ,
20 ch i ld ren<−f . ch i ld ren ,
21 confs<−f . confs ,
22 o r i g i n<−f . o r i g i n ,
23 s ta te<−f . s ta te ,
24 c lones<−f . c lones ,
25 prototype<−f . prototype ,
26 name<−f . name ,
27 valueType<−f . valueType ,
28 describedNode<−f . describedNode ,
29 prope r t i e s<−f . p r ope r t i e s ,
30 typedValue<−f . typedValue ,
31 c o n s t r a i n t s<−f . c o n s t r a i n t s ,
32 c o n f i g u r a t i o n s<−f . c o n f i g u r a t i o n s ,
33 r e f e r e n c e s <−f . r e f e r e n c e s)
34 do{
35 i f (f . i sLaye rCon f i gu ra t i on ()) {
36 i f (f . isManagementConfiguration ()) {
37 t . s ta te<−#USER SELECTED;
38 }
39 i f (f . i s I nve r s i onOfCont ro lCon f i gu ra t i on ()) {
40 t . s ta te<−#USER SELECTED;
41 }
42 i f (f . i s P e r s i s t e n c e C o n f i g u r a t i o n ()) {
43 i f (UML! DataStoreNode . a l l I n s t a n c e s () . s i z e

()>0){
44 t . s ta te<−#USER SELECTED;
45 }
46 }
47 i f (f . i s P r e s e n t a t i o n C o n f i g u r a t i o n ()) {
48 for (ac to r in UML! Actor . a l l I n s t a n c e s ()) {
49 i f (not acto r . name . startsWith (’LS : ’))

{
50 t . s ta te<−#USER SELECTED;
51 }
52 }
53 }
54 i f (f . i sRepor tCon f i gura t i on ()) {
55 −−Never a u t o m a t i c a l l y s u g g e s t e d
56 }
57 i f (f . i sWebServ i ce sConf igurat ion ()) {

182

Appendix C Model transformations

58 for (ac to r in UML! Actor . a l l I n s t a n c e s ()) {
59 i f (ac to r . name . startsWith (’LS : ’)) {
60 t . s ta te<−#USER SELECTED;
61 }
62 }
63 }
64 i f (f . i sTe s tCon f i gu ra t i on ()) {
65 for (s t e r eo type in UCP! Stereotype .

a l l I n s t a n c e s ()) {
66 i f (s t e r eo type . name=’ T e s t a b i l i t y ’ or

s t e r eo type . name=’ Correc tnes s ’) {
67 for (useCase in UML! UseCase .

a l l I n s t a n c e s ()) {
68 i f (useCase . isAnnotated (

s t e r eo type)) {
69 t . s ta te<−#USER SELECTED;
70 }
71 }
72 }
73 }
74 for (s t e r eo type in AP! Stereotype .

a l l I n s t a n c e s ()) {
75 i f (s t e r eo type . name=’ T e s t a b i l i t y ’ or

s t e r eo type . name=’ Correc tnes s ’) {
76 for (a c t i v i t y P a r t i t i o n in UML!

A c t i v i t y P a r t i t i o n . a l l I n s t a n c e s
()) {

77 i f (a c t i v i t y P a r t i t i o n .
isAnnotated (s t e r e o type)) {

78 t . s ta te<−#USER SELECTED;
79 }
80 }
81 }
82 }
83

84 }
85 i f (f . i sLogCon f i gura t i on ()) {
86 for (s t e r eo type in UCP! Stereotype .

a l l I n s t a n c e s ()) {
87 i f (s t e r eo type . name=’ M a i n t a in a b i l i t y ’

or s t e r eo type . name=’ Accountab i l i ty
’ or s t e r eo type . name=’
A n a l y s a b i l i t y ’) {

88 for (useCase in UML! UseCase .
a l l I n s t a n c e s ()) {

89 i f (useCase . isAnnotated (
s t e r eo type)) {

183

Appendix C Model transformations

90 t . s ta te<−#USER SELECTED;
91 }
92 }
93 }
94 }
95 for (s t e r eo type in AP! Stereotype .

a l l I n s t a n c e s ()) {
96 i f (s t e r eo type . name=’ M a i n t a in a b i l i t y ’

or s t e r eo type . name=’ Accountab i l i ty
’ or s t e r eo type . name=’
A n a l y s a b i l i t y ’) {

97 for (a c t i v i t y P a r t i t i o n in UML!
A c t i v i t y P a r t i t i o n . a l l I n s t a n c e s
()) {

98 i f (a c t i v i t y P a r t i t i o n .
isAnnotated (s t e r e o type)) {

99 t . s ta te<−#USER SELECTED;
100 }
101 }
102 }
103 }
104 }
105 i f (f . i s S e c u r i t y C o n f i g u r a t i o n ()) {
106 for (s t e r eo type in UCP! Stereotype .

a l l I n s t a n c e s ()) {
107 i f (s t e r eo type . name=’ Authent i c i ty ’ or

s t e r eo type . name=’ Secur i ty ’ or
s t e r eo type . name=’ C o n f i d e n t i a l i t y ’)
{

108 for (useCase in UML! UseCase .
a l l I n s t a n c e s ()) {

109 i f (useCase . isAnnotated (
s t e r eo type)) {

110 t . s ta te<−#USER SELECTED;
111 }
112 }
113 −− A l t e r n a t i v e − S e c u r i t y l a y e r

i s s u g g e s t e d i f h a l f or more
or the use cases are annotated

wi th one o f the s t e r e o t y p e s
114 −− i f (th isModule . halfUCAnnotated (

s t e r e o t y p e)){
115 −−t . s t a t e<−#USER SELECTED;
116 −−}
117 }
118 }

184

Appendix C Model transformations

119 for (s t e r eo type in AP! Stereotype .
a l l I n s t a n c e s ()) {

120 i f (s t e r eo type . name=’ Authent i c i ty ’ or
s t e r eo type . name=’ Secur i ty ’ or
s t e r eo type . name=’ C o n f i d e n t i a l i t y ’)
{

121 for (a c t i v i t y P a r t i t i o n in UML!
A c t i v i t y P a r t i t i o n . a l l I n s t a n c e s
()) {

122 i f (a c t i v i t y P a r t i t i o n .
isAnnotated (s t e r e o type)) {

123 t . s ta te<−#USER SELECTED;
124 }
125 }
126 }
127 }
128 }
129 }
130 }
131 }
132

133 rule typedValueCopy{
134 from f : FMP! TypedValue
135 to t : FMP! TypedValue
136 (integerValue<−f . integerValue ,
137 s t r ingValue<−f . s t r ingValue ,
138 f l oatVa lue<−f . f l oatVa lue ,
139 f eatureValue<−f . f ea tureVa lue)
140 }
141

142 rule constra intCopy {
143 from f : FMP! Constra int
144 to t : FMP! Constra int (text<−f . t ex t)
145 }
146

147 rule re ferenceCopy {
148 from f : FMP! Reference
149 to t : FMP! Reference
150 (max<−f . max ,
151 min<−f . min ,
152 id<−f . id ,
153 ch i ld ren<−f . ch i ld ren ,
154 confs<−f . confs ,
155 o r i g i n<−f . o r i g i n ,
156 s ta te<−f . s ta te ,
157 c lones<−f . c lones ,
158 prototype<−f . prototype ,

185

Appendix C Model transformations

159 f ea ture<−f . f e a t u r e)
160 }
161

162 rule featureGroupCopy{
163 from f : FMP! FeatureGroup
164 to t : FMP! FeatureGroup
165 (max<−f . max ,
166 min<−f . min ,
167 id<−f . id ,
168 ch i ld ren<−f . ch i ld ren ,
169 confs<−f . confs ,
170 o r i g i n<−f . o r i g i n)
171 }
172

173 helper context FMP! Feature def : i sLaye rCon f i gu ra t i on () :
Boolean =

174 i f (s e l f . isManagementConfiguration () or
175 s e l f . i s I nve r s i onOfCont ro lCon f i gu ra t i on () or
176 s e l f . i s P e r s i s t e n c e C o n f i g u r a t i o n () or
177 s e l f . i s P r e s e n t a t i o n C o n f i g u r a t i o n () or
178 s e l f . i sRepor tCon f i gura t i on () or
179 s e l f . i sWebServ i ce sConf igurat ion () or
180 s e l f . i sTe s tCon f i gu ra t i on () or
181 s e l f . i sLogCon f i gura t i on () or
182 s e l f . i s S e c u r i t y C o n f i g u r a t i o n ()) then
183 true
184 else
185 fa l se
186 endif ;
187

188 helper context FMP! Feature def : i sManagementConfiguration
() : Boolean =

189 i f (s e l f . name=’ Management ’ and not s e l f . o r i g i n .
o c l I sUnde f ined ()) then

190 true
191 else
192 fa l se
193 endif ;
194

195 helper context FMP! Feature def :
i s I nve r s i onOfCont ro lCon f i gu ra t i on () : Boolean =

196 i f (s e l f . name=’ Inver s ionOfContro l ’ and not s e l f .
o r i g i n . o c l I sUnde f ined ()) then

197 true
198 else
199 fa l se
200 endif ;

186

Appendix C Model transformations

201

202 helper context FMP! Feature def :
i s P e r s i s t e n c e C o n f i g u r a t i o n () : Boolean =

203 i f (s e l f . name=’ P e r s i s t e n c e ’ and not s e l f . o r i g i n .
o c l I sUnde f ined ()) then

204 true
205 else
206 fa l se
207 endif ;
208

209 helper context FMP! Feature def :
i s P r e s e n t a t i o n C o n f i g u r a t i o n () : Boolean =

210 i f (s e l f . name=’ Pre sentat i on ’ and not s e l f . o r i g i n .
o c l I sUnde f ined ()) then

211 true
212 else
213 fa l se
214 endif ;
215

216 helper context FMP! Feature def : i sRepor tCon f i gura t i on () :
Boolean =

217 i f (s e l f . name=’ Report ’ and not s e l f . o r i g i n .
o c l I sUnde f ined ()) then

218 true
219 else
220 fa l se
221 endif ;
222

223 helper context FMP! Feature def :
i sWebServ i ce sConf igurat ion () : Boolean =

224 i f (s e l f . name=’ WebServices ’ and not s e l f . o r i g i n .
o c l I sUnde f ined ()) then

225 true
226 else
227 fa l se
228 endif ;
229

230 helper context FMP! Feature def : i sTe s tCon f i gu ra t i on () :
Boolean =

231 i f (s e l f . name=’ Test ’ and not s e l f . o r i g i n .
o c l I sUnde f ined ()) then

232 true
233 else
234 fa l se
235 endif ;
236

187

Appendix C Model transformations

237 helper context FMP! Feature def : i sLogCon f i gura t i on () :
Boolean =

238 i f (s e l f . name=’ Log ’ and not s e l f . o r i g i n .
o c l I sUnde f ined ()) then

239 true
240 else
241 fa l se
242 endif ;
243

244 helper context FMP! Feature def : i s S e c u r i t y C o n f i g u r a t i o n ()
: Boolean =

245 i f (s e l f . name=’ Secur i ty ’ and not s e l f . o r i g i n .
o c l I sUnde f ined ()) then

246 true
247 else
248 fa l se
249 endif ;
250

251 helper context UML! UseCase def : i sAnnotated (s : UCP!
Stereotype) : Boolean =

252 i f s e l f . extens ionPoint−>s e l e c t (exten | not exten .
getAppl i edStereotype (s . qual i f iedName) .
oc l I sUnde f ined ()) . s i z e ()>0 then

253 true
254 else
255 fa l se
256 endif
257 ;
258 helper context UML! A c t i v i t y P a r t i t i o n def : i sAnnotated (s

: AP! Stereotype) : Boolean =
259 i f not s e l f . ge tAppl i edStereotype (s . qual i f iedName) .

oc l I sUnde f ined () then
260 true
261 else
262 fa l se
263 endif
264 ;
265

266 helper def : halfUCAnnotated (s : UCP! Stereotype) :
Boolean =

267 i f (UML! UseCase . a l l I n s t a n c e s ()−>c o l l e c t (ext | ext .
extens ionPo int) . f l a t t e n ()−>s e l e c t (exten | not
exten . getAppl i edStereotype (s . qual i f iedName) .
oc l I sUnde f ined ()) . s i z e ()) / UML! UseCase .
a l l I n s t a n c e s () . s i z e () >= 0.5 then

268 true
269 else

188

Appendix C Model transformations

270 fa l se
271 endif
272 ;

Listing C.1: Layer suggestion transformation

C.2 Layered design transformation

An excerpt of the model transformation that generates a design adapted to the layers

selected by the architect is showed in Listing C.2

1 −− @path AP=/Models/ ADProfi le . p r o f i l e . uml
2 −− @nsURI UML=h t t p ://www. e c l i p s e . org /uml2 / 4 . 0 . 0 /UML
3 −− @nsURI FMP=h t t p :/// fmp . ecore
4

5 module LayeredActivityDiagramTransformation ;
6 create ActivityOUT : UML from FeatureIn : FMP, Act i v i t y In

: UML, A c t i v i t y P r o f i l e I n : AP;
7

8 helper def : l a y e r s : Sequence (UML! A c t i v i t y P a r t i t i o n)=
Sequence {} ;

9

10 rule s e l e c t e d L a y e r 2 A c t i v i t y P a r t i t i o n {
11 from f : FMP! Feature (f . i s S e l e c t e d L a y e r C o n f i g u r a t i o n

())
12 to t : UML! A c t i v i t y P a r t i t i o n (name<−f . name)
13 do{
14 thisModule . l aye r s<−thisModule . l a y e r s . append (t) ;
15 }
16 }
17

18 rule Model {
19 from s : UML! Model
20 to t : UML! Model (
21 name <− s . name ,
22 packagedElement <− s . packagedElement)
23 }
24

25 rule OpaqueAction {
26 from s : UML! OpaqueAction
27 to t : UML! OpaqueAction (
28 name <− s . name ,
29 i s L e a f <− s . i sLea f ,
30 outgoing <− s . outgoing ,
31 incoming <− s . incoming ,

189

Appendix C Model transformations

32 i n P a r t i t i o n <− s . i n P a r t i t i o n)
33 do{
34 i f (not thisModule . getLayer (’ Inver s ionOfContro l ’) .

o c l I sUnde f ined ()) {
35 t . i n P a r t i t i o n<−t . i n P a r t i t i o n . append (

thisModule . getLayer (’ Inver s ionOfContro l ’))
;

36 }
37 i f (not thisModule . getLayer (’ P e r s i s t e n c e ’) .

o c l I sUnde f ined ()) {
38 i f (s . outgoing−>s e l e c t (f low | f l ow . t a r g e t .

oc lIsTypeOf (UML! DataStoreNode)) . s i z e () > 0
39 or s . incoming−>s e l e c t (f low | f l ow .

source . oc lIsTypeOf (UML!
DataStoreNode)) . s i z e () > 0) {

40 t . i n P a r t i t i o n<−t . i n P a r t i t i o n . append (
thisModule . getLayer (’ P e r s i s t e n c e ’)) ;

41 }
42 }
43 i f (not thisModule . getLayer (’ Pre senta t i on ’) .

o c l I sUnde f ined ()) {
44

45 }
46 i f (not thisModule . getLayer (’ Report ’) .

o c l I sUnde f ined ()) {
47

48 }
49 i f (not thisModule . getLayer (’ WebServices ’) .

o c l I sUnde f ined ()) {
50

51 }
52 i f (not thisModule . getLayer (’ Test ’) . o c l I sUnde f ined

()) {
53 t . i nP a r t i t i on<−t . i n P a r t i t i o n . append (

thisModule . getLayer (’ Test ’)) ;
54 }
55 i f (not thisModule . getLayer (’ Log ’) . o c l I sUnde f ined

()) {
56 t . i nP a r t i t i on<−t . i n P a r t i t i o n . append (

thisModule . getLayer (’ Log ’)) ;
57 }
58 i f (not thisModule . getLayer (’ S e cu r i ty ’) .

o c l I sUnde f ined ()) {
59

60 }
61 }
62 }

190

Appendix C Model transformations

63

64 rule ControlFlow {
65 from s : UML! ControlFlow
66 to t : UML! ControlFlow (
67 name <− s . name ,
68 i s L e a f <− s . i sLea f ,
69 source <− s . source ,
70 t a r g e t <− s . t a r g e t)
71 }
72

73 rule DataStoreNode {
74 from s : UML! DataStoreNode
75 to t : UML! DataStoreNode (
76 name <− s . name ,
77 i s L e a f <− s . i sLea f ,
78 i sControlType <− s . isControlType ,
79 outgoing <− s . outgoing ,
80 incoming <− s . incoming)
81 }
82

83 rule ForkNode {
84 from s : UML! ForkNode
85 to t : UML! ForkNode (
86 name <− s . name ,
87 i s L e a f <− s . i sLea f ,
88 outgoing <− s . outgoing ,
89 incoming <− s . incoming)
90 }
91

92 rule JoinNode {
93 from s : UML! JoinNode
94 to t : UML! JoinNode (
95 name <− s . name ,
96 i s L e a f <− s . i sLea f ,
97 outgoing <− s . outgoing ,
98 incoming <− s . incoming)
99 }

100

101 rule Act iv i tyFina lNode {
102 from s : UML! Act iv i tyFina lNode
103 to t : UML! Act iv i tyFina lNode (
104 name <− s . name ,
105 i s L e a f <− s . i sLea f ,
106 outgoing <− s . outgoing ,
107 incoming <− s . incoming)
108 }
109

191

Appendix C Model transformations

110 rule I n i t i a l N o d e {
111 from s : UML! I n i t i a l N o d e
112 to t : UML! I n i t i a l N o d e (
113 name <− s . name ,
114 i s L e a f <− s . i sLea f ,
115 outgoing <− s . outgoing ,
116 incoming <− s . incoming ,
117 i n P a r t i t i o n <− s . i n P a r t i t i o n)
118 do{
119 i f (not thisModule . getLayer (’ Inver s ionOfContro l ’) .

o c l I sUnde f ined ()) {
120 t . i nP a r t i t i on<−t . i n P a r t i t i o n . append (

thisModule . getLayer (’ Inver s ionOfContro l ’))
;

121 }
122 i f (not thisModule . getLayer (’ P e r s i s t e n c e ’) .

o c l I sUnde f ined ()) {
123 i f (t . outgoing−>s e l e c t (f low | f l ow . t a r g e t .

oc lIsTypeOf (UML! DataStoreNode)) . s i z e () > 0
124 or t . incoming−>s e l e c t (f low | f l ow .

source . oc lIsTypeOf (UML!
DataStoreNode)) . s i z e () > 0) {

125 t . i nP a r t i t i on<−t . i n P a r t i t i o n . append (
thisModule . getLayer (’ P e r s i s t e n c e ’)) ;

126 }
127 }
128 i f (not thisModule . getLayer (’ Pre s enta t i on ’) .

o c l I sUnde f ined ()) {
129 t . i nP a r t i t i on<−t . i n P a r t i t i o n . append (

thisModule . getLayer (’ Pre s enta t i on ’)) ;
130 }
131 i f (not thisModule . getLayer (’ Report ’) .

o c l I sUnde f ined ()) {
132

133 }
134 i f (not thisModule . getLayer (’ WebServices ’) .

o c l I sUnde f ined ()) {
135

136 }
137 i f (not thisModule . getLayer (’ Test ’) . o c l I sUnde f ined

()) {
138 t . i nP a r t i t i on<−t . i n P a r t i t i o n . append (

thisModule . getLayer (’ Test ’)) ;
139 }
140 i f (not thisModule . getLayer (’ Log ’) . o c l I sUnde f ined

()) {

192

Appendix C Model transformations

141 t . i n P a r t i t i o n<−t . i n P a r t i t i o n . append (
thisModule . getLayer (’ Log ’)) ;

142 }
143 i f (not thisModule . getLayer (’ S e cu r i ty ’) .

o c l I sUnde f ined ()) {
144 t . i n P a r t i t i o n<−t . i n P a r t i t i o n . append (

thisModule . getLayer (’ S e cu r i ty ’)) ;
145 }
146 }
147 }
148

149 rule Cal lBehaviorAct ion {
150 from s : UML! Cal lBehaviorAct ion
151 to t : UML! Cal lBehaviorAct ion (
152 name <− s . name ,
153 i s L e a f <− s . i sLea f ,
154 outgoing <− s . outgoing ,
155 incoming <− s . incoming)
156 }
157

158 rule I n t e r a c t i o n {
159 from s : UML! I n t e r a c t i o n
160 to t : UML! I n t e r a c t i o n (
161 name <− s . name ,
162 i s L e a f <− s . i sLea f ,
163 i sAbs t r a c t <− s . i sAbst rac t ,
164 i s A c t i v e <− s . i sAct ive ,
165 fragment <− s . fragment)
166 }
167

168 rule In t e rac t i onUse {
169 from s : UML! In t e rac t i onUse (s . oc lIsTypeOf (UML!

In t e rac t i onUse))
170 to t : UML! In t e rac t i onUse (
171 name <− s . name ,
172 r e f e r sTo <− s . r e f e r sTo)
173 }
174

175 rule A c t i v i t y P a r t i t i o n {
176 from s : UML! A c t i v i t y P a r t i t i o n
177 to t : UML! A c t i v i t y P a r t i t i o n (
178 name <− s . name ,
179 i sDimension <− s . isDimension ,
180 i s E x t e r n a l <− s . i sExte rna l ,
181 node <− s . node ,
182 s u b p a r t i t i o n <− s . s u b p a r t i t i o n)
183 }

193

Appendix C Model transformations

184

185 rule Act iv i ty {
186 from s : UML! Act i v i ty
187 to t : UML! Act i v i ty (
188 name <− s . name ,
189 i s L e a f <− s . i sLea f ,
190 i sAbs t r a c t <− s . i sAbst rac t ,
191 i s A c t i v e <− s . i sAct ive ,
192 isReadOnly <− s . isReadOnly ,
193 i s S i n g l e E x e c u t i o n <− s . i sS ing l eExecut i on ,
194 ownedBehavior <− s . ownedBehavior ,
195 node <− s . node ,
196 edge <− s . edge ,
197 group <− s . group)
198 }
199

200 helper def : getLayer (layerName : String) : UML!
A c t i v i t y P a r t i t i o n =

201 thisModule . l aye r s−>s e l e c t (l a y e r | l a y e r . name=layerName)
−> f i r s t () ;

202

203 helper context FMP! Feature def :
i s S e l e c t e d L a y e r C o n f i g u r a t i o n () : Boolean =

204 i f (s e l f . isManagementConfiguration () or
205 s e l f . i s I nve r s i onOfCont ro lCon f i gu ra t i on () or
206 s e l f . i s P e r s i s t e n c e C o n f i g u r a t i o n () or
207 s e l f . i s P r e s e n t a t i o n C o n f i g u r a t i o n () or
208 s e l f . i sRepor tCon f i gura t i on () or
209 s e l f . i sWebServ i ce sConf igurat ion () or
210 s e l f . i sTe s tCon f i gu ra t i on () or
211 s e l f . i sLogCon f i gura t i on () or
212 s e l f . i s S e c u r i t y C o n f i g u r a t i o n ()) then
213 true
214 else
215 fa l se
216 endif ;
217

218 helper context FMP! Feature def : i sManagementConfiguration
() : Boolean =

219 i f (s e l f . name=’ Management ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

220 true
221 else
222 fa l se
223 endif ;
224

194

Appendix C Model transformations

225 helper context FMP! Feature def :
i s I nve r s i onOfCont ro lCon f i gu ra t i on () : Boolean =

226 i f (s e l f . name=’ Inver s ionOfContro l ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

227 true
228 else
229 fa l se
230 endif ;
231

232 helper context FMP! Feature def :
i s P e r s i s t e n c e C o n f i g u r a t i o n () : Boolean =

233 i f (s e l f . name=’ P e r s i s t e n c e ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

234 true
235 else
236 fa l se
237 endif ;
238

239 helper context FMP! Feature def :
i s P r e s e n t a t i o n C o n f i g u r a t i o n () : Boolean =

240 i f (s e l f . name=’ Pre sentat i on ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

241 true
242 else
243 fa l se
244 endif ;
245

246 helper context FMP! Feature def : i sRepor tCon f i gura t i on () :
Boolean =

247 i f (s e l f . name=’ Report ’ and s e l f . s t a t e=#USER SELECTED
and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

248 true
249 else
250 fa l se
251 endif ;
252

253 helper context FMP! Feature def :
i sWebServ i ce sConf igurat ion () : Boolean =

254 i f (s e l f . name=’ WebServices ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

255 true
256 else
257 fa l se

195

Appendix C Model transformations

258 endif ;
259

260 helper context FMP! Feature def : i sTe s tCon f i gu ra t i on () :
Boolean =

261 i f (s e l f . name=’ Test ’ and s e l f . s t a t e=#USER SELECTED
and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

262 true
263 else
264 fa l se
265 endif ;
266

267 helper context FMP! Feature def : i sLogCon f i gura t i on () :
Boolean =

268 i f (s e l f . name=’ Log ’ and s e l f . s t a t e=#USER SELECTED and
not s e l f . o r i g i n . o c l I sUnde f ined ()) then

269 true
270 else
271 fa l se
272 endif ;
273

274 helper context FMP! Feature def : i s S e c u r i t y C o n f i g u r a t i o n ()
: Boolean =

275 i f (s e l f . name=’ Secur i ty ’ and s e l f . s t a t e=#USER SELECTE
D and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

276 true
277 else
278 fa l se
279 endif ;

Listing C.2: Excerpt of the layered design transformation

C.3 Design patterns and framework suggestion trans-

formations

An excerpt of the model transformation that suggest a set of design pattern based

on the initial design of an applications and the set of layers selected by the architect

is showed in Listing C.3

1 −− @path UCP=/Transformations /Models/ UCProfi le . p r o f i l e .
uml

2 −− @nsURI UML=h t t p ://www. e c l i p s e . org /uml2 / 4 . 0 . 0 /UML
3 −− @nsURI FMP=h t t p :/// fmp . ecore
4

5 module Des ignPatternsSuggest ionTrans format ion ;

196

Appendix C Model transformations

6 create FeaturesOut : FMP from Features In : FMP,
UMLDiagramIn : UML, UCProf i le In : UCP;

7

8 helper def : de s i gnPatte rns : Sequence (Sequence (FMP!
Feature))=OclUndefined ;

9 helper def : s e l e c t edDes i gnPat t e rn s : Sequence (FMP!
Feature)=Sequence {} ;

10

11 rule projectCopy {
12 from f : FMP! Pro j e c t
13 to t : FMP! Pro j e c t (model<−f . model , metaModel<−f .

metaModel , metaMetaModel<−f . metaMetaModel)
14 }
15

16 rule featureCopy {
17 from f : FMP! Feature
18 using{
19 l aye rDes ignPatte rns : Sequence (FMP! Feature)=

OclUndefined ;
20 f e a t u r e : FMP! Feature=OclUndefined ;
21 s e l e c t edDes i gnPat t e rn : FMP! Feature=OclUndefined ;
22 QAsMeet : Integer=0;
23 selectedQAsMeet : Integer=−1;
24 p r o p e r t i e s : Sequence (MM! Node)=OclUndefined ;
25 property : MM! Feature=OclUndefined ;
26 af fectedQAs : Sequence (String)=OclUndefined ;
27 affectedQA : String=OclUndefined ;
28 r e l a t edDes i gnPat t e rn s : Sequence (String)=

OclUndefined ;
29 r e l a t edDes ignPat te rn : String=OclUndefined ;
30 re la tedDes ignPatternAf fec tedQAsIn fo : Sequence (

String)=OclUndefined ;
31 relatedDesignPatternName : String=OclUndefined ;
32 re latedDes ignPatternsAf fectedQAs : Sequence (String

)=OclUndefined ;
33 }
34 to t : FMP! Feature
35 (max<−f . max ,
36 min<−f . min ,
37 id<−f . id ,
38 ch i ld ren<−f . ch i ld ren ,
39 confs<−f . confs ,
40 o r i g i n<−f . o r i g i n ,
41 s ta te<−f . s ta te ,
42 c lones<−f . c lones ,
43 prototype<−f . prototype ,
44 name<−f . name ,

197

Appendix C Model transformations

45 valueType<−f . valueType ,
46 describedNode<−f . describedNode ,
47 prope r t i e s<−f . p r ope r t i e s ,
48 typedValue<−f . typedValue ,
49 c o n s t r a i n t s<−f . c o n s t r a i n t s ,
50 c o n f i g u r a t i o n s<−f . c o n f i g u r a t i o n s ,
51 r e f e r e n c e s <−f . r e f e r e n c e s)
52 do{
53 −− The f i r s t time t h i s r u l e i s a p p l i e d the

s u g g e s t e d d es i gn p a t t e r n s are c a l c u l a t e d .
54 i f (thisModule . de s i gnPatte rns . o c l I sUnde f ined ()) {
55 thisModule . des ignPatterns<−thisModule .

ge tDes ignPatterns ;
56 −− I t e r a t i o n over the s e l e c t e d l a y e r s
57 for (l aye rDes ignPat te rns in thisModule .

de s i gnPat te rns) {
58 selectedQAsMeet<− −1;
59 s e l e c tedDes ignPatte rn<− OclUndefined ;
60 −− I t e r a t i o n over the des i gn p a t t e r n s o f

a s e l e c t e d l a y e r
61 for (f e a t u r e in l aye rDes ignPatte rns) {
62 QAsMeet<−0;
63 −−C a l c u l a t e s the p r i o r i t y v a l u e o f

the p a t t e r n based on the a f f e c t e d
QAs

64 prope r t i e s<−f e a t u r e . p r o p e r t i e s .
c h i l d r e n ;

65 for (property in p r o p e r t i e s) {
66 −−P o s i t i v e l y a f f e c t e d QAs added

to the p r i o r i t y v a l u e
67 i f (property . name=’

Pos i t ive lyAf f ec tedQAs ’ and not
property . typedValue .

oc l I sUnde f ined ()) {
68 affectedQAs<−property .

typedValue . s t r ingVa lue .
s p l i t (’ , ’) ;

69 for (affectedQA in af fectedQAs
) {

70 i f (affectedQA . trim () <> ’
’) {

71 QAsMeet<− QAsMeet +
thisModule .
annotatedUC (
thisModule .
g e tSte r eo type (
affectedQA . trim ())

198

Appendix C Model transformations

) ;
72 }
73 }
74 }
75 −−N e g a t i v e l y a f f e c t e d QAs

s u b t r a c t e d to the p r i o r i t y
v a l u e

76 i f (property . name=’
Negat ive lyAffectedQAs ’ and not

property . typedValue .
oc l I sUnde f ined ()) {

77 affectedQAs<−property .
typedValue . s t r ingVa lue .
s p l i t (’ , ’) ;

78 for (affectedQA in af fectedQAs
) {

79 i f (affectedQA . trim () <> ’
’) {

80 QAsMeet<− QAsMeet −
thisModule .
annotatedUC (
thisModule .
g e tSte r eo type (
affectedQA . trim ())
) ;

81 }
82 }
83 }
84 −−E f f e c t s o f combination wi th

p r e v i o u s l y s e l e c t e d de s i gn
p a t t e r n s added to the p r i o r i t y

v a l u e
85 i f (property . name=’

FrameworkCombinationAffectedQAs
’ and not property . typedValue .
oc l I sUnde f ined ()) {

86 r e la tedDes ignPatte rns<−
property . typedValue .
s t r ingVa lue . s p l i t (’#’) ;

87 for (r e l a t edDes ignPat te rn in
r e l a t edDes i gnPat t e rn s) {

88 re latedDes ignPatternAf fectedQAsInfo
<−r e l a t edDes ignPat te rn
. tr im () . s p l i t (’ : ’) ;

89 relatedDesignPatternName
<−
re la tedDes ignPatternAf fec tedQAsIn fo

199

Appendix C Model transformations

. f i r s t () ;
90 i f (thisModule .

i sDe s i gnPat t e rnSe l e c t ed
(
relatedDesignPatternName
)) {

91 re latedDes ignPatternsAf fectedQAs
<−
re la tedDes ignPatternAf fec tedQAsIn fo
. l a s t () . s p l i t (’ ; ’)
;

92 affectedQAs<−
re latedDes ignPatternsAf fectedQAs
. f i r s t () . s p l i t (’ , ’
) ;

93 for (affectedQA in
af fectedQAs) {

94 i f (affectedQA .
trim () <> ’ ’) {

95 QAsMeet<−
QAsMeet +
thisModule
.
annotatedUC
(
thisModule
.
g e tSte r eo type
(
affectedQA
. trim ())) ;

96 }
97 }
98 affectedQAs<−

re latedDes ignPatternsAf fectedQAs
. l a s t () . s p l i t (’ , ’)
;

99 for (affectedQA in
af fectedQAs) {

100 i f (affectedQA .
trim () <> ’ ’) {

101 QAsMeet<−
QAsMeet −
thisModule
.
annotatedUC
(

200

Appendix C Model transformations

thisModule
.
g e tSte r eo type
(
affectedQA
. trim ())) ;

102 }
103 }
104 }
105 }
106 }
107 }
108 −−S e l e c t the Design p a t t e r n wi th

h i g h e r p r i o r i t y v a l u e
109 i f (QAsMeet > selectedQAsMeet) {
110 selectedQAsMeet<−QAsMeet ;
111 s e l e c tedDes ignPatte rn<−f e a t u r e ;
112 }
113 }
114 i f (not s e l e c t edDes i gnPat t e rn .

oc l I sUnde f ined ()) {
115 thisModule . s e l e c t edDes ignPat te rns<−

thisModule . s e l e c t edDes i gnPat t e rn s .
append (s e l e c t edDes i gnPat t e rn) ;

116 }
117 }
118 }
119 i f (thisModule . s e l e c t edDes ignPat te rns−>i n c l u d e s (f)

) {
120 t . s ta te<−#USER SELECTED;
121 }
122 }
123 }
124

125 rule typedValueCopy{
126 from f : FMP! TypedValue
127 to t : FMP! TypedValue
128 (integerValue<−f . integerValue ,
129 s t r ingValue<−f . s t r ingValue ,
130 f l oatVa lue<−f . f l oatVa lue ,
131 f eatureValue<−f . f ea tureVa lue)
132 }
133

134 rule constra intCopy {
135 from f : FMP! Constra int
136 to t : FMP! Constra int (text<−f . t ex t)
137 }

201

Appendix C Model transformations

138

139 rule re ferenceCopy {
140 from f : FMP! Reference
141 to t : FMP! Reference
142 (max<−f . max ,
143 min<−f . min ,
144 id<−f . id ,
145 ch i ld ren<−f . ch i ld ren ,
146 confs<−f . confs ,
147 o r i g i n<−f . o r i g i n ,
148 s ta te<−f . s ta te ,
149 c lones<−f . c lones ,
150 prototype<−f . prototype ,
151 f ea ture<−f . f e a t u r e)
152 }
153

154 rule featureGroupCopy{
155 from f : FMP! FeatureGroup
156 to t : FMP! FeatureGroup
157 (max<−f . max ,
158 min<−f . min ,
159 id<−f . id ,
160 ch i ld ren<−f . ch i ld ren ,
161 confs<−f . confs ,
162 o r i g i n<−f . o r i g i n)
163 }
164

165 helper context FMP! Feature def :
i s S e l e c t e d L a y e r C o n f i g u r a t i o n () : Boolean =

166 i f (s e l f . isManagementConfiguration () or
167 s e l f . i s I nve r s i onOfCont ro lCon f i gu ra t i on () or
168 s e l f . i s P e r s i s t e n c e C o n f i g u r a t i o n () or
169 s e l f . i s P r e s e n t a t i o n C o n f i g u r a t i o n () or
170 s e l f . i sRepor tCon f i gura t i on () or
171 s e l f . i sWebServ i ce sConf igurat ion () or
172 s e l f . i sTe s tCon f i gu ra t i on () or
173 s e l f . i sLogCon f i gura t i on () or
174 s e l f . i s S e c u r i t y C o n f i g u r a t i o n ()) then
175 true
176 else
177 fa l se
178 endif ;
179

180 helper context FMP! Feature def : i sManagementConfiguration
() : Boolean =

181 i f (s e l f . name=’ Management ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()

202

Appendix C Model transformations

) then
182 true
183 else
184 fa l se
185 endif ;
186

187 helper context FMP! Feature def :
i s I nve r s i onOfCont ro lCon f i gu ra t i on () : Boolean =

188 i f (s e l f . name=’ Inver s ionOfContro l ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

189 true
190 else
191 fa l se
192 endif ;
193

194 helper context FMP! Feature def :
i s P e r s i s t e n c e C o n f i g u r a t i o n () : Boolean =

195 i f (s e l f . name=’ P e r s i s t e n c e ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

196 true
197 else
198 fa l se
199 endif ;
200

201 helper context FMP! Feature def :
i s P r e s e n t a t i o n C o n f i g u r a t i o n () : Boolean =

202 i f (s e l f . name=’ Pre sentat i on ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

203 true
204 else
205 fa l se
206 endif ;
207

208 helper context FMP! Feature def : i sRepor tCon f i gura t i on () :
Boolean =

209 i f (s e l f . name=’ Report ’ and s e l f . s t a t e=#USER SELECTED
and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

210 true
211 else
212 fa l se
213 endif ;
214

215 helper context FMP! Feature def :
i sWebServ i ce sConf igurat ion () : Boolean =

203

Appendix C Model transformations

216 i f (s e l f . name=’ WebServices ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

217 true
218 else
219 fa l se
220 endif ;
221

222 helper context FMP! Feature def : i sTe s tCon f i gu ra t i on () :
Boolean =

223 i f (s e l f . name=’ Test ’ and s e l f . s t a t e=#USER SELECTED
and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

224 true
225 else
226 fa l se
227 endif ;
228

229 helper context FMP! Feature def : i sLogCon f i gura t i on () :
Boolean =

230 i f (s e l f . name=’ Log ’ and s e l f . s t a t e=#USER SELECTED and
not s e l f . o r i g i n . o c l I sUnde f ined ()) then

231 true
232 else
233 fa l se
234 endif ;
235

236 helper context FMP! Feature def : i s S e c u r i t y C o n f i g u r a t i o n ()
: Boolean =

237 i f (s e l f . name=’ Secur i ty ’ and s e l f . s t a t e=#USER SELECTE
D and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

238 true
239 else
240 fa l se
241 endif ;
242

243 −− Return a Sequence c o n t a i n i n g a l l the d e s s i g n p a t t e r n
a v a i l a b l e f o r the implementat ion o f the s e l e c t e d
l a y e r s

244 helper def : ge tDes ignPatterns : Sequence (Sequence (FMP!
Feature)) =

245 FMP! Feature . a l l I n s t a n c e s ()−>s e l e c t (l a y e r | l a y e r .
i s S e l e c t e d L a y e r C o n f i g u r a t i o n ())−>c o l l e c t (f e a t u r e |
f e a t u r e . c h i l d r e n . f i r s t () . c h i l d r e n)

246 ;
247

248 −− Return the number o f UC annotated wi th a g iven
S t e r e o t y p e

204

Appendix C Model transformations

249 helper def : annotatedUC (s : UCP! Stereotype) : Integer =
250 UML! UseCase . a l l I n s t a n c e s ()−>c o l l e c t (ext | ext .

extens ionPo int) . f l a t t e n ()−>s e l e c t (exten | not
exten . getAppl i edStereotype (s . qual i f iedName) .
oc l I sUnde f ined ()) . s i z e ()

251 ;
252

253 −− Return a S t e r e o t y p e by i t s name
254 helper def : g e tSte r eo type (stereotypeName : String) : UCP

! Stereotype =
255 UCP! Stereotype . a l l I n s t a n c e s ()−>s e l e c t (s t e r e o type |

s t e r eo type . name=stereotypeName)−> f i r s t ()
256 ;
257

258 −− Return a DesignPattern by i t s name
259 helper def : getDesignPatternByName (designPatternName :

String) : FMP! Feature =
260 FMP! Feature . a l l I n s t a n c e s ()−>s e l e c t (des ignPattern |

des ignPattern . name=designPatternName and not
des ignPattern . o r i g i n . oc l I sUnde f ined ())−> f i r s t ()

261 ;
262

263 helper def : i sDe s i gnPat t e rnSe l e c t ed (des ignPattern : String
) : Boolean =

264 i f (thisModule . s e l e c t edDes ignPat te rns−>i n c l u d e s (
thisModule . getDesignPatternByName (des ignPattern)))
then

265 true
266 else
267 fa l se
268 endif ;

Listing C.3: Excerpt of the design patterns suggestion transformation

An excerpt of the model transformation that suggest a set of frameworks based

on the initial design of an applications and the set of design patterns selected by the

architect is showed in Listing C.4

1 −− @path UCP=/Transformations /Models/ UCProfi le . p r o f i l e .
uml

2 −− @nsURI UML=h t t p ://www. e c l i p s e . org /uml2 / 4 . 0 . 0 /UML
3 −− @nsURI FMP=h t t p :/// fmp . ecore
4

5 module FrameworkSuggestionTransformation ;
6 create FeaturesOut : FMP from Features In : FMP,

UMLDiagramIn : UML, UCProf i le In : UCP;
7

205

Appendix C Model transformations

8 helper def : frameworks : Sequence (Sequence (FMP! Feature))
=OclUndefined ;

9 helper def : se lectedFrameworks : Sequence (FMP! Feature)=
Sequence {} ;

10

11 rule projectCopy {
12 from f : FMP! Pro j e c t
13 to t : FMP! Pro j e c t (model<−f . model , metaModel<−f .

metaModel , metaMetaModel<−f . metaMetaModel)
14 }
15

16 rule featureCopy {
17 from f : FMP! Feature
18 using{
19 designPatternFrameworks : Sequence (FMP! Feature)=

OclUndefined ;
20 f e a t u r e : FMP! Feature=OclUndefined ;
21 selectedFramework : FMP! Feature=OclUndefined ;
22 QAsMeet : Integer=0;
23 selectedQAsMeet : Integer=−1;
24 p r o p e r t i e s : Sequence (MM! Node)=OclUndefined ;
25 property : MM! Feature=OclUndefined ;
26 af fectedQAs : Sequence (String)=OclUndefined ;
27 affectedQA : String=OclUndefined ;
28 relatedFrameworks : Sequence (String)=OclUndefined ;
29 relatedFramework : String=OclUndefined ;
30 relatedFrameworkAffectedQAsInfo : Sequence (String)

=OclUndefined ;
31 relatedFrameworkName : String=OclUndefined ;
32 relatedFrameworksAffectedQAs : Sequence (String)=

OclUndefined ;
33 }
34 to t : FMP! Feature
35 (max<−f . max ,
36 min<−f . min ,
37 id<−f . id ,
38 ch i ld ren<−f . ch i ld ren ,
39 confs<−f . confs ,
40 o r i g i n<−f . o r i g i n ,
41 s ta te<−f . s ta te ,
42 c lones<−f . c lones ,
43 prototype<−f . prototype ,
44 name<−f . name ,
45 valueType<−f . valueType ,
46 describedNode<−f . describedNode ,
47 prope r t i e s<−f . p r ope r t i e s ,
48 typedValue<−f . typedValue ,

206

Appendix C Model transformations

49 c o n s t r a i n t s<−f . c o n s t r a i n t s ,
50 c o n f i g u r a t i o n s<−f . c o n f i g u r a t i o n s ,
51 r e f e r e n c e s <−f . r e f e r e n c e s)
52 do{
53 −− The f i r s t time t h i s r u l e i s a p p l i e d the

s u g g e s t e d frameworks are c a l c u l a t e d .
54 i f (thisModule . frameworks . o c l I sUnde f ined ()) {
55 thisModule . frameworks<−thisModule .

getFrameworks ;
56 −− I t e r a t i o n over the s e l e c t e d de s i g n

p a t t e r n s
57 for (designPatternFrameworks in thisModule .

frameworks) {
58 selectedQAsMeet<− −1;
59 selectedFramework<− OclUndefined ;
60 −− I t e r a t i o n over the frameworks o f a

s e l e c t e d de s i g n p a t t e r n
61 for (f e a t u r e in designPatternFrameworks) {
62 QAsMeet<−0;
63 −−C a l c u l a t e s the p r i o r i t y v a l u e o f

the framework based on the
a f f e c t e d QAs

64 prope r t i e s<−f e a t u r e . p r o p e r t i e s .
c h i l d r e n ;

65 for (property in p r o p e r t i e s) {
66 −−P o s i t i v e l y a f f e c t e d QAs added

to the p r i o r i t y v a l u e
67 i f (property . name=’

Pos i t ive lyAf f ec tedQAs ’ and not
property . typedValue .

oc l I sUnde f ined ()) {
68 affectedQAs<−property .

typedValue . s t r ingVa lue .
s p l i t (’ , ’) ;

69 for (affectedQA in af fectedQAs
) {

70 i f (affectedQA . trim () <> ’
’) {

71 QAsMeet<− QAsMeet +
thisModule .
annotatedUC (
thisModule .
g e tSte r eo type (
affectedQA . trim ())
) ;

72 }
73 }

207

Appendix C Model transformations

74 }
75 −−N e g a t i v e l y a f f e c t e d QAs

s u b t r a c t e d to the p r i o r i t y
v a l u e

76 i f (property . name=’
Negat ive lyAffectedQAs ’ and not

property . typedValue .
oc l I sUnde f ined ()) {

77 affectedQAs<−property .
typedValue . s t r ingVa lue .
s p l i t (’ , ’) ;

78 for (affectedQA in af fectedQAs
) {

79 i f (affectedQA . trim () <> ’
’) {

80 QAsMeet<− QAsMeet −
thisModule .
annotatedUC (
thisModule .
g e tSte r eo type (
affectedQA . trim ())
) ;

81 }
82 }
83 }
84 −−E f f e c t s o f combination wi th

p r e v i o u s l y s e l e c t e d de s i gn
p a t t e r n s added to the p r i o r i t y

v a l u e
85 i f (property . name=’

FrameworkCombinationAffectedQAs
’ and not property . typedValue .
oc l I sUnde f ined ()) {

86 relatedFrameworks<−property .
typedValue . s t r ingVa lue .
s p l i t (’#’) ;

87 for (relatedFramework in
relatedFrameworks) {

88 relatedFrameworkAffectedQAsInfo
<−relatedFramework .
tr im () . s p l i t (’ : ’) ;

89 relatedFrameworkName<−
relatedFrameworkAffectedQAsInfo
. f i r s t () ;

90 i f (thisModule .
i sFrameworkSelected (
relatedFrameworkName))

208

Appendix C Model transformations

{
91 relatedFrameworksAffectedQAs

<−
relatedFrameworkAffectedQAsInfo
. l a s t () . s p l i t (’ ; ’)
;

92 affectedQAs<−
relatedFrameworksAffectedQAs
. f i r s t () . s p l i t (’ , ’
) ;

93 for (affectedQA in
af fectedQAs) {

94 i f (affectedQA .
trim () <> ’ ’) {

95 QAsMeet<−
QAsMeet +
thisModule
.
annotatedUC
(
thisModule
.
g e tSte r eo type
(
affectedQA
. trim ())) ;

96 }
97 }
98 affectedQAs<−

relatedFrameworksAffectedQAs
. l a s t () . s p l i t (’ , ’)
;

99 for (affectedQA in
af fectedQAs) {

100 i f (affectedQA .
trim () <> ’ ’) {

101 QAsMeet<−
QAsMeet −
thisModule
.
annotatedUC
(
thisModule
.
g e tSte r eo type
(
affectedQA

209

Appendix C Model transformations

. tr im ())) ;
102 }
103 }
104 }
105 }
106 }
107 }
108 −−S e l e c t the Design p a t t e r n wi th

h i g h e r p r i o r i t y v a l u e
109 i f (QAsMeet > selectedQAsMeet) {
110 selectedQAsMeet<−QAsMeet ;
111 selectedFramework<−f e a t u r e ;
112 }
113 }
114 i f (not selectedFramework . oc l I sUnde f ined ()

) {
115 thisModule . se lectedFrameworks<−

thisModule . se lectedFrameworks .
append (selectedFramework) ;

116 }
117 }
118 }
119 i f (thisModule . se lectedFrameworks−>i n c l u d e s (f)) {
120 t . s ta te<−#USER SELECTED;
121 }
122 }
123 }
124

125 rule typedValueCopy{
126 from f : FMP! TypedValue
127 to t : FMP! TypedValue
128 (integerValue<−f . integerValue ,
129 s t r ingValue<−f . s t r ingValue ,
130 f l oatVa lue<−f . f l oatVa lue ,
131 f eatureValue<−f . f ea tureVa lue)
132 }
133

134 rule constra intCopy {
135 from f : FMP! Constra int
136 to t : FMP! Constra int (text<−f . t ex t)
137 }
138

139 rule re ferenceCopy {
140 from f : FMP! Reference
141 to t : FMP! Reference
142 (max<−f . max ,
143 min<−f . min ,

210

Appendix C Model transformations

144 id<−f . id ,
145 ch i ld ren<−f . ch i ld ren ,
146 confs<−f . confs ,
147 o r i g i n<−f . o r i g i n ,
148 s ta te<−f . s ta te ,
149 c lones<−f . c lones ,
150 prototype<−f . prototype ,
151 f ea ture<−f . f e a t u r e)
152 }
153

154 rule featureGroupCopy{
155 from f : FMP! FeatureGroup
156 to t : FMP! FeatureGroup
157 (max<−f . max ,
158 min<−f . min ,
159 id<−f . id ,
160 ch i ld ren<−f . ch i ld ren ,
161 confs<−f . confs ,
162 o r i g i n<−f . o r i g i n)
163 }
164

165 helper context FMP! Feature def :
i s S e l e c t e d L a y e r C o n f i g u r a t i o n () : Boolean =

166 i f (s e l f . isManagementConfiguration () or
167 s e l f . i s I nve r s i onOfCont ro lCon f i gu ra t i on () or
168 s e l f . i s P e r s i s t e n c e C o n f i g u r a t i o n () or
169 s e l f . i s P r e s e n t a t i o n C o n f i g u r a t i o n () or
170 s e l f . i sRepor tCon f i gura t i on () or
171 s e l f . i sWebServ i ce sConf igurat ion () or
172 s e l f . i sTe s tCon f i gu ra t i on () or
173 s e l f . i sLogCon f i gura t i on () or
174 s e l f . i s S e c u r i t y C o n f i g u r a t i o n ()) then
175 true
176 else
177 fa l se
178 endif ;
179

180 helper context FMP! Feature def : i sManagementConfiguration
() : Boolean =

181 i f (s e l f . name=’ Management ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

182 true
183 else
184 fa l se
185 endif ;
186

211

Appendix C Model transformations

187 helper context FMP! Feature def :
i s I nve r s i onOfCont ro lCon f i gu ra t i on () : Boolean =

188 i f (s e l f . name=’ Inver s ionOfContro l ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

189 true
190 else
191 fa l se
192 endif ;
193

194 helper context FMP! Feature def :
i s P e r s i s t e n c e C o n f i g u r a t i o n () : Boolean =

195 i f (s e l f . name=’ P e r s i s t e n c e ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

196 true
197 else
198 fa l se
199 endif ;
200

201 helper context FMP! Feature def :
i s P r e s e n t a t i o n C o n f i g u r a t i o n () : Boolean =

202 i f (s e l f . name=’ Pre sentat i on ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

203 true
204 else
205 fa l se
206 endif ;
207

208 helper context FMP! Feature def : i sRepor tCon f i gura t i on () :
Boolean =

209 i f (s e l f . name=’ Report ’ and s e l f . s t a t e=#USER SELECTED
and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

210 true
211 else
212 fa l se
213 endif ;
214

215 helper context FMP! Feature def :
i sWebServ i ce sConf igurat ion () : Boolean =

216 i f (s e l f . name=’ WebServices ’ and s e l f . s t a t e=#
USER SELECTED and not s e l f . o r i g i n . o c l I sUnde f ined ()
) then

217 true
218 else
219 fa l se

212

Appendix C Model transformations

220 endif ;
221

222 helper context FMP! Feature def : i sTe s tCon f i gu ra t i on () :
Boolean =

223 i f (s e l f . name=’ Test ’ and s e l f . s t a t e=#USER SELECTED
and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

224 true
225 else
226 fa l se
227 endif ;
228

229 helper context FMP! Feature def : i sLogCon f i gura t i on () :
Boolean =

230 i f (s e l f . name=’ Log ’ and s e l f . s t a t e=#USER SELECTED and
not s e l f . o r i g i n . o c l I sUnde f ined ()) then

231 true
232 else
233 fa l se
234 endif ;
235

236 helper context FMP! Feature def : i s S e c u r i t y C o n f i g u r a t i o n ()
: Boolean =

237 i f (s e l f . name=’ Secur i ty ’ and s e l f . s t a t e=#USER SELECTE
D and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

238 true
239 else
240 fa l se
241 endif ;
242

243 −− Return a Sequence c o n t a i n i n g a l l the frameworks
a v a i l a b l e f o r the implementat ion o f the s e l e c t e d
de s i gn p a t t e r n s

244 helper def : getFrameworks : Sequence (Sequence (FMP!
Feature)) =

245 FMP! Feature . a l l I n s t a n c e s ()−>s e l e c t (l a y e r | l a y e r .
i s S e l e c t e d L a y e r C o n f i g u r a t i o n ())−>c o l l e c t (f e a t u r e |
f e a t u r e . c h i l d r e n . f i r s t () . c h i l d r e n)−> f l a t t e n ()−>
s e l e c t (f e a t u r e | f e a t u r e . s t a t e=#USER SELECTED)−>
c o l l e c t (des s i gnPatte rn | des s i gnPatte rn . c h i l d r e n .
f i r s t () . c h i l d r e n)

246 ;
247

248 −− Return the number o f UC annotated wi th a g iven
S t e r e o t y p e

249 helper def : annotatedUC (s : UCP! Stereotype) : Integer =
250 UML! UseCase . a l l I n s t a n c e s ()−>c o l l e c t (ext | ext .

extens ionPo int) . f l a t t e n ()−>s e l e c t (exten | not

213

Appendix C Model transformations

exten . getAppl i edStereotype (s . qual i f iedName) .
oc l I sUnde f ined ()) . s i z e ()

251 ;
252

253 −− Return a S t e r e o t y p e by i t s name
254 helper def : g e tSte r eo type (stereotypeName : String) : UCP

! Stereotype =
255 UCP! Stereotype . a l l I n s t a n c e s ()−>s e l e c t (s t e r e o type |

s t e r eo type . name=stereotypeName)−> f i r s t ()
256 ;
257

258 −− Return a Framework by i t s name
259 helper def : getFrameworkByName (frameworkName : String) :

FMP! Feature =
260 FMP! Feature . a l l I n s t a n c e s ()−>s e l e c t (framework |

framework . name=frameworkName and not framework .
o r i g i n . o c l I sUnde f ined ())−> f i r s t ()

261 ;
262

263 helper def : iFrameworkSelected (framework : String) :
Boolean =

264 i f (thisModule . se lectedFrameworkss−>i n c l u d e s (
thisModule . getFrameworkByName (framework))) then

265 true
266 else
267 fa l se
268 endif ;

Listing C.4: Excerpt of the framework suggestion transformation

C.4 Specific design transformation

An excerpt of the model transformation that generates a design adapted to the

architecture designed by the architect is showed in Listing C.5

1 −− @path AP=/Models/ ADProfi le . p r o f i l e . uml
2 −− @nsURI Frameworks=Frameworks
3 −− @nsURI UML=h t t p ://www. e c l i p s e . org /uml2 / 4 . 0 . 0 /UML
4 −− @nsURI FMP=h t t p :/// fmp . ecore
5

6 module ClassDiagramTansformation ;
7 create ClassOut : UML from Features In : FMP, Act i v i t y In :

UML, A c t i v i t y P r o f i l e I n : AP, FrameworksInfoIn :
Frameworks ;

8

214

Appendix C Model transformations

9 helper def : model : UML! Model = OclUndefined ;
10

11 rule Model {
12 from s : UML! Model
13 to t : UML! Model (
14 name <− s . name ,
15 packagedElement <− Sequence{})
16 do{
17 thisModule . model<−t ;
18 }
19 }
20

21 rule OpaqueAction {
22 from s : UML! OpaqueAction
23 using{
24 c l a s s : UML! Class = OclUndefined ;
25 in format ionItem : UML! InformationItem =

OclUndefined ;
26 dependency : UML! Dependency = OclUndefined ;
27 contents : Sequence (OclAny) = OclUndefined ;
28 se lectedFrameworks : Sequence (FMP! Feature) =

OclUndefined ;
29 appl i edDes ignPattern : String = OclUndefined ;
30 appliedFramework : String = OclUndefined ;
31 f rameworkInformation : Frameworks ! Framework =

OclUndefined ;
32 }
33 do{
34 for (p a r t i t i o n in s . i n P a r t i t i o n) {
35 appliedFramework <− OclUndefined ;
36 appl i edDes ignPattern <− OclUndefined ;
37 i f (thisModule . p a r t i t i o n I s L a y e r (p a r t i t i o n)) {
38 se lectedFrameworks <− thisModule .

se lectedFrameworks (p a r t i t i o n . name) ;
39 i f (se lectedFrameworks . s i z e () = 1) {
40 appliedFramework <−

se lectedFrameworks . f i r s t () . name ;
41 appl i edDes ignPattern <− thisModule .

s e l e c t e d P a t t e r n s (p a r t i t i o n . name) .
f i r s t () . name ;

42 }
43 else {
44 for (annotat ion in s . eAnnotat ions) {
45 i f (annotat ion . source=p a r t i t i o n .

name) {
46 appl i edDes ignPattern <−

annotat ion . d e t a i l s . f i r s t ()

215

Appendix C Model transformations

. key ;
47 appliedFramework <−

annotat ion . d e t a i l s . f i r s t ()
. va lue ;

48 }
49 }
50 }
51 i f (not appliedFramework . oc l I sUnde f ined ())

{
52 f rameworkInformation <− thisModule .

getFrameworkInformation (
appliedFramework) ;

53 i f (not f rameworkInformation .
oc l I sUnde f ined ()) {

54 for (concept in
f rameworkInformation . concepts)
{

55 i f (concept . name =
appl i edDes ignPattern) {

56 contents <− Sequence {} ;
57 for (content in concept .

contents) {
58 i f (content .

oc lIsTypeOf (
Frameworks !
XmlContent)) {

59 in format ionItem
<− UML!
InformationItem
. newInstance ()
;

60 in format ionItem .
name <−
content .
f i leName ;

61 thisModule . model .
packagedElement
<−thisModule .
model .
packagedElement
. append (
in format ionItem
) ;

62 contents <−
contents .
append (
in format ionItem

216

Appendix C Model transformations

) ;
63 for (r e f e r e n c e in

content .
r e f e r e n c e s) {

64 dependency <−
UML!

Dependency
.
newInstance
() ;

65 dependency .
s u p p l i e r
<−
in format ionItem
;

66 for (c in
contents) {

67 i f (c . name
.
endsWith
(
r e f e r e n c e
.
f i leName
)) {

68 dependency
.
c l i e n t

<−
c

;
69 }
70 }
71 thisModule .

model .
packagedElement
<−
thisModule
. model .
packagedElement
. append (
dependency
) ;

72 }
73 }
74 else {

217

Appendix C Model transformations

75 i f (content .
i s C o n f i g u r a t i o n
) {

76 in format ionItem
<− UML!

InformationItem
.
newInstance
() ;

77 in format ionItem
. name <−
content .
f i leName ;

78 thisModule .
model .
packagedElement
<−
thisModule
. model .
packagedElement
. append (
in format ionItem
) ;

79 contents <−
contents .
append (
in format ionItem
) ;

80 for (r e f e r e n c e
in

content .
r e f e r e n c e s
) {

81 dependency
<−

UML!
Dependency
.
newInstance
() ;

82 dependency
.
s u p p l i e r
<−

in format ionItem
;

218

Appendix C Model transformations

83 for (c in
contents
) {

84 i f (c .
name
.
endsWith
(
r e f e r e n c e
.
f i leName
))
{

85 dependency
.
c l i e n t

<−

c
;

86 }
87 }
88 thisModule

. model

.
packagedElement
<−
thisModule
. model
.
packagedElement
.
append
(
dependency
) ;

89 }
90 }
91 else {
92 c l a s s <− UML!

Class .
newInstance
() ;

93 c l a s s . name <−
s . name +

219

Appendix C Model transformations

content .
f i leName ;

94 thisModule .
model .
packagedElement
<−
thisModule
. model .
packagedElement
. append (
c l a s s) ;

95 contents <−
contents .
append (
c l a s s) ;

96 for (r e f e r e n c e
in

content .
r e f e r e n c e s
) {

97 dependency
<−

UML!
Dependency
.
newInstance
() ;

98 dependency
.
s u p p l i e r
<−

c l a s s ;
99 for (c in

contents
) {

100 i f (c .
name
.
endsWith
(
r e f e r e n c e
.
f i leName
))
{

101 dependency
.

220

Appendix C Model transformations

c l i e n t

<−

c
;

102 }
103 }
104 thisModule

. model

.
packagedElement
<−
thisModule
. model
.
packagedElement
.
append
(
dependency
) ;

105 }
106 }
107 }
108 }
109 }
110 }
111 }
112 }
113 }
114 }
115 }
116 }
117

118 helper def : getFrameworkInformation (frameworkName :
String) : Frameworks ! Framework =

119 Frameworks ! Framework . a l l I n s t a n c e s ()−>s e l e c t (framework
| framework . name=frameworkName) . f i r s t () ;

120

121 helper def : p a r t i t i o n I s L a y e r (p a r t i t i o n : UML!
A c t i v i t y P a r t i t i o n) : Boolean =

122 i f (FMP! Feature . a l l I n s t a n c e s ()−>s e l e c t (f e a t u r e |
f e a t u r e . name=p a r t i t i o n . name)−>s i z e () > 0) then

123 true
124 else

221

Appendix C Model transformations

125 fa l se
126 endif ;
127

128 helper def : se lectedFrameworks (layerName : String) :
Sequence (FMP! Feature) =

129 FMP! Feature . a l l I n s t a n c e s ()−>s e l e c t (l a y e r | l a y e r .
i s S e l e c t e d L a y e r C o n f i g u r a t i o n (layerName))

130 −>c o l l e c t (f e a t u r e | f e a t u r e . c h i l d r e n . f i r s t () .
c h i l d r e n)−> f l a t t e n ()−>s e l e c t (f e a t u r e | f e a t u r e .
s t a t e=#USER SELECTED)

131 −>c o l l e c t (des s i gnPatte rn | des s i gnPatte rn .
c h i l d r e n . f i r s t () . c h i l d r e n)−> f l a t t e n ()−>
s e l e c t (f e a t u r e | f e a t u r e . s t a t e=#USER SELECTE
D) ;

132

133 helper def : s e l e c t e d P a t t e r n s (layerName : String) :
Sequence (FMP! Feature) =

134 FMP! Feature . a l l I n s t a n c e s ()−>s e l e c t (l a y e r | l a y e r .
i s S e l e c t e d L a y e r C o n f i g u r a t i o n (layerName))

135 −>c o l l e c t (f e a t u r e | f e a t u r e . c h i l d r e n . f i r s t () .
c h i l d r e n)−> f l a t t e n ()−>s e l e c t (f e a t u r e | f e a t u r e .
s t a t e=#USER SELECTED) ;

136

137 helper context FMP! Feature def :
i s S e l e c t e d L a y e r C o n f i g u r a t i o n (layerName : String) :
Boolean =

138 i f (s e l f . name=layerName and s e l f . s t a t e=#USER SELECTED
and not s e l f . o r i g i n . o c l I sUnde f ined ()) then

139 true
140 else
141 fa l se
142 endif ;

Listing C.5: Excerpt of the specific design transformation

222

Appendix D

Additional material

To contribute to the completeness of this thesis, a web page has been created from

which all the materials related to this thesis and its contributions can be down-

loaded. This page can be found at http://www.gloin.es/garcia-alonso thesis/

and contain the following elements.

• The architectural decision repository described in Section 3.3.

• The framework information meta-model described in Section 3.4.

• The set of ATL model transformations described in Section 3.5.

• The code generation tool described in Chapter 4, along with all the additional

material for the tool detailed in section 4.5

223

http://www.gloin.es/garcia-alonso_thesis/

References

Ågerfalk, P. J., & Fitzgerald, B. (2008). Outsourcing to an unknown workforce:

Exploring opensourcing as a global sourcing strategy. MIS Quarterly , 32 (2),

385-409.

Andova, S., van den Brand, M. G. J., Engelen, L. J. P., & Verhoeff, T. (2012).

Mde basics with a dsl focus. In M. Bernardo, V. Cortellessa, & A. Pierantonio

(Eds.), Sfm (Vol. 7320, p. 21-57). Springer.

Antkiewicz, M. (2007). Round-trip engineering using framework-specific modeling

languages. In R. P. Gabriel, D. F. Bacon, C. V. Lopes, & G. L. S. Jr. (Eds.),

Oopsla companion (p. 927-928). ACM.

Antkiewicz, M., & Czarnecki, K. (2004). Featureplugin: feature modeling plug-in

for eclipse. In M. G. Burke (Ed.), Etx (p. 67-72). ACM.

Antkiewicz, M., Czarnecki, K., & Stephan, M. (2009). Engineering of framework-

specific modeling languages. IEEE Trans. Software Eng., 35 (6), 795-824.

Atkinson, C., & Kühne, T. (2003). Model-driven development: A metamodeling

foundation. IEEE Software, 20 (5), 36-41.

Avgeriou, P., & Zdun, U. (2005). Architectural patterns revisited - a pattern

language. In A. Longshaw & U. Zdun (Eds.), Europlop (p. 431-470). UVK -

Universitaetsverlag Konstanz.

Babar, M. A. (2004). Scenarios, quality attributes, and patterns: Capturing and

using their synergistic relationships for product line architectures. In Apsec

(p. 574-578). IEEE Computer Society.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The goal question metric

approach. In Encyclopedia of software engineering. Wiley.

224

Bibliography References

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice,

second edition. Addison-Wesley Professional.

Benavides, D., Segura, S., & Cortés, A. R. (2010). Automated analysis of feature

models 20 years later: A literature review. Inf. Syst., 35 (6), 615-636.

Bengtsson, P. (1998). Towards maintainability metrics on software architecture: An

adaptation of object-oriented metrics. In First nordic workshop on software

architecture, ronneby.

Bernardo, M., Cortellessa, V., & Pierantonio, A. (Eds.). (2012). Formal methods

for model-driven engineering - 12th international school on formal methods

for the design of computer, communication, and software systems, sfm 2012,

bertinoro, italy, june 18-23, 2012. advanced lectures (Vol. 7320). Springer.

Bézivin, J., & Gerbé, O. (2001). Towards a precise definition of the omg/mda

framework. In Ase (p. 273-280). IEEE Computer Society.

Boehm, B. W. (2006). A view of 20th and 21st century software engineering. In

L. J. Osterweil, H. D. Rombach, & M. L. Soffa (Eds.), Icse (p. 12-29). ACM.

Bolchini, D., & Garzotto, F. (2008). Designing multichannel web applications as

”dialogue systems”: the idm model. In G. Rossi, O. Pastor, D. Schwabe, &

L. Olsina (Eds.), Web engineering (p. 193-219). Springer.

Bolchini, D., & Paolini, P. (2006). Interactive dialogue model: a design technique for

multichannel applications. IEEE Transactions on Multimedia, 8 (3), 529-541.

Bosch, J. (2000). Design and use of software architectures - adopting and evolving

a product-line approach. Addison-Wesley.

Bosch, J., Molin, P., Mattsson, M., & Bengtsson, P. (1997). Object-oriented frame-

works – problems & experiences.

Brambilla, M., Comai, S., Fraternali, P., & Matera, M. (2008). Designing web

applications with webml and webratio. In G. Rossi, O. Pastor, D. Schwabe, &

L. Olsina (Eds.), Web engineering (p. 221-261). Springer.

Cabot, J., & Gogolla, M. (2012). Object constraint language (ocl): A definitive

guide. In M. Bernardo, V. Cortellessa, & A. Pierantonio (Eds.), Sfm (Vol.

7320, p. 58-90). Springer.

Capilla, R., Babar, M. A., & Pastor, O. (2012). Quality requirements engineering

for systems and software architecting: methods, approaches, and tools. Requir.

225

Bibliography References

Eng., 17 (4), 255-258.

Carmel, E., & Abbott, P. (2007). Why ’nearshore’ means that distance matters.

Commun. ACM , 50 (10), 40-46.

Centro de Información Cartográfica y Territorial de Extremadura. (2013). Pliego de

prescripciones técnicas que han de regir el servicio titulado registro cartográfico

extremeño.

Ceri, S., Brambilla, M., & Fraternali, P. (2009). The history of webml lessons

learned from 10 years of model-driven development of web applications. In

A. Borgida, V. K. Chaudhri, P. Giorgini, & E. S. K. Yu (Eds.), Conceptual

modeling: Foundations and applications (Vol. 5600, p. 273-292). Springer.

Ceri, S., Fraternali, P., & Bongio, A. (2000). Web modeling language (webml):

a modeling language for designing web sites. Computer Networks, 33 (1-6),

137-157.

Chen, L., & Babar, M. A. (2011). A systematic review of evaluation of variability

management approaches in software product lines. Information and Software

Technology , 53 (4), 344 - 362.

Clements, P. C. (2001). On the importance of product line scope. In F. van der

Linden (Ed.), Pfe (Vol. 2290, p. 70-78). Springer.

Clements, P. C., Kazman, R., Klein, M., Devesh, D., Reddy, S., & Verma, P. (2007).

The duties, skills, and knowledge of software architects. In Wicsa (p. 20). IEEE

Computer Society.

Clemmons, R. K. (2006). Project Estimation With Use Case Points. Diversified

Technical Services, Inc. CrossTalk - The journal of Defence Software Engi-

neering , 18-22.

Conejero, J. M., Rodŕıguez-Echeverŕıa, R., Sánchez-Figueroa, F., Trigueros, M. L.,

Preciado, J. C., & Clemente, P. J. (2013). Re-engineering legacy web ap-

plications into rias by aligning modernization requirements, patterns and ria

features. Journal of Systems and Software, 86 (12), 2981-2994.

Consejeŕıa Administración Pública. (2013). Pliego de prescripciones técnicas que

han de regir el servicio para el análisis y desarrollo del sistema de gestión de

planes urbańısticos y su integración con el proyecto e-gobeex.

Cxf development framework. (n.d.). http://cxf.apache.org.

226

http://cxf.apache.org

Bibliography References

Czarnecki, K., & Helsen, S. (2006, July). Feature-based survey of model transfor-

mation approaches. IBM Syst. J., 45 (3), 621–645.

Czarnecki, K., Helsen, S., & Eisenecker, U. W. (2005a). Formalizing cardinality-

based feature models and their specialization. Software Process: Improvement

and Practice, 10 (1), 7-29.

Czarnecki, K., Helsen, S., & Eisenecker, U. W. (2005b). Staged configuration

through specialization and multilevel configuration of feature models. Software

Process: Improvement and Practice, 10 (2), 143-169.

Dalgarno, M. (2009). When good architecture goes bad. Methods & Tools, 17 (1),

27-34.

Davis, E., Parker, A., & Shanahan, A. (2009). Complementing India with nearshore

strategies: Spotlight on Spain. Forrester. Europe’s Offshore Landscape.

Retrieved from http://www.forrester.com/Complementing+India+With+

Nearshore+Strategies+Spotlight+On+Spain/fulltext/-/E-RES46904

de Andalućıa, J. (n.d.). Marco de desarrollo de la junta de andalućıa. Retrieved

from http://www.juntadeandalucia.es/servicios/madeja/

de Asturias, P. (n.d.). Open framework del principado de asturias. Retrieved from

http://www.asturias.es/portal/site/OpenFWPA

de Cantabria, G. (n.d.). Arquitectura marco para las administraciones públicas.

Retrieved from http://amap.cantabria.es/

de Extremadura Press Release, P. (2008, June). La consultora accen-

ture firma con las empresas xtrem y cie acuerdos. Retrieved from

http://www.elperiodicoextremadura.com/noticias/merida/consultora

-accenture-firma-empresas-xtrem-cie-acuerdos 377333.html

de Murcia, R. (n.d.). Framework javato. Retrieved from https://www.carm.es/

web/pagina?IDCONTENIDO=29980&IDTIPO=100&RASTRO=c814$m4394

Dwr development framework. (n.d.). http://directwebremoting.org/dwr/index

.html.

Fatolahi, A., Somé, S. S., & Lethbridge, T. C. (2008). A model-driven approach for

the semi-automated generation of web-based applications from requirements.

In Seke (p. 619-624). Knowledge Systems Institute Graduate School.

Fatolahi, A., Somé, S. S., & Lethbridge, T. C. (2012). A meta-model for model-

227

http://www.forrester.com/Complementing+India+With+Nearshore+Strategies+Spotlight+On+Spain/fulltext/-/E-RES46904
http://www.forrester.com/Complementing+India+With+Nearshore+Strategies+Spotlight+On+Spain/fulltext/-/E-RES46904
http://www.juntadeandalucia.es/servicios/madeja/
http://www.asturias.es/portal/site/OpenFWPA
http://amap.cantabria.es/
http://www.elperiodicoextremadura.com/noticias/merida/consultora-accenture-firma-empresas-xtrem-cie-acuerdos_377333.html
http://www.elperiodicoextremadura.com/noticias/merida/consultora-accenture-firma-empresas-xtrem-cie-acuerdos_377333.html
https://www.carm.es/web/pagina?IDCONTENIDO=29980&IDTIPO=100&RASTRO=c814$m4394
https://www.carm.es/web/pagina?IDCONTENIDO=29980&IDTIPO=100&RASTRO=c814$m4394
http://directwebremoting.org/dwr/index.html
http://directwebremoting.org/dwr/index.html

Bibliography References

driven web development. Int. J. Software and Informatics, 6 (2), 125-162.

Fons, J., Pelechano, V., Pastor, O., Valderas, P., & Torres, V. (2008). Applying

the oows model-driven approach for developing web applications. the internet

movie database case study. In G. Rossi, O. Pastor, D. Schwabe, & L. Olsina

(Eds.), Web engineering (p. 65-108). Springer.

Fowler, M. (2002). Patterns of enterprise application architecture. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc.

Fraternali, P., Rossi, G., & Sánchez-Figueroa, F. (2010). Rich internet applications.

IEEE Internet Computing , 14 (3), 9-12.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Ele-

ments of reusable object-oriented software. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc.

Garćıa-Alonso, J., Olmeda, J. B., & Murillo, J. M. (2010). Java para aplicaciones

corporativas de la administración. In E. Teniente & S. Abrahão (Eds.), Jisbd

(p. 263-266). IBERGARCETA Pub. S.L.

Garćıa-Alonso, J., Olmeda, J. B., & Murillo, J. M. (2012). Architectural variabil-

ity management in multi-layer web applications through feature models. In

I. Schaefer & T. Thüm (Eds.), Fosd@gpce (p. 29-36). ACM.

Garćıa-Alonso, J., Olmeda, J. B., & Murillo, J. M. (2013). Architectural deci-

sions in the development of multi-layer applications. In Icsea 2013, the eighth

international conference on software engineering advances (p. 214-219).

Garćıa-Alonso, J., Olmeda, J. B., & Murillo, J. M. (2014a). Model transformations

for the automatic suggestion of architectural decisions in the development of

multi-layer applications. In Icsea 2014, 9th international conference on soft-

ware engineering advances.

Garćıa-Alonso, J., Olmeda, J. B., & Murillo, J. M. (2014b). Technological variability

by means of a framework metamodel. In Sera (to be published).

Garzotto, F., Paolini, P., & Schwabe, D. (1993). Hdm - a model-based approach to

hypertext application design. ACM Trans. Inf. Syst., 11 (1), 1-26.

Gómez, A., & Ramos, I. (2010). Cardinality-based feature modeling and model-

driven engineering: Fitting them together. In D. Benavides, D. S. Batory, &

P. Grünbacher (Eds.), Vamos (Vol. 37, p. 61-68). Universität Duisburg-Essen.

228

Bibliography References

Guillén, J., Miranda, J., Berrocal, J., Garćıa-Alonso, J., Murillo, J. M., & Canal,

C. (2014). People as a service: A mobile-centric model for providing collective

sociological profiles. IEEE Software, 31 (2), 48-53.

Harrison, N. B., & Avgeriou, P. (2010). How do architecture patterns and tactics

interact? a model and annotation. Journal of Systems and Software, 83 (10),

1735-1758.

Harrison, N. B., Avgeriou, P., & Zdun, U. (2007). Using patterns to capture

architectural decisions. IEEE Software, 24 (4), 38-45.

Hennicker, R., & Koch, N. (2000). A uml-based methodology for hypermedia design.

In A. Evans, S. Kent, & B. Selic (Eds.), Uml (Vol. 1939, p. 410-424). Springer.

Heydarnoori, A., Czarnecki, K., & Bartolomei, T. T. (2009). Supporting frame-

work use via automatically extracted concept-implementation templates. In

S. Drossopoulou (Ed.), Ecoop (Vol. 5653, p. 344-368). Springer.

Heydarnoori, A., Czarnecki, K., Binder, W., & Bartolomei, T. T. (2012). Two

studies of framework-usage templates extracted from dynamic traces. IEEE

Trans. Software Eng., 38 (6), 1464-1487.

Hou, D., & Li, L. (2011). Obstacles in using frameworks and apis: An exploratory

study of programmers’ newsgroup discussions. In Icpc (p. 91-100). IEEE

Computer Society.

Hou, D., Wong, K., & Hoover, H. J. (2005). What can programmer questions tell

us about frameworks? In Iwpc (p. 87-96). IEEE Computer Society.

Houben, G.-J., van der Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z.,

& Frasincar, F. (2008). Hera. In G. Rossi, O. Pastor, D. Schwabe, & L. Olsina

(Eds.), Web engineering (p. 263-301). Springer.

ISO. (2005). ISO/IEC 19502:2005 information technology – Meta Object Fa-

cility (MOF). Retrieved from http://www.iso.org/iso/iso catalogue/

catalogue tc/catalogue detail.htm?csnumber=32621

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development

process. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Jet templating engine. (n.d.). http://www.eclipse.org/modeling/m2t/?project=

jet.

Johnson, R. (2005). J2ee development frameworks. IEEE Computer , 38 (1), 107-

229

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32621
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32621
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet

Bibliography References

110.

Johnson, R., Hoeller, J., Donald, K., Sampaleanu, C., Harrop, R., Ris-

berg, T., . . . Webb, P. (2013a). Integrating with other web frame-

works. In Spring framework reference documentation. Spring Frame-

work. Retrieved from http://static.springsource.org/spring/docs/3.2

.4.RELEASE/spring-framework-reference/html/web-integration.html

Johnson, R., Hoeller, J., Donald, K., Sampaleanu, C., Harrop, R., Ris-

berg, T., . . . Webb, P. (2013b). Integration. In Spring frame-

work reference documentation. Spring Framework. Retrieved from

http://static.springsource.org/spring/docs/3.2.4.RELEASE/

spring-framework-reference/html/spring-integration.html

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). Atl: A model transfor-

mation tool. Sci. Comput. Program., 72 (1-2), 31-39.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., & Valduriez, P. (2006). Atl: a

qvt-like transformation language. In P. L. Tarr & W. R. Cook (Eds.), Oopsla

companion (p. 719-720). ACM.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990).

Feature-oriented domain analysis (foda): Feasibility study.

Kazman, R., Asundi, J., & Klein, M. (2001). Quantifying the costs and benefits of

architectural decisions. In H. A. Müller, M. J. Harrold, & W. Schäfer (Eds.),

Icse (p. 297-306). IEEE Computer Society.

Kleppe, A. G., Warmer, J., & Bast, W. (2003). MDA explained: The Model Driven

Architecture: Practice and promise. Boston, MA, USA: Addison-Wesley Long-

man Publishing Co., Inc.

Klyne, G., & Carroll, J. J. (2004, February). Resource description framework (RDF):

Concepts and abstract syntax. World Wide Web Consortium, Recommendation

REC-rdf-concepts-20040210.

Knapp, A., Koch, N., & Zhang, G. (2005). Modelling the behaviour of web appli-

cations with argouwe. In D. B. Lowe & M. Gaedke (Eds.), Icwe (Vol. 3579,

p. 624-626). Springer.

Koch, N., Knapp, A., Zhang, G., & Baumeister, H. (2008). Uml-based web engi-

neering - an approach based on standards. In G. Rossi, O. Pastor, D. Schwabe,

230

http://static.springsource.org/spring/docs/3.2.4.RELEASE/spring-framework-reference/html/web-integration.html
http://static.springsource.org/spring/docs/3.2.4.RELEASE/spring-framework-reference/html/web-integration.html
http://static.springsource.org/spring/docs/3.2.4.RELEASE/spring-framework-reference/html/spring-integration.html
http://static.springsource.org/spring/docs/3.2.4.RELEASE/spring-framework-reference/html/spring-integration.html

Bibliography References

& L. Olsina (Eds.), Web engineering (p. 157-191). Springer.

Kruchten, P. (2008). What do software architects really do? Journal of Systems

and Software, 81 (12), 2413-2416.

Lacity, M., Carmel, E., & Rottman, J. W. (2011). Rural outsourcing: Delivering ito

and bpo services from remote domestic locations. IEEE Computer , 44 (12),

55-62.

Leffingwell, D., & Widrig, D. (2003). Managing software requirements: a use case

approach. Addison-Wesley Professional.

Lung, C.-H., & Kalaichelvan, K. (2000). An approach to quantitative software

architecture sensitivity analysis. International Journal of Software Engineering

and Knowledge Engineering , 10 (1), 97-114.

Mattsson, M., Bosch, J., & Fayad, M. E. (1999). Framework integration problems,

causes, solutions. Communications of the ACM , 42 (10), 80–87.

Maven guide to naming conventions. (n.d.). http://maven.apache.org/guides/

mini/guide-naming-conventions.html.

Meliá, S., & Gómez, J. (2006). The websa approach: Applying model driven

engineering to web applications. J. Web Eng., 5 (2), 121-149.

Meliá, S., Gómez, J., Pérez, S., & Dı́az, O. (2010). Architectural and technological

variability in rich internet applications. IEEE Internet Computing , 14 (3),

24-32.

Miller, J., & Mukerji, J. (2003). MDA guide version 1.0.1.

Mohan, K., & Ramesh, B. (2003, Jan). Ontology-based support for variability

management in product and families. In System sciences, 2003. proceedings of

the 36th annual hawaii international conference on (p. 9 pp.-).

Moreno, N., Romero, J. R., & Vallecillo, A. (2008). An overview of model-driven

web engineering and the mda. In G. Rossi, O. Pastor, D. Schwabe, & L. Olsina

(Eds.), Web engineering (p. 353-382). Springer.

Moreno, N., & Vallecillo, A. (2008). Towards interoperable web engineering methods.

JASIST , 59 (7), 1073-1092.

Murugesan, S., & Deshpande, Y. (1999). Icse’99 workshop on web engineering. In

B. W. Boehm, D. Garlan, & J. Kramer (Eds.), Icse (p. 693-694). ACM.

Nascimento, V., & Schwabe, D. (2013). Semantic data driven interfaces for web

231

http://maven.apache.org/guides/mini/guide-naming-conventions.html
http://maven.apache.org/guides/mini/guide-naming-conventions.html

Bibliography References

applications. In F. Daniel, P. Dolog, & Q. Li (Eds.), Icwe (Vol. 7977, p. 22-

36). Springer.

Northrop, L. (2003). The importance of software architecture. Software Engineering

Institute, Carnegie Mellon University . Retrieved from http://sunset.usc

.edu/GSAW/gsaw2003/s13/northrop.pdf

of Extremadura Press Release, U. (2005, March). Se abre la primera fábrica

universitaria de software. Retrieved from http://noticias.universia.es/

ciencia-nn-tt/noticia/2005/03/15/608437/abre-primera-fabrica

-universitaria-software.html

OMG. (2011a, January). Meta Object Facility (MOF) 2.0 Query/View/Transforma-

tion Specification, Version 1.1. Retrieved from http://www.omg.org/spec/

QVT/1.1/

OMG. (2011b, August). OMG Meta Object Facility (MOF) Core Specification,

Version 2.4.1. Retrieved from http://www.omg.org/spec/MOF/2.4.1

OMG. (2012, January). OMG Object Constraint Language (OCL), Version 2.3.1.

Retrieved from http://www.omg.org/spec/OCL/2.3.1/

OMG. (2013, March). Interaction Flow Modeling Language (IFML). Retrieved from

http://www.omg.org/spec/IFML/

Organization, I. S. (2011). ISO/IEC 25010:2011 - Systems and software engineering

- Systems and software Quality Requirements and Evaluation (SQuaRE) - Sys-

tem and software quality models. Retrieved from http://www.iso.org/iso/

iso catalogue/catalogue tc/catalogue detail.htm?csnumber=35733

Paraschiv, E. (2013). Spring security with maven. Retrieved from http://www

.baeldung.com/spring-security-with-maven

Pohl, K., Böckle, G., & van der Linden, F. (2005). Software product line engineering

- foundations, principles, and techniques. Springer.

Preciado, J. C., Trigueros, M. L., & Sánchez-Figueroa, F. (2008). Enriching model-

based web applications presentation. J. Web Eng., 7 (3), 239-256.

Preciado, J. C., Trigueros, M. L., Sánchez-Figueroa, F., & Comai, S. (2005). Ne-

cessity of methodologies to model rich internet applications. In Wse (p. 7-13).

IEEE Computer Society.

Pressman, R. S. (2000). Manager - What a tangled web we weave. IEEE Software,

232

http://sunset.usc.edu/GSAW/gsaw2003/s13/northrop.pdf
http://sunset.usc.edu/GSAW/gsaw2003/s13/northrop.pdf
http://noticias.universia.es/ciencia-nn-tt/noticia/2005/03/15/608437/abre-primera-fabrica-universitaria-software.html
http://noticias.universia.es/ciencia-nn-tt/noticia/2005/03/15/608437/abre-primera-fabrica-universitaria-software.html
http://noticias.universia.es/ciencia-nn-tt/noticia/2005/03/15/608437/abre-primera-fabrica-universitaria-software.html
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/MOF/2.4.1
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/IFML/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven

Bibliography References

17 (1).

Prikladnicki, R., Audy, J. L. N., Damian, D., & de Oliveira, T. C. (2007). Distributed

software development: Practices and challenges in different business strategies

of offshoring and onshoring. In Icgse (p. 262-274). IEEE.

Prikladnicki, R., Audy, J. L. N., & Shull, F. (2010). Patterns in effective distributed

software development. IEEE Software, 27 (2), 12-15.

Raible, M. (2007). Comparing java web frameworks. Apache conven-

tion. Retrieved from http://static.raibledesigns.com/repository/

presentations/ComparingJavaWebFrameworks-ApacheConUS2007.pdf

Raible, M. (2012). Comparing JVM web frameworks. Jfokus. Retrieved

from http://static.raibledesigns.com/repository/presentations/

Comparing JVM Web Frameworks Jfokus2012.pdf

Release, I.-I. P. (2007, February). Apertura del centro de innovación tecnológica de

cáceres. Retrieved from http://www.insags.com/noticias/cenit caceres

.html

Release, I. P. (2012, June). El software lab de indra en badajoz ha generado más

de 120 empleos cualificados en menos de tres años. Retrieved from http://

www.indracompany.com/noticia/el-software-lab-de-indra-en-badajoz

-ha-generado-mas-de-120-empleos-cualificados-en-menos-de-

Release, I. P. (2013, November). El presidente monago inaugura la nueva factoŕıa

de software de mérida. Retrieved from http://www.ibermatica.com/

sala-de-prensa/noticias/el-presidente-monago-inaugura-la-nueva

-factoria-de-software-de-merida

Rodŕıguez-Echeverŕıa, R., Pavón, V. M., Maćıas, F., Conejero, J. M., Clemente,

P. J., & Sánchez-Figueroa, F. (2013). Generating a conceptual representation

of a legacy web application. In X. Lin, Y. Manolopoulos, D. Srivastava, &

G. Huang (Eds.), Wise (2) (Vol. 8181, p. 231-240). Springer.

Rossi, G. (2013). Web modeling languages strike back. IEEE Internet Computing ,

17 (4), 4-6.

Rossi, G., Pastor, O., Schwabe, D., & Olsina, L. (Eds.). (2008). Web engineering:

Modelling and implementing web applications. Springer.

Rossi, G., & Schwabe, D. (2008). Modeling and implementing web applications

233

http://static.raibledesigns.com/repository/presentations/ComparingJavaWebFrameworks-ApacheConUS2007.pdf
http://static.raibledesigns.com/repository/presentations/ComparingJavaWebFrameworks-ApacheConUS2007.pdf
http://static.raibledesigns.com/repository/presentations/Comparing_JVM_Web_Frameworks_Jfokus2012.pdf
http://static.raibledesigns.com/repository/presentations/Comparing_JVM_Web_Frameworks_Jfokus2012.pdf
http://www.insags.com/noticias/cenit_caceres.html
http://www.insags.com/noticias/cenit_caceres.html
http://www.indracompany.com/noticia/el-software-lab-de-indra-en-badajoz-ha-generado-mas-de-120-empleos-cualificados-en-menos-de-
http://www.indracompany.com/noticia/el-software-lab-de-indra-en-badajoz-ha-generado-mas-de-120-empleos-cualificados-en-menos-de-
http://www.indracompany.com/noticia/el-software-lab-de-indra-en-badajoz-ha-generado-mas-de-120-empleos-cualificados-en-menos-de-
http://www.ibermatica.com/sala-de-prensa/noticias/el-presidente-monago-inaugura-la-nueva-factoria-de-software-de-merida
http://www.ibermatica.com/sala-de-prensa/noticias/el-presidente-monago-inaugura-la-nueva-factoria-de-software-de-merida
http://www.ibermatica.com/sala-de-prensa/noticias/el-presidente-monago-inaugura-la-nueva-factoria-de-software-de-merida

Bibliography References

with oohdm. In G. Rossi, O. Pastor, D. Schwabe, & L. Olsina (Eds.), Web

engineering (p. 109-155). Springer.

Ruscio, D. D., Eramo, R., & Pierantonio, A. (2012). Model transformations. In

M. Bernardo, V. Cortellessa, & A. Pierantonio (Eds.), Sfm (Vol. 7320, p. 91-

136). Springer.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. IEEE

Computer , 39 (2), 25-31.

Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., & Bontemps, Y. (2007). Generic

semantics of feature diagrams. Computer Networks, 51 (2), 456-479.

Schwabe, D., & Rossi, G. (1998). An object oriented approach to web-based appli-

cations design. TAPOS , 4 (4), 207-225.

Shan, T. C., & Hua, W. W. (2006). Taxonomy of java web application frameworks.

In Icebe (p. 378-385). IEEE Computer Society.

Shaw, M. (2002). What makes good research in software engineering. for Technology

Transfer (STTT). Springer Berlin / Heidelberg , 4 , 1-7.

Snell, J., Tidwell, D., & Kulchenko, P. (2001). Programming web services with soap.

O’Reilly Media.

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2009). Emf: Eclipse

modeling framework 2.0 (2nd ed.). Addison-Wesley Professional.

Struts development framework. (n.d.). http://struts.apache.org/.

Taentzer, G., Ehrig, K., Guerra, E., Lara, J. D., Levendovszky, T., Prange, U., . . .

et al. (2005). Model transformations by graph transformations: A compar-

ative study. In Model transformations in practice workshop at models 2005,

montego.

Tang, A., Avgeriou, P., Jansen, A., Capilla, R., & Babar, M. A. (2010). A compar-

ative study of architecture knowledge management tools. Journal of Systems

and Software, 83 (3), 352-370.

Torres, V., Pelechano, V., & Pastor, O. (2006). Building semantic web services

based on a model driven web engineering method. In J. F. Roddick et al.

(Eds.), Er (workshops) (Vol. 4231, p. 173-182). Springer.

Trigueros, M. L., Preciado, J. C., & Sánchez-Figueroa, F. (2007). Engineering rich

internet application user interfaces over legacy web models. IEEE Internet

234

http://struts.apache.org/

Bibliography References

Computing , 11 (6), 53-59.

Troyer, O. D., Casteleyn, S., & Plessers, P. (2008). Wsdm: Web semantics de-

sign method. In G. Rossi, O. Pastor, D. Schwabe, & L. Olsina (Eds.), Web

engineering (p. 303-351). Springer.

Troyer, O. D., & Leune, C. J. (1998). Wsdm: A user centered design method for

web sites. Computer Networks, 30 (1-7), 85-94.

Uml2copy atl transformation. (n.d.). http://soft.vub.ac.be/viewvc/

UML2CaseStudies/uml2cs-transformations/transformations/

UML2Copy.atl.

Van Solingen, R., & Berghout, E. (1999). The goal/question/metric method: A

practical guide for quality improvement of software development. McGraw-Hill

Higher Education.

Vdovjak, R., Frasincar, F., Houben, G.-J., & Barna, P. (2003). Engineering semantic

web information systems in hera. J. Web Eng., 2 (1-2), 3-26.

Velocity templating engine. (n.d.). http://velocity.apache.org/.

Vosloo, I., & Kourie, D. G. (2008). Server-centric web frameworks: An overview.

ACM Comput. Surv., 40 (2).

Webber, J., Parastatidis, S., & Robinson, I. (2010). Rest in practice. hypermedia

and systems architecture. O’Reilly Media.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.

(2000). Experimentation in software engineering: An introduction. Norwell,

MA, USA: Kluwer Academic Publishers.

Wu, W., & Kelly, T. (2006). Managing architectural design decisions for safety-

critical software systems. In C. Hofmeister, I. Crnkovic, & R. Reussner (Eds.),

Qosa (Vol. 4214, p. 59-77). Springer.

Zimmermann, O. (2011). Architectural decisions as reusable design assets. IEEE

Software, 28 (1), 64-69.

Zimmermann, O. (2012). Architectural decision identification in architectural pat-

terns. In T. Männistö, M. A. Babar, C. E. Cuesta, & J. E. Savolainen (Eds.),

Wicsa/ecsa companion volume (Vol. 704, p. 96-103). ACM.

235

http://soft.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/transformations/UML2Copy.atl
http://soft.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/transformations/UML2Copy.atl
http://soft.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/transformations/UML2Copy.atl
http://velocity.apache.org/

	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Thesis origins
	Research context
	Problem statement
	Multi-layer architectures problems
	Development framework problems
	Distributed development problems and competitiveness in the software development industry
	Final outcome

	Thesis goals
	Proposed solution
	Thesis context
	Research projects
	Publications
	Collaborations

	Structure of this dissertation

	Related work
	Introduction
	Model-Driven engineering
	Foundation
	Web engineering
	Discussion

	Development frameworks
	J2EE Development Frameworks
	Server-centric Web frameworks
	Programmer Questions about Framework
	Framework Usage Templates
	Framework Specific Modeling Languages
	Discussion

	Variability management and architectural decisions
	Variability management
	Architectural decisions
	Discussion

	Conclusions

	ArchLayer: Bridging the gap between design and implementation
	ArchLayer overview
	Running example
	Marking the initial design with quality attributes
	Modeling architectural variability
	Choosing the application layers
	Tailoring the design to a multi-layer architecture
	Choosing design patterns and technologies
	Relating the chosen architecture and the system model
	Additional technological information
	From multi-layer to framework-based
	Code generation

	Marked design
	Annotating the initial dessign

	Architectural decisions repository
	Architectural decisions repository structure
	Example of a possible architectural decisions repository
	Enriched architectural decisions repository
	Reuse of architectural decisions

	Framework information meta-model
	Meta-model design rationale
	Framework information meta-model
	Flexibility of the meta-model

	Model to model transformations
	Layer suggestion transformation
	From initial design to layered design transformation
	Design patterns and frameworks suggestion
	From layered design to specific design transformation
	Flexibility of the transformations

	Conclusions

	JACA Code Generation Tool
	Motivation
	Integration with ArchLayer
	Initial configuration generation
	Concept implementation generation
	Additional material and use of the tool
	Conclusions

	Validation
	Validation context
	Validation characteristics and sub-characteristics
	Validation goal: feasibility
	Validation goal: completeness
	Validation goal: effort

	Industrial projects
	BeeFun
	NimBees
	Features of the industrial projects

	Validation results
	Validation goal: feasibility
	Validation goal: completeness
	Validation goal: effort
	Further observations

	Discussion
	Summary of results
	Threats to validity
	Lessons learned

	Conclusions

	Conclusion
	Conclusions
	Publications
	Published Papers
	Pending Papers

	Future Works
	Final Reflections

	Architectural Decisions Repository
	Framework information model
	Model transformations
	Layer suggestion transformation
	Layered design transformation
	Design patterns and framework suggestion transformations
	Specific design transformation

	Additional material
	References

