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Abstract 24 

Soils occupied by dryland pastures usually have low fertility but can exhibit a high spatial 25 

variability. Consequently, logical application of fertilisers should be based on an appropriate 26 

knowledge of spatial variability of the main soil properties that can affect pasture yield and quality. 27 

Delineation of zones with similar soil fertility is necessary to implement site-specific management, 28 

reinforcing the interest of methods to identify these homogeneous zones. Thus, the formulation of 29 

the objective Rasch model constitutes a new approach in pasture fields. 30 

A case study was performed in a pasture field located in a montado (agrosilvopastoral) ecosystem. 31 

Measurements of some soil properties (texture, organic matter, nitrogen, phosphorus, potassium, 32 

cation exchange capacity and soil apparent electrical conductivity) at 24 sampling locations were 33 

integrated in the Rasch model. A classification of all sampling locations according to pasture soil 34 

fertility was established. Moreover, the influence of each soil property on the soil fertility was 35 

highlighted, with the clay content the most influential property in this sandy soil. Then, a clustering 36 

process was undertaken to delimit the homogeneous zones, considering soil pasture fertility, 37 

elevation and slope as the input layers. Three zones were delineated and vegetation indices 38 

(normalized difference vegetation index, NDVI, and normalized difference water index, NDWI) 39 

and pasture yield data at sampling locations were employed to check their differences. Results 40 

showed that vegetation indices were not suitable to detect the spatial variability between zones. 41 

However, differences in pasture yield and quality were evident, besides some key soil properties, 42 

such as clay content and organic matter. 43 

Keywords: Pasture; Rasch model; Soil fertility; Homogeneous zones. 44 

Introduction 45 

The agrosilvopastoral ecosystem in the southwestern part of the Iberian peninsula, called dehesa in 46 

Spain or montado in Portugal, constitutes a unique Mediterranean evergreen oak woodland, where 47 

the trees are mainly holm (Quercus ilex) and cork (Quercus suber). It is an anthropogenic system in 48 

which endangered species, such as the Iberian lynx, live and, at the same time, many goods are 49 

produced (cork, mushrooms, firewood, etc.). However, the main use is for grazing. The understory 50 



 
 

3 

vegetation of shrubs and pastures are the principal source of animal feed in extensive production 51 

systems. Despite these woodlands being anthropogenic ecosystems of high socio-economic and 52 

conservation value, during the last years they have declined mainly due to environmental 53 

constraints and inappropriate management (Godinho et al., 2016). 54 

Usually, soils in these areas have low fertility but spatial variability in some soil properties is 55 

very important. The degraded, shallow, acidic and stony soils, due to intense erosion and soil 56 

transport, have a low nutrients and organic matter content (Serrano et al., 2019). Moreover, the 57 

existence of different vegetation types and their annual dynamics introduce more variability, which 58 

is even more complicated when grazing animals are incorporated (Schellberg et al., 2008).  59 

Differences in the main soil properties lead to differences in soil fertility and, in turn, this fact 60 

determines pasture yield and quality. In consequence, the implementation of strategies for a suitable 61 

management of this ecosystem requires the determination of zones with similar permanent soil 62 

properties, often referred to as  management zones (MZ), which are sub-fields of similar production 63 

potential (e.g. Peralta et al., 2015). These MZ are the basis for implementing site-specific 64 

management strategies, that will culminate in the application of fertilisers with variable rate 65 

technology. However, it is difficult to accurately define MZ in pasture soils because of the complex 66 

interactions of all factors that could affect pasture yield and quality. Any approach to delineate MZ 67 

must consider the main physical and chemical properties of soil, since these factors affect pasture 68 

biomass the most (Serrano et al., 2010) and the spatial variability of biomass productivity is highly 69 

related to the spatial patterns of soil nutrients (Stefanski and Simpson, 2010). 70 

The delineation of MZ requires collecting and analysing data throughout the field. Data can be 71 

generated from traditional soil sampling of the field and the subsequent laboratory work to obtain 72 

the information of the main soil properties. The use of remote or proximal sensing constitutes 73 

another source of intensive information of some soil and plant properties. Moreover, topographic 74 

attributes and yield data can also be used. However, delineating zones based on soil physical 75 

properties most often captures yield variability due to differences in plant available water and, 76 

consequently, pasture production potential. The information obtained from different types of data 77 

have to allow management decisions to vary in different locations within the field. Several 78 
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approaches have been proposed to delineate MZ at the field level. One approach is based on 79 

obtaining soil information, such as sampling for soil physical and chemical properties, sampling the 80 

soil utilising an electrical conductivity sensor or using remotely sensed images for estimating soil 81 

properties (e.g., Arshad et al., 2019; Moral and Serrano, 2019, Fortes et al., 2015). Another 82 

alternative approach utilises remotely sensed images or yield maps to estimate crop growth 83 

variability (e.g., Maestrini and Basso, 2018). The use of both soil landscape and crop information to 84 

define MZ has been also reported elsewhere (e.g., Miao et al., 2018).  85 

Most of the studies to evaluate different techniques to delineate MZ have been performed in 86 

agricultural fields. Little research has been conducted in pasture systems (Trotter et al., 2014), but 87 

the same approaches can be used in pasture soils to define MZ. Some layers of information can be 88 

combined using different algorithms, such as a cluster procedure using c-means methods, principal 89 

component analysis or the simple use of the coefficient of variation of each data layer (e.g., Xin-90 

Zhong et al. 2009; Morari et al, 2009; Ortega and Santibáñez, 2007). More recently, the use of the 91 

Rasch model to consolidate some soil properties and, later, define MZ has been proposed with 92 

promising results (Moral et al., 2011; Rebollo et al., 2017), even in pasture soils (Moral et al., 93 

2019). Results from the Rasch model can be more easily understood that those generated by using 94 

other approaches. Furthermore, there is no need to define any kind of weight and there are no initial 95 

constraints about the variables, that is, original variables can be related or unrelated (Tristán, 2002). 96 

The objectives of this study were to: (1) analyse the suitability of the Rasch model as a 97 

measurement tool to determine the pasture soil fertility in sandy soils; and (2) generate MZ using a 98 

multivariate algorithm after identifying the spatial distribution of the pasture soil fertility. 99 

 100 

Materials and methods  101 

Site description 102 

The experimental field was a farm located about 8 km Southwest of Evora, in Southern Portugal 103 

(38º 32.1’ N; 7º 59.8’ W). An overview of the boundary of the site is given in Figure 1. The area of 104 

study was approximately 25 ha. This field has been cultivated with permanent pastures for more 105 
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than 30 years and used for sheep grazing. The tree density is 8-10 trees ha-1, mainly Quercus ilex 106 

ssp. Rotundifolia Lam. 107 

 108 

 109 

Fig. 1. Study site. Sampling locations are indicated as dots. 110 

 111 

The climate of this area is Mediterranean. According to the Köppen-Geiger classification, it is a 112 

climate type Csa (Peel et al., 2007). Temperature ranges between 0ºC, minimum in winter, and 113 

more than 40°C, maximum in summer. Mean annual precipitation reaches less than 600 mm, 114 

mainly between October and March and practically non-existent during the summer, but its inter-115 

annual variability is very high. 116 

The predominant soil is classified as a Cambisol derived from granite (FAO, 2006). Cambisols 117 

are characterised by slight or moderate weathering of parent material and by absence of appreciable 118 

quantities of illuviated clay, organic matter, aluminium and/or iron compounds. Acid Cambisols are 119 

not very fertile and are mainly used for mixed arable farming and as grazing and forest land. The 120 

soil in this area is mainly sandy and in this field sand content can reach up to 80%. 121 

 122 
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Soil sample collection and analysis 123 

Twenty-four sampling locations (Figure 1) were georeferenced with a Trimble 4700 GPS-RTK 124 

receiver (Trimble Navigation Limited, Sunnyvale, California, USA), each with an area of 900 m2 125 

(30 m x 30 m). They were selected from tree-free zones to avoid interference from satellite images. 126 

Composite soil samples comprised nine sub-samples, that is, around the main point there were 9-127 

sub-samples for a total of 216 samples. They were collected in November 2017. The soil samples 128 

were taken using a gouge auger and a hammer in a depth range of 0–0.30 m, considering the 129 

maximum depth of the roots in the pasture, approximately 0.2–0.3 m. The soil samples were kept in 130 

plastic bags, air-dried and analysed for their particle-size distributions (using a Sedigraph 5100, 131 

Micrometritics, Norcross, GA 30093-2901, USA), after passing the fine components through a 2 132 

mm sieve. Later, the fine components were analysed using standard methods (Egner et al. 1960): 133 

pH in a 1:2.5 (soil:water) suspension using the potentiometric method; the total nitrogen (TN) 134 

content was determined by the Kjeldahl method; P2O5 and K2O were extracted by the Egner–Riehm 135 

method, being measured by the colorimetric method and a flame photometer, respectively; the 136 

organic matter (OM) was measured by combustion and CO2 measurement using an infrared 137 

detection cell; and the cation exchange capacicty (CEC) was measured by the neutral ammonium 138 

acetate method. 139 

A soil apparent electrical conductivity (ECa) survey was performed in November 2017 using a 140 

Veris 2000 XA contact sensor (Veris Technologies, Salina, KS, USA). This sensor is equipped with 141 

a global navigation satellite system (GNSS) instrument (Trimble RTK/PP-4700 GPS, Trimble 142 

Navigation Limited, Sunnyvale, California, USA) and was pulled by an all-terrain vehicle at an 143 

average speed of 2 m s-1, with successive passages across the field. Thus, a set of topsoil 144 

georeferenced data, weighted depth readings, from 0 to 0.30 m depths, was generated. The average 145 

value of ECa in each sampling location was obtained with the values registered in each square. 146 

Using the aforementioned GNSS instrument, a topographic survey of the area was also 147 

performed. The elevation data were sampled in the field with the GNSS assembled on the all-terrain 148 

vehicle and the digital elevation model surface was generated with the triangulated irregular 149 

network (TIN) interpolation tool from ArcGIS (version 10.3, ESRI Inc, Redlands, California, USA). 150 
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Later, this vector information was converted into a grid surface using the Spatial Analyst Tools in 151 

ArcGIS. 152 

 153 

Pasture sample collection and analysis 154 

At the peak of pasture production, during two days, on 11 and 12 May 2018, a pasture sample 155 

was taken at each sampling point using a portable electric grass shear, cutting at 10-20 mm above 156 

ground level. Composite pasture samples were collected at nine representative points within each 157 

sampling location, each with 0.25 m2 area. Immediately, each pasture sample was weighed to 158 

determine the green matter production (GM, kg ha-1), then dehydrated after being placed in an oven 159 

at 65ºC for 72 h to determine the moisture content, which was used to calculate dry matter yield 160 

(DM, kg ha-1). The dehydrated samples were also analysed to determine the content of crude protein 161 

(CP, %) and neutral detergent fiber (NDF, %), according to standard techniques (AOAC, 2005). 162 

 163 

NDVI and NDWI survey 164 

The Copernicus data hub was used to obtain satellite images through the electronic platform 165 

“http://agromap.agroinsider360.com” from the “AgroInsider” enterprise (a spin-off from the 166 

University of Évora). Consequently, Sentinel-2 band 4 (B4, 10 m spatial resolution, 665 nm), band 167 

8 (B8, 10 m spatial resolution, 842 nm), band 8A (B8A, 20 m spatial resolution, 865 nm), and band 168 

11 (B11, 20 m spatial resolution, 1610 nm), were extracted and atmospherically corrected to 169 

compute NDVI and NDWI as: 170 

NDVI = (B8 – B4)/(B8 + B4)                      (1) 171 

NDWI = (B8A – B11)/(B8A + B11)          (2) 172 

These Sentinel-2 optical images were obtained for the 24 sampling locations. Images were 173 

without clouds and taken in May 2018, the same days when the pasture samples were collected. 174 

Multispectral information was collected before cutting the pasture. NDVI of each sampling location 175 

resulted from the average of the nine 10 × 10 m pixels that constitute this area and NDWI resulted 176 

from reading the 20 × 20 m pixels that contain the centre point of the sampling location. 177 

 178 
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The Rasch model 179 

As a measuring tool, the Rasch model is an innovative tool to estimate pasture soil fertility 180 

considering that the potential yield of pasture biomass is related to soil fertility. It is a latent variable 181 

model with one measurement parameter (Álvarez, 2004), corresponding to a single dimension to 182 

measure the ranking of both the subject and items (soil locations and soil properties, respectively, in 183 

this case study). Heterogeneous measures of different soil properties can be integrated into an 184 

overall variable, facilitating the interpretation of pasture soil fertility. 185 

The Rasch model is often seen as a special case of the item response theory (IRT) models, since 186 

the mathematical theory underlying the Rasch model is in some respects the same as IRT 187 

(Hambleton et al., 1991). However, there are important differences because, in the IRT paradigm, 188 

one model is chosen over another if it accounts better for the data, that is,  the data are given and the 189 

model is chosen. In contrast, when the Rasch model is employed, the model is given and then the 190 

data should fit the model; so misfitting items require diagnosis and may be excluded. 191 

Let n be the different locations in the experimental field where measurements of each soil 192 

property, i, were carried out. A latent variable, pasture soil fertility, Xni, is defined in which n refers 193 

to the location where the measurement is conducted and i refers to the soil property. In this case 194 

study, Bn (n = 1, 2, …, 24) refers to the 24 locations where the measurements of the soil properties 195 

were carried out, and di (i = 1, 2, 3, 4, ..., 9) refers to the nine soil properties (Clay -1-, Sand -2-, Silt 196 

-3-, TN -4-, P2O5 -5-, K2O -6-, OM -7-, CEC -8- and EC -9-). For example, X12,4 means the 197 

measurement of the property i = 4 (TN) at the location, sample point, n = 12. According to Figure 2, 198 

if at a sampling location B1 all the soil properties did not exert an important influence on pasture 199 

soil fertility, then B1 would be placed to the left of these items di (diagram 1). On the contrary, if all 200 

the properties are exerting an important influence, then the sampling location B2 will be located on 201 

the right of all di (diagram 2). If there are different sampling points, their difference in terms of 202 

pasture soil fertility would be given by their relative positions with respect to the number of soil 203 

properties which favors fertility. For instance, in the diagram 3, location B3 surpasses no soil 204 

property; location B4 only surpasses soil property d9; location B5 surpasses property d9 and d10; and 205 

location B6 surpasses all three soil properties, that is, d9, d10 and d11. Consequently, B3 is the 206 
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location with least soil fertility, and B6 has the most. Soil property d9 does not exert an influence on 207 

the location B3 and influences on the locations B4, B5 and B6. The property d10 does not influence on 208 

the locations B3 and B4, and influences on the locations B5 and B6. Finally, property d11 does not 209 

exert an influence on the locations B3, B4 and B5, and influences on the location B6. In this example, 210 

B6 is the location where pasture soil fertility is greater since it is influenced by all the soil 211 

properties, d9, d10 and d11; B3 is the location  where pasture soil fertility is lower since it is not 212 

influenced by any property. On the other hand, d9 is the soil property which more frequently 213 

influences on pasture soil fertility and d11 is the soil property which less frequently influences on 214 

pasture soil fertility. 215 

Fig. 2. Representation of the latent variable, pasture soil fertility, as a straight line. Bn is the 216 

location n; di is the soil property i. In the diagram 1, the location B1 is not influenced by any soil 217 

property. In the diagram 2, the location B2 is influenced by all soil properties. Diagram 3 shows a 218 

generalization for some locations and soil properties; B3 is not influenced by any soil property; B4 is 219 

influenced by the soil property d9; B5 is influenced by the soil properties d9 and d10; B6 is influenced 220 

by all soil properties, d9, d10 and d11. 221 

 222 

The probability that location n has the influence of the soil property corresponding to item i, given 223 

the parameters Bn and di is: 224 
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P[Xni = 1; Bn,di] = 
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                                                  (3) 225 

which was obtained by Rasch (1980) in his treatise on latent variables. The parameters Bn and di are 226 

defined in the same measurement unit of an interval scale and the difference (Bn - di) is gauged 227 

according to the same measurement unit. The greater is the difference (Bn - di), the greater is the 228 

probability to be 1. Although expression (3) corresponds to the Rasch dichotomous model, it has 229 

been extended to the case of more than two categories, polytomous models (e.g., Ferrari and Salini, 230 

2011). 231 

In this case study, measures related to some soil properties taken at different locations should be 232 

consolidated into a global variable which highlighted the interpretation of pasture soil fertility. The 233 

latent variable, pasture soil fertility, can be regarded as a straight line along which soil properties 234 

and sample locations are located. The Rasch model uses a logit scale for Bn and di. To explain how 235 

this scale works, by taking logarithms of Eq. (3), Eq. (4) can be obtained: 236 

log (P / (1-P)) = Bn - di                                                         (4) 237 

being P = P[Xni = 1; Bn,di] 238 

The logit of P is log (P / (1-P)). Direct comparisons between different values of Bn and di can be 239 

made more easily when expressed in logits. An item with lower influence on the pasture soil 240 

fertility or a sampling location where soil fertility is higher are associated with larger positive 241 

numbers and, on the contrary, an item with higher influence on soil fertility or a sampling location 242 

where soil ferility is lower will have larger negative values. Usually, almost all sample locations are 243 

expected to have a probability between 0.05 and 0.95 for each soil property to be influential on 244 

them; in consequence, according to Eq. (3), Bn - di values are between -3 and 3 logits. 245 

The Rasch model is based on the simple idea that some items are more important to subjects 246 

than other items. Thus, the Rasch model constructs a line of measurement with the items located 247 

hierarchically on this line according to their importance to subjects. The validity of a given test is 248 

carried out by assessing whether all items work together to measure a single variable. Chi-square fit 249 

statistics, known as Infit and Outfit Mean-Square (Infit and Outfit MNSQ), are computed to 250 

determine how well each soil property contributes to pasture soil fertility measurement (i.e., the 251 
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basic fit statistics is a ratio of observed residual variance to expected residual variance, and is near 252 

1.00 when observed variance is comparable to expected); usually, items should obtain Infit and 253 

Outfit MNSQ values between 0.6 and 1.5 (Bond and Fox, 2007) to be accepted, removing those 254 

with values beyond these thresholds. In addition, the mean standardised (ZSTD) infit and outfit 255 

values, sum of squares standardised residuals given as Z-statistics, are expected to be 0; values for 256 

both between -3 and 2 are considered acceptable (Edwards and Alcock 2010). 257 

A key characteristic of the Rasch model is the transformation of raw data to linear units that 258 

operationally define a latent variable or theoretical construct, which is the combination of non-259 

categorical measures that are conceptually related to a latent feature. Their unrelated independent 260 

units are then categorised with uniform rating scales and transformed to common logit units with 261 

Rasch measurements. By describing soil properties in terms of uniform rating categories, 262 

independent scale quantities can be expressed as common ratings ranging from low to high. 263 

Andrews et al. (2004) considered a similar approach in their soil quality assessment tool, in which 264 

some indicators are taken into account and their measurements are transformed using scoring 265 

curves. 266 

The probabilistic Rasch model is well known for its effciency and precision of transforming 267 

categorical item responses to objective scale measures (Ferrari and Salini, 2011). Initially, the data 268 

are arranged in matrix form, where the rows are the soil locations and the columns the soil 269 

properties, and each cell reflects the category. In consequence, the soil property measures were 270 

coded on a scale between 1 and 5 for each property at each sampling location. As was performed in 271 

other similar studies (e.g., Moral and Rebollo, 2017; Moral et al., 2019), the maximum categorical 272 

value, 5, was assigned for an interval around 33% of clay, silt, or sand content considering that the 273 

ideal percentage of each texture class was about one-third of the total. The other soil properties were 274 

coded taking into account that the highest categorical values correspond to the classes with highest 275 

measures and the rest of categories were associated with classes in which their amplitude depends 276 

on the maximum and minimum values. The use of the proposed categories was checked before 277 

processing the categorical matrix in the Rasch model; all categories were utilised for the data. 278 

The Winsteps v. 4.0 computer program (Linacre, 2009) was utilised to implement the Rasch 279 
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model. The mathematical formulation of this model can be revised, for example, in Tristán (2002), 280 

Ferrari and Salini (2011), and Edwards and Alcock (2010). Figure 3 shows the stages to formulate 281 

the Rasch model. Taking into account the different contribution of the soil properties, a measure of 282 

pasture soil fertility at each sample location was achieved. Consequently, considering the sampling 283 

locations and choosing the soil properties which exert influence on the latent variable, pasture soil 284 

fertility, values of all soil properties at each sampling location were measured and, later, this 285 

information was processed with the previously mentioned software to obtain the Rasch measures, as 286 

well as some fit measures. 287 

 288 

 289 

Fig. 3. Schematic diagram of the stages involved in the formulation of the Rasch model. 290 

 291 

Mapping of pasture soil fertility and management zones 292 

The formulation of the Rasch model allowed to obtain values of the pasture soil fertility, 293 

expressed as the Rasch measure, for all locations in which a soil sample was taken, considering 294 

information from six soil properties. Then, estimates of pasture soil fertility at other locations where 295 

they are unavailable have to be obtained throughout the field. 296 

Although there are many algorithms to interpolate from known data, radial basis function (RBF) 297 

interpolation is a very efficient technique to be used for scattered data (e.g., Kindelan et al., 2016). 298 

RBFs constitute a series of exact interpolation techniques, each of them defined by a different 299 

function which captures global trends and local variations. A single RBF is any function defined in 300 
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terms of distance from a point. The family of polyharmonic splines is usually used for interpolation. 301 

The completely regularised spline is in this group and was selected in this case study after trying 302 

several functions and a validation process (data not shown). More information about the RBFs can 303 

be found in Buhmann (2003). 304 

The extension Geostatistical Analyst of ArcGIS was utilised to perform the interpolation process 305 

and a map of estimates was generated with the ArcMap module in ArcGIS to visualise the spatial 306 

pattern of the pasture soil fertility in the field. Then, homogeneous zones can be delimited using a 307 

classification technique in ArcGIS. However, as topography is an important factor that can affect 308 

the potential zones, as was found in another similar study (Moral et al., 2019), it was also 309 

considered. In consequence, the final classified map was produced using an unsupervised 310 

classification technique on two sets of input data: the pasture soil fertility (as the Rasch measure) 311 

and topography (elevation and slope). Unsupervised classification was performed using the ISO 312 

Cluster algorithm in ArcGIS. This approach organises the data in the input raster into a user-313 

defined number of groups to produce signatures which are then utilised to classify the data 314 

using the Maximum Likelihood Classifier (MLC) function. From a practical perspective, few 315 

homogeneous zones should be delineated. Thus, the number of groups was fixed at three in this 316 

study. 317 

Finally, the proposed delimitation was evaluated computing the differences on the mean values for 318 

the pasture yield variables (GM, DM, CP and NDF) and vegetation indices (NDVI and NDWI) in 319 

each zone, using the Kruskal-Wallis nonparametric test and the Dunn test as a post hoc analysis in 320 

the IBM SPSS statistical package (version 24, IBM Corp, Armonk, NY, USA). These tests were 321 

chosen as the normality in the data cannot be assumed. The Kruskal-Wallis test is a rank-based non-322 

parametric test that can be used to determine if there are statistically significant differences between 323 

two or more groups of an independent variable on a continuous or ordinal dependent variable. The 324 

Kruskal-Wallis test tells that at least two groups were different but cannot tell which specific groups 325 

of the independent variable are statistically significantly different from each other. Consequently, 326 

since more than two groups can be defined, determining which of these groups differ from each 327 
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other were performed by means of the Dunn test as a post hoc non-parametric test.  328 

 329 

Results and discussion 330 

Analysis of the Rasch measure: pasture soil fertility 331 

The first output to be analysed after processing the matrix of categorical values by the Winsteps 332 

program was the overall information about how the data fit the model as was provided by some 333 

statistics. The values of the reliability statistics for the samples and items were 0.55 and 0.32, 334 

respectively, much lower than the acceptable limit, 0.70 (Sekaran, 2000). In consequence, it was 335 

necessary to revise mainly the items, that is, how soil properties were distributed. When the variable 336 

map was visualised (Figure 4), the coincidence of textural variables on the straight line was evident, 337 

so two of them were redundant and had to be removed. Furthermore, Infit and Outfit MNSQ values 338 

for ECa were higher than 1.5, indicating that it should also be removed. Thus, without ECa, the 339 

sand and silt contents, the data were processed again and an improvement of the reliability statistics 340 

was apparent. The values for samples and items were close to 0.70. Moreover, the remaining soil 341 

properties gave place to acceptable values of the fitting statistics: the Infit and Outfit MNSQ were 342 

between 0.6 and 1.5, and the infit and outfit ZSTD between -3 and 2, so each soil property fits the 343 

general pattern of the model and contributes to support the underlying latent variable, pasture soil 344 

fertility. 345 

Table 1 shows the sum of points of all categories (raw score) for each soil property at each 346 

sampling location. The measured values, obtained with the Winsteps programme from the raw 347 

scores, are also shown and the sampling locations are displayed in measure order from the site with 348 

the highest pasture soil fertility, highest measure, to the location with the lowest pasture soil 349 

fertility, lowest measure. 350 

 351 
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 352 

Fig. 4. a) Straight line that represents the latent variable: pasture soil fertility. Distribution of soil 353 

samples (points) is above the line: to the right those more fertile; to the left less those less fertile. 354 

Soil properties are below the line: to the right less common (rare) properties, with lower influence 355 

on pasture soil fertility; to the left more common (frequent) properties, with higher influence on 356 

pasture soil fertility; ms and mp are the mean values of the Rasch measure for soil samples and 357 

properties, respectively. b) Final latent variable, after removing the soil properties that are 358 

redundant or do not fit the model (sand and silt content and EC). 359 

 360 

Another interesting output of the programme was the relative influence of each soil property  on 361 

the pasture soil fertility. According to Table 2, the clay content had the highest raw score, which 362 

corresponds to the lowest measure. Consequently, the clay content was the most influential property 363 

on the soil fertility in this field. OM, CEC and TN were also very influential, which could be 364 

expected as they are related to the clay content. In other pasture soils (e.g., Moral et al., 2019) 365 

where the sand content is not so high, the influence of texture on soil fertility is not as important as 366 

in sandy soils. The clay content determines the fertility level at each location across the field. Water 367 

drains quickly through this sandy soil, washing away most of the nutrients and the OM, so only in 368 
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these locations with higher clay content, moisture content and the nutrient levels are also higher, 369 

leading to a higher soil fertility. Some research in agricultural fields with higher clay content 370 

showed its important influence on the soil fertility (e.g., Moral and Rebollo, 2017; Rebollo et al., 371 

2017). 372 

 373 

Table 1 

Results obtained after applying the Rasch model: sum of 
points of the common scale for all individual soil properties 
(raw score) and pasture soil fertility (measure). Only some 
sampling points are shown. In total there are 24 samples. 

Sampling location 
number  

Raw score Measure 

23 23 0.79 

5 21 0.49 

19 20 0.36 

8 19 0.22 

10 19 0.22 

18 19 0.22 

… … … 

20 14 -0.51 

13 13 -0.68 

24 13 -0.68 

11 10 -1.37 

2 9 -1.71 

4 8 -2.16 

 374 

Unlike the other soil properties, K2O and P2O5 had the highest measure and the lowest score. 375 

This denotes their low influence on the soil variability. Of course, both soil properties are essential 376 

for the pasture and, in fact, the low levels of both nutrients make necessary their increase with the 377 

aim of contributing to optimise the pasture soil fertility. 378 

 379 

 380 
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Table 2 

Item fit statistics. Influence of each soil property on the pasture soil fertility in the 

experimental field (10 soil properties are considered). Total score, sum of points of the 

common scale for each soil property considering all samples (24); Measure, position of 

each soil property along the straight line that represents the latent variable, soil fertility 

potential; Infit and Outfit MNSQ, mean-square fit statistics to verify if items fit the 

model; Infit and Outfit ZSTD, standardized fit statistics to verify if items fit the model 

Item 
Total 
Score 

Measure 
Infit 

MNSQ 
Infit 

ZSTD 
Outfit 

MNSQ 
Outfit 
ZSTD 

P2O5 52 0.44 1.47 1.81 1.38 1.75 

K2O 55 0.30 1.02 0.32 1.07 0.32 

CEC 65 -0.11 0.79 -0.79 0.76 -0.89 

TN 66 -0.15 0.61 -2.73 0.65 -2.23 

OM 68 -0.23 0.62 -2.02 0.73 -1.75 

Clay 69 -0.26 1.39 1.67 1.43 1.69 

 381 

Figure 4 shows the relative distribution of both sampling locations and soil properties in the 382 

same scale according to the pasture soil fertility. As mentioned above, K2O and P2O5 were the 383 

properties with the highest measure, and their position is located more to the right in the straight 384 

line. The other soil properties are situated to the left, having lowest measures. CEC and TN are 385 

almost at the same position on the continuum. Although one of them could be dropped as 386 

redundant, they were maintained because they do not alter the fitting to the model. The relationships 387 

between the soil properties grouped to the left in the straight line, particularly between the clay 388 

content, OM and CEC, can explain this result (Moral et al., 2010). 389 

The sampling locations distributed across the continuum are shown in Figure 4. Thus, a ranking 390 

of the sampling locations according to their Rasch measure was obtained. Those samples located to 391 

the left in the straight line had very low pasture soil fertility, but those located to the right 392 

correspond to sites where soil fertility was higher. Since all samples were georeferenced, those 393 

locations in which a higher pasture yield can be expected were visualised (Figure 5). Considering 394 

all sampling locations, the highest score was 23, less than the half of the possible maximum score 395 
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(60 points) and around 87% of all sampling locations reached less than 20 points. Moreover, the 396 

mean Rasch measure for the samples was more to the left that the mean Rasch measure for the soil 397 

properties, which indicates the existence of many locations where the soil fertility was not optimum. 398 

These are additional evidences about the low overall soil fertility of the experimental field. 399 

However, differences between zones are evident and, according to the potential for pasture yield, 400 

site-specific management could be conducted. Using the same method, important spatial variability 401 

was also found in other agricultural and pasture fields (Moral et al., 2019; Moral and Rebollo, 2017) 402 

and MZ were delineated. 403 

 404 

 405 

Fig. 5. a) Values of Rasch measures at each sampling location. b) Spatial distribution of the pasture 406 

soil fertility, as the Rasch measures. Classification is based on quantiles of the Rasch measures. 407 

 408 

Delineation of homogeneous zones 409 

The estimates of pasture soil fertility at any unsampled location were conducted using the RBF 410 

technique, considering the data from all measures at the sampling locations (Table 2) obtained after 411 

the formulation of the Rasch model. As was previously mentioned, the completely regularised 412 

spline function was chosen, computing estimated values across the experimental field. Finally, the 413 

spatial distribution of pasture soil fertility was visualised (Figure 5). Three zones were delineated 414 
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according to a classification based on the corresponding quantiles. It is known how the presence of 415 

trees tends to improve soil properties, generating areas of higher soil quality where the levels of 416 

macro-nutrients and OM are higher (e.g., Serrano et al., 2017). Thus, in this case study, tree density 417 

was higher in the most fertile zone, 14,52 trees ha-1, than in the intermediate, 13,72 trees ha-1 or less 418 

fertile zone, 9,21 trees ha-1 (Figure 5). 419 

As was shown in previous studies (e.g., Moral et al., 2019), topographical variables can also be 420 

very important to explain the spatial variablity of pasture yield because they determine the level of 421 

some soil properties, such as textural components (Ceddia et al., 2009). In consequence, elevation 422 

and slope were considered and, from the digital elevation model, the slope map was derived (Figure 423 

6). Then, the pasture soil fertily map and both the elevation and slope maps, were taken as inputs of 424 

the clustering analysis. After considering three zones, the MZ map was generated in ArcGIS (Figure 425 

7). It is apparent that pasture soil fertility and MZ maps showed similar patterns due to the fact 426 

that there are no excessively steep areas and elevation differences in the field, so they have a 427 

limited effect on the definition of different zones. Thus, in this case study, pasture soil fertility 428 

map could be considered as the only layer to delineate the MZ. Although the zones are divided 429 

into separate parts, most of the areas are concentrated and can be easily treated. The small spots 430 

within each zone could be removed from a practical site-specific management perspective. 431 

 432 

Fig. 6. a) Elevation map. b) Slope map. 433 
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 434 

 435 

Fig.7. Management zones based on the pasture soil fertility, elevation and slope maps. 436 

 437 

The proposed approach to delineate MZ are based on three simple steps: the integration of some 438 

soil properties at the sampling locations using the formulation of the Rasch model, the mapping of 439 

pasture soil fertility (Rasch measures) and other important variables (mainly related to topography), 440 

and, finally, the clustering process of all input surfaces to delineate MZ. One important advantage 441 

of the Rasch model is its capacity to generate results without defining weights or other constraints 442 

about the variables taken into account. Other approaches are based on analysis where some initial 443 

parameters have to be defined and the input layers are weighted (e.g., Mokarram and Hojati, 2017; 444 

Chen et al. 2013), which are usually more difficult to properly implement and require more initial 445 

information. 446 

With the aim of verifying whether the MZ were significantly different, NDVI and NDWI 447 

data at each sampling location were utilised. The median values of both vegetation indices in 448 

each zone were very similar, as the Kruskal-Wallis non-parametric test and the Dunn test as a 449 

post hoc analysis showed (Table 3). Therefore, the spatial variability detected by optical 450 
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sensors at vegetation level is not related to the spatial pattern of soil fertility. The use of 451 

vegetation indices is suitable to monitor pasture development status, that is pasture vegetative 452 

vigour: NDVI and NDWI reflect chlorophyll content and water content, respectively.  453 

 454 

Table 3 

Median values of the vegetation indices and pasture variables in each management zone (the 
less productive zone is Zone_less, the intermediate productive zone is Zone_medium, and the
most productive zone is Zone_more). Within each column, different letters indicate 
significant differences (P < 0.05) according to the Dunn test. 

 NDVI NDWI Green matter 
(kg ha-1) 

Dry 
matter 

(kg ha-1) 

Crude 
protein 

(%) 

Neutral 
detergent 
fiber (%) 

Zone_less 0.62 a 0.31 a 24677 a 3800 a 12.68 a  50.80 a 

Zone_medium 0.65 a 0.33 a 25228 b 4114 b 11.46 b 50.23 a 

Zone_more 0.64 a 0.33 a 25752 b 3962 b 11.95 b 53.23 b 

 455 

When the pasture variables were analysed, differences in yield and quality were apparent, 456 

but only between the zones with higher and intermediate pasture soil fertility and the zone with 457 

lower soil fertility (Table 3). However, the proposed zoning was able to explain variations in 458 

some key soil properties which are related to soil fertility, such as clay content, OM or CEC 459 

(Table 4). In contrast with other similar studies (e.g., Moral et al., 2019) in which the sand 460 

content in the soil was not so high, the low values of ECa in the three MZ, around 2 mS m-1 461 

(Table 4), made useless its consideration. Peralta and Costa (2013) suggested that the 462 

application of ECa for site-specific management might not be feasible due to its inconsistent 463 

relationship with other soil properties, as occurred in this study, besides the low values 464 

throughout the field. The low levels of some other important soil properties, such as P2O5 or 465 

TN, which are the main limitations of this soil, made that their differences between MZ were 466 

insignificant (Table 4). However, the low values of P2O5 in the most productive MZ reflected 467 

the higher extractions in these areas, highlighting the need to take into account the spatial 468 

variability in the field. 469 

 470 
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Table 4  

Median values of soil properties in each management zone (the less productive zone is Zone_less, the 
intermediate productive zone is Zone_medium, and the most productive zone is Zone_more). Within each 
column, different letters indicate significant differences (P < 0.05) according to the Dunn test. 

 
Clay content 

(%) 
TN 

(g kg-1) 
P2O5 

(mg kg-1) 
K2O 

(mg kg-1) 
OM 
(%) 

CEC 
(cmol kg-1) 

ECa 
(mS m-

1) 

Zone_less 9.56 a 0.09 a 40.78 a 93.55 a 1.51 a  10.74 a 2.06 a 

Zone_medium 10.47 b 0.07 a 26.28 b 77.43 b 1.24 b 8.49 b 2.52 a 

Zone_more 11.26 c 0.10 a 28.96 b 109.02 c 1.65 c 12.84 c 2.34 a 

 471 

Conclusions 472 

The usual practice in pasture systems is to apply the same rate of fertiliser over the whole field, 473 

leading to incorrect applications of fertiliser at different places in the field and, in turn, involving 474 

economic, environmental and energy drawbacks. Site-specific management is a rational way to 475 

improve the fertiliser use efficiency by adjusting the fertiliser rates to the soil and pasture 476 

variability. 477 

The delineation of MZ in pasture fields is the first stage to implement a site-specific 478 

management. Soil information is essential to calculate the requeriments throughout the field and, in 479 

this sense, the formulation of the Rasch model is an interesting tool to estimate a measure of pasture 480 

soil fertility, integrating different soil variables (in this study, clay content, OM, P2O5, K2O, TN and 481 

CEC). Data reasonably fit the model and the considered soil properties have an important influence 482 

on the latent variable, pasture soil fertility. However, in sandy soils, clay content is the key soil 483 

property to determine soil fertility at any location, probably due to the close relationship between 484 

this textural class and other important soil properties, such as OM or CEC. 485 

Besides soil pasture fertility, as the Rasch measure, topography has also to be considered 486 

because it could alter the level of the soil properties. However, due to the characteristics of the 487 

experimental field, after the clustering process considering both topography (elevation and slope) 488 

and soil pasture fertility, the spatial pattern of the MZ was similar to the distribution of the soil 489 

pasture fertility, that is, the influence of topography was not important. 490 

The proposed approach constitutes an objective and logical technique to map soil spatial 491 
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variability, making it possible to generate high spatial resolution maps, necessary for implementing 492 

site-specific soil management. Thus, variable-rate applications of inputs can be performed, and 493 

fertilisation can be decreased in less fertile and less productive areas; consequently, the application 494 

of chemical substances can be minimised with the aim of obtaining more cost-effective field 495 

management, besides environmental and energy benefits. 496 

 497 
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FIGURE CAPTIONS 682 

 683 

Fig. 1. Study site. Sampling locations are indicated as dots. 684 

 685 

Fig. 2. Representation of the latent variable, pasture soil fertility, as a straight line. Bn is the 686 

location n; di is the soil property i. In the diagram 1, the location B1 is not influenced by any soil 687 

property. In the diagram 2, the location B2 is influenced by all soil properties. Diagram 3 shows a 688 

generalization for some locations and soil properties; B3 is not influenced by any soil property; B4 is 689 

influenced by the soil property d9; B5 is influenced by the soil properties d9 and d10; B6 is influenced 690 

by all soil properties, d9, d10 and d11. 691 

 692 

Fig. 3. Schematic diagram of the stages involved in the formulation of the Rasch model. 693 

 694 

Fig. 4. a) Straight line that represents the latent variable: pasture soil fertility. Distribution of soil 695 

samples (points) is above the line: to the right those more fertile; to the left less those less fertile. 696 

Soil properties are below the line: to the right less common (rare) properties, with lower influence 697 

on pasture soil fertility; to the left more common (frequent) properties, with higher influence on 698 

pasture soil fertility; ms and mp are the mean values of the Rasch measure for soil samples and 699 

properties, respectively. b) Final latent variable, after removing the soil properties that are 700 

redundant or do not fit the model (sand and silt content and EC). 701 

 702 

Fig. 5. a) Values of Rasch measures at each sampling location. b) Spatial distribution of the pasture 703 

soil fertility, as the Rasch measures. Classification is based on quantiles of the Rasch measures. 704 

 705 

Fig. 6. a) Elevation map. b) Slope map. 706 

 707 

Fig.7. Management zones based on the pasture soil fertility, elevation and slope maps. 708 


