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“We can only conclude from the investigations here considered that

the normal curve possesses no special fitness for describing errors or

deviations such as arise either in observing practice or in nature.”

Karl Pearson, 1900.
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1 Summary

This thesis is based around the four papers in the appendix that summarise re-

search work conducted between 2008 and 2012 under the supervision of Professor

Arthur Pewsey. The first two have already been published in the statistical jour-

nals Test and The American Statistician, respectively. The third paper is currently

under revision, and an electronic version of the fourth has been published on the

Statistical Papers website.

In Section 2 we provide an introduction to the main ideas underpinning the four

papers. The motivation and main objectives of the work conducted are described

in Section 3, whilst Section 4 provides a joint discussion of the results obtained.

Finally, conclusions are presented, and prospects for future research discussed, in

Section 5.

The first of the four papers in the appendix, entitled ‘Skew-t distributions via the

sinh-arcsinh transformation’, presents results for a new skew-symmetric family of

distributions with Student’s t distribution as its symmetric member. The family

was obtained by applying a slightly modified version of the sinh-arcsinh trans-

formation of Jones & Pewsey (2009) to the t distribution. The properties of the

new skew-t family are developed, and particular attention given to quantile-based

measures of kurtosis which are skewness-invariant. Maximum likelihood inference

is studied and illustrated in the analysis of a real data set. Multivariate extensions

of the proposed skew-t family are also considered. A comparison with other skew-t

distributions that have been proposed within the literature is made throughout

the article.

The second paper, entitled ‘Skewness-invariant measures of kurtosis’, further devel-

ops the topic of skewness-invariant measures of kurtosis. Two classes of quantile-

based measures of kurtosis are identified as being skewness-invariant for certain
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Summary

families of skew-symmetric distributions obtained via transformation of a symmet-

ric random variable. For this type of distributions we state a condition, in terms

of the transformation used, that ensures the invariance of the measures of kur-

tosis. A transformation satisfying this condition is given as an example, namely,

the sinh-arcsinh transformation. Another class of measures of kurtosis, based on

densities, is briefly studied for so-called transformations of scale distributions.

The third paper presented in the appendix is entitled ‘On Blest’s measure of kur-

tosis adjusted for skewness’. There the topic of moment-based kurtosis measures

that are invariant to skewness is investigated. In particular, the measure of kurto-

sis adjusted for skewness introduced in Blest (2003) is studied and an alternative to

it proposed. The performance of both measures is analysed using skew-symmetric

families of distributions, and lower bounds for them derived. Results are also

presented from an extensive simulation study designed to identify the best per-

forming sample versions of the measures obtained by plugging-in different moment

estimators available in popular statistical packages.

In the fourth paper, entitled ‘Measures of tail asymmetry for bivariate copulas’,

we start by identifying a set of desirable properties that a tail asymmetry mea-

sure should satisfy. We then propose three families of tail asymmetry measures

for bivariate copulas. The first two families, one moment-based and the other

quantile-based, are obtained using concepts associated with asymmetry measures

for univariate distributions. The third family is derived using an L∞ distance

approach. Bounds for all three measures are obtained together with the copulas

that attain them. Two examples involving real data sets illustrate the levels of

asymmetry that might be expected in practice.

2



Resumen

Esta tesis está basada en los cuatro art́ıculos que se adjuntan en el apéndice y

que sintetizan el trabajo de investigación llevado a cabo entre los años 2008 y

2012 bajo la tutela del profesor Arthur Pewsey. De los cuatro art́ıculos, los dos

primeros han sido publicados en las revistas estad́ısticas Test y The American

Statistician, respectivamente. El tercero se encuentra actualmente bajo revisión y

una versión digital del cuarto art́ıculo ha sido publicada en la página web de la

revista estad́ıstica Statistical Papers.

En la sección 2 se presenta una introducción a las ideas principales que se desa-

rrollan en los cuatro art́ıculos. Las motivaciones y los objetivos principales del

trabajo desarrollado se describen en la sección 3 mientras que una discusión con-

junta de los resultados obtenidos se presenta en la sección 4. Para finalizar, se

presentan las conclusiones y se discuten posibles ĺıneas de investigación a seguir

en el futuro en la sección 5.

El primero de los cuatro art́ıculos anexados, titulado ‘Skew-t distributions via

the sinh-arcsinh transformation’, presenta resultados para una nueva familia de

distribuciones con miembros tanto simétricos como asimétricos y cuya subclase

simétrica está formada por las distribuciones t de Student. En adelante, nos

referiremos a una de tales familias como familia skew-t. Si no se especifica la

subclase simétrica, nos referiremos a ella como familia skew-symmetric. La nueva

familia skew-t se obtuvo aplicando una ligera modificación de la transformación

sinh-arcsinh de Jones & Pewsey (2009) a la distribución t. Las propiedades de

esta nueva familia skew-t se desarrollan en el art́ıculo, prestando especial atención

a medidas de curtosis basadas en cuantiles que son invariantes a la asimetŕıa.

También se estudia la estimación por máxima verosimilitud y se ilustra su uso

mediante el análisis de un conjunto de datos reales. Para completar el estudio,

una extensión multivariante de la nueva familia skew-t es considerada. A lo largo
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de todo el art́ıculo se realiza una comparación con otras distribuciones skew-t que

pueden encontrarse en la literatura.

En el segundo art́ıculo, de t́ıtulo ‘Skewness-invariant measures of kurtosis’, se de-

sarrolla más a fondo el tema de las medidas de curtosis invariantes a la asimetŕıa.

Se identifican dos clases de medidas de curtosis, basadas en cuantiles, que son

invariantes a la asimetŕıa para ciertas familias skew-symmetric obtenidas medi-

ante la transformación de una variable aleatoria simétrica. Para este tipo de dis-

tribuciones se establece una condición suficiente, en términos de la transformación

usada, cuya verificación asegura la invariancia a la asimetŕıa de las medidas de

curtosis. Como ejemplo de una tal transformación se presenta la transformación

sinh-arcsinh. Finalmente otra clase de medidas de curtosis, basada en densidades,

se estudia brevemente para transformaciones de distribuciones de escala.

El tercer art́ıculo presente en el apéndice tiene por t́ıtulo ‘On Blest’s measure of

kurtosis adjusted for skewness’. En él, el tema de medidas de curtosis que son

invariantes a la asimetŕıa se estudia para medidas basadas en momentos. Concre-

tamente, se estudia la medida de curtosis ajustada para la asimetŕıa introducida en

Blest (2003) y se propone una medida alternativa. Se analiza el comportamiento

de ambas medidas usando familias skew-symmetric y se derivan cotas inferiores

para ellas. Además, se presentan los resultados obtenidos en un estudio de simu-

lación diseñado para identificar la mejor versión muestral de las medidas. Estas

versiones muestrales fueron obtenidas reemplazando los momentos poblacionales

por sus distintas versiones muestrales en la definición de las medidas. Las versiones

muestrales de los momentos que se utilizaron se corresponden con las implemen-

tadas en los paquetes estad́ısticos más populares.

En el cuarto art́ıculo, titulado ‘Measures of tail asymmetry for bivariate copulas’,

comenzamos estableciendo un conjunto de propiedades deseables que una medida

de asimetŕıa debiera satisfacer. A continuación proponemos tres familias de medi-

das de asimetŕıa para cópulas bivariantes. Las dos primeras familias, una basada

en momentos y otra en cuantiles, se obtienen usando conceptos asociados con me-

didas de asimetŕıa para distribuciones de probabilidad univariantes. La tercera

medida se deriva usando la distancia L∞. Seguidamente se obtienen cotas para

las tres medidas y se identifican cópulas que alcanzan dichas cotas. El grado de

asimetŕıa que se puede esperar en la práctica se ilustra con dos ejemplos usando

datos reales.
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2 Introduction

In this introduction to the thesis we consider the background to the main ideas

underpinning the papers contained in the appendix. In Section 2.1 we consider

the normal distribution, asymmetric data and approaches to generating distribu-

tions capable of modelling their main features. As we will see, one popular means

of generating asymmetric distributions is via the transformation of a symmetric

random variable. In Section 2.2 we focus on a particular form of transformation,

the so-called sinh-arcsinh transformation, which plays a crucial role throughout

the thesis. In the paper entitled ‘Skew t distributions via the sinh-arcsinh trans-

formation’ we study a new family of distributions arising from the t distribution

when a special case of the sinh-arcsinh transformation is applied to it, and hence

in Section 2.3 we provide some background to Student’s t distribution and various

asymmetric extensions of it that have recently been proposed in the literature.

As background to the articles entitled ‘Skewness-invariant measures of kurtosis’

and ‘On Blest’s measure of kurtosis adjusted for skewness’, in Section 2.4 we

provide an overview of the classical coefficient of kurtosis and how its various

interpretations have spawned numerous articles addressing not only the interpre-

tation of the classical coefficient of kurtosis but also the concept of kurtosis in the

presence of asymmetry as well as alternatives to the classical coefficient.

In Section 2.5 we provide a brief introduction to copula theory, a research topic

that has stimulated considerable activity in recent years. First we review the ideas

underpinning copulas and various particular classes of bivariate copulas. One such

class, that of vine copulas, has proved particularly important in the modelling of

financial data. In Section 2.5.7, we consider the few asymmetry measures that

have been proposed in the literature for use with bivariate copulas. Their paucity

was the catalyst for the fourth paper in the appendix entitled ‘Measures of tail

asymmetry for bivariate copulas’.
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An overview of the remainder of the thesis is provided in Section 2.6.

2.1 Normality, asymmetric data and approaches

to modelling them

In classical Statistics it is usually assumed that the distribution from which the

data were drawn is symmetric or, more specifically, normal. As Lippmann stated

in a remark to Poincaré: “Everybody believes in the exponential law of errors:

the experimenters, because they think it can be proved by mathematics; and the

mathematicians, because they believe it has been established by observation” (see

Whittaker & Robinson, 1965, p. 179).

In the 18th Century, Abraham de Moivre was often called upon to make the

long and tedious computations involved in calculating probabilities such as that of

obtaining 20 tails when tossing a fair coin 100 times. At the time it was well-known

that the binomial distribution could be used to resolve this sort of problem. During

his investigations, de Moivre noted that as the number of events increased, the

shape of the binomial probability mass function approached a smooth curve. He

reasoned that obtaining an expression for such a curve would lead to elegant and

easy-to-calculate solutions. He derived the equation of the curve and discovered

not only the normal distribution but also that the binomial distribution could be

well approximated by a normal distribution when the number of Bernoulli trials

is large. His results were published in de Moivre (1738).

An historically important application of the normal distribution was in the anal-

ysis of measurement errors made in astronomical observations; the errors caused

by imperfections in the instruments used and, of course, the observers. Various

distributions had been hypothesised for such errors, but it was not until the early

19th Century that it was discovered that these errors tended to follow a normal

distribution. Independently, in 1809, Gauss and Robert Adrain derived the for-

mula for the normal distribution. Laplace also made significant contributions,

being the first to obtain the normalising constant of the normal distribution. It

was also Laplace who, in 1810, proved the fundamental central limit theorem, thus

establishing the statistical importance of the normal distribution. Thereafter, its

mathematical properties and tractability made it an increasingly popular model.
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In 1835, Adolphe Quetelet became the first person to apply it to human charac-

teristics such as height, weight and strength.

However, as time went by and applications of the normal distribution proliferated,

it was increasingly found that real data are seldom symmetric, let alone normal. A

seminal reference in this regard is Pearson (1900). In response, various approaches

were proposed to deal with data that are skew.

Historically, perhaps the most popular way of dealing with asymmetric data has

been to transform them in an attempt to produce data for which the classical

assumptions are more reasonable. As the best choice of transformation was not

necessarily obvious for a particular data set, various standard transformations were

established and applied in practice. The logarithmic transformation, for instance,

was generally found to be appropriate for data associated with growth. When

an even stronger transformation was required, the reciprocal transformation was

often employed. For count data the square-root transformation was often found

to be suitable. Indeed, it was discovered that data from the Poisson distribution

could be transformed to normality by applying such a transformation. The arcsine

transformation was found to be especially useful when the data were percentages or

proportions. The generally ad hoc use of transformations to approximate normality

led Tukey (1957), and more famously Box & Cox (1964), to propose the power

family of transformations, generally referred to nowadays as the Box-Cox family, as

well as likelihood-based methods for identifying the optimal transformation from

within it.

Despite the transformation approach being a popular one, there are two major

problems associated with its use. First, it is possible that, for a given data set,

no adequate power transformation can be identified. Secondly, in situations in

which an adequate power transformation can be found, inference will generally be

of interest on the scale upon which the data were originally observed, not on the

transformed scale. This involves the use of back-transformation of the results for

the transformed data, which generally introduces bias.

The alternative approach to analysing asymmetric data, which is the one explored

in this thesis, is to model the data on the scale on which they were observed using

flexible models capable of describing their main features. In particular, we will

generally concentrate on models for unimodal data with parameters controlling
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the location, scale, skewness and kurtosis of the distributions contained within

them.

Non-normal probability distributions were, of course, known long before the in-

troduction of the normal distribution. As mentioned above, de Moivre discovered

the normal curve whilst trying to approximate the binomial distribution. In 1763,

Bayes identified the beta distribution as the posterior density for the probability

of success in a Bernoulli trial. Thirty-five years prior to the publication of the

work on the normal distribution by Gauss, Laplace (1774) studied the problem of

aggregating several observations and discovered the double exponential distribu-

tion. When developing his theory of probability, Poisson (1837) introduced what

we know today as the Poisson distribution. De Forest (1882) derived the gamma

distribution when approximating binomial coefficients using differential equations.

The development of most of the fundamental ideas underpinning the generation of

asymmetric models took place in a highly fruitful period around the end of the 19th

Century and the beginning of the 20th. Edgeworth (1886) is generally cited as the

first reference addressing the problem of fitting asymmetric distributions to asym-

metric frequency data. Shortly after its publication, the modelling of non-normal

frequency distributions attracted the attention of Karl Pearson. His interest in

the topic was triggered by Walter Weldon, a zoologist who, together with his wife,

collected data on 23 characteristics of 1000 female crabs whilst holidaying in Malta

and the Bay of Naples. Weldon found that one of the characteristics, the frontal

breadth of the carapace, did not follow a normal distribution, and asked Pearson

for assistance. A potential solution to the modelling of such asymmetric data

was provided in Pearson (1893), where finite mixtures of normal densities were

advocated. The research conducted by Edgeworth and Pearson on asymmetric

distributions led to considerable competition between them. Details of the their

correspondence on the theme can be found in Stigler (1978), a biographical paper

about Edgeworth.

A further important contribution of Karl Pearson to the modelling of skew data

was Pearson (1895) in which he proposed various types of distributions obtained as

solutions to a particular differential equation. In Pearson (1901, 1916) he extended

the range of solutions so as to obtain what we know today as the Pearson family of

distributions. In addition to the normal distribution, the Pearson family includes

the: gamma, inverse-gamma, beta, inverted beta and Student’s t distributions, as
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well as a generalisation of the beta distribution and a skew-symmetric extension

of Student’s t distribution.

Also towards the end of the 19th Century, Fechner (1897) had proposed an ap-

proach to constructing a skew distribution based on combining two differentially

scaled halves of normal distributions. The result is referred to nowadays as the two-

piece normal distribution. The two-piece construction was revisited by Gibbons

& Mylroie (1973), and more recently by Fernández & Steel (1998) and Mudholkar

& Hutson (2000).

The use of transformation (or, originally “translation”) to obtain new distribu-

tions from existing ones makes its first appearance in Edgeworth (1898). There,

Edgeworth considered transformations which can be represented by polynomials.

Subsequently, Kapteyn & van Uven (1916), Wicksell (1917, 1923) and Rietz (1922)

extended the approach using different types of transformation, although the re-

sulting distributions displayed only a limited variety of shapes. In the mid 20th

Century the approach gained renewed interest with the publication of Johnson

(1949) in which the log-normal, a slight modification of it, and the arcsinh trans-

formations were applied to a normal random variable to obtain random variables

from the SL (log-normal), SB (bounded) and SU (unbounded) families, respec-

tively. In Tadikamalla & Johnson (1982), the same three transformations were

applied to a logistic random variable, obtaining the corresponding LL, LB and LU

families. Tukey (1977) applied the transformation approach to a normal random

variable to obtain the flexible g-and-h distribution, defined through its quantile

function. Both g and h are parameters, the former controlling asymmetry and

the latter tailweight. Towards the end of the last century, Rieck & Nedelman

(1991) obtained sinh-normal distributions by applying the sinh, rather than the

arcsinh, transformation to a normal random variable. Recently, Jones & Pewsey

(2009) combined the use of the sinh and arcsinh functions in their sinh-arcsinh

transformation, and studied the sinh-arcsinhed normal (SAS-normal) distribution

obtained by applying it to a normal random variable. Heavy-tailed symmetric

members of the SAS-normal family behave like Johnson SU distributions, whilst

their lighter-tailed counterparts behave like sinh-normal distributions. The sinh-

arcsinh transformation plays a crucial role throughout the remainder of the thesis.

It is considered in detail in the next subsection, and is applied to a Student’s t

random variable to obtain the sinh-arcsinhed t (SAS-t) distribution considered in

the first of the papers in the appendix.
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A contribution from the beginning of the 20th Century, largely ignored until rel-

atively recently, was that of de Helguero (1908). In his paper, de Helguero con-

sidered modelling asymmetric data not only using a mixture of two normal dis-

tributions but also via a distribution obtained by applying a selection mechanism

to a normal population. The model he derived is a form of skew-normal distri-

bution intimately related to what, following the publication of Azzalini (1985), is

generally referred to Azzalini’s skew-normal distribution. It should however be

noted, as Azzalini (2005) points out, that this particular skew-normal distribution

had previously appeared in various guises; for example, in Birnbaum (1950), Nel-

son (1964), Roberts (1966), Aigner et al. (1977) and Anděl et al. (1984). More

generally, Lemma 1 of Azzalini (1985) considers the following construction. Let

f denote a density which is symmetric about 0, and G an absolutely continuous

distribution function whose derivative is symmetric about 0. Then,

2G(αx)f(x), x ∈ (−∞,+∞),

where −∞ < α <∞ is a shape parameter, is a skew-symmetric density function.

In particular, Azzalini (1985) studied the skew-normal family of distributions ob-

tained when G and f are the distribution and density functions of the standard

normal distribution, respectively. This surprisingly simple perturbation construc-

tion has stimulated a vast literature. At the time of writing it has received no less

than 400 citations in the Web of Knowledge and 840 in Google Scholar. Many of

the most significant contributions to this line of research are referenced in Genton

(2004) and Azzalini (2005).

So, in summary, we have highlighted five major means of obtaining models for

skew data: (i) finite mixtures; (ii) the solution to a differential equation; (iii)

transformation; (iv) piecing together two different halves of symmetric densities;

(v) selection or Azzalini-type perturbation.

2.2 The sinh-arcsinh transformation and its

properties

The sinh-arcsinh transformation, Sε,δ(x) = sinh(δ sinh−1(x) − ε), where −∞ <

ε < +∞ and 0 < δ < +∞, was introduced in Jones & Pewsey (2009) as a means
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of generating new skew-symmetric families of distributions from symmetric ones.

Given a random variable, X , that is symmetric about 0, a new random variable,

Yε,δ, is obtained through

X = Sε,δ(Yε,δ) = sinh(δ sinh−1(Yε,δ)− ε). (2.1)

The following three equivalent representations of Sε,δ prove useful:

Sε,δ(x) =
1

2

(

e−ε exp(δ sinh−1(x))− eε exp(−δ sinh−1(x))
)

=
1

2

(

e−ε(
√
x2 + 1 + x)δ − eε(

√
x2 + 1 + x)−δ

)

(2.2)

=
1

2

(

e−ε(
√
x2 + 1 + x)δ − eε(

√
x2 + 1− x)δ

)

. (2.3)

In particular, Equations (2.2) and (2.3) are very useful for computational purposes.

Inverting Equation (2.1) leads to

Yε,δ = S−1
ε,δ (X) = sinh(δ−1(sinh−1(X) + ε)) = S−ε/δ,1/δ(X).

Thus random variate generation is straightforward provided that X can be simu-

lated.

Given FX , fX and QX , the distribution, density and quantile functions, respec-

tively, of X , it follows that the corresponding functions of Yε,δ are given by

Fε,δ(y) = FX(Sε,δ(y)), (2.4)

fε,δ(y) =
δCε,δ(y)
√

1 + y2
fX(Sε,δ(y)), (2.5)

and

Qε,δ(u) = S−ε/δ,1/δ(QX(u)), 0 < u < 1, (2.6)

where Cε,δ(x) = cosh(δ sinh−1(x) − ε) =
√

1 + S2
ε,δ(x). It is easily shown that

f−ε,δ(x) = fε,δ(−x). Also, as X is symmetric about 0, the median of Yε,δ is given

by sinh(ε/δ).

A particularly appealing property of the sinh-arcsinh transformation is that its

parameters have clear interpretations. For fixed δ, ε acts as a skewness parameter

in the sense of the skewness ordering of van Zwet (1964). That ordering is defined

as follows. Given the distribution functions, F1 and F2, of two random variables,

11



Introduction

we say that F2 is more positively skew than F1 if F
−1
2 (F1) is convex in its domain.

For members of a sinh-arcsinh family, Fε2,δ is more positively skew than Fε1,δ

whenever ε2 > ε1. In a similar fashion, when ε = 0, δ acts as a kurtosis parameter

in the sense of van Zwet’s (1964) ordering.

2.3 Student’s t distribution and asymmetric

extensions

The t distribution is generally considered to have been introduced in Student

(1908), despite it having been derived as a posterior distribution by Helmert (1875)

and Lüroth (1876) as well as being a special case of the Pearson type IV distri-

bution introduced in Pearson (1895). ‘Student’ was, of course, the pseudonym of

William Sealy Gosset, Gosset being a “student” of Pearson. In his highly influen-

tial paper, Gosset obtained the distribution of the statistic

T ∗ =

√
n(X̄ − µ)

(
∑n

i=1(Xi − X̄)2
)1/2

=
T√
n− 1

,

where X1, . . . , Xn is a sequence of independent and identically distributed random

variables, with sample mean X̄ , sampled from a normal distribution with mean µ,

and T denotes the usual “t-statistic”

T =

√
n(X̄ − µ)

[

(n− 1)−1
∑n

i=1(Xi − X̄)2
]1/2

,

which follows what we refer to nowadays as Student’s t distribution with n − 1

degrees of freedom. The contemporary use of T rather than T ∗ and the terminology

used for its distribution can be traced to Fisher (1925). The vast literature related

to the t distribution is summarised in Johnson et al. (1994a, chap. 8).

The t distribution has become a popular model for financial data. Although

a priori there is no reason why financial data should behave in any particular

fashion, empirical studies have identified common features amongst them. These

common features are known as stylised facts. Two of them are that the underlying

distribution of asset returns generally (i) has heavier than normal tails and (ii)

tends to be negatively skew. Due to the asymmetry inherent in their distribution,

there has been considerable interest in extending the t distribution to a family of
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distributions with symmetric as well as asymmetric members. The Pearson type IV

distribution (see Johnson et al., 1994a, chap. 12) and the noncentral t distribution

(see Johnson et al., 1994b, chap. 31) are classical four-parameter extensions which

include the t distribution and asymmetric versions of it. Amongst more recent

proposals, here we highlight the: two-piece t distribution (Hansen, 1994; Fernández

& Steel, 1998); skew-t distribution based on Azzalini-type perturbation (Branco &

Dey, 2001; Azzalini & Capitanio, 2003; Genton, 2004; Ma & Genton, 2004); skew-t

of Jones & Faddy (2003), one construction of which involves the transformation

of a beta random variable.

The two-piece t distribution is a skewed version of the t distribution obtained by

joining together two differently scaled halves of a Student’s t distribution. More

precisely, let tν denote the density function of a t distribution with ν degrees of

freedom and γ ∈ (0,+∞) a constant, then the density function of the two-piece t

distribution can be expressed as

fTP (x) =
2

γ + (1/γ)
[tν(x/γ)I(x ≥ 0) + tν(γx)I(x < 0)] .

The parameter γ controls the skewness. Values of γ < 1 (γ > 1) lead to negatively

(positively) skewed distributions. Also, the density with a parameter value of 1/γ

is the mirror image about 0 of the density with parameter value γ. Note that

in the paper entitled ‘Skew-t distributions via the sinh-arcsinh transformation’, a

different parameterisation of this density is referred to.

The Azzalini-type skew-t distribution is derived using a generalised version of the

approach introduced in Azzalini (1985). Thus its density is a perturbation of the

Student t density. More specifically, denoting the distribution function of the t

distribution with ν degrees of freedom by Tν , its density is given by

fA(x) = 2tν(x)Tν+1

(

αx

√

ν + 1

ν + x2

)

,

where, as in Section 2.1, α ∈ R is the shape parameter. The density is symmetric

if α = 0; otherwise it is positively (negatively) skewed if α > 0 (α < 0).

The skew-t distribution of Jones & Faddy (2003) can be obtained in at least three

different ways; one of which involves transforming a beta random variable. Let X
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denote a beta random variable on (0, 1) with parameters a > 0 and b > 0, then

the random variable

Y =

√

(a+ b)(2X − 1)

2
√

X(1−X)

is distributed according to Jones & Faddy’s skew-t distribution. Alternatively, a

random variable from the distribution can be obtained by transforming two inde-

pendent χ2 random variables with 2a and 2b degrees of freedom, respectively. A

third approach is given in Jones (2001) and involves factorising Student’s t distri-

bution in two parts and raising them to different powers. All three constructions

lead to the density

fa,b(x) = C−1
a,b

(

1 +
x√

a+ b+ x2

)a+1/2(

1− x√
a+ b+ x2

)b+1/2

,

where Ca,b = 2a+b−1B(a, b)(a + b)1/2 and B(·, ·) denotes the beta function. The

parameters a and b control the asymmetry. The density is symmetric if a = b,

whereas if a > b (a < b) it is skew to the right (left).

2.4 Measures of kurtosis

It has been over one hundred years since Thiele (1889) introduced, and Pearson

(1905) popularised, the fourth standardised moment about the mean,

α4 =
E [(X − µ)4]

σ4
,

where X denotes a random variable with finite fourth moment, mean µ and vari-

ance σ2, as a measure of “kurtosis”. Nevertheless, it is still unclear as to what

exactly it measures and what its relationship with the shape of a distribution is.

Because α4 involves fourth-order moments, and not all probability distributions

have finite fourth moments, it need not necessarily exist. In order to circumvent

this drawback, numerous alternative measures representing what their advocates

understood “kurtosis” to be have been proposed in the literature. Invariably such
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measures are invariant to location-scale transformations. Many of the alterna-

tive measures are quantile-based, including those involving L-moments. As some

authors found a single number summary of kurtosis too restrictive, functional mea-

sures have also been proposed. Most of the alternative measures are designed to

reflect some interpretation of kurtosis in the absence of asymmetry because pre-

cisely what kurtosis should represent in the presence of asymmetry was generally

considered to be even more puzzling. Nevertheless, various measures have also

been proposed for use with skew distributions, including those of Moors (1988),

Balanda & MacGillivray (1990), Hosking (1990), Blest (2003) and Critchley &

Jones (2008).

Moors (1986) asserts that kurtosis can be interpreted as a measure of dispersion

of that part of a distribution within one standard deviation of the mean. Using Q

to denote the quantile function, in Moors (1988) he defines the kurtosis measure

M =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(3/4)−Q(1/4)
.

This measure exists and is unique so long as the six values of the quantile function

involved in its calculation exist and are unique. M is a more robust measure of

kurtosis than α4 since it is less sensitive to extreme tails. In the paper entitled

‘Skewness-invariant measures of kurtosis’ we prove that, for distributions generated

using certain kinds of transformation of a symmetric random variable, such as the

sinh-arcsinh transformation for instance, Moors’s measure does not depend on the

asymmetry parameter; i.e. it is skewness-invariant.

A functional, quantile-based, summary of kurtosis was proposed by Balanda &

MacGillivray (1990). They consider that, like location, scale and skewness, kur-

tosis is essentially a comparative concept and concentrate on developing orderings

in terms of what they refer to as the “spread function”, defined for a distribution

with continuous density as

Q (1/2 + u)−Q (1/2− u) , 0 < u < 1/2.

The same authors venture to provide an interpretation of the concept of kurto-

sis, defining it vaguely as “the location and scale-free movement of probability

mass from the shoulders of a distribution into its centre and tails” (Balanda &

MacGillivray, 1988).
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Hosking (1990) does not introduce new ideas about the concept of kurtosis but

defines measures of location, scale, skewness, kurtosis, etc. in terms of L-moments

rather than classical moments. L-moments are expectations of certain linear com-

binations of order statistics which exist if, and only if, the mean of the distribution

exists. This is clearly a weaker restriction than that underpinning α4. L-kurtosis

is defined as

τ4 =

∫ 1

0
P ∗
3 (u)Q(u)du

∫ 1

0
P ∗
1 (u)Q(u)du

,

where P ∗
1 (x) = 2x − 1 and P ∗

3 (x) = 20x3 − 30x2 + 12x − 1 are the first and

third shifted Legendre polynomials, respectively. Hosking notes that, like the

classical measure, the new measure does not have a unique interpretation and is

best thought of as a measure similar to the classical one but giving less weight

to the extreme tails of the distribution. For distributions generated using the

sinh-arcsinh transformation this measure is also skewness-invariant.

Ignoring the limitations of classical moments, and thus flying in the face of many

of the developments described above, Blest (2003) proposes a new moment-based

measure of kurtosis designed with the aim of removing the influence of skewness

on α4. His new measure is obtained by replacing the mean in the definition of α4

by an alternative measure of central location; denoted by ξ and referred to as the

“meson”, mesos meaning “middle” in Greek. The meson is defined as that point

about which the fourth moment of a distribution is minimum. Equivalently, it is

that point about which the third moment is zero. Thus, under the same conditions

as those for α4, Blest’s coefficient of kurtosis is defined as

α∗
4 =

E [(X − ξ)4]

σ4
.

In fact, the effect of skewness on this kurtosis measure is not completely eliminated.

In the paper entitled ‘On Blest’s measure of kurtosis adjusted for skewness’, we

provide examples which illustrate this fact. We also study the performance of

a modified version of Blest’s coefficient in which its denominator is replaced by

E[(X−ξ)2]2. Whilst still not skewness-invariant, this modified version is generally

less affected by asymmetry than Blest’s measure.

Like Balanda & MacGillivray (1990), Critchley & Jones (2008) perceive kurtosis

as something that should be summarised functionally. However, their approach to

describing it is very different. They first define functional measures of skewness for

continuous univariate unimodal distributions, which they refer to as asymmetry
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functions. Then, as a means of describing kurtosis, they introduce left and right

gradient asymmetry functions which are asymmetry functions of simple functions

of the left and right parts of the derivative of the density. They also provide scalar

measures of kurtosis obtained by integrating the gradient asymmetry functions.

2.5 Copulas

The first appearance in the statistical literature of a copula, although then not

actually referred to as such, is often traced to Fréchet (1951). He studied the

following problem. Given two univariate distribution functions, F1 and F2, can

anything be said about the class of bivariate distributions functions with marginal

distribution functions F1 and F2? It is obvious that the class is non-empty since,

if the random variables are independent, the distribution function F1(x)F2(y) is

in the class. Of the numerous publications on this problem, the most profound

results were presented in Sklar (1959). Sklar was also the person who formalised

the concept of, and introduced the name for, copulas. Moreover, in Sklar (1973),

he sketched the proof of the important theorem, to be considered in Section 2.5.3,

which bears his name. During this period, most of the fundamental breakthroughs

in copula theory were obtained in the course of the development of probabilistic

metric spaces and the main source of basic information on them was Schweizer &

Sklar (1983). Further important developments within the field were stimulated by

a highly successful series of six major conferences which took place between 1990

and 2007. Also, in the late nineties, two seminal books were published and became

the standard references in the field: Joe (1997) and Nelsen (1999). The latter was

subsequently enhanced with new results and republished as Nelsen (2006).

Nevertheless, it was the discovery of copulas by researchers in applied fields that

led to the increasing interest in them and the rapid development of copula theory.

The research activity associated with the application of copulas in finance was

particularly frenetic (see, for instance, Cherubini et al., 2004). However, copulas

were also seen as useful tools in fields, like hydrology (see Salvadori et al., 2007),

in which there was a need for more flexible multivariate models.

In the remainder of this section we introduce the notation and terminology that we

will employ henceforth before providing the formal definition of a d-dimensional
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copula and proceeding to a consideration of bivariate copulas. Various fundamen-

tal results are also stated and three different classes of copulas introduced before

the topic of measures of asymmetry for bivariate copulas is finally addressed.

2.5.1 Notation and terminology

We denote the extended real line by R and given d, a positive integer, let R
d
denote

the extended d-dimensional space R× . . .×R. Vector notation will be used, as in

a = (a1, . . . , ad), and we will write a ≤ b if ak ≤ bk for all k ∈ {1, . . . , d}. Given

a ≤ b, we will use [a,b] to denote the d-box, or hyperrectangle or orthotope,

[a1, b1]× . . .× [ad, bd]. The vertices of a d-box are the points c = (c1, . . . , cd) where

ck is equal to either ak or bk. The unit d-cube is the Cartesian product of d unit

closed intervals, that is, Id = I × . . . × I. A 2-box is a rectangle [a1, b1] × [a2, b2]

and the unit 2-cube is the unit square I2 in R
2
. A d-place real function H is a

function of the form

DomH ⊆ R
d −→ RanH ⊆ R,

where Dom and Ran denote the domain and range, respectively.

Let S1, . . . Sd denote non-empty subsets of R, and H a d-place real function such

that DomH = S1 × . . .× Sd. The H-volume of a d-box [a,b] with all its vertices

in DomH is given by

VH([a,b]) =
∑

sign(c)H(c),

where the sum is taken over all vertices c of [a,b] and

sign(c) =







1, if ck = ak for an even number of k ’s,

−1, if ck = ak for an odd number of k ’s.

As an example, when d = 2, the H-volume of a rectangle [a1, b1]× [a2, b2] satisfying

(a1, a2), (a1, b2), (b1, a2), (b1, b2) ∈ S1 × S2 is given by

VH([a1, b1]× [a2, b2]) = H(b1, b2)−H(b1, a2)−H(a1, b2) +H(a1, a2).

We say that a d-place real function H is d-increasing if VH([a,b]) ≥ 0 for all

d-boxes [a,b] whose vertices lie in DomH .
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Let H be a d-place real function with domain DomH = S1×. . .×Sd where each Sk

has a least element ak, that is, ak ≤ s for every s ∈ Sk. We say that H is grounded

if H(t) = 0 for all t ∈ DomH such that tk = ak for at least one k ∈ {1, . . . , d}. If
each Sk is non-empty and has greatest element bk, then we say that H has margins

and the 1-dimensional margins of H are the functions Hk given by

DomHk = Sk ⊆ R −→ R

x 7→ H(b1, . . . , bk−1, x, bk+1, . . . , bd).

Higher dimensional margins are defined by fixing fewer places in H .

2.5.2 Definition of a d-copula

We now have the notation and terminology required to proceed with the definition

of a copula.

Definition 1. A d-dimensional copula is a function C with the following proper-

ties:

1. DomC is the unit d-cube Id,

2. C is grounded and d-increasing,

3. C has 1-dimensional margins Ck, 1 ≤ k ≤ d, such that Ck(u) = u for all

u ∈ Sk.

Equivalently, a d-copula is a function C from Id to I satisfying

a. for every u ∈ Id,

if at least one coordinate of u is 0, then C(u) = 0,

and

if all coordinates of u are 1 except uk, then C(u) = uk;

b. for every a,b ∈ Id such that a ≤ b,

VC([a,b]) ≥ 0.
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2.5.3 Bivariate copulas

Since in the last paper of the appendix, entitled ‘Measures of tail asymmetry for

bivariate copulas’, only bivariate copulas are considered, in the remainder of this

section we concentrate on that class of copulas. We start with the definition of a

bivariate copula.

Definition 2. A bivariate copula, C, is a function from I2 to I with the following

properties

a. for every u, v ∈ I,

C(u, 0) = 0 = C(0, v)

and

C(u, 1) = u, and C(1, v) = v;

b. for every u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The first examples of bivariate copulas that we will consider are the independence

copula, Π, and the Fréchet-Hoeffding lower, W , and upper, M , bounds. These

three copulas are defined as

Π(u, v) = uv, W (u, v) = max{u+ v − 1, 0}, M(u, v) = min{u, v}.

Plots of these functions are shown in Figure 2.1. Later we will justify the name

given to Π. With regard to the copulas W and M , for every copula C and every

(u, v) ∈ I2,

W (u, v) ≤ C(u, v) ≤M(u, v).

This inequality is known as the Fréchet-Hoeffding bounds inequality.

One of the most important results in copula theory is Sklar’s theorem, mentioned

previously. This theorem explains the relationship between multivariate distribu-

tions and their univariate marginal distributions, and is the foundation for most

of the applications of copulas in Statistics.

20



Introduction

(a) (b)

u
v

Π(u, v)

u

v

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) (d)

u
v

W(u, v)

u

v  0.1 

 0.2 

 0.2 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6  0.7 

 0.8 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) (f)

u
v

M(u, v)

u

v

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.1: 3-dimensional plots (panels a, c and e) and contour plots (panels b,
d and f) of the copulas Π, W and M .
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Sklar’s theorem. Let F denote a joint distribution function with marginal dis-

tribution functions F1 and F2. Then there exists a copula C such that, for all

x, y ∈ R,

F (x, y) = C(F1(x), F2(y)). (2.7)

If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely determined

on RanF1 × RanF2. Conversely, if C is a copula and F1 and F2 are distribution

functions, then the function F defined by (2.7) is a joint distribution function with

margins F1 and F2.

Equation (2.7) provides an expression for a joint distribution function in terms of

a copula and two given univariate distribution functions. It can be inverted to

obtain an expression for a copula in terms of a joint distribution function and the

inverses of its two marginal distribution functions. However, a marginal distribu-

tion function does not always have an inverse, and thus we require the concept of

quasi-inverse.

Definition 3. Given a univariate distribution function F , a quasi-inverse of F is

any function F (−1) with domain I such that:

1. if u is in RanF , then F (−1)(u) is any number x ∈ R such that F (x) = u, in

other words, for all u ∈ RanF , F (F (−1)(u)) = u;

2. if u is not in RanF , then

F (−1)(u) = inf{x : F (x) ≥ u}.

We are now in a position to state a corollary of Sklar’s theorem which can be used

to construct copulas from joint distribution functions.

Corollary. Let F be a joint distribution function with continuous margins F1 and

F2, and let F
(−1)
1 and F

(−1)
2 be their respective quasi-inverses. If C is the copula

satisfying Equation (2.7), then for every (u, v) ∈ I2,

C(u, v) = F (F
(−1)
1 (u), F

(−1)
2 (v)).

Sklar’s theorem can be restated in terms of random variables and their distribution

functions as follows.
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Sklar’s theorem. Let X and Y be random variables with distribution functions

F1 and F2, respectively, and joint distribution function F . Then there exists a

copula C such that (2.7) holds. If F1 and F2 are continuous, then C is unique.

Otherwise, C is uniquely determined on RanF1 × RanF2.

The copula C in the last theorem is referred to as the copula of X and Y .

Previously we defined the independence copula as Π(u, v) = uv. Its name is a

consequence of the result that two random variables X and Y are independent if,

and only if, their copula is the independence copula.

We continue with the definitions of absolutely continuous and singular copulas.

Definition 4. Given a copula C, let

C(u, v) = AC(u, v) + SC(u, v),

with

AC(u, v) =

∫ u

0

∫ v

0

∂2

∂s∂t
C(s, t)dtds

and SC(u, v) = C(u, v)−AC(u, v). If C = AC on I2, then C is absolutely continu-

ous, whereas if C = SC on I2, then C is singular. Otherwise, C has an absolutely

continuous component AC and a singular component SC.

For an absolutely continuous copula C, the function

c(u, v) =
∂2

∂u∂v
C(u, v)

is called the density of C. The support of a copula is the complement of the union

of all open subsets of I2 with C-volume zero. When the support of C is I2 we say

that C has full support. When C is singular, its support has Lebesgue measure

zero.

For a copula, C, its associated survival copula, CR, is defined via the equation

CR(u, v) = u+ v − 1 + C(1− u, 1− v),

where the subscript R denotes reflection. Thus, we have a relationship between

the univariate and joint survival functions analogous to the one between univariate

and joint distribution functions.
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Given two random variables, X and Y , let C denote the copula associated with

them and F̄ , F̄1 and F̄2 their joint and univariate survival functions, respectively.

Then

F̄ (x, y) = CR(F̄1(x), F̄2(y)),

and we refer to CR as the survival copula of X and Y .

2.5.4 Symmetry in bivariate copulas

The concept of symmetry is clear-cut for univariate distributions but is not so for

multivariate ones. Focusing on the 2-dimensional case, we consider three different

forms of symmetry that have been proposed within the literature.

Given two random variables, X and Y , and a point (a, b) ∈ R
2, we say that (X, Y )

is:

• marginally symmetric about (a, b) if X and Y are symmetric about a and b,

respectively;

• radially symmetric about (a, b) if the joint distribution function of X − a

and Y − b is the same as the joint distribution function of a−X and b− Y ;

• jointly symmetric about (a, b) if the four pairs of random variables (X −
a, Y − b), (X − a, b− Y ), (a−X, Y − b) and (a−X, b− Y ) have a common

joint distribution.

Another form of symmetry is exchangeability. We say that two random variables

X and Y are exchangeable if the random vectors (X, Y ) and (Y,X) are identically

distributed. This notion of symmetry translates to copula theory as follows. Let

X and Y be continuous random variables with copula C. Then X and Y are

exchangeable if, and only if, C(u, v) = C(v, u) for all u, v ∈ I. A copula satisfying

this last statement will be referred to as being symmetric.

2.5.5 Families of bivariate copulas

This subsection considers two popular families of copulas which provide a wide

variety of copulas that can be very useful when building stochastic models with

properties such as heavy tails, asymmetries, etc.
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The first family is that of elliptical copulas, associated with elliptical distributions.

A random vector X = (X, Y ) is said to have an elliptical distribution with mean

vector µ ∈ R
2 , covariance matrix Σ = (σij) and generator g : [0,+∞) → [0,+∞),

and one denotes the fact by X ∼ E(µ,Σ, g), if it can be expressed in the form

X = µ+RAU,

where AAT = Σ is the Cholesky decomposition of Σ, U is a 2-dimensional random

vector uniformly distributed on the unit circle S1 = {(u1, u2) ∈ R
2 : u21 + u22 = 1},

and R is a positive random variable independent of U , with density given, for

every r > 0, by

fg(r) = 2πrg
(

r2
)

.

Although X does not always have a density function, if the density does exist it

has the form

|Σ|−1/2g

(

1

2
(x− µ)′Σ−1(x− µ)

)

,

For instance, when X has a bivariate normal distribution then g(r) = (2π)−1e−r/2.

Another member of this family is the bivariate Student t distribution with g(r) =

c(1 + r/ν)−(ν+2)/2, where ν denotes the degrees of freedom and c is a normalising

constant.

Consider now an elliptical random vector, (X, Y ), then the copula of X and Y is

an elliptical copula. A closed form for elliptical copulas is generally not available.

The bivariate normal copula, for instance, is given by

Cρ(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(

−s
2 − 2ρst + t2

2(1− ρ2)

)

dsdt,

where Φ denotes the distribution function of the standard normal distribution and

ρ ∈ (−1, 1) denotes the correlation coefficient between X and Y . Likewise, the

bivariate Student t copula is obtained as

Cρ,ν(u, v) =

∫ T−1
ν (u)

−∞

∫ T−1
ν (v)

−∞

1

2π
√

1− ρ2

(

1 +
s2 − 2ρst + t2

ν(1− ρ2)

)−(ν+2)/2

dsdt,

with, as before, Tν denoting the distribution function of a univariate t distribution

with ν degrees of freedom.

Before considering Archimedean copulas, we introduce some extra terminology
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and notation. Any convex, strictly decreasing and continuous function ψ from

[0,+∞] to I satisfying ψ(0) = 1 will be called an Archimedean generator. Given

such a function ψ, its pseudo-inverse, with domain [0,+∞) and range I, is given

by

ψ[−1](t) =







ψ−1(t), if 0 ≤ t ≤ ψ(0),

0, if ψ(0) ≤ t ≤ +∞.

A bivariate copula C is called Archimedean if it admits the representation

C(u, v) = ψ[−1](ψ(u) + ψ(v)),

for an Archimedean generator ψ. The importance of Archimedean copulas results

from the ease with which they can be constructed, their wide variety, and their

appealing properties. Two such properties are that Archimedean copulas are sym-

metric and associative; that is, C(C(u, v), w) = C(u, C(v, w)) for every u, v, w ∈ I.

Two particular families of bivariate Archimedean copulas are the:

• Frank family (Frank, 1978),

−1

θ
log

(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)

, θ ∈ R \ {0},

with generator − log((e−θt − 1)/(e−θ − 1));

• BB2 family (Joe, 1997, p. 150–151),

[

1 + δ−1 log
(

eδu
−θ

+ eδv
−θ − 1

)]1/θ

, θ, δ > 0,

with generator eδ(t
−θ−1) − 1.

2.5.6 Vine copulas

One of the main reasons why copulas have received so much interest in the sta-

tistical literature is that they can be used to model dependencies and marginal

distributions separately. Nevertheless, the elliptical and Archimedean copulas con-

sidered so far do not allow for different forms of dependence between variables. It

is in this context that vine copulas come to the fore.
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In Joe (1996), a probabilistic construction of multivariate distribution functions

was given by iteratively mixing conditional distributions. This was the first ap-

pearance of a pair-copula construction. In Bedford & Cooke (2001, 2002), that

construction was rephrased in terms of the graph theory notion of a regular vine.

Aas et al. (2009) used the pair-copula construction to obtain flexible multivariate

copulas based on normal and t copulas. Results presented at four recent work-

shops on vine copulas have been published in Kurowicka & Joe (2010). Before

presenting the definition of a vine copula, we need to consider the pair-copula

construction and introduce various concepts from graph theory.

Let C be a bivariate copula of an absolutely continuous bivariate random vector

(X, Y ) with joint distribution function F , marginal distribution functions F1 and

F2, joint density f , and marginal densities f1 and f2. Denoting the density of C

by c12, the joint density of (X1, X2) can be expressed as

f(x1, x2) = c12(F1(x2), F2(x2))f1(x1)f2(x2),

and the conditional density as

f(x2|x1) = c12(F1(x2), F2(x2))f2(x2).

This is the germ of the pair-copula construction. We can represent a joint density

f(x1, . . . , xd) as a product of pair-copula densities and marginal densities. For

instance, when d = 3, one possible decomposition is

f(x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1).

However,

f2|1(x2|x1) = c12(F1(x1), F2(x2))f2(x2),

f13|2(x1, x3|x2) = c13|2(F1|2(x1|x2), F3|2(x3|x2))f1|2(x1|x2)f3|2(x3|x2),
f3|2(x3|x2) = c23(F2(x2), F3(x3))f3(x3),

f3|12(x3|x1, x2) = c13|2(F1|2(x1|x2), F3|2(x3|x2))f3|2(x3|x2),
= c13|2(F1|2(x1|x2), F3|2(x3|x2))c23(F2(x2), F3(x3))f3(x3).
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Thus,

f(x1, x2, x3) = f1(x1)f2(x2)f3(x3) (marginals)

× c12(F1(x1), F2(x2))c23(F2(x2), F3(x3)) (unconditional pairs)

× c13|2(F1|2(x1|x2), F3|2(x3|x2)) (conditional pair).

The general expression for the pair-copula decomposition in d dimensions is

f(x1, . . . , xd) =
d−1
∏

j=1

d−j
∏

i=1

ci,(i+j)|(i+1),...,(i+j−1)

d
∏

k=1

fk(xk), (2.8)

with ci,j|i1...,ik = ci,j|i1...,ik(F (xi|xi1 , . . . , xik), F (xj|xi1 , . . . , xik)) for i < j and i1 <

. . . < ik. Note, however, that this decomposition is not unique. The complexity of

Equation (2.8) prompted the introduction of the regular vine structure as a means

of organising the pair-copula construction.

In graph theory, a graph G is an ordered pair (N,E) consisting of a set N of nodes

and a set E of edges. An edge is a 2-element subset of N . A path in a graph is

a sequence of vertices such that there is an edge from each of its vertices to the

next vertex in the sequence. A path is called a cycle if the first and last vertices

in the sequence coincide. Two vertices in a graph are connected if a path exists

from one of them to the other, and a graph is said to be connected if every pair of

its vertices is connected. A graph is referred to as being a tree if it is connected

and has no cycles.

A d-dimensional regular vine is a sequence of d− 1 trees where:

• tree 1 has d nodes and d− 1 edges;

• tree j has d+ 1− j nodes, which correspond to the edges of tree j − 1, and

d− j edges,

with a proximity condition: if two nodes in tree j + 1 are joined by an edge, the

corresponding edges in tree j share a node.

A d-dimensional regular vine distribution is defined by a d-dimensional regular

vine tree structure in which each node in the first tree corresponds to a marginal

density and each edge corresponds to a pair-copula density. The density of a
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regular vine distribution is defined by the product of the pair-copula densities

over the d(d − 1)/2 edges identified by the regular vine tree structure and the

product of the marginal densities.

According to the characteristics of the regular vine structure, we can distinguish

between C-vines (canonical) and D-vines (drawable). We say that a regular vine

structure is canonical if tree j has a unique node that is connected to d− j nodes.

A regular vine structure is said to be drawable if no node in any tree is connected

to more than two nodes.

As an example of a D-vine structure, which can be used to organise the d = 3

dimensional pair-copula construction considered above, is:

• Tree 1:

1 2 3
12 23

• Tree 2:

12 23
13|2

An example of a d = 5 dimensional C-vine structure is given below. The pair-

copula decomposition for this example is far more complex than the one for d = 3.

• Tree 1:

1

2

3

4

5

12

13

14

15
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• Tree 2:

12

13

14

15
23|1

24|1

25|1

• Tree 3:

23|1

24|1

25|1

34|12

35|12

• Tree 4:

34|12 35|12
45|123

Thus, the pair-copula decomposition for this example is

f12345 =

(

5
∏

i=1

fi

)(

5
∏

j=2

c1j

)(

5
∏

k=3

c2k|1

)(

5
∏

l=4

c3l|12

)

c45|123.

The generic steps involved in fitting a pair-copula decomposition to a data set are

as follows. An appropriate vine structure is chosen, and then a suitable family of

copulas. The parameters of the selected copula family are then estimated. The

main problems associated with this general scheme are that, i) there is a huge

number of vine structures from which to choose, and ii), the number of pair-

copulas we have to select in high dimensions is also vast. Asymmetry measures

for bivariate copulas can be helpful when resolving the latter issue.
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2.5.7 Asymmetry measures for bivariate copulas

As we explained in Section 2.5.4, there are various ways the concept of symmetry

can be extended from the univariate context to the multivariate. As far as copulas

are concerned, the most studied notion of symmetry is that of exchangeability.

The first measure of nonexchangeability for bivariate random vectors was proposed

in Nelsen (2007). Nelsen related the concept of nonexchangeability to the notion of

an asymmetric copula as follows. Given a continuous random vector (X, Y ), where

X and Y are identically distributed, with joint distribution function F and copula

C, the set of values of |F (x, y)−F (y, x)| for x, y ∈ R is the same as the set of values

of |C(u, v)−C(v, u)| for u, v ∈ I. Thus, for continuous and identically distributed

random variables, nonexchangeability implies asymmetry of the copula. Nelsen’s

measure of asymmetry is

3 sup
u,v∈I

{|C(u, v)− C(v, u)|} ,

the multiplier 3 being chosen so as to obtain values between 0 and 1; a value of 0

corresponding to a symmetric copula. A generalised version of this measure was

studied in Durante et al. (2010), who used Lp distances to define nonexchange-

ability measures and state properties that a measure of nonexchangeability should

satisfy. Their measures are

dp(C,C
t), p ∈ [1,+∞],

where dp is an Lp distance and Ct(u, v) = C(v, u) for every u, v ∈ I.

Dehgani et al. (2012) explored measures of radial asymmetry for bivariate random

vectors. The structure of their paper is similar to that of Durante et al. (2010),

in that they state various properties that a measure of radial asymmetry should

satisfy and then define the measures

dp(C,CR), p ∈ [1,+∞].

Another recent approach to measure radial asymmetry is that given in Krupskii

& Joe (2012). They develop tail-weighted dependence measures and then consider

the difference between the tail-weighted dependence measure in the lower and the

upper tails as a measure of radial asymmetry.
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2.6 Overview of the remainder of the thesis

The remainder of the thesis is structured as follows. In Section 3 the motivation

for, and main objectives of, the work summarised in the four papers contained in

the appendix are described. Section 4 provides a joint discussion of the results

presented in the four papers. Finally, in Section 5, conclusions are drawn and

prospects for future research discussed.
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In this section we consider the motivation for, and objectives of, the research work

summarised in the four papers contained in the appendix.

Skew-t distributions via the sinh-arcsinh transformation

The focus of this paper is the SAS-t family, a skew-symmetric family of distri-

butions, based on Student’s t distribution, obtained using an adaptation of the

sinh-arcsinh transformation. The primary motivation for proposing this family

was to provide a flexible extension of Student’s t distribution with members dis-

playing a wide range of shapes. Those shapes are regulated by two parameters

controlling the asymmetry and tailweight, respectively, of the distributions within

the family.

As explained in Section 2.3, approaches to extending Student’s t distribution to

obtain flexible families including symmetric as well as asymmetric members have

received considerable attention within the literature of late. The motivation un-

derpinning this activity has often been stimulated by the need, especially within

the modelling of financial data, for distributions with tails heavier than those of

the normal distribution and displaying varying levels of asymmetry. With its tails

being at least as heavy as those of the normal distribution, Student’s t distribution

is then a natural choice for the symmetric base density. The other ingredient in

the construction is the sinh-arcsinh transformation, which provides an appealing

novel means with which to generate highly flexible skew-symmetric families from a

base symmetric distribution. In the paper we show that the use of Student’s t dis-

tribution together with the adaptation of the sinh-arcsinh transformation results

in a highly flexible skew-symmetric family. Once defined, we aimed to establish

the family’s main properties, obtain results for the estimation of its parameters,
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apply it in the analysis of skew heavy-tailed data, and draw a comparison between

it and two of its most popular existing skew-t competitors.

Skewness-invariant measures of kurtosis

This paper deals with measuring kurtosis in the presence of asymmetry. The clas-

sical coefficient of kurtosis, α4, referred to in Section 2.4, does not have an obvious

interpretation and its relationship with the classical coefficient of skewness com-

plicates its meaning in the presence of asymmetry still further. Another inconve-

nience is its potential non-existence, since it is based on moments. This limitation

is a particularly important one for very heavy-tailed distributions. Whilst alter-

native measures of kurtosis which can be used with asymmetric distributions have

been proposed in the literature, little had previously been published regarding

measures of kurtosis that are skewness-invariant. Our motivation was to fill this

gap in the literature and identify measures of kurtosis that are skewness-invariant

for families of distributions obtained via transformation of a base symmetric dis-

tribution. Once it was established that such measures do exist, we aimed to

identify skewness-inducing transformations that leave certain measures of kurto-

sis invariant. In addition, we aimed to establish the conditions under which the

transformations used would result in families of distributions for which certain

measures of kurtosis would be skewness-invariant. A further objective was to

identify illustrative families obtained using the transformation approach for which

the measures of kurtosis considered are indeed skewness-invariant.

On Blest’s measure of kurtosis adjusted for skewness

This paper is closely related to the previous one, and can be considered as an ex-

tension of its ideas to the moment-based context. The catalyst for the paper was

the coefficient of kurtosis adjusted for asymmetry proposed in Blest (2003). Al-

though the classical moment-based kurtosis measure, α4, has the drawback of non-

existence for distributions without a finite fourth moment, it is still widely used

in many applied fields, and thus we, like Blest, perceived the need for skewness-

invariant measures of kurtosis based on moments. This was the main motivation

for our research work conducted on this topic. As objectives, we aimed first to
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study Blest’s coefficient and establish whether or not it was indeed skewness-

invariant. Once we established that Blest’s measure does not completely remove

the effects of asymmetry, our next goal was to develop an alternative moment-

based measure of kurtosis which would better eliminate those effects. We also

sought to obtain lower bounds for the two competing measures as functions of

the classical coefficient of skewness. Our final objective was to use Monte Carlo

simulation to identify the best-performing sample versions of the two measures ob-

tained by plugging-in different moment estimators available in popular statistical

packages.

Measures of tail asymmetry for bivariate copulas

This last paper considers tail asymmetry measures for bivariate copulas. The

primary motivation for our research into this topic was that such measures can be

helpful when seeking appropriate bivariate copulas to use, for instance, in the first

level of a vine structure (see Section 2.5). Our first objective was to provide a set of

desirable properties that a measure of tail asymmetry should satisfy. Our second

aim was to develop tail asymmetry measures capable of discriminating between

different families of copulas when a choice between them has to be made. Finally,

we sought to use real data sets to illustrate the levels of tail asymmetry that might

be expected in practice.
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4 Discussion of Results

Skew-t distributions via the sinh-arcsinh transformation

In the first of the four papers in the appendix we used a minor adaptation of the

sinh-arcsinh transformation to derive a skew-symmetric family of distributions

with Student’s t as its symmetric member. In the adaptation used, the degrees of

freedom parameter of the t distribution, ν, plays the role of a tailweight parameter

and the tailweight parameter of the sinh-arcsinh transformation, δ, is set equal to

one. The distributions within the resulting SAS-t family can assume a wide range

of shapes with tails at least as heavy as those of the limiting normal distribution

obtained as ν → +∞. Being based on only a slight modification of the sinh-arcsinh

transformation, the family inherits the appealing properties identified in Section

2.2.

A rather unappealing property of the SAS-t family is that distributions contained

within it can have densities which are bimodal. However, using numerical methods

to explore the derivative of the density, we established that bimodality only results

when the value of the tailweight parameter ν is very small (< 0.35). Moreover,

the density can be at most bimodal.

When considering the properties of the SAS-t distribution, we obtained a general

expression for its nth moment. The formula involves the Gauss hypergeometric

function and is therefore relatively complex. Using that formula we identified the

attainable region of skewness and kurtosis for SAS-t distributions and established

that almost all of the attainable region for the Azzalini-type skew-t distribution

proposed in Azzalini & Capitanio (2003) is contained within it.

We also showed that the kurtosis measures of Moors (1988) and Hosking (1990)

are skewness invariant for the distributions within the SAS-t family.
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Maximum likelihood based inference for the location-scale extension of the SAS-t

family involves the use of numerical optimisation methods. During applications

involving small-sized samples we found that the likelihood surface needs to be

explored quite extensively in order to ensure that the true maximum likelihood

solution is identified. In addition, the profile log-likelihood functions for some of

the parameters can be rather irregular. Infinite estimates of the tailweight pa-

rameter ν were also found to occur relatively frequently when the sample size is

small. Such estimates are only slightly problematic from an arithmetical perspec-

tive. Their interpretation, nevertheless, is straightforward; they indicate that the

best fitting member of the SAS-t family belongs to its skew-normal subclass. The

real data example included in the paper illustrates that the SAS-t family can pro-

vide a better fit to skew heavy-tailed data than some of its skew-t competitors.

The results from an extensive simulation study indicate that there is generally a

high negative correlation between the location and asymmetry parameters, ξ and

ε, as well as a high positive correlation between the scale and tailweight param-

eters, η and ν. However, as is shown in Jones & Anaya-Izquierdo (2011), such

strong dependencies are not exclusive to the maximum likelihood estimates of the

parameters of the SAS-t family.

When exploring multivariate extensions of the SAS-t family we investigated a

particular multivariate skew-t, with just a single tailweight parameter, obtained

using a t copula.

Skewness-invariant measures of kurtosis

In the second paper presented in the appendix, two classes of quantile-based mea-

sures of kurtosis are identified as being invariant to the skewness parameter of

families of distributions arising from certain types of skewness inducing transfor-

mations. The two classes include various popular measures of kurtosis proposed

as alternatives to the classical coefficient of kurtosis. In addition, we provide a

sufficient condition for the classes of kurtosis measures to be skewness-invariant for

families of distributions obtained via the transformation of a symmetric random

variable. An example of a transformation leading to families of distributions for

which the measures of kurtosis are skewness-invariant is the sinh-arcsinh transfor-

mation introduced in Section 2.2.
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We also show that, for distributions obtained by transformation of scale, there

exists an appropriately defined measure of kurtosis based on their density which

is independent of skewness.

With regard to the classical moment-based approach to measuring kurtosis, the

skewness adjusted kurtosis measure proposed in Blest (2003) is identified as being

equal to the classical coefficient of kurtosis, α4, minus an expression involving a

sinh-arcsinh transformation of the classical coefficient of skewness.

On Blest’s measure of kurtosis adjusted for skewness

In the third paper in the appendix the skewness adjusted measure of kurtosis pro-

posed by Blest (2003) is shown not to be skewness invariant. After reconsidering

the components of its construction, we propose an adaptation of Blest’s measure

and compare the performance of the two measures. We show that our adaptation

of Blest’s measure generally removes the influence of asymmetry slightly more

successfully. Also, we provide lower bounds for both measures and show that the

lower bound for our adaptation of Blest’s measure is closer to being constant.

We also present the results obtained from a simulation study designed to identify

the sample versions of Blest’s measure and our adaptation of it that have lowest

mean squared error. The sample versions of the two measures were those obtained

by plugging in different sample moments computed in popular statistical packages

such as R, STATA, MINITAB, SPSS, SAS, etc. The results indicate that the

tailweight of the distribution from which the data are drawn has a considerable

influence upon which sample versions are identified as performing best.

Measures of tail asymmetry for bivariate copulas

In the fourth of the papers appearing in the appendix we first identify desirable

properties that measures of tail asymmetry should exhibit.

We then introduce three families of measures of tail asymmetry: two based on

the univariate skewness of a projection, and another based on a distance measure

between a copula and its reflected/survival copula. All three families have finite

ranges to facilitate their interpretation. However, none of the three proposed mea-

sures satisfies all of the previously identified desirable properties. The first two,
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ς1 and ς2, measure not only the degree of asymmetry but also the direction of the

asymmetry. The third, ς3, only indicates the degree of asymmetry. A disadvantage

of the latter is that there are copulas with upper and lower tail order of infinity

which attain the maximum value. Thus, some copulas considered extreme accord-

ing to ς3 are not considered extreme according to other tail asymmetry concepts.

Our results show that most tail asymmetry tends to occur for intermediate levels

of positive or negative dependence. Moreover, the copulas attaining extreme tail

asymmetry are found to depend on the particular measure employed. As a conse-

quence, copulas with very different properties can have identical tail asymmetry

values of the three measures.

Sample moments and quantiles, and empirical copulas, can be used to readily

obtain sample versions of the three families. The asymptotic behaviour of ς3 is

not easily established, however.

Two real data sets are used to illustrate the levels of tail asymmetry that might be

expected in practice. Our results suggest that in applications it would be sensible

to employ more than one measure of tail asymmetry as each has quite different

properties.

Joint discussion

In statistical modelling it is crucial to have flexible models capable of describing

those features, such as asymmetry and varying degrees of kurtosis, often exhibited

by real data. As an aid in this endeavour, the SAS-t family offers a highly flexible

family containing distributions ranging from the symmetric to the highly skew with

tails between those of the normal distribution and the very heavy. The simplicity

of many of its properties, particularly those based on quantiles, makes the SAS-t

family a potentially appealing one from both a mathematical statistics perspective

as well as an applications one.

Copulas are a powerful tool with which to generate multivariate distributions from

univariate ones. We used a special case of the t copula to extend the SAS-t family

to a multivariate one, the bivariate case of which has a joint density which is

relatively simple.
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The questions as to what precisely kurtosis is, and how it should be measured,

have vexed the minds of statisticians for over a century. What kurtosis repre-

sents in the presence of asymmetry is a problem of yet a higher order. We have

considered measures of kurtosis that are skewness-invariant. Such measures can

be used to summarise the kurtosis of distributions, like the SAS-t, obtained via

the transformation of a symmetric base random variable, without having to be

concerned about the symmetry, or lack thereof, of the distribution.

Although moment-based measures of kurtosis have the drawback of potential non-

existence, they are nevertheless still widely used. Hence we perceive our results

on Blest’s skewness adjusted measure of kurtosis, and our adaptation of it, to be

particularly relevant to potential users. Moreover, the values taken by sample

measures of skewness and kurtosis can be highly useful when deciding on the sorts

of distributions to employ in the modelling of real data. In this context, our results

on the performance of the different estimators of Blest’s kurtosis measure and our

adaptation of it provide insight on their interpretation.

Similarly, asymmetry measures are useful aids when trying to choose between

copulas with which to model multivariate data. We have proposed three different

families of tail asymmetry measures. Having more than one such family available

means that we can use them to obtain different types of information about the

copulas we might employ.
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5 Conclusions and Future

Research

Skew-t distributions via the sinh-arcsinh transformation

We have derived and studied an appealing family of skew-symmetric distributions

obtained by applying a special case of the sinh-arcsinh transformation to a base

Student’s t random variable. Many of the properties of the resulting SAS-t family

have the same level of complexity as those of the base Student t distribution. Max-

imum likelihood inference reduces to an optimisation problem, with care needing

to be taken when the size of the sample is small. After comparing it to skew-

symmetric extensions of the t distribution introduced by Azzalini & Capitanio

(2003) and Fernández & Steel (1998), it can be concluded that the two-piece t

and the SAS-t distributions have roughly the same number of advantages in terms

of tractability. However, the Azzalini-type skew-t distribution has at least two

interesting geneses.

We also studied a multivariate extension of the SAS-t family obtained by trans-

forming marginals using a special case of the t copula. A thorough investigation

of the properties of potential multivariate extensions is still outstanding. Mak-

ing use of the general form of the t copula, a multivariate family of distributions

in d dimensions with d asymmetry and d degrees of freedom parameters can be

obtained. At least for the bivariate case, the number of parameters needed to

be estimated would not be prohibitive. Another way of extending the univariate

family would be the following. Let X1, . . . , Xd be independent and identically dis-

tributed random variables with Xi ∼ tν . Now consider the transformed random

variables

Yε1,ν = sinh
(

sinh−1(X1) + ε1
)

,
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Yεi,ν,δi = sinh
(

δ−1
i

(

sinh−1(Xi) + εi
))

, 2 ≤ i ≤ d,

with ε1, . . . , εd ∈ R controlling asymmetries and ν, δ2, . . . , δd > 0 controlling tail-

weights. It would be of interest to study the multivariate family of distributions

obtained by connecting such random variables using the t copula.

A related line of research that we are presently pursuing is the development of a

likelihood ratio test, based on the use of the SAS-normal model of Jones & Pewsey

(2009), as an alternative to the four tests considered by Lehmann (2009) for the

classic problem of testing the hypothesis of a common underlying population for

two independent samples. At present we are in the process of performing an

extensive Monte Carlo experiment designed to explore the operating characteristics

of the five tests.

A further potential line of future research would be to explore alternatives to the

sinh-arcsinh transformation.

Skewness-invariant measures of kurtosis

We have identified measures of kurtosis that are invariant to the skewness param-

eter of families of distributions derived using certain types of transformations. A

sufficient condition is given in terms of the transformation used to obtain a given

family.

A potential line of future research would be to investigate the sample versions

of the measures of kurtosis. First, choices would have to be made amongst the

various quantile estimators available. Dielman et al. (1994) provide a useful survey

of quantile estimators, while Hyndman & Fan (1996) study quantile estimators

implemented in statistical packages. After the identification of suitable quantile

estimators, a Monte Carlo study would need to be performed in order to compare

the mean squared errors of the different sample versions. Moreover, a study of

the robustness of these sample versions would provide insight into their skewness-

invariance in practice.

In our work on skewness-invariant kurtosis measures we focused on quantile-based

measures for the univariate context. Another interesting line of future research
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would be the development of skewness-invariant quantile-based measures of kurto-

sis for multivariate distributions. First of all the definition of a multivariate quan-

tile with which to work would need to be chosen. A recently proposed definition

is given in Hallin et al. (2010). Of course, it would be necessary to establish that

the proposed measures were indeed measuring kurtosis. Their skewness-invariance

might also be found to depend on the definition of multivariate asymmetry em-

ployed.

On Blest’s measure of kurtosis adjusted for skewness

We have studied a moment-based measure of kurtosis due to Blest (2003) as well

as a modification of it. Although neither measure is skewness-invariant, our adap-

tation slightly outperforms Blest’s in terms of its ability to remove the influence

of skewness. Lower bounds for both measures were also derived. From the results

of a study into the performance of different sample versions of the two measures,

we concluded that the sample version identified as being best depends on the tail

behaviour of the population from which the data are drawn.

Since the classical coefficient of kurtosis is widely used, the development of a

moment-based measure of kurtosis that might be skewness-invariant, at least for

certain kinds of distributions, would be another topic for future research.

Measures of tail asymmetry for bivariate copulas

We have identified a desirable set of properties for tail-asymmetry measures, and

proposed three families of measures of tail asymmetry obtained using the univari-

ate skewness of a projection and the distance between a copula and its survival/re-

flected copula. As the three families have different advantages and disadvantages,

in practice it is sensible to make use of more than just one of them. With two

examples involving real data we show that tail asymmetry is more pronounced

than nonexchangeability.

A potential focus for future research is the development of measures of kurtosis

based on E
[

|U + V − 1|k
]

with k > 2 and (U, V ) ∼ C. The minimum occurs

for countermonotonic random variables, that is, random variables with copula W .
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The maximum perhaps occurs for comonotonic random variables, i.e. whose copula

is M . Geometrically, a singular copula with support on the line segments

• v = u for 0 < u < a,

• v = 1 + a− u for a < u < 1,

or

• v = 1− a− u for 0 < u < 1− a,

• v = u for 1− a < u < 1,

with 0 < a < 1/2, would have high kurtosis as defined above.
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1 Introduction

Student’s t distribution is a fundamentally important distribution in Statistics, its dis-
covery byW.S. Gosset and formalisation by R.A. Fisher representing one of the mile-
stones in the development of the field. As well as its primary role in classical normal
sampling theory, it now figures prominently as an empirical model for heavy-tailed
data, particularly in finance (see Rachev et al. 2005). Variates simulated from it are
frequently used in simulation experiments designed to assess robustness. Johnson et
al. (1994b, Chap. 28) provide a summary of the extensive literature associated with
the t distribution.
There has been much recent interest in the modelling of asymmetry together with

heavy tails. Let us refer to any four-parameter family of distributions which con-
tains the t distribution as a three-parameter (location, scale and degrees of freedom)
symmetric subfamily as a skew t distribution. Early examples which can be seen in
this light are the Pearson Type IV distribution (Johnson et al. 1994a, Chap. 12) and
the noncentral t distribution (Johnson et al. 1994b, Chap. 31). Renewed interest has
resulted in further, generally more tractable, skew t proposals being made in the lit-
erature. Amongst these figure: the two-piece t distributions of Hansen (1994) and
Fernández and Steel (1998); the skew t distributions based on Azzalini’s (1985) per-
turbations of the t distribution (Branco and Dey 2001; Azzalini and Capitanio 2003;
Genton 2004; Ma and Genton 2004); the skew t distribution of Jones and Faddy
(2003), obtained by transforming a beta random variable; and the skew t distribu-
tion arising from mean-variance mixing the normal distribution (Aas and Haff 2006).
Probably the most successful of these are the Azzalini-type skew t distribution (in the
form arising from scale mixing Azzalini’s skew-normal distribution; see also Azzalini
and Genton 2008) and the two-piece t distribution. The density of the Azzalini-type
skew t distribution is

fA(x) = 2fν(x)Fν+1
(

αx

√
ν + 1
ν + x2

)
, x,α ∈ R; (1)

and that of the two-piece t distribution is

fTP(x) = fν

(
x

1+ γ

)
I (x < 0) + fν

(
x

1− γ

)
I (x ≥ 0), (2)

where I denotes the indicator function and−1< γ < 1. Here and throughout, fν and
Fν denote the density and distribution functions, respectively, of the t distribution on
ν degrees of freedom, denoted tν . These two distributions are compared briefly in
the rejoinder to Jones (2008); an inferential advantage of two-piece distributions has
been given by Jones and Anaya-Izquierdo (2011).
Also recently, Jones and Pewsey (2009) proposed the sinh-arcsinh transformation

as a general means of generating classes of distributions containing symmetric, as
well as asymmetric, cases with varying tailweights. In their formulation, a base ran-
dom variable symmetric about 0, Z, is related to its skew-symmetric analogue, Xε,δ ,
via the (readily invertible) sinh-arcsinh transformation

Z = sinh{δ sinh−1(Xε,δ) − ε
}
, (3)
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where ε ∈ R is a skewness parameter and δ > 0 controls tailweight. The distributions
for Xε,δ which result are skewed to the left (right) if ε < 0 (ε > 0). Their tailweights
are lighter (heavier) than those of Z if δ > 1 (δ < 1). Obviously, X0,1 = Z.
In this paper, we propose an alternative skew t distribution generated by a re-

stricted version of the sinh-arcsinh transformation that accommodates the fact that
the tν distribution already has a parameter controlling tailweight, namely, its degrees
of freedom ν > 0. Letting Tν denote a random variable from the tν distribution, we
replace Z by Tν and set δ = 1 in (3) so as to define what we will refer to as a sinh-
arcsinhed t random variable, Tε,ν , through the transformation

Tν = Sε(Tε,ν) = sinh(sinh−1(Tε,ν) − ε
)
. (4)

This is a skew t distribution because the symmetric t distributions correspond to
ε = 0 and ε �= 0 introduces and controls skewness as above. Tε,ν has tails that, at
one mathematical level, correspond to those of Tν and are therefore at least as heavy
as those of the limiting sinh-arcsinhed normal distribution with δ = 1, obtained as
ν → ∞. Note that S−1

ε = S−ε .
Numerous basic properties of the sinh-arcsinhed t family are studied in the seven

subsections of Sect. 2. Likelihood based methods of inference for its parameters are
described in Sect. 3 and applied, in Sect. 4, in the analysis of data on glass fibre
strengths. Multivariate extensions are briefly considered in Sect. 5. The paper ends
with Sect. 6 dedicated to conclusions. Comparisons with the Azzalini-type and two-
piece skew t distributions will be made briefly wherever appropriate throughout the
paper. The sinh-arcsinhed t distribution proves to be tractable and our comparisons
will allow us to claim that it is as advantageous in many ways as the best of its
competitors, and correspondingly preferable to others.

2 Properties of the family

2.1 Density, distribution and quantile functions, and simulation

Transformation of Student’s t density via inversion of (4) results in Tε,ν having den-
sity

fε,ν(x) = Cε(x)√
1+ x2

fν

(
Sε(x)

) = Kν

Cε(x)√
1+ x2(1+ ν−1S2ε (x))(ν+1)/2 , x ∈ R, (5)

where Cε(x) = cosh(sinh−1(x) − ε) = √
1+ S2ε (x) and Kν = �((ν + 1)/2)/

(
√

νπ�(ν/2)) is the normalising constant of the tν density, fν . The level of com-
plexity of the density of Tε,ν is therefore effectively that of tν . We note that Sε(x) can
be represented in a variety of further ways, the most simple and compact of which is

Sε(x) = x cosh ε −
√

x2 + 1 sinh ε. (6)

Correspondingly, Cε(x) = √
x2 + 1cosh ε − x sinh ε.

Changing the sign of ε leads to f−ε,ν(x) = fε,ν(−x). Examples of the shapes that
can be assumed by (5) for non-negative ε are presented in Fig. 1. The densities in
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Fig. 1 Examples of density (5) with: (a) ε = ∞ and, from bottom to top at x = 0.4, ν = 0.35, 0.5, 1, 2, 5,
20,∞; (b) ν = 0.35; (c) ν = 2; (d) ν = ∞. In (a), the densities have been rescaled to match formula (11);
in (b)–(d) the four plotted densities have been shifted to have medians which are zero and correspond,
from top to bottom at x = 0, to ε = 0,1,2,3

panel (a) are those obtained as ε → ∞. The other three panels depict symmetric as
well as asymmetric densities for three different values of ν, the relevance of which
will become apparent as we progress.
The distribution function of Tε,ν is given in terms of the distribution function Fν

of tν by

Fε,ν(x) = Fν

(
Sε(x)

)
. (7)

Hence the computation of values of Fε,ν(x) is simple so long as routines are available
to compute values of Fν(x). Fε,ν(x) can most easily be explicitly expressed as

Fε,ν(x) = FB

(
1

2

(
1+ Sε(x)√

ν + S2ε (x)

)
; ν

2
,
ν

2

)
,
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where FB is the beta distribution function (or incomplete beta function ratio) given
by FB(y;a, b) = B−1(a, b)

∫ y

0 ua−1(1− u)b−1 du.
Inversion of (7) results in the quantile function of Tε,ν being

Qε,ν(u) = S−ε

(
Qν(u)

)
, 0< u < 1, (8)

where Qν(u) denotes the quantile function of Tν . So both Fε,ν and Qε,ν have essen-
tially the same order of complexity as their counterparts, Fν and Qν , of Tν . This is
also true of the two-piece t distribution but not of the Azzalini-type skew t distrib-
ution because the t distribution function appears in the skew t density function with
consequent complications for its distribution function. A particularly elegant result
for the new distribution is that the median of Tε,ν is given by sinh(ε).
Similarly,

Tε,ν = S−ε(Tν) = sinh(sinh−1(Tν) + ε
) = Tν cosh ε +

√
T 2ν + 1 sinh ε, (9)

and thus the simulation of Tε,ν random variates is essentially at the same level of com-
plexity as that of simulation from the tν distribution. To date, the most efficient and
simple algorithm available for simulating Tν variates is Bailey’s (1994) adaptation of
the Box–Müller method. Both two-piece and Azzalini-type skew t random variates
are obtainable from t random variates via simple formulae too, and ours holds only
a slight edge: each Azzalini-type random variate is a simple function of the bivariate
t random variate readily provided by the Box–Müller-type method, while the two-
piece distribution requires a further uniform random variate in addition to the single
t variate required here.

2.2 Tailweight and limiting distributions

As |x| → ∞, Cε(x) ≈ exp{−sgn(x)ε}|x| and Sε(x) ≈ sgn(x)Cε(x) where sgn(x)

denotes the sign of x. Using these results we obtain

fε,ν(|x|) ≈ exp{sgn(x)νε}
|x|ν+1 . (10)

The dependence of the tails on x is the same as that of the t , Azzalini skew t and
two-piece t distributions. Also, the sinh-arcsinhed t distribution shares with the latter
two skew t distributions the property that the ratio of the constants in the limiting left
and right tailweights depends on ε (as well as ν).
As ν → ∞, (5) tends to the density of a normal-based sinh-arcsinh distribution

with δ = 1 (see Jones and Pewsey 2009, Sect. 2.3), various examples of which are
portrayed in panel (d) of Fig. 1. These are true “skew-normal” densities in the sense
that both their tails are normal-like (a property in common with the two-piece t dis-
tribution but not Azzalini’s, 1985, skew-normal distribution.)
As f−ε,ν(x) = fε,ν(−x), we focus on results for positive ε when considering lim-

iting skewness distributions. A suitable standardisation of location and scale proves
to be to consider the distribution of Y = 2e−εTε,ν −1. An easy calculation then shows
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that as ε → ∞, Y → Tν + √
1+ T 2ν , with density

f∞,ν(y) = 2νν(ν+1)/2Kν

yν−1(1+ y2)

{1+ 2(2ν − 1)y2 + y4}(ν+1)/2 , y > 0. (11)

These are densities of the inverse of the identity-minus-reciprocal transformation
sinh(log(Y )) = (Y − (1/Y ))/2 discussed by Jones (2007). An immediate conse-
quence, verifiable from density (11), is that the tails retain the behaviour of the t

tails in the sense that f∞,ν(y) ≈ y−(α+1) as y → ∞ and adapt to f∞,ν(y) ≈ y−(α+1)
as y → 0. Density (11) is plotted in panel (a) of Fig. 1 for a range of ν-values. There,
the density for ν = ∞ is that obtained as both ν and ε tend to ∞ and is the density
of Y = Z + √

1+ Z2 where Z is standard normal. These limiting densities display
a wider range of shapes than do the limiting skewness distributions of Azzalini-type
skew t and two-piece t densities which are both the half-t density. (Only when ν = 1
does density (11) reduce to a half-t , actually half-Cauchy, density.)

2.3 Modality

The first derivative of (5) with respect to x is proportional to

−{√1+ x2Sε(x)(1+ νS2ε (x)) + x
√
1+ S2ε (x)(ν + S2ε (x))}

(1+ x2)3/2(ν + S2ε (x))(ν+3)/2 .

The denominator of this quantity is positive and the numerator is zero for any x

satisfying

− x√
1+ x2

= Sε(x)(1+ νS2ε (x))√
1+ S2ε (x)(ν + S2ε (x))

. (12)

Clearly, the left side of (12) is a decreasing function in x (with horizontal asymptotes
at 1 and −1). The right side of (12) is an increasing function of y = Sε(x) and hence
of x if

y4
(
2ν2 + ν − 2) + y2

(
3ν2 − 1) + ν ≥ 0 for all y

and this is readily seen to be the case provided ν ≥ (
√
17− 1)/4	 0.78 (with hori-

zontal asymptotes at −ν and ν). In such cases, there is a unique point where equality
is reached in (12) i.e. the density is unimodal.
Numerical investigation of the behaviour of expression (12) has led us to conclude

that fε,ν is, in fact, always unimodal if ν ≥ 0.35. Of course, f0,ν , the density of the
tν distribution, is always unimodal. However, for ν < 0.35 there are values of ε for
which the density is bimodal. As ν decreases, the range of ε-values corresponding to
bimodal densities increases and, for positive ε, the right-hand mode increases expo-
nentially. For f∞,ν of (11), bimodality emerges at around ν = 0.23.
It must be admitted that we perceive the bimodality of (5) for ν < 0.35 to be an

unappealing property, primarily because we generally favour the use of finite mix-
tures as a means of modelling multimodality. We therefore propose that, in appli-
cations involving obviously skew data, ν should be restricted to being greater than
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0.35. However, this is a constraint of barely any practical importance; in a closely
related context, Jones and Faddy (2003 p. 163) state that “such distributions have
extremely heavy tails and the whole business of directly modelling data containing
many extreme outliers is not to be recommended”. On the other hand, two-piece t

distributions are clearly always unimodal with mode at 0; Azzalini-type skew t dis-
tributions appear to be unimodal for all ν too although this is harder to prove and,
like (5), no explicit formula is available for the mode.

2.4 Moments

Property (10) implies that, as for t distributions, the r th moment of Tε,ν exists pro-
vided r < ν. In order to obtain the moments of Tε,ν we make use of expression (9); it
is found that

E
[
T r

ε,ν

] =

r/2�∑
m=0

(
r

2m

)
cosh2m(ε) sinhr−2m(ε)E

{
T 2mν

(
1+ T 2ν

)(r/2)−m}
,

where 
·� denotes the floor function. Now,

E
[
T 2mν

(
1+ T 2ν

)(r/2)−m] = 2ν(ν+1)/2Kν

∫ ∞

0

t2m(1+ t2)(r/2)−m

(ν + t2)(ν+1)/2 dt

= ν(ν+1)/2Kν

∫ ∞

0

wm−(1/2)(1+ w)(r/2)−m

(ν + w)(ν+1)/2 dw

= ν(ν+1)/2KνB
(
(ν − r)/2,m + (1/2)

)
× 2F1

(
(ν + 1)/2, (ν − r)/2;m + (ν + 1− r)/2;1− ν

)

= νν/2�((ν + 1)/2)�((ν − r)/2)�(m + (1/2))√
π�(ν/2)�(m + (ν + 1− r)/2)

× 2F1
(
(ν + 1)/2, (ν − r)/2;m + (ν + 1− r)/2;1− ν

)
,

the equalities arising from a slight rearrangement of the definition, the substitution
w = t2, (3.197.9) of Gradshteyn and Ryzhik (1994), and expansion of Kν and the
beta function, respectively. The formula from Gradshteyn and Ryzhik is

∫ ∞

0
xλ−1(1+ x)−μ+ν(x + β)−ν dx = B(μ − λ,λ)2F1(ν,μ − λ;μ;1− β),

for μ > λ > 0, and we set λ = m+ (1/2), μ = m+ (ν + 1− r)/2, ν = (ν + 1)/2 and
β = ν. Denoting the ith moment of a Tν random variable by Ni (i < ν and even), i.e.

Ni =
{√

π �

(
ν

2

)}−1
νi/2�

(
i + 1
2

)
�

(
ν − i

2

)
,
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we note that E[T 2mν (1+ T 2ν )(r/2)−m] reduces to Nr when m = r/2 since the hyper-
geometric function then reduces to ν(r−ν)/2 by (9.121.1) of Gradshteyn and Ryzhik
(1994).
The first four moments of Tε,ν simplify to:

E[Tε,ν] = sinh(ε)ν
ν/2�((ν + 1)/2)�((ν − 1)/2)

�2(ν/2)

× 2F1((ν + 1)/2, (ν − 1)/2;ν/2;1− ν); (13)

E[T 2ε,ν] = sinh2(ε) + {1+ 2 sinh2(ε)}N2;

E[T 3ε,ν] = sinh(ε)ν
ν/2�((ν + 1)/2)�((ν − 3)/2)

2�2(ν/2)

× [
3cosh2(ε)2F1

(
(ν + 1)/2, (ν − 3)/2;ν/2;1− ν

)
+ (ν − 2) sinh2(ε)2F1

(
(ν + 1)/2, (ν − 3)/2; (ν − 2)/2;1− ν

)];
E[T 4ε,ν] = sinh4(ε) + 2 sinh2(ε)(3+ 4 sinh2(ε))N2

+ [
1+ 8 sinh2(ε)(1+ sinh2(ε))]N4.

The presence of the hypergeometric functions makes these formulae a little more
complex than those for the Azzalini-type skew t and two-piece t distributions.

2.5 Skewness measures

As with all sinh-arcsinh distributions, the parameter ε in the sinh-arcsinhed t dis-
tribution is a bona fide skewness parameter in the classical convex ordering sense
of van Zwet (1964); see Jones and Pewsey (2009, Sect. 2.2). (The same is true of
the parameter intended to control skewness in the two-piece distributions, Klein and
Fischer 2006, Sect. 5, but not in the Azzalini-type skew t distribution.) Many well-
known summary measures of skewness are therefore monotone functions of ε—and
take their maximum values for distribution (11)—including the two we discuss next
(MacGillivray 1986).
First, we consider the classical moment based measure of skewness γ1 = μ3/μ

3/2
2 ,

where μk = E[(X − μ)k]. Panel (a) of Fig. 2 is a contour plot of γ1/(1 + γ1) for
density (5) with ε ≥ 0. Second, as γ1 is unavailable when ν ≤ 3 (i.e. λ ≤ 0.75), we
consider the quantile based Bowley coefficient as an alternative measure of skewness.
Panel (b) of Fig. 2 is a contour plot of

Bε,ν = Qε,ν(3/4) − 2Qε,ν(1/2) + Qε,ν(1/4)

Qε,ν(3/4) − Qε,ν(1/4)
= tanh(ε)(

√
1+ Q2

ν(3/4) − 1)
Qν(3/4)

,

again as a function of ρ and λ. (The denominator in the definition of Bowley’s coeffi-
cient re-scales the numerator so that the coefficient lies in [−1,1].) Thus, essentially,
Bε,ν is at the same level of complexity as Qν , the quantile function of Tν (similarly
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Fig. 2 Contour plots, for density (5) with ε ≥ 0, of (a) γ1/(1+γ1) and (b) Bowley’s skewness coefficient
as functions of ρ = ε/(1 + ε) and λ = ν/(1 + ν). In (a), γ1 is undefined for ν ≤ 3. In (b), the vertical
contour line corresponds to a value of zero for Bowley’s coefficient

to the two-piece t distribution but unlike the Azzalini-type skew t distribution). As
ε → ±∞, Bε,ν → ±(

√
1+ Q2

ν(3/4) − 1)/Qν(3/4). Comparing the two panels of
Fig. 2, it can be seen that, for a given value of ν, neither skewness measure increases
appreciably as ε increases beyond about 2.3 (ρ > 0.7).
In a slightly different vein, we consider the behaviour of the density-based asym-

metry function proposed by O’Hagan (1994, Sect. 2.6) and Critchley and Jones
(2008) for unimodal distributions; see also Avérous et al. (1996) and Boshnakov
(2007). Figure 3 shows several examples of their asymmetry function

γ ∗(p) = xR(p) − 2m + xL(p)

xR(p) − xL(p)
, 0< p < 1,

where m denotes the mode of the density and xR(p) and xL(p) both satisfy f (x) =
pf (m). We note the peculiar behaviour of the asymmetry function for ε > 1 and ν

in the neighbourhood of the lower bound ν = 0.35 ensuring unimodality. For larger
values of ν, the asymmetry functions behave like examples shown in Critchley and
Jones (2008, Sect. 3), increasing monotonically with increasing ε and decreasing p.
For such ν-values, the marginal increase in its values as ε increases from 2 to 3 is
consistent with the behaviour of the other two skewness measures considered previ-
ously.

2.6 Measures of kurtosis

We first consider the behaviour of the classical moment based measure of (excess)
kurtosis γ2 = (μ4/μ

4
2)−3. Figure 4 presents a contour plot for density (5) with ε ≥ 0

of γ2/(1+ γ2) as a function of ρ = ε/(1+ ε) and λ = ν/(1+ ν). This only exists for
ν > 4 (λ > 0.8). As expected, γ2 decreases with increasing ν. It also increases with
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Fig. 3 The asymmetry function γ ∗(p) of density (5) for (a) ν = 0.35, (b) ν = 2 and (c) ν = ∞ degrees
of freedom and ε = 1 (solid), ε = 2 (short dashed), ε = 3 (long dashed)

increasing ε although, as was the case for the skewness measures portrayed in Fig. 2,
for a given value of ν, γ2 increases only very marginally as ε increases beyond 2.3
(ρ > 0.7).
Figure 5 displays the attainable region of skewness and excess kurtosis for the

sinh-arcsinhed t family. Also included are the analogous regions for the Azzalini-
type skew t and two-piece families. The former is almost entirely contained within
the region for the sinh-arcsinhed t . The sinh-arcsinhed t (two-piece) family admits
the wider skewness range for distributions with high (low) levels of kurtosis. Right-
hand boundaries of the Azzalini-type and two-piece regions coincide where each cor-
responds to (their limiting) half t distributions. All three regions occupy substantial
parts of the maximal region for unimodal distributions in which γ2 ≥ γ 21 − 186/125
(Klaassen et al. 2000).
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Fig. 4 Contour plot, for density
(5) with ε ≥ 0, of γ2/(1+ γ2) as
a function of ρ = ε/(1+ ε) and
λ = ν/(1+ ν)

Fig. 5 Attainable regions of
non-negative skewness and
excess kurtosis, represented in
terms of the measures
γ1/(1+ γ1) ∈ [0,1) and
γ2/(1+ γ2) ∈ (0,1), for the
sinh-arcsinhed t (solid),
Azzalini-type skew t (short
dashed) and two-piece t (long
dashed) distributions. Also
included is Klaassen et al.’s
(2000) lower bound for kurtosis
as a function of skewness,
γ2 ≥ γ 21 − 186/125, for
unimodal distributions
(dot-dashed)

As we show elsewhere (Jones et al. 2010), quantile based measures of kurtosis
involving only (possibly scaled) differences between quantile function values of the
formQ(u)−Q(1−u) have, for all sinh-arcsinh distributions, the appealing property
of being invariant to the value taken by the skewness parameter ε. Thus, for example,
the quantile based kurtosis measure of Moors (1988),

Mε,ν = Qε,ν(7/8) − Qε,ν(5/8) + Qε,ν(3/8) − Qε,ν(1/8)

Qε,ν(6/8) − Qε,ν(2/8)
,

reduces to Mν = (Qν(7/8) − Qν(5/8))/Qν(6/8). A standardised version of it,
M∗

ν = Mν/(1 + Mν), is portrayed in panel (a) of Fig. 6 and represents the Moors
kurtosis signature of the t , and hence sinh-arcsinhed t , family. In particular, for
ν = 0.35,1,2,∞, Mν = 7.11,2,1.52,1.23, respectively. Note the minor decrease
inMν as ν increases from 2 to∞. Similarly, Hosking’s (1990) L-kurtosis measure is
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Fig. 6 Plots, for density (5) with arbitrary ε, of (a) M∗
ν = Mν/(1 + Mν) and (b) τ4,ν as functions of

λ = ν/(1+ ν). For ν < 1, τ4,ν is undefined

also invariant to the value taken by the skewness parameter ε, being given by

τ4,ν =
∫ 1
0 Qν(u)P ∗

3 (u)du∫ 1
0 Qν(u)P ∗

1 (u)du
, ν > 1,

where P ∗
1 (u) = 2u − 1 and P ∗

3 (u) = 20u3 − 30u2 + 12u − 1. The constraint, ν > 1,
is required to ensure the existence of the mean and hence τ4,ν . As panel (b) of Fig. 6
attests, the shape of τ4,ν is very similar to that ofM∗

ν for ν > 1.

2.7 The simplest skew-symmetric sinh-arcsinhed t class and related topics

The simplest symmetric t distribution is the t2 distribution (Jones 2002). Similarly,
the simplest class of three-parameter skew-symmetric distributions within the sinh-
arcsinhed t family is the sinh-arcsinhed t2 class. Its density, distribution and quantile
functions have the simple forms

fε,2(x) = Cε(x)√
1+ x2(1+ C2ε (x))3/2

,

Fε,2(x) = 1

2

(
1+ Sε(x)√

2+ S2ε (x)

) (14)

and

Qε,2(u) = S−ε

(
2u − 1√
2u(1− u)

)
.

Examples of fε,2(x) for four different ε-values are presented in panel (c) of Fig. 1.
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Using (13) together with (15.3.3) and (17.3.10) of Abramowitz and Stegun (1965),
the mean of the distribution is given by

E[Tε,2] = π sinh(ε)2F1(3/2,1/2;1;−1) = sinh(ε)E(−1) ≈ 1.9101 sinh(ε),
where E denotes the complete elliptic integral of the second kind. Its variance and
higher moments do not exist. However, quantile based measures of dispersion, skew-
ness and kurtosis can easily be calculated due to the simple form of the quantile
function. The values taken by Bowley’s coefficient correspond to λ = 2/3 in panel
(b) of Fig. 2 and range between 0 and approximately 0.35. Panel (b) of Fig. 3 por-
trays the asymmetry functions associated with it for three positive ε-values. As stated
previously, the Moors kurtosis measure is 1.52 for this entire class, and Hosking’s
L-kurtosis measure is 0.375.
Even simpler but very similar distributions to (5) arise if the sinh-arcsinh trans-

formation (4) is applied to the scaled random variable Yν = Tν/
√

ν rather than to Tν

itself. Development of our ideas in this context has been eschewed because then the
symmetric special cases of our model will be differently scaled tν distributions rather
than the tν distributions themselves.
In fact, if the original sinh-arcsinh transformation (3) is applied to Y2 then an ex-

isting four-parameter family of distributions is obtained, namely the LU distributions
introduced by Tadikamalla and Johnson (1982) (with their δ equal to twice our δ and
their γ = −2ε). LU distributions are, from Tadikamalla and Johnson but in our no-
tation, the distributions of L ≡ sinh[δ−1{(L/2) + ε}] where L is a standard logistic
random variable. This matches with our construction L = sinh[δ−1{sinh−1(Y2) + ε}]
since Y2 is distributed as sinh(L/2). Tadikamalla and Johnson (1982) provide the
classical properties of the LU family, whilst Jones (2004, Sect. 6.2) considers re-
lations between the LU and other distributions. The LU distributions are not skew t

distributions, however, in that none but the scaled t2 distribution is a symmetric mem-
ber and the symmetric density with lightest tails is the logistic; they are, in a strong
sense, skew logistic distributions.

3 Likelihood based inference

In practice one will generally be interested in fitting the location-scale extension of
(5). Introducing the location and scale parameters, ξ ∈ R and η > 0, respectively, in
the usual way, the density becomes η−1fε,ν((x − ξ)/η) and the log-likelihood for a
random sample, X1, . . . ,Xn, drawn from it is given by

�(ξ, η, ε, ν) = n(logKν − logη)

+
n∑

i=1

[
logCε(Yi) − 1

2
log

(
1+ Y 2i

) − (ν + 1)
2

log

(
1+ S2ε (Yi)

ν

)]
,

where Yi = (Xi − ξ)/η.
As is generally the case, numerical methods of optimisation must be used to iden-

tify the maximum likelihood solution. We have successfully employed the simplex
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method of Nelder and Mead (1965) which is the default option, for instance, of R’s
optimisation routines. Particularly for small sized samples, a detailed exploration of
the likelihood surface is required in order to ensure the global maximum is properly
identified. When n is small, the profile log-likelihood functions for some of the para-
meters, particularly that for the location parameter ξ , can be far from smooth. Also,
estimates on the upper ν boundary of the parameter space can arise fairly frequently
when n is small. Whilst infinite estimates of ν might be interpreted as a problem from
an accounting perspective (which can be resolved, for example, by transforming to
λ = ν/(1 + ν) ∈ (0,1)), their interpretation is clear cut. They simply indicate that
some member of the skewed normal sub-class is the most likely model from within
the sinh-arcsinhed t family. It is important to note that these various issues are by
no means exclusive to the optimisation problem considered here (see, e.g., Pewsey
2000).
The score equations and elements of the observed information matrix are given

in the Appendix. The expected information matrix, particularly useful in theoreti-
cal work, can be calculated from the latter with the aid of numerical integration to
compute expected values. Either matrix can be employed together with standard as-
ymptotic normal theory as the basis of large-sample inferential techniques such as
confidence set construction and hypothesis testing. Alternatively, profile likelihood
methods are always available. All this appears to be on much of a par with the sit-
uation for the Azzalini-type skew t distribution; on the other hand, the high level of
parameter orthogonality available with the two-piece distribution (Jones and Anaya-
Izquierdo 2011) is not available here.
Extensive simulation based investigations confirmed the strong correlations be-

tween the maximum likelihood estimates (MLEs) of the location and skewness para-
meters, ξ and ε, and those of the scale and tailweight parameters, η and ν, predicted
in a related context by Jones and Anaya-Izquierdo (2011). Use of the reparametrisa-
tion ην = η(1+ 1/ν) suggested by them reduces the correlations between the MLEs
for ην and ν. For some parameter combinations, relatively strong correlations were
also observed between the MLEs of η and ε (as well as ην and ε).

4 Application

As an illustrative application we reanalyse data on the breaking strengths of n = 63
glass fibres of length 1.5 cm collected by workers at the U.K. National Physical Labo-
ratory. Previous analyses of these data have appeared in Smith and Naylor (1987), the
University of Padua technical report version of Azzalini and Capitanio (2003), Jones
and Faddy (2003), Ma and Genton (2004) and Jones and Pewsey (2009), amongst
others. The middle three of these publications present fits for three different four-
parameter skew t models directly comparable with the sinh-arcsinhed t distribution
considered here. Of those fits, that for the Azzalini-type skew t has the highest max-
imised log-likelihood value (−11.70).
Table 1 contains the MLEs of the parameters for the full sinh-arcsinhed t family

as well as those for its sinh-arcsinhed t2 and symmetric subclasses. Their standard
errors, calculated from the observed information matrices for the three models, ap-
pear between brackets. Likelihood-ratio tests judge the fit for the full family to be
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Table 1 Parameter estimates
and, between brackets, their
standard errors for the fits to the
glass fibre strengths of, reading
from right to left, the full
location-scale extension of the
sinh-arcsinhed t family with
density (5), its sinh-arcsinhed t2
subclass (SASt2) with density
(14) and the symmetric subclass
of (5), with ε = 0. The
maximised log-likelihood, �max,
and p-value for the chi-squared
goodness-of-fit test are included
as fit diagnostics

Model

Symmetric SASt2 Full

Parameter

ξ 1.58 (0.03) 1.68 (0.05) 1.68 (0.05)

η 0.19 (0.04) 0.16 (0.03) 0.19 (0.04)

ε 0 −0.63 (0.26) −0.58 (0.23)

ν 2.34 (1.11) 2 3.18 (1.85)

Diagnostic

�max −14.97 −11.83 −11.40
p-value 0.11 0.39 0.32

Fig. 7 Histogram of the glass
fibre strength data together with
fitted densities for the
location-scale extensions of the
sinh-arcsinhed t distribution
with density (5) (solid), the
Azzalini-type skew t

distribution with density (1)
(long dashed) and the
sinh-arcsinhed t2 distribution
with density (14) (dashed)

superior to that for its symmetric subclass (p-value = 0.01) but not to that for its
sinh-arcsinhed t2 subclass (p-value = 0.35). Nevertheless, the p-values for the chi-
squared goodness-of-fit test indicate that all three models provide adequate fits to the
data. With a maximised log-likelihood value of −11.40, the fit for the full family is
judged to be superior to that for any of the other three four-parameter skew t mod-
els referred to above. The MLE of the degrees of freedom in the Azzalini-type skew
t fit is 2.73, close to the fitted values for ν for all three models represented in Ta-
ble 1. A histogram of the data together with the densities for the sinh-arcsinhed t ,
Azzalini-type skew-t and the sinh-arcsinhed t2 fits is presented in Fig. 7. The first
two densities are very similar and suggest an underlying heavy-tailed and negatively
skew distribution. The density for the sinh-arcsinhed t2 fit is suggestive of a more
peaked underlying distribution with slightly lighter flanks.
Individual nominally 95% confidence intervals for ξ , η, ε and ν, calculated

from their profile log-likelihoods together with asymptotic chi-squared theory, are
(1.57,1.77), (0.11,0.29), (−1.11,−0.16) and (1.27,52.68), respectively. Their
analogues calculated using the inverse of the observed information matrix are
(1.58,1.78), (0.10,0.28), (−1.02,−0.14) and (0,6.81). Clearly the intervals ob-
tained using the two approaches are very similar, apart from those for the tailweight
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Fig. 8 Nominally 90%, 95%, and 99% profile log-likelihood based confidence regions for (a) (η,λ),
(b) (ην , λ) and (c) (ξ, ε), where λ = ν/(1+ ν), for the glass fibre strength data. The contours of the three
regions lie at χ22 (0.1)/2 = 2.305, χ22 (0.05)/2 = 2.995 and χ22 (0.01)/2 = 4.605, respectively, below the
log-likelihood value for the maximum likelihood solution identified by the filled circle. In panels (a) and
(b) the upper boundary corresponds to the limiting value of ν = ∞

parameter, ν; the profile log-likelihood based interval admits the possibility of an
underlying distribution with close to normal tails. Figure 8 presents nominally 90%,
95% and 99% confidence regions for (η,λ), (ην, λ) and (ξ, ε), where λ = ν/(1+ ν).
These regions were calculated from the joint profile log-likelihood functions of the
different pairs of parameters together with standard asymptotic chi-squared theory.
The shapes of the contours for (η,λ) and (ξ, ε), in panels (a) and (c), reflect the strong
linear relationships that exist between their MLEs referred to previously in Sect. 3.
As is evident from the contours in panel (b), reparametrisation of the scale parame-
ter, η, to ην succeeds in breaking this strong dependence. The analogous confidence
regions for the other four-parameter pairings are portrayed in Fig. 9, and confirm that
the correlations between their respective MLEs are all low. Considered in combina-
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Fig. 9 Nominally 90%, 95%, and 99% profile log-likelihood based confidence regions for (a) (ξ, η),
(b) (ξ, λ), (c) (η, ε) and (d) (ε, λ), where λ = ν/(1+ ν), for the glass fibre strength data. The contours
of the three regions lie at χ22 (0.1)/2= 2.305, χ22 (0.05)/2= 2.995 and χ22 (0.01)/2= 4.605, respectively,
below the log-likelihood value for the maximum likelihood solution identified by the filled circle. In pan-
els (b) and (d) the upper boundary corresponds to the limiting value of ν = ∞

tion, the confidence regions provide additional support for an underlying distribution
that is unimodal and negatively skewed with heavier than normal tails.
As soon as one entertains the possibility of an underlying distribution that is asym-

metric, the question as to which measure of central location is of real interest, or in-
deed meaningful, immediately arises. The mean is generally not a sensible measure
of the “centre” of a skewed distribution, while the mode is not explicitly available
in this case. The median is meaningful and available. For the fibre strength data, the
maximum likelihood estimate of the median is ξ̂ + η̂ sinh(ε̂) = 1.56 and a 95% pro-
file likelihood based confidence interval for it is given by the relatively tight interval
(1.49,1.63).
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Fig. 10 Contour plots of fε1,ε2,ν (x, y) for ν = 2 and (a) ε1 = ε2 = 2 and (b) ε1 = −1.5 and ε2 = 3

A referee is right to remind us that these data might be even better modelled
by distributions outside the skew t class: examples with log-likelihoods of −10.00
and −10.02, respectively, can be found in Jones and Pewsey (2009) and Fischer and
Vaughan (2010).

5 Possible multivariate extensions

There is a natural extension of the sinh-arcsinhed t distribution to the d-dimensional
case and that is as the distribution of Tεj ,ν,j , j = 1, . . . , d, where

Tν,j = Sεj
(Tεj ,ν,j ) = sinh(sinh−1(Tεj ,ν,j ) − εj

)
, j = 1, . . . , d,

and Tν,j , j = 1, . . . , d follow the multivariate t distribution with ν degrees of freedom
(see e.g. Kotz and Nadarajah 2004). This distribution allows d different skewness
parameters but only a single degrees of freedom parameter. When d = 2, its density
is relatively simply

fε1,ε2,ν(x, y) = 1

2π

Cε1(x)√
1+ x2

Cε2(y)√
1+ y2

(
1+ S2ε1(x) + S2ε2(y)

ν

)−(ν/2)−1
,

−∞ < x,y < ∞. (This is the canonical case into which a location vector and non-
identity scale matrix can be introduced in the usual way.) Two examples of fε1,ε2,ν ,
for ν = 2, are shown in Fig. 10; the values of ε1 and ε2 being equal in panel (a) and
being different and with different signs in panel (b). The difference between ε1 and
ε2 is what drives the asymmetry of the contours in panel (b). We hope to pursue this
multivariate extension in further work, but for now a property that is easy to see is
that

Cov(Tε1,ν,1, Tε2,ν,2) = sinh ε1 sinh ε2Cov
(√
1+ T 2ν,1,

√
1+ T 2ν,2

)
.
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The sinh-arcsinhed t distribution shares with the Azzalini-type skew t distribution
(and perhaps not the two-piece skew t distribution) a ‘naturalness’ of multivariate
extension. It is not clear, however, that ‘naturalness’ necessarily equates to ‘most
usefulness’ (for example, it is responsible for the single degree of freedom parameter
above and in Azzalini-type multivariate distributions, unless a more general, and less
accessible, form of multivariate t distribution is employed). Instead, generalised uni-
variate families of distributions can always be extended to the multivariate case using
some general scheme, the most obvious of which is to marginally transform copulas
(see e.g. Nelsen 2006) using the distribution function (7). This allows d skewing and
d degrees of freedom parameters. (And a t copula, Demarta and McNeil 2005, would
be a natural choice; the distribution in the previous paragraph is a special case of this
approach with equal degrees of freedom parameters.) Other general schemes which
allow full flexibility are also available (see e.g. Ferreira and Steel 2007).

6 Conclusions

Student’s t is a well-known and popular distribution. We consider the sinh-arcsinhed
t family to provide an appealing extension of it, above all because many of its prop-
erties effectively have the same order of complexity as their Student t counterparts.
This is particularly true of the quantile function and measures based upon it which,
unlike classical moment based measures, are available for all degrees of freedom.
The parameters of the sinh-arcsinhed t distribution have clear interpretations. Lim-
iting distributions as shape parameters tend to their extreme values are especially
appealing.
In practice, maximum likelihood inference reduces to an optimisation problem

which is not devoid of complications, particularly when the sample size is small.
However, such complications are inherent in all but the most basic of applications
of the maximum likelihood method. Reparametrisation as suggested by Jones and
Anaya-Izquierdo (2011) reduces the correlation that exists between the scale and
tailweight parameters. In our analysis of the glass fibre strength data, in Sect. 4, we
explored the fit of competing four-parameter skew t distributions, the sinh-arcsinhed
t distribution being found to fit the data best. However, as explained in the same sec-
tion, Jones and Pewsey (2009) report an even better fit to these data, obtained using
their four-parameter sinh-arcsinhed normal distribution. Although both distributions
model the heavy tails of the data equally well, the sinh-arcsinhed normal distribu-
tion models the data around the mode more closely. Thus, at least for the glass fibre
strength data, there is evidence that the use of a standard normal Z in (3), with δ con-
trolling tailweight, leads to greater flexibility in the modelling of the overall shape of
the data distribution than the use of Tν in (4), with ν controlling tailweight. Of course,
in other applications involving heavy-tailed data sets one might expect this relation
to be reversed.
Finally, we have compared our sinh-arcsinhed t distribution throughout with the

Azzalini-type skew t distribution and the two-piece t distribution whose densities
are given by (1) and (2), respectively. Of course, each has its advantages and disad-
vantages. Azzalini-type skew t distributions, in particular, have interesting genesis as
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marginal distributions of multivariate t distributions truncated on another variable,
and as distributions of order statistics of multivariate t marginal variables. Where
such modelling assumptions can be justified, Azzalini-type distributions are neces-
sarily the distributions of choice. However, in purely empirical modelling terms, and
with some emphasis on tractability, we judge the numbers of advantages of the sinh-
arcsinhed t distribution to be on a par with the two-piece t distribution, both having
more advantages than the Azzalini-type skew t distribution.
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Appendix

Score equations:
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where

(logKν)
′ = d logKν
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2
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2
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2
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and ψ(·) and ψ(1)(·) denote the digamma and trigamma functions, respectively.
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Skewness-Invariant Measures of Kurtosis

M. C. JONES, J. F. ROSCO, and Arthur PEWSEY

Measures of kurtosis, when applied to asymmetric distri-
butions, are typically much affected by the asymmetry which
muddies their already murky interpretation yet further. Cer-
tain kurtosis measures, however, when applied to certain wide
families of skew-symmetric distributions display the attractive
property of skewness-invariance. In this article, we concentrate
mainly on quantile-based measures of kurtosis and their in-
teraction with skewness-inducing transformations, identifying
classes of transformations that leave kurtosis measures invari-
ant. Further miscellaneous aspects of skewness-invariant kurto-
sis measures are briefly considered, these not being quantile-
based and/or not involving transformations. While our treat-
ment is as unified as we are able to make it, we do not claim
anything like a complete characterization of skewness-invariant
kurtosis measures but hope that our results will stimulate fur-
ther research into the issue.

KEY WORDS: Asymmetry; Johnson distributions; Quantile
measures; Sinh function; Sinh–arcsinh transformation.

1. INTRODUCTION

For many, the kurtosis of a random variable, X, is nothing
other than its value of the moment-based measure α4 = μ4/σ

4,
where μk = E[(X − μ)k], σ 2 = E[(X − μ)2], and μ = E(X)

(Thiele 1889; Pearson 1905); or perhaps its version calibrated
relative to normality, the excess kurtosis α4−3. Despite its pop-
ularity as a measure of distributional shape, α4 is well-known to
have some important drawbacks. A first is that α4 is undefined
if any of the first four moments of X do not exist, which makes
it inapplicable to heavy-tailed distributions.
Later 20th-century articles on kurtosis centered on two ques-

tions:

• What does kurtosis mean?
• What are alternative ways of measuring kurtosis?
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It is not our purpose to get embroiled in the first question,
but we note that if a one-word alternative is desired that one
word would probably be “peakedness.” However, it is clear that
peakedness only makes sense relative to the weights of the tails
of the distributions, with highly peaked/leptokurtic distributions
often having heavy tails . . . whose kurtosis cannot be measured
by α4! An appealing alternative description of kurtosis, at once
refined and vague, is given by Balanda andMacGillivray (1988)
as the “location- and scale-free movement of probability mass
from the shoulders of a distribution into its center and tails.”
(We note in passing that much of the discussion of the mean-
ing of kurtosis, since 1970, has taken place in the pages of The
American Statistician. Balanda and MacGillivray (1988) pro-
vide an excellent review of that debate and of the multifarious
alternative approaches to measuring kurtosis that had been pro-
posed to that date.) Modern alternative measures of kurtosis
mostly center attention on the quantile function of the distri-
bution of X, Q(u),0 < u < 1, and this article will be no ex-
ception. The quantile function has the great advantage that it al-
ways exists. Quantile-based kurtosis measures typically involve
ratios of quantities based on differences of quantile values, ra-
tios being necessary to afford scale-invariance; some examples
will be given in Section 2.
A second drawback of α4 is implicit in the well-known re-

lationship α4 ≥ α23 + 1, where α3 = μ3/σ
3 (Pearson 1916):

higher skewness (as measured by α3) inevitably leads to higher
kurtosis (as measured by α4). This and the further complica-
tions asymmetry might pose in interpretation of kurtosis have
led to the vast majority of the kurtosis literature dealing only
with symmetric distributions. Notable exceptions are Balanda
and McGillivray (1990) and Blest (2003) both of which we
shall return to later, the latter only briefly. But why should kur-
tosis be a concept reserved for symmetric distributions only?
Ideas of “peakedness,” “weights of tails,” “movement of proba-
bility mass,” and “shoulders of a distribution” remain as mean-
ingful in the presence of asymmetry as for symmetric distribu-
tions. Indeed, while it is accepted that kurtosis measures should
be invariant to location and scale, it actually seems entirely rea-
sonable to us to ask a third question:

• Can kurtosis be measured in a manner invariant to skewness?
It is this question, of kurtosis measures invariant to skew-

ness, that we address in this article. We point up a number
of examples of such measures, presented in as unified a man-
ner as we are able. Our main results, presented in Section 2,
concern quantile-based measures of kurtosis and their interac-
tion with skewness-inducing transformations. The latter afford
a very general consideration of skew distributions. Further mis-
cellaneous aspects of skewness-invariant kurtosis measures are
briefly considered in Section 3. We do not pretend to provide
a complete characterization of kurtosis measures invariant to
skewness, but hope that the current article stimulates further re-
search and results on the issue.
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2. TRANFORMATIONS AND SKEWNESS-INVARIANT
QUANTILE-BASED MEASURES OF KURTOSIS

2.1 Quantile-Based Measures of Kurtosis

Given their potential nonexistence, we eschew kurtosis mea-
sures involving conventional moments and focus instead on
quantile-based measures. It seems sensible, and often done,
to consider measures that are ratios of linear combinations of
differences between quantiles of the form Q(u) − Q(1 − u),
0< u < 1. That is, we entertain measures of the general form

∑n1
i=1 ci{Q(ui) − Q(1− ui)}∑n2

j=1 dj {Q(uj ) − Q(1− uj )} (1)

for positive integers n1 and n2 and constants ci : i = 1, . . . , n1
and dj : j = 1, . . . , n2. Typically, n2 = 1 and, as already men-
tioned, the denominator is present in order to enforce scale in-
variance.
In case the reader is concerned about the arbitrariness of this

definition, here is an apparently different argument leading to
the same place. Balanda and MacGillivray (1990, section 2.3)
approach the issue by “taking the kurtosis properties of a ran-
dom variable X to be those of its symmetrized version” ZBM,
say. The specific definition of ZBM they assume is

ZBM = X − F−1(1− F(X)),

where F = Q−1 is the distribution function associated with X.
In quantile terms this means that the quantile function QBM

associated with the distribution of ZBM is given by

QBM(u) = Q(u) − Q
(
1− F(Q(u))

) = Q(u) − Q(1− u).

That is, given that Balanda and MacGillivray, like us, are pri-
marily concerned with quantile-based measures of kurtosis,
they are really arguing that kurtosis measures should be based
on (ratios of linear combinations of) QBM, and hence on (the
same functions of) Q(u) − Q(1− u).
Particular cases of measures having the general form (1) in-

clude:

• The p indexed measure

t (p) = Q
( 1
2 + p

) − Q
( 1
2 − p

)
Q

( 3
4

) − Q
( 1
4

) ,

0< p < 1
2 . This was referred to by Balanda andMacGillivray

(1988), where earlier references to special cases can be
found.

• Moors’s (1988) octile-based measure

M = (O7 − O5) + (O3 − O1)

O6 − O2
= (O7 − O1) − (O5 − O3)

O6 − O2

= Q
( 7
8

) − Q
( 5
8

) + Q
( 3
8

) − Q
( 1
8

)
Q

( 3
4

) − Q
( 1
4

) ,

where Oi = Q( i
8 ), i = 1, . . . ,7, is the ith octile. (A similar

measure based on more extreme quantiles had earlier been
suggested by Inman (1952).)

• The quintile-based measure

J = A4 − A3 − 2(A3 − A2) + A2 − A1

A4 − A1

= (A4 − A1) − 3(A3 − A2)

A4 − A1

= Q
( 4
5

) − 3Q( 3
5

) + 3Q( 2
5

) − Q
( 1
5

)
Q

( 4
5

) − Q
( 1
5

) ,

where Ai = Q( i
5 ), i = 1, . . . ,4, denotes the ith quintile.

This seems to us to be a natural extension to kurtosis (by
third differencing) of the Bowley skewness measure (which
takes second differences; Bowley 1902)

Q
( 3
4

) − 2Q( 1
2

) + Q
( 1
4

)
Q

( 3
4

) − Q
( 1
4

) ,

although one could use an alternative quantile-difference
scale measure in the denominator of our measure.

More generally, but possibly less transparently, general form
(1) might be extended to the integral form

∑n1
i=1

∫ 1
0 ci(u){Q(u) − Q(1− u)}du∑n2

j=1
∫ 1
0 dj (v){Q(v) − Q(1− v)}dv

. (2)

Now, for any function c,∫ 1

0
c(u){Q(u) − Q(1− u)}du =

∫ 1

0
a(v)Q(v)dv,

where a(u) = c(u) − c(1 − u) is odd about 12 . Therefore, (2)
has the alternative representation

∑n1
i=1

∫ 1
0 ai(u)Q(u)du∑n2

j=1
∫ 1
0 bj (v)Q(v)dv

,

where the ai ’s and bj ’s are odd functions.

• The prime example of (2) is the L-moment based kurtosis
measure of Hosking (1990, 1992):

τ4 =
∫ 1
0 P ∗

3 (u)Q(u)du∫ 1
0 P ∗

1 (v)Q(v)dv
,

where P ∗
1 (u) = 2u − 1 and P ∗

3 (u) = 20u3− 30u2+ 12u − 1
are the first and third shifted Legendre polynomials.

However, integration imposes conditions on the existence of
such measures, τ4 existing only if the mean of the distribution
does.

2.2 Invariance Under Transformations: Requirements

We now focus on the behavior of the forms of kurtosis mea-
sures in Section 2.1 for families of distributions obtained using
a popular approach based on the transformation of a symmet-
ric random variable. Let Z denote a continuous random vari-
able from a distribution which is symmetric about 0, and de-
fine the random variableXλ via the transformationXλ = Tλ(Z)

where Tλ is a one-to-one function taken, without loss of gen-
erality, to be increasing. For the moment, λ ∈ R is a general
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shape parameter which will specialize to a skewness parameter
in Section 2.3. The quantile function, Qλ, of the distribution of
Xλ is given immediately by Qλ(u) = Tλ(QZ(u)), 0 < u < 1,
where QZ is the quantile function of the distribution of Z.
As Z is assumed to be symmetric about 0, if QZ(u) = z then
QZ(1− u) = −z. Thus,

Qλ(u) − Qλ(1− u) = Tλ(QZ(u)) − Tλ(QZ(1− u))

= Tλ(z) − Tλ(−z).

The aim now is to identify those transformations which leave
any measure of the form (1) or (2) invariant to the value of λ.
This happens if Tλ(z) − Tλ(−z) factorizes as

Tλ(z) − Tλ(−z) = t1(λ)t2(z), (3)

where t1(λ) is a nonzero function of the parameter λ (not in-
volving z), and t2(z) is a function of z (not involving λ). With-
out loss of generality, t1(λ) can be subsumed into Tλ by divi-
sion, so that (3) reduces to

Tλ(z) − Tλ(−z) = t2(z).

By considering this equation when z = 0 and when z is replaced
by −z, we get that t2(0) = 0 and that t2 is an odd function of z.
To make more structured progress, it is now useful to con-

centrate on a further reduced version of (3). To this end, make
the natural further requirement that the family of transforma-
tions Tλ includes the identity transformation as a special case.
Without further loss of generality, we can take this case to cor-
respond to λ = 0. Then, t2(z) = T0(z) − T0(−z) = 2z and so
the final requirement is that

Tλ(z) − Tλ(−z) = 2z (4)

for monotone increasing transformations Tλ.
Of course, because Tλ(z) − Tλ(−z) = Qλ(u) − Qλ(1 − u)

and z = QZ(u), (4) is nothing other than a reexpression and re-
standardization of Balanda and MacGillivray’s (1990) require-
ment, referred to in Section 2.1, that, in the current notation,

Qλ(u) − Qλ(1− u) = 2QZ(u). (5)

2.3 Invariance Under Skewness-Inducing Transformations:
Solutions

Considerable progress can be made on identifying Tλ satis-
fying (4). Requirement (4) also arose in Jones (2011), but in a
different context, and what follows is an improved version of
the relevant (small) part of the work of that article.
Differentiating (4) gives

T ′
λ(z) + T ′

λ(−z) = 2 (6)

and then

T ′′
λ (z) − T ′′

λ (−z) = 0. (7)

Since Tλ is increasing, Equation (6) shows that, additionally,
0≤ T ′

λ(z) ≤ 2.
First, only partially successful, attempts at solutions of (4)

are the antiderivatives of twice the distribution or survival func-
tions of distributions symmetric about zero. Write k(z) = �(z2)

and K(z) for the density and distribution functions of such

a symmetric distribution, and L for the antiderivative of �. Tak-
ing T ′

λ(z) = 2K(λz), λ ∈ R, covers distribution (λ > 0), sur-
vival (λ < 0) and unit (λ = 0) functions, satisfies (6), and leads
to candidate solutions of (4) of the form

Tλ(z) = 2[zK(λz) − {L(λ2z2)/2λ}].
However, only in some special cases corresponding to distribu-
tion functions, K , with extremely heavy tails does this Tλ pro-
duce transformations with range the whole of R (Jones 2011,
section 3).
This last observation inspires the following more appealing

alternative solution which leads directly to a well-defined skew-
ing interpretation for the corresponding transformation. Con-
tinue to consider monotone T ′

λ, nonmonotonicity, though pos-
sible, being detrimental to the retention of unimodality of the
transformed density. Even when monotone, T ′

λ does not have to
be twice a distribution (resp. survival) function. Instead of start-
ing from 0 (resp. 2) for x → −∞ and ending at 2 (resp. 0) for
x → ∞, T ′

λ can start from c (resp. 2 − c) and end at 2 − c

(resp. c) where 0 < c < 1. Equivalently, and covering both
cases, take T ′

λ(z) = 1 − λ + 2λK(z), −1 < λ < 1, and, cor-
respondingly,

Tλ(z) = z{1− λ + 2λK(z)} − λL(z2), −1< λ < 1. (8)

Clearly T0(z) = z.
Moreover, monotonicity of K implies convexity of Tλ in (8)

when λ > 0 and concavity when λ < 0. This corresponds pre-
cisely to the parameter λ acting as a skewness parameter in the
classical sense of van Zwet (1964), positive λ introducing pos-
itive skewness, negative λ negative skewness.
To summarize, quantile-based measures of kurtosis of distri-

butions of Xλ = Tλ(Z) where Z is from a symmetric distribu-
tion and Tλ is given by (8) are invariant to the value of λ, which
is a true skewness parameter in the sense of van Zwet.

2.4 Illustrative Families of Distributions

Examples of symmetric distributions yield numerous exam-
ples of formula (8). For instance, if K(z) = �(z), the standard
normal distribution function, L(z2) = −2φ(z), where φ is the
standard normal density function, and then (8) becomes

Tλ(z) = z{1− λ + 2λ�(z)} + 2λφ(z), −1< λ < 1.

Examples like this abound but have the disadvantage, for some
practical purposes, of the transformation not being explicitly
invertible. Explicitly invertible transformations of the form (8)
are far fewer. The degenerate case of K(z) = I (z ≥ 0) leads to
the aesthetically unattractive two-piece distributions with a dis-
continuity in density at their join. Other distributions on finite
support introduce discontinuities in derivative too.

2.4.1 The Sinh–Arcsinh Transformation

Returning to K defined on the whole of R, we are aware of
just one, special, distribution that leads to invertible Tλ of the
form (8). Set K to be the distribution function of the follow-
ing scaled t distribution on two degrees of freedom (e.g., Jones
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2002), a distribution that is ubiquitously useful in distribution
theory:

K(z) = 1

2

(
1+ z√

1+ z2

)
, L(z2) = − 1√

1+ z2
.

Then,

Tλ(z) = z + λ
√
1+ z2 = sinh(ε + sinh−1(z))

cosh ε
,

(9)
T −1

λ (y) = sinh(−ε + sinh−1(y cosh ε)),

where ε = tanh−1 λ is also necessarily a skewness parameter in
the sense of van Zwet (1964).
Jones and Pewsey (2009) introduced skew-symmetric fami-

lies of distributions generated by sinh–arcsinh transformation
of the random variable Z which follows a density g which
is symmetric about zero. The sinh–arcsinh transformation is
given by Sε,δ(x) = sinh(δ sinh−1(x) − ε), ε ∈ R, δ > 0, where
ε is a skewness parameter and δ controls tailweight. Jones and
Pewsey explored the distributions of Xε,δ ∼ fε,δ;g , related to
Z ∼ g by

Xε,δ = S−1
ε,δ (Z) = S−ε/δ,1/δ(Z)

= sinh(δ−1(ε + sinh−1(Z))
)
. (10)

The corresponding densities are

fε,δ;g(x) = {1+ x2}−1/2δCε,δ(x)g{Sε,δ(x)}, (11)

whereCε,δ(x) = cosh{δ sinh−1(x)−ε} = {1+S2ε,δ(x)}1/2. Spe-
cific examples include the sinh–arcsinhed normal distribution
of Jones and Pewsey (2009) when g = φ and, when δ = 1,
the sinh–arcsinhed t distributions of Rosco, Jones, and Pewsey
(2011) when g is the density of the t distribution on ν > 0 de-
grees of freedom.
Transformation (9) can now be seen to be a rescaled version

of the δ = 1 special case, S−ε,1, of the sinh–arcsinh transfor-
mation given at (10). It was in the course of study of the sinh–
arcsinhed t distributions that the skewness-invariant nature of
certain kurtosis measures was noticed by the second author and
initially disbelieved by the third!
Quantile-based kurtosis measures are, in fact, skewness-

invariant for the general sinh–arcsinh transformation given at
(10) as well as for the special scaled case given at (9). This is
because

S−ε/δ,1/δ(z) − S−ε/δ,1/δ(−z)

= 2cosh(δ−1ε) sinh(δ−1 sinh−1(z)),

satisfying (3) for each fixed δ. The general transformation did
not arise directly from the considerations of Section 2.3 because
the identity transformation requires δ = 1. The general transfor-
mation satisfies (4) if we think of it as Tλ (with an irrelevantly
reparametrized skewness parameter) applied to the (symmet-
ric) distribution of P(Z) = S0,δ(Z) = sinh(δ(sinh−1(Z)) rather
than to Z itself.
The skewness-invariant quantile-based kurtosis measures are

now illustrated for the particular case in which Z is standard
normal so that Xλ = Xε,δ is sinh–arcsinhed normal and so fol-
lows density (11) with g = φ (Jones and Pewsey 2009). Write

z(p) = �−1( 12 +p) for 0< p < 1/2. The formulas for the kur-
tosis measures defined in Section 2.1, namely, the p indexed
measure t (p), Moors’s M , the quintile-based J and the L-
moment ratio τ4, are in this case:

t (p) = sinh(δ−1 sinh−1(z(p)))

sinh(δ−1 sinh−1(z(1/4)))
,

M = sinh(δ−1 sinh−1(z(3/8))) − sinh(δ−1 sinh−1(z(1/8)))
sinh(δ−1 sinh−1(z(1/4)))

,

J = 1− 3sinh(δ
−1 sinh−1(z(1/10)))

sinh(δ−1 sinh−1(z(3/10)))
,

τ4 =
∫ 1/2
0 sinh(δ−1 sinh−1(�−1(u)))P ∗

3 (u) du∫ 1/2
0 sinh(δ−1 sinh−1(�−1(v)))P ∗

1 (v) dv
.

Crucially, none of these functions varies with ε. Indeed, they
equal the kurtosis measures of the symmetric distributions with
densities

f0,δ;φ(x) = {2π(1+ x2)}−1/2

× δC0,δ(x) exp{−S20,δ(x)/2}, (12)

δ > 0, examples of which are displayed in figure 1(c) of Jones
and Pewsey (2009).
The four measures are depicted in the panels of Figure 1. The

horizontal variable in each frame of Figure 1 is β1 = δ/(1 +
δ), a transformation of δ > 0 to 0 < β1 < 1 made for plotting
convenience. The analogous transformationM∗ = M/(1+ M)

is made for Moors’s measure in Figure 1(b). Figure 1(a) differs
from Figure 1(b)–(d) in being a contour plot rather than a single
function plot, because two variables affect the value of t (p): p
and β1.
Figure 2 portrays the same measures for the sinh–arcsinhed

t distribution with density (11) with δ = 1 and g the density of
the t distribution on ν degrees of freedom (Rosco, Jones, and
Pewsey 2011, whose figure 6 displays a portion of the same
information), that is, the quantile-based kurtosis measures as-
sociated with the t distribution itself. Note that the horizontal
variable in all frames of Figure 2 is β2 = ν/(1+ ν) rather than
β1 = δ/(1+ δ) as in Figure 1. Figure 2 can nonetheless be com-
pared directly with Figure 1. These comparisons help in clari-
fying the effects on the various kurtosis measures due to the
base symmetric distribution employed. By and large the various
kurtosis measures are very similar in the two cases. Effects on
kurtosis of being a little “larger for longer” for the t distribution
than the (symmetric) sinh–arcsinhed normal distribution reflect
the heavier tails available in the limit in the former case than
the latter; conversely, kurtosis, and weight of tails, is smaller in
the short-tailed limit for the sinh–arcsinhed normal distribution
than for the limiting t (normal) distribution.

2.4.2 And the Sinh Transformation?

The alert reader will have realized that requirement (3) is also
satisfied by the (simpler) sinh transformation itself, namely,

Rε,δ(z) = sinh(δ−1(ε + z)). (13)

In this case,

Rε,δ(z) − Rε,δ(−z) = 2cosh(δ−1ε) sinh(δ−1z).
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(a) (b)

(c) (d)

Figure 1. Panel (a) is a contour plot of t (p) as a function of p and β1 = δ/(1+ δ). Other frames are plots of (b)M∗ = M/(1+ M), (c) J , and
(d) τ4 as functions of β1. All four panels are for the sinh–arcsinhed normal distribution.

This transformation was introduced to statistics by Johnson
(1949). When applied to normal Z, the resulting distribution is
Johnson’s SU distribution. Johnson also suggested applying the
transformation to other symmetric Z’s—what we shall refer to
as Johnson’s unbounded family—of which, most prominently,
the logistic distribution leads to the LU distributions of Tadika-
malla and Johnson (1982).
Reconciliation with the work of Section 2.3 comes, again,

through the sinh–arcsinh transformation! Requirement (4) is
not satisfied by the sinh function, which does not afford the
identity transformation as a special case for any value of δ.
Sinh transformation (13) is, however, a sinh–arcsinh transfor-
mation (10): Rε,δ(z) = S−ε/δ,1/δ(sinh(z)) and is therefore Tλ

(with the same irrelevantly reparametrized skewness parame-
ter) applied toQ(Z) = sinh(δZ). That is, Johnson’s unbounded
family has skewness-invariant quantile-based kurtosis measures
because they can be thought of as the sinh–arcsinh transforma-
tion of the (symmetric) distribution of sinh(δZ).
We prepared plots of the same four kurtosis measures for the

Johnson SU distributions but they are not shown to save space.

By skewness-invariance, they correspond, of course, to kurtosis
measures for the symmetric SU distributions with density

f0,δ;φ(x) = {δ
√
2π(1+ x2)}−1

× exp[−{sinh−1(x)}2/2δ2], (14)

δ > 0. The figure for these distributions is most similar to Fig-
ure 1 except for indications of failing to match the smallest kur-
tosis for the lightest tails of the sinh–arcsinh normal distribu-
tion.
Transformations (10) and (13) are clearly special cases of the

general transformation

Wε,δ(z) = sinh(δ−1(ε + h(z))
)
, (15)

where h is an increasing odd function, all of which, when ap-
plied to symmetric random variables, afford skewness-invariant
quantile-based measures of kurtosis. Only the choice h(z) =
sinh−1(z) allows W0,1(z) = z, however, and hence incorpora-
tion of the generating distribution g into the heart of the ensuing
family.
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(a) (b)

(c) (d)

Figure 2. Panel (a) is a contour plot of t (p) as a function of p and β2 = ν/(1+ ν). Other frames are plots of (b)M∗ = M/(1+ M), (c) J , and
(d) τ4 as functions of β2. Note that τ4 is undefined for ν ≤ 1. All four panels are for the sinh–arcsinhed t distribution.

3. MORE ON SKEWNESS-INVARIANT MEASURES
OF KURTOSIS

3.1 Direct Skewness-Invariant Quantile-Based Kurtosis

In this first subsection of Section 3, we continue to consider
quantile-based measures of the form (1). A trawl through dis-
tributions defined in terms of their quantile functions (e.g., in
Gilchrist 2000) yields just one such distribution with Q(u) −
Q(1−u) factorizable into a constant depending on a parameter
introducing and, in some sense, controlling skewness, now de-
noted ε, times a function of u (and possibly other parameters).
That one is the celebrated Tukey lambda distribution (Hastings
et al. 1947; Tukey 1962) which has quantile function

Qε(u) = λ−1{εuλ − (1− u)λ}.
For this family of distributions,

Qε(u) − Qε(1− u) = (ε + 1)Q1(u)

and so quantile-based measures of kurtosis are invariant to the
value of ε.

3.2 Skewness-Invariant Density-Based Kurtosis

All the material in Sections 2 and 3.1 relates to quantile-
based measures of kurtosis and that in Section 2 is intimately
wrapped up with transformation of random variables. There
are parallel relationships, described briefly here, for a form of
density-based kurtosis and what the first author calls “transfor-
mation of scale.”
Let the density, f , of X be unimodal, and define xR(p) and

xL(p) to be the left-hand and right-hand solutions of the equa-
tion f (x) = pf (x0)where x0 is the mode of f . A density-based
“asymmetry function” (parallel to extended Bowley skewness
in the quantile-based case) is

γ (p) = xR(p) − 2x0 + xL(p)

xR(p) − xL(p)

(O’Hagan 1994, section 2.6; Avérous, Fougères, and Meste
1996; Boshnakov 2007; Critchley and Jones 2008). It is
natural—in the spirit of Avérous, Fougères, and Meste (1996)
but different fromwhat is done by Critchley and Jones (2008)—
to define a kurtosis-type measure as a ratio of linear com-
binations (or appropriate integrals) of quantities of the form
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xR(p) − xL(p) (for different p). For example, a measure mim-
icking J might be

J = xR(q) − xL(q) − 3(xR(p) − xL(p))

xR(q) − xL(q)

for some fixed 1> q > p > 0.
Now, the analogues of skew-symmetric families of distribu-

tions based on transforming a symmetric random variable are
the following families of distributions based on transformation
of scale:

f (x) = 2g(2T −1
λ (x)),

where g is again the density of a distribution symmetric about
zero and λ is a parameter introducing skewness (Jones 2011). If
g is unimodal, then f is also. But most importantly, for f to be
a density, Tλ must satisfy (4) by proposition 1 of Jones (2011).
Now write cg(p) = 1

2g
−1(pg(0)) > 0 for one-half of the ver-

sion of xR(p) associated with g. Then,

xR(p) − xL(p) = Tλ(cg(p)) − Tλ(−cg(p))

and kurtosis-type measures like J based on a ratio of linear
combinations (or appropriate integrals) of these will be inde-
pendent of λ for precisely the same transformations as in the
quantile-based case in Sections 2.2 and 2.3. Essentially, there-
fore, all valid skew-symmetric transformation of scale distribu-
tions have (appropriately defined) density-based kurtosis inde-
pendent of skewness.

3.3 Classical Measures

To close, a brief word on the classical case. Blest (2003) pro-
posed an adjusted version of the classical fourth-moment mea-
sure α4 by introducing a correction for asymmetry. His new
coefficient arose out of focusing on what he termed the meson;
that central value, ξ , about which the fourth moment of a dis-
tribution is minimum. Clearly, ξ is also that point about which
the third moment is zero. Letting ξ = μ + kσ , Blest proposed

α∗
4 = α4 − 3k2(2+ k2)

for an appropriate value of k, as a version of Pearson’s coef-
ficient of kurtosis adjusted for skewness. α∗

4 proves not to be
a kurtosis measure that is completely unaffected by skewness
although it reduces the dependence of kurtosis on skewness
somewhat; see Rosco, Pewsey, and Jones (2011) for an investi-
gation of the performance of α4 and of an adjusted version that
we propose. In the context of the current article we just note the
intriguing fact that k, as derived by Blest but written in different
form here, is nothing other than another example of the appear-
ance of the sinh–arcsinh transformation: in terms of (one half
of) the classical third moment skewness measure α3,

k = 2 sinh
{
1

3
sinh−1

(
α3

2

)}
.

[Received October 2010. Revised March 2011.]
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Abstract

We reconsider the derivation of Blest’s (2003) skewness adjusted version of the classi-
cal moment-based coefficient of kurtosis and propose an adaptation of it which generally
eliminates the effects of asymmetry a little more successfully. Lower bounds are provided
for the two skewness adjusted kurtosis moment measures as functions of the classical co-
efficient of skewness. The results from a Monte Carlo experiment designed to investigate
the sampling properties of numerous moment-based estimators of the two skewness adjusted
kurtosis measures are used to identify those estimators with lowest mean squared error for
small to medium sized samples drawn from distributions with varying levels of asymmetry
and tailweight.

Keywords: Asymmetry, Estimation, Lower bounds, Moment-based measures, Sinh-arcsinh
transformation

1. Introduction

The classical fourth moment-based coefficient α4 = μ4/σ
4, where μk = E[(X − μ)k],

σ2 = μ2, μ = E(X) and X denotes a random variable (Thiele, 1889; Pearson, 1905), remains
the best known and most widely applied measure of kurtosis. This is in spite of the fact
that the coefficient does not exist if the fourth moment does not exist, a major limitation
on its use with heavy-tailed distributions. Moreover, even for symmetric distributions, its
interpretation can be far from obvious, and many alternatives have been proposed. For
asymmetric distributions, it has long been known (Pearson, 1916) that α4 ≥ α2

3 + 1, where
α3 = μ3/σ

3 is the classical moment-based coefficient of skewness. Thus, higher skewness
(as measured by α3) is inevitably accompanied by higher kurtosis (as measured by α4).
These unappealing features of α4 have stimulated considerable debate within the literature
regarding exactly what ‘kurtosis’ is, what it measures (or should measure), and how best to
measure it. For example, the Tukey school’s view is summarised in their use of the word
‘elongation’, broadly ‘tailweight’ (Hoaglin et al., 1985, Chapters 10 and 11), while often
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‘peakedness’ is used, the two terms emphasising different aspects of what we will continue
to call ‘kurtosis’. van Zwet’s celebrated, but quite different, approach (van Zwet, 1964) via
transformation-based ordering of distributions is also relevant. An excellent review of the
extensive related literature is provided by Balanda and MacGillivray (1988). Many of the
alternative kurtosis measures that have been proposed are based on quantiles, which exist
and are unique if the distribution function is continuous and strictly monotone.

In Jones et al. (2011), we investigated in a much more general setting the issue of whether
kurtosis could be measured independently of skewness. In Section 1 of that paper, we argued
that definitions of kurtosis make no reference whatsoever to the skewness of a distribution:
‘peakedness’ relates to the ‘tightness’ of the main body of a distribution, peakedness “only
makes sense relative to the weights of the tails of the distribution”, that is, ‘elongation’, while
Balanda and MacGillivray (1988) define kurtosis as the “location-and scale free movement
of probability mass from the shoulders of a distributions into its centre and tails.” So the
quest for skewness-invariant measures of kurtosis seems to make sense. Measures of kurtosis
for use with asymmetric distributions were considered by Balanda and MacGillivray (1990)
and in more detail by Jones et al. (2011).

A specific skewness adjusted version of the moment measure α4 was proposed by Blest
(2003). His proposal arose from consideration of what he termed the meson; that central
value, ξ, about which the fourth moment of a distribution is minimum. Clearly, ξ is also
that point about which the third moment is zero. Setting ξ = μ+ kσ,

k =

(√
1 + 1

4
α2
3 +

1
2
α3

)1/3

−
(√

1 + 1
4
α2
3 − 1

2
α3

)1/3

, (1)

and thus
μ4 = μ∗

4 + 6σ4k2 + 3σ4k4,

where μ∗
4 = E[(X − ξ)4] denotes the minimum fourth moment. Given this relation, Blest

proposed
α∗
4 = μ∗

4/σ
4 = α4 − 3k2(2 + k2), (2)

as a moment-based measure of kurtosis adjusted for skewness, his clear intention being to
try to eliminate the effects of skewness on α4 noted earlier. Jones et al. (2011) note that k
can be represented in terms of the sinh-arcsinh function as

k = 2 sinh(1
3
sinh−1(1

2
α3)) = 2S0, 1

3

(1
2
α3),

using the notation Sε,δ(x) = sinh(δ sinh−1(x)− ε) of Jones and Pewsey (2009).
We reconsider the derivation of Blest’s (2003) skewness adjusted version of the classical

moment-based coefficient of kurtosis and propose an adaptation of it which generally elimi-
nates the effects of asymmetry a little more successfully. We also consider estimation of the
two skewness adjusted kurtosis measures. This paper takes the viewpoint that, whatever the
advantages of non-moment-based measures of kurtosis, many researchers continue to equate
‘skewness’ and ‘kurtosis’ with α3 and α4, respectively. It is to those readers, who might be

2



nudged in the direction of improving moment-based kurtosis as regards its relationship to
skewness, and hence consider using Blest’s approach, that the paper is addressed.

In Section 2, we reconsider the definition of α∗
4 and propose our adaptation of it, α†

4. In
the same section, we show that neither α∗

4 nor α†
4 are moment-based kurtosis measures that

are completely unaffected by skewness. We also provide lower bounds for the two skewness
adjusted kurtosis measures. In Section 3 we consider the problem of how α∗

4 and α†
4 might

be estimated, and present results of an extensive simulation study designed to explore the
performance of various estimators based on popular estimators of the skewness measure α3

and the kurtosis measure α4. The paper ends with Section 4 where concluding remarks are
drawn.

2. An alternative measure: comparative performance and bounds

2.1. An alternative skewness adjusted measure
It is easy to show that μ∗

2 = E[(X − ξ)2] = σ2(1 + k2). This result raises the question as
to why, in the definition of α∗

4 in Equation (2), μ∗
4 is divided by σ4 and not σ4(1 + k2)2. We

therefore propose the alternative moment-based skewness adjusted coefficient of kurtosis

α†
4 =

μ∗
4

(μ∗
2)

2
=

α∗
4

(1 + k2)2
=

α4

(1 + k2)2
− 3k2(2 + k2)

(1 + k2)2
. (3)

Like α4 and α∗
4, α

†
4 does not exist if the fourth moment of X does not exist. As is the case

for α∗
4, the new measure α†

4 is a function of α4 and a sinh-arcsinh transformation of the
coefficient of skewness, α3.

2.2. Performance of the skewness adjusted kurtosis measures
Although α∗

4 and α†
4 are generally less affected by skewness than α4 is, they are not,

however, skewness invariant measures. This fact is illustrated in Figures 1 and 2. Figure 1
represents all three measures for the popular skew-normal class of distributions of Azzalini
(1985) with density

fα(x) = 2φ(x)Φ(αx), −∞ < x, α < ∞, (4)

where φ and Φ are the density and distribution function, respectively, of the standard
normal distribution. The parameter α is a shape parameter which affects both the skewness
and kurtosis. The skew-normal distribution has shapes ranging from that of the normal
distribution (α = 0) to those of half-normal distributions (α = ±∞). In Figure 1, both the
measures and the shape parameter, constrained without loss of generality to be positive,
have been transformed to put them on to (0, 1). (When ρ = α/(1 + α) = 0, each kurtosis
measure is 3/(1 + 3) = 0.75, the α4 kurtosis value of the normal distribution.) If the effects
of asymmetry were eliminated completely for all members of the class, we would expect to
see lines that were parallel with the horizontal axis in such a plot. Clearly they are not,
but α†

4 appears to do a better job than α∗
4 at removing the effects of skewness for all but

the most asymmetric of cases, in the neighbourhood of the half-normal (α = ∞, ρ = 1)
distribution.

3
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Figure 1: Moment-based kurtosis measures α4/(1 + α4) (solid), α∗
4/(1 + α∗

4) (dotted) and α†
4/(1 + α†

4)
(dashed), as functions of ρ = α/(1 + α), α > 0, for the skew-normal distribution with density (4).

Panels (a)–(c) of Figure 2 present contour plots of α4/(1+α4), α∗
4/(1+α∗

4) and α†
4/(1+α†

4),
as functions of ρ1 = ε/(1 + ε), ε ≥ 0, and λ1 = δ/(1 + δ), for the sinh-arcsinhed normal (or
SAS-normal, for short) family of distributions of Jones and Pewsey (2009) with density

fε,δ(x) = {2π(1 + x2)}−1/2δCε,δ(x) exp{−1
2
S2
ε,δ(x)}, −∞ < x, ε < ∞, δ > 0, (5)

where Cε,δ(x) = cosh{δ sinh−1(x)− ε} = {1 + S2
ε,δ(x)}1/2. Here, δ is a tailweight parameter,

while ε regulates the skewness of the distribution. The SAS-normal distribution has tails
ranging from the extremely heavy (δ � 0), through those of the normal distribution (δ = 1)
to the extremely light (δ → ∞). Its densities are symmetric if ε = 0, and increasingly
positively (negatively) skewed as ε → ∞ (ε → −∞). In the contour plots of panels (a)–(c),
we would expect to see contour lines that were parallel with the horizontal axis if the effects
of asymmetry were eliminated completely. Here it is debatable which of the two forms of
correction does best at removing the effects of asymmetry, effects that are not especially
strong to start with in this case. Certainly for moderate levels of asymmetry and perhaps
for high levels of asymmetry, α†

4 performs best. However, for distributions with heavy tails
(δ < 1, λ1 < 1/2) and low levels of asymmetry (ε � 0, ρ1 � 0), α∗

4 performs better.
Panels (d)–(f) of Figure 2 portray contour plots analogous to those in panels (a)–(c),

now as functions of ρ1 = ε/(1 + ε), ε ≥ 0, and λ2 = ν/(1 + ν), for the sinh-arcsinhed t
distribution of Rosco et al. (2011) with density

fε,ν(x) =
KνCε,1(x)√

1 + x2(1 + ν−1S2
ε,1(x))

(ν+1)/2
, −∞ < x, ε < ∞, ν > 0, (6)
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Figure 2: Contour plots of the three moment-based kurtosis measures α4/(1+α4) (first column), α∗
4/(1+α∗

4)

(second column) and α†
4/(1+α†

4) (third column). Panels (a)–(c) correspond to the SAS-normal distribution
with density (5), as functions of ρ1 = ε/(1+ε), ε ≥ 0, and λ1 = δ/(1+ δ). Panels (d)–(f) are their analogues
for the SAS-t distribution with density (6), as functions of ρ1 ≥ 0 and λ2 = ν/(1 + ν). Panels (g)–(i)
correspond to the skew-t distribution with density (7), as functions of ρ2 = α/(1 + α), α ≥ 0, and λ2.

5



where Kν = Γ((ν + 1)/2)/(
√
νπΓ(ν/2)). As for the SAS-normal distribution, ε is the

skewness regulating parameter. However, ν replaces δ as the tailweight parameter. The
SAS-t distribution has tails ranging from the extremely heavy (ν � 0), through those of
the Cauchy distribution (ν = 1), all the way to those of the normal distribution (ν → ∞).
However, the moment-based kurtosis measures are only defined for ν > 4, or λ2 > 0.8. For
this family of distributions, α†

4 can probably be judged to generally perform best.
Finally, panels (g)–(i) of Figure 2 provide analogous contour plots, now as functions of

ρ2 = α/(1 + α), α ≥ 0, and λ2 = ν/(1 + ν), for the skew-t distribution of Azzalini and
Capitanio (2003) with density

fα,ν(x) = 2tν(x)Tν+1

{
αx

(
ν + 1

x2 + ν

)1/2
}
, −∞ < x, α < ∞, ν > 0, (7)

where tν and Tν denote the density and distribution function, respectively, of the t-distribution
with ν degrees of freedom. Here, α is a skewness parameter (as for the skew-normal class)
and ν is a tailweight parameter (as for the SAS-t family). Again, the moment-based kurtosis
measures are only defined for ν > 4, or λ2 > 0.8. For this family, α†

4 generally performs
best, particularly for distributions with low to moderate levels of skewness.

Thus, although the ability of the moment-based kurtosis measures α∗
4 and α†

4 to remove
the influence of skewness clearly depends on the family of distributions under consideration
and the level of skewness, our findings for the four flexible families of unimodal distributions
considered here indicate that α†

4 generally outperforms α∗
4, if not by a huge amount. It is

noteworthy that, in the examples of Figure 2, α∗
4 actually makes little difference compared

with α4; on the other hand, α†
4 makes more difference, although sometimes it seems to adjust

α4 a little bit too much.

2.3. Lower bounds
As stated in the Introduction, the standard moment-based kurtosis measure α4 is bounded

below by α2
3+1. Here we consider lower bounds for the two moment-based skewness adjusted

measures, α∗
4 and α†

4.
The key to obtaining a lower bound for α∗

4 is the following simple bound for the ‘sym-
metric’ (actually, odd) sinh-arcsinh function S0,δ(x) = sinh(δ sinh−1(x)) when 0 ≤ δ ≤ 1
and x ≥ 0: S0,δ(x) ≤ δx. This follows because S0,δ(0) = 0, S ′

0,δ(0) = δ and, with just a
little effort, S0,δ(x) with 0 ≤ δ ≤ 1 can be shown to be concave on x ≥ 0. It follows that
k = 2S0, 1

3

(α3/2) ≤ α3/3 for α3 ≥ 0 and hence, since k is an odd function of α3,

k2 ≤ 1
9
α2
3.

(Blest (2003) notes essentially that k ≈ α3/3 which is indeed a good approximation for small
α3.) Finally,

α∗
4 = α4 − 3k2(2 + k2) ≥ α2

3 + 1− 1
3
α2
3

(
2 + 1

9
α2
3

)
= 1 + 1

3
α2
3 − 1

27
α4
3.
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Figure 3: Lower bounds for α4 (solid), α∗
4 (dotted) and α†

4 (dashed) as functions of the skewness measure
α3.

The same bound divided by (1 + 1
9
α2
3)

2 clearly holds for α†
4 = α∗

4/(1 + k2)2. That is,

α†
4 ≥

1 + 1
3
α2
3 − 1

27
α4
3

(1 + 1
9
α2
3)

2
= 3

(
27 + 9α2

3 − α4
3

81 + 18α2
3 + α4

3

)
.

Figure 3 portrays the lower bounds for α4, α∗
4 and α† as functions of α3. All three lower

bounds are clearly identical, and equal to one, if the underlying distribution is symmetric
(and, indeed, for any distribution such that α3 = 0). The bounds for α∗

4 and α†
4 are not

dissimilar for α3 values within the plotted range. However, α∗
4 → −∞ as |α3| → ∞, while

α†
4 → −3 as |α3| → ∞. The lower bounds on the skewness-adjusted kurtosis measures are

much less stringent than the classical lower bound on the value of α4.

3. Estimation

When working with data using moment-based measures, it will of course be of interest
to estimate the values of α∗

4 and α†
4, and this is the problem we consider here. Specifically,

we focus on estimators of them based on popular estimators of α3 and α4. We introduce the
underlying estimators of α3 and α4 in Section 3.1, and present the results from a simulation
study designed to explore the performance of twelve estimators of each of α∗

4 and α†
4 in

Section 3.2.

3.1. Estimators of α3 and α4

Let X1, ..., Xn denote a random sample from some unspecified distribution, and X̄ =
n−1

∑n
i=1 Xi, Mk = n−1

∑n
i=1(Xi−X̄)k, α̃3 = M3/M

3/2
2 and α̃4 = g2+3 = M4/M

2
2 denote the

sample mean, the kth moment about the mean, and the classical sample moment estimators
of α3 and α4, respectively. For data from a normal distribution, α̃3 is unbiased for α3,

7



whereas α̃4 is only asymptotically unbiased for α4. For data from other distributions, the
two estimators are asymptotically unbiased (see, for example, Ðorić et al., 2009). α̃3 and α̃4

are the estimators of α3 and α4 implemented in the statistical software package STATA and
the moments package of R.

Fisher (1930) proposed

α̃′
3 = α̃3

√
n(n− 1)

n− 2
and G2 =

n− 1

(n− 2)(n− 3)
{(n+ 1)(α̃4 − 3) + 6}

as estimators of α3 and α4 − 3. We will denote the corresponding estimator of α4 by
α̃′
4 = G2 + 3. For samples drawn from the normal distribution, α̃′

3 and α̃′
4 are unbiased.

These are the estimators of α3 and α4 implemented within the packages SAS, SPSS and
STATISTICA.

Making use of the unbiased estimators M ′
2 = nM2/(n− 1), M ′

3 = n2M3/{(n− 1)(n− 2)}
and

M ′
4 =

n(n2 − 2n+ 3)

(n− 1)(n− 2)(n− 3)
M4 − 3n(2n− 3)

(n− 1)(n− 2)(n− 3)
M2

2 ,

of their population central moment counterparts, Cramér (1946) considered the estimators

M ′
3

(M ′
2)

3/2
= α̃′

3 and α̃′′
4 =

M ′
4

(M ′
2)

2
. (8)

As Ðorić et al. (2009) explain, α̃′′
4 is biased with the same bias as α̃4 when the data are

normal. More generally, α̃′
3 and α̃′′

4 are biased but with smaller biases than α̃3 and α̃4.
The estimators of α3 and α4 − 3 implemented in MINITAB, BMDP and the timeDate

package of R are

α̃′′
3 =

M3

(M ′
2)

3/2
= α̃3

(
n− 1

n

)3/2

and b2 =
M4

(M ′
2)

2
− 3 = α̃4

(
n− 1

n

)2

− 3.

We will use α̃′′′
4 = b2 + 3 to denote the corresponding estimator of α4. Like α̃′

3, α̃′′
3 is a

multiple of α̃3 and thus is also an unbiased estimator of α3 = 0 when the data are normal.
Joanes and Gill (1998) present results for the variances of the estimators α̃3, α̃′

3 and α̃′′
3

and for the biases and variances of the estimators g2, G2 and b2 for samples drawn from the
normal distribution. They also summarise Monte Carlo based results for the bias and mean
squared error (MSE) of the same estimators for data drawn from chi-squared distributions
with varying levels of asymmetry, specifically, with 1, 10 and 50 degrees of freedom. They
found all six estimators to be negatively biased for samples drawn from these positively
skewed distributions, the bias decreasing with increasing sample size, n, and number of
degrees of freedom. Based on their results, it can be concluded that α̃′′

3 and α̃′′′
4 have the

smallest variances for samples drawn from the normal distribution, while α̃′′
3 and α̃4 have

the smallest MSEs in the normal case. On the other hand, α̃′
3 and α̃′

4, for n < 100, and α̃4,
for 100 ≤ n ≤ 200, have the smallest MSEs for samples from a very skewed distribution like
the chi-squared distribution with 1 degree of freedom.
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3.2. Simulation study
There are twelve possible combinations of the three estimators α̃3, α̃′

3 and α̃′′
3 of α3 and

the four estimators α̃4, α̃′
4, α̃′′

4 and α̃′′′
4 of α4 which one might contemplate substituting for

α3 and α4 in (1)–(3) so as to obtain estimators of k, α∗
4 and α†

4. We identify these twelve
combinations using the numbers: 1 for (α̃3, α̃4), 2 for (α̃′

3, α̃4), 3 for (α̃′′
3, α̃4), 4 for (α̃3, α̃

′
4),

5 for (α̃′
3, α̃

′
4), 6 for (α̃′′

3, α̃
′
4), 7 for (α̃3, α̃

′′
4), 8 for (α̃′

3, α̃
′′
4), 9 for (α̃′′

3, α̃
′′
4), 10 for (α̃3, α̃

′′′
4 ), 11

for (α̃′
3, α̃

′′′
4 ), 12 for (α̃′′

3, α̃
′′′
4 ). In order to study the small-sample bias and MSE properties

of the twelve resulting estimators of α∗
4 and of α†

4, we carried out a simulation study.
In our study we generated samples of size n = 10, 20, 50, 100 and 200 from the SAS-

normal distribution with density (5), the SAS-t distribution with density (6), and Azzalini
and Capitanio’s skew-t distribution with density (7). We chose these three models because
of their unimodal flexibility. For each of the three families of distributions we considered
values of their skewness parameters (ε for the first two, and α for the last) of 0, 0.5, 1 and 10.
For the two asymmetric t distributions we explored values of their tailweight parameter, ν,
of 4.1, 10 and ∞. (The ν = ∞ cases correspond to the SAS-normal distribution with δ = 1
and the skew-normal distribution, respectively.) And for the SAS-normal we investigated
values for its tailweight parameter, δ, of 0.2, 0.5, 2, 5 and 20. These parameter combinations
correspond to ranges of α4 of: (2.14, 1154.60) for the SAS-normal; (3, 266.18) for the SAS-t;
(3, 230.70) for the skew-t. For each distribution, sample size, asymmetry parameter value
and tailweight parameter value combination we simulated 10, 000 samples, and from these
samples we calculated the sample bias and MSE of each of the twelve estimators of α∗

4 and
each of the twelve estimators of α†

4.
Consistent with the results quoted above from Joanes and Gill (1998) and there being

relatively little difference between α4 and α∗
4, the biases of all the estimates of α∗

4 were found
to be negative, the bias decreasing (in absolute value) with increasing sample size and as the
tailweight tends to that of the normal distribution and, generally, as the skewness tends to 0
(i.e. to symmetry). With regard to the MSE of the twelve estimators of α∗

4, for distributions
with normal or heavier tails we observed patterns which are well represented by panels (a)
and (c) of Figure 4. For distributions with lighter than normal tails, patterns like those
displayed in panel (e) of the same figure were obtained. As panels (a), (c) and (e) of Figure
4 illustrate, there is little or no difference between the MSEs of the twelve estimators of α∗

4

for sample sizes of 100 or more.
The results obtained for the estimators of α†

4 were very similar to those for the estimators
of α∗

4, except that their biases and MSEs were generally found to be somewhat larger. The
difference between their MSEs can be appreciated by comparing the panels corresponding to
the estimates of α∗

4 in the first column of Figure 4 with their counterparts for the estimates
of α†

4 in its second column.
For samples drawn from distributions with heavier than normal tails, for example, Figure

4(a),(b), the estimators of α∗
4 and α†

4 which generally had lowest MSEs were those based on
the combinations 9 (α̃′′

3, α̃
′′
4), 7 (α̃3, α̃

′′
4) and 8 (α̃′

3, α̃
′′
4) (ordered according to increasing MSE).

The estimator α̃′′
4 which appears in all three of these combinations was not considered by

Joanes and Gill (1998) as a potential estimator of α4. For samples from distributions with
normal-like tails, for example, Figure 4(c),(d), the estimators with lowest MSEs generally

9
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Figure 4: Empirical MSE, as a function of sample size, n, of estimators of α∗
4/(1 + α∗

4) (first column) and
α†
4/(1 + α†

4) (second column) based on the combinations of the estimators of α3 and α4 identified in the
keys. The rows correspond to data simulated from the: t distribution with ν = 4.1 (first); skew-normal
distribution with α = 1 (second); SAS-normal distribution with δ = 20 and ε = 10 (third). The results
for those combinations producing the highest MSEs have been omitted so as to aid the identification of the
combinations corresponding to the estimators with the lowest MSEs.
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corresponded to the combinations 3 (α̃′′
3, α̃4) and 9 (α̃′′

3, α̃
′′
4). Both of these combinations

involve α̃′′
3 which was found by Joanes and Gill (1998) to be the estimator of α3 with

smallest MSE for data drawn from the normal distribution. Finally, for samples drawn from
distributions with lighter than normal tails, for example, Figure 4(e),(f), the estimators based
on the combinations 1 (α̃3, α̃4), 2 (α̃′

3, α̃4) and 3 (α̃′′
3, α̃4) were found generally to be those with

lowest MSEs. All three of these combinations contain the raw moment estimator α̃4 of α4.
Here a comparison with the results reported in Joanes and Gill (1998) is impossible because
they did not investigate the performance of the different estimators for data simulated from
light tailed distributions. The estimators corresponding to the combinations 11 (α̃′

3, α̃
′′′
4 )

and 10 (α̃3, α̃
′′′
4 ) were found consistently to be the ones with the largest MSEs, and this is

the reason why the results for them have been omitted from Figure 4. Both combinations
involve the estimator α̃′′′

4 of α4.
The lessons gleaned from our simulation study are pulled together in Section 4 below.

4. Concluding remarks

In this paper we have proposed and investigated α†
4, an adaptation of Blest’s (2003)

moment-based coefficient of kurtosis adjusted for skewness, α∗
4. For four flexible unimodal

models considered in Section 2.2, α†
4 was found generally to outperform α∗

4, though by
relatively small amounts, in terms of its ability to remove the effects of asymmetry. Also,
the lower bound for α†

4 is closer to being constant than that for α∗
4.

Our Monte Carlo investigation of the MSEs of various moment-based estimators of α∗
4

and α†
4, reported in Section 3.2, identified the estimators corresponding to the combinations

of any of the estimators of α3 with α̃′′
4 as being the ones which generally performed best when

working with samples drawn from distributions with heavier than normal tails. On the other
hand, for samples drawn from distributions with lighter than normal tails, the estimators
based on the combinations of any of the estimators of α3 with α̃4 were found generally
to perform best. In the intermediate case, for samples from distributions with close to
normal tails, the estimators which generally performed best were those corresponding to the
combinations 3 (α̃′′

3, α̃4) and 9 (α̃′′
3, α̃

′′
4). It seems appropriate, therefore, to recommend use

of α̃′′
3 throughout. The most appropriate estimator of α4 depends on tailweight; α̃′′

4 would
seem to be the more usual choice, as it is good for heavier and normal tails, but users should
be aware that its performance is not so good for light tails. That said, of all the different
combinations considered, only combination 1 involves estimators of both α3 and α4 — the
classical moment estimators — which are readily available within all of the major statistical
packages. These conclusions all apply to estimators of both α∗

4 and α†
4, but it has to be

admitted that the performance of estimators of α†
4 is generally a little inferior to those of

α∗
4.

Like α4 and α∗
4, α

†
4 is a moment-based measure which will not exist if the fourth moment

does not exist. As stated in the Introduction, the potential non-existence of moment-based
kurtosis measures has rightly led researchers to propose numerous alternative measures of
kurtosis. In Jones et al. (2011), we identify two wide classes of quantile-based kurtosis

11



measures which are skewness-invariant for certain families of distributions. Development of
the ideas explored there we consider to warrant future investigation.
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Abstract Three tail asymmetry measures for bivariate copulas are introduced using
two different approaches—univariate skewness of a projection and distance between
a copula and its survival/reflected copula. We compare the asymmetry measures based
on certain desirable properties. Bounds for eachmeasure are obtained and also copulas
which attain these extreme values are identified. Two data examples show the amount
of asymmetry that might be expected in practice.

Keywords Quantiles · Survival copula · Tail dependence · Univariate skewness

1 Introduction

Vine copulas, see Aas et al. (2009) and Kurowicka and Joe (2011), have been popu-
lar in recent years as a way to build multivariate copulas from bivariate marginal or
conditional copulas. To help in deciding on appropriate bivariate copulas in the first
level of the vine, diagnostics such as bivariate asymmetry measures, which can be
applied to all pairs of variables, are useful. In this paper, we study several bivariate
tail asymmetry measures, based on univariate skewness or distance between a copula
and its reflected copula.
If multivariate data deviate from the multivariate normal copula, the usual forms of

departure are in terms of theweight of the tails and/or asymmetry.When the asymmetry

J. F. Rosco (B)
Department of Mathematics, Escuela Politécnica, University of Extremadura, Cáceres, Spain
e-mail: juanfranrn@unex.es

H. Joe
Department of Statistics, University of British Columbia, Vancouver, BC, Canada
e-mail: Harry.Joe@ubc.ca

123



J. F. Rosco, H. Joe

cannot be neglected, the assumption of normality cannot be presumed and other mod-
els with more flexibility should be considered. Specifically, if tail asymmetry exists in
the data, then the multivariate normal copula does not provide correct inferences on
joint tail probabilities, and in quantitative risk analysis in finance and insurance, it is
important to have models that provide good estimates of joint tail probabilities. Thus,
copula families with a wide range of tail behaviour are useful for statistical model-
ling. Although the multivariate Gaussian and t copula families have wide dependence
ranges, they are not appropriate when there is reflection or tail asymmetry.
The concept of asymmetry in the univariate context has been extended to the bivar-

iate and multivariate distributions in many ways. Here we consider asymmetry in the
copula dependence structure which can be separated from the univariate margins (by
Sklar’s theorem). For bivariate asymmetry, we focus on the class C of all bivariate
copulas with Uniform(0, 1) margins. Given C ∈ C we define CR as the survival
copula, i.e., if (U, V ) ∼ C , then CR is the copula associated with the distribution of
(1− U, 1− V ) and given by the expression CR(u, v) = u + v − 1+ C(1− u, 1− v).
The R subscript stands for ‘reflection’ since the univariate margins ofCR corresponds
to the reflection of the univariate margins of C across the point (1/2, 1/2). We say
that a copula C is reflection symmetric if C(u, v) = CR(u, v) for all u, v ∈ [0, 1];
this concept is also called ‘radial symmetry’ in Nelsen (2006).
Regarding the dependence of multivariate models, there are the tail dependence

parameters. Given C ∈ C , we define the lower and upper tail parameters (see, for
example Joe 1993), as the limits, when they exist,

λL = lim
u↓0

C(u, u)

u
, λU = lim

u↑1
CR(1− u, 1− u)

1− u
,

respectively. And we say that C has lower tail dependence if λL ∈ (0, 1] and has
no lower tail dependence if λL = 0. Similarly with λU and upper tail dependence.
A drawback of these parameters is that, as they are defined using limits, they cannot
be estimated well from data.
More recently, in Hua and Joe (2011), the concept of tail order is introduced in a

multivariate context to study a range of tail behaviour. The lower tail order is κL if
C(u, u) ∼ �L(u)uκL as u → 0 where �L(u) is a slowly varying function (such as a
constant or a power of − log u). If C(u, u) = 0 for all 0 < u < u0 for some positive
u0, then define κL = ∞. Similarly the upper tail κU is such that CR(1− u, 1− u) ∼
�U (u)uκU as u → 0. A property is that κL ≥ 1 and κU ≥ 1 with a smaller value
corresponding to more dependence in the tail (more probability in the corner). Thus,
the strongest tail dependence corresponds to κL = 1 or κU = 1. For a comonoton-
ic (perfect positive dependence) tail, κL = κU = 1 and �L(u) = �U (u) = 1 for
strongest tail dependence. For a countermonotonic (perfect negative dependence) tail,
κL = κU = ∞ because there is no probability in the upper and lower corners. These
tail orders also provide a simple condition to establish the direction of reflection asym-
metry, namely: if κL > κU (κL < κU ) then C has reflection asymmetry skewed to
the upper (lower) tail; and if C(u, u) ∼ λLuκ and CR(u, u) ∼ λU uκ as u → 0 with
λU > λL > 0 (λL > λU > 0), then C has reflection asymmetry skewed to the upper
(lower) tail.
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Another tail asymmetry approach in Dobric et al. (2010) and Nikoloulopoulos
et al. (2012), that has been applied to financial returns data, is based on the difference
between the (Spearman or Pearson) correlations of the upper [1− p, 1]2 tail and the
lower [0, p]2 tail, where 0 < p ≤ 1/2. Specifically, if (U, V ) ∼ C , the difference of
conditional correlations is

Corr (U, V |U > 1− p, V > 1− p) − Corr (U, V |U < p, V < p) . (1)

A summary of the remainder of this paper is the following. Section 2 identifies desir-
able properties for measures of tail asymmetry. Section 3 analyzes three measures of
tail asymmetry; two based on univariate skewness and one based on a distance mea-
sure of C and its reflected/survival copula CR . Dehgani et al. (2011) study measures
based on the L p distance, and we overlap with them with the measure based on the
L∞ distance. The results show that most tail asymmetry tends to occur at intermediate
strength of positive or negative dependence and that the copulas attaining extreme tail
asymmetry depend on the measure. Section 4 has two data examples that illustrate
the amount of tail asymmetry that might be expected in practice. Section 5 concludes
with some discussion.

2 Desirable properties for measures of bivariate tail asymmetry

In this section, we present a list of appealing conditions that a measure of tail asymme-
try, ς , should satisfy. Given C ∈ C and (U, V ) ∼ C , let CP (u, v) = C(v, u) denote
the distribution of the permutation (V, U ).
Mimicking what has been done in Durante et al. (2010) for measures of bivariate

nonexchangeability, we present five axioms that are reasonable for measures of tail
asymmetry to satisfy:

(i) there exists K ∈ R such that, |ς(C)| ≤ K for every C ∈ C ;
(ii) ς(C) = 0 if C is reflection symmetric;
(iii) ς(C) = −ς(CR) for every C ∈ C ;
(iv) ς(C) = ς(CP ) for every C ∈ C ;
(v) if C ∈ C and {Cn}n∈N is a sequence of copulas such that Cn → C uniformly,

then ς(Cn) → ς(C).

Our axioms were developed independently of Dehgani et al. (2011). The stronger
version of axiom (ii) with “if and only if” is considered there, but this statement would
only be satisfied for measures that are distances between C and CR , and we think
that would be too restrictive for some applications. Also, Dehgani et al. (2011) do
not account for the direction of the asymmetry as they only consider non-negative
measures.
In the following sectionswe study three tail asymmetrymeasures; two of themusing

an approach based on univariate skewness as a measure of asymmetry and another
based on the L∞ distance. For the latter, we obtain results that are not given in Dehgani
et al. (2011).
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Fig. 1 Support ofC(·; 1/2)

3 Tail asymmetry measures

If (U, V ) ∼ C for a reflection symmetric copula, then (1− U, 1− V )
d= (U, V ) and

U + V − 1 d= (1− U ) + (1− V ) − 1 = 1− U − V so that U + V − 1 is symmetric
about 0. If C has tail asymmetry skewed to the upper (lower) tail, then U + V − 1
is right-skewed (left-skewed). There is much literature on univariate skewness mea-
sures and in the first two subsections, we use skewness measures based on moments
and quantiles respectively. Note that any skewness measure (a function γ such that
γ (X) = −γ (−X) for a random variable X and γ (X) = 0 for X symmetric about 0)
applied to U + V − 1 satisfies properties (ii) and (iii); property (iv) is also satisfied
because U + V − 1 = V + U − 1.
We next introduce a family of singular copulas parameterized by 0 ≤ a ≤ 1:

C(u, v; a) =
{
max{0, u + v − a}, 0 ≤ u, v ≤ a,

min{u, v}, otherwise.
(2)

If (U, V ) ∼ C(·; a), then a stochastic representation is

V = a − U for 0 ≤ U < a and V = U for a ≤ U ≤ 1.

In Fig. 1 we show an example of the support of a member of (2) with a = 1/2. We
shall also use the corresponding survival copulas, {CR(u, v; a) : 0 ≤ a ≤ 1}; the
stochastic representation is

V = U for 0 ≤ U < 1− a and V = 2− a − U for 1− a ≤ U ≤ 1.

For C(·; a), the lower tail dependence parameter is 0, κL = ∞ and the upper
tail dependence parameter is 1, regardless of the value of a. For the tail asymmetry
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measure in (1), the value of the upper bound is 2 forC(·; a) if a/2 < p ≤ min{a, 1/2}
and the value of the lower bound is −2 for CR(·; a) if a/2 < p ≤ min{a, 1/2}.
The reason for considering (2) as a main example is that we think this family of

copulas attains the maximum or extreme values of different reflection asymmetry
measures such as ς1 in Sect. 3.1. However for particular asymmetry measures, there
will also be other copulas that attain the extreme values.
Because comonotonic, countermonotonic and independence copulas are all reflec-

tion symmetric, we can expect that the copulas attaining the most reflection asymme-
try have medium, positive or negative dependence. For reference of later results, we
will use Blomqvist’s β, defined as 4C(1/2, 1/2) − 1, and Spearman’s ρS , defined as
12E (U V ) − 3, as measures of monotone association. For (2), ρS = 1− 2a3 and the
value of β is 1 for 0 < a ≤ 1/2 and 3− 4a for 1/2 < a < 1.

3.1 A family of measures based on moments

We define the function

C × (1,∞) −→ (−1, 1)
(C, k) �−→ ς1(C, k) = ς1(U, V ; k) := E[|U + V − 1|ksign(U + V − 1)],

with (U, V ) ∼ C . The function ς1 is well defined since the expectation of |U +
V − 1|k exists whatever the copula C and the value of k ∈ (1,∞), and the case
k = 1 is not considered because this leads to the constant function ς1 = 0. Since
|u +v −1|ksign(u +v −1) ∈ (−1, 1), we have that the range of ς1 is (−1, 1), thus ς1
satisfies property (i). Because γ (X) = |X |ksign(X) is a univariate skewness measure,
then as indicated above, properties (ii), (iii) and (iv) are satisfied. It may be shown,
using the dominated convergence theorem, that property (v) is also satisfied.
This function ς1 is a generalized measure of asymmetry for bivariate copulas; it

becomes an analogue of Fisher’s coefficient of skewness when k = 3.
An outline of arguments that show that the family {C(·; a)} is extreme for ς1 is

given in the Appendix. In order to obtain the actual range for ς1, we maximize ς1
over (2). We only consider this maximization problem since the reflections of these
copulas attain the minimum value. So, we have

ς1(C(u, v; a), k) =
⎧⎨
⎩

−a(1− a)k − ∫ 1/2
a (2u − 1)kdu + ∫ 1

1/2(2u − 1)kdu, a < 1/2,

−a(1− a)k + ∫ 1
a (2u − 1)kdu, a ≥ 1/2.

Hence
∂ς1

∂a
(C(u, v; a), k) = −(1− a)k + ak(1− a)k−1 − (2a − 1)k . (3)

This is a polynomial of order k; the roots cannot always be found analytically but
can be obtained numerically. Table 1 shows the maximum values and where they are
attained for different integer values of k. For instance, when k = 2 we obtain that the
maximum is attained at (4+ √

2)/7 and when k = 3 the maximum is attained at 3/4.
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Table 1 Maximum value of ς1[C(·; a), k] for different values of k

k 2 3 4 5 6 7 8

max 0.0997 0.1055 0.0941 0.0815 0.0709 0.0623 0.0555
amax 0.7735 0.75 0.7358 0.7261 0.7190 0.7136 0.7094
β −0.094 0 0.057 0.096 0.124 0.146 0.163
ρS 0.075 0.156 0.203 0.234 0.257 0.273 0.286

Also the point where the maximum is attained, amax, Blomqvist’s β and Spearman’s ρS are shown
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Fig. 2 Plots for a the maximum value of the asymmetry measure ς1(·, k) as a function of 1 < k ≤ 40 and
b the point at which the maximum is attained as a function of 1 < k ≤ 10

In Fig. 2 we show a plot of the maxima of ς1(C(·; a), k) as a function of k in panel
(a) and a plot of the points where those maxima are attained in panel (b). However, due
to the flat shape of the function given by Eq. (3) and the use of numerical methods, we
can only plot these points up to k = 10. Thus, the maximum value that can be attained
for ς1 increases with increasing k until k reaches 	 2.61, for which the maximum
value is 0.107. Beyond that value ς1 decreases with increasing k. For integer values
of k, the maximum is attained when k = 3.
We are interested in the maximum values of ς1(C(·; a), k) when k is close to 1 and

also when k → ∞. It is easy to show that for every ε > 0, Eq. (3) decreases to 0 when
a = 2/3 − ε and k → ∞. Also, it increases to 0 when a = 2/3 + ε and k → ∞.
Thus, for every ε > 0, the maximum of ς1(C(·; a), k → ∞) has to be attained in
[2/3− ε, 2/3+ ε]. Hence, the limit, when k → ∞, of the points where the maximum
is attained is 2/3.
When k → 1 we can use the very same argument to conclude that the limit of the

pointswhere themaximum is attained is around0.82. This approximationwas obtained
as the root, using numerical methods, of a+(2a−1) log(1−a)+(1−2a) log(2a−1),
which is the coefficient of k in the Taylor series for Eq. (3) around 1. Figure 3 portrays
plots of the maximum value in panel (a) and the points where the maximum is attained
in panel (b) for k ∈ (1, 2).
For absolutely continuous copulas, one that is the most asymmetric family, from

the point of view of tail order (it satisfies κL = 1, λL = 1 and κU = 2), is the
two-parameter family BB2 (see Joe 1997) given by
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Fig. 3 Plots for a the maximum value of the asymmetry measure ς1(·, k) and b the points at which the
maximum is attained as functions of 1 < k ≤ 2

C(u, v; θ, δ) =
[
1+ δ−1 log

(
eδ(u−θ−1) + eδ(v−θ−1) − 1

)]−1/θ
,

where θ, δ > 0. For this family of copulas, we find numerically that the extreme asym-
metry, as measured by ς1 when k = 3, is−0.027 for the parameter values δ = 0.366,
θ = 1.198. The value of Blomqvist’s β for the copula with these parameters is 0.53.
Regarding the estimation of ς1 for a set of data (u1, v1), . . . , (un, vn), we can use

any of the several moments estimators. Letmi = n−1∑n
j=1(u j + v j − 1)i denote the

sample i th moment. When k = 3, we could just use the estimator ς̂1(3) = m3.

3.2 A family of measures based on quantiles

Another popular approach is to measure univariate asymmetry with quantiles. We
define ς2 as follows

C × (0, 1/2) −→ [−1, 1]
(C, p) �−→ ς2(C, p) := Q(1− p) − 2Q(1/2) + Q(p)

Q(1− p) − Q(p)
,

where Q denotes the quantile function of U + V − 1.
Since this measure is defined as a ratio where the denominator is always bigger than

the numerator, property (i) is satisfied. As for property (v), this holds if the quantile
function of U + V − 1 is continuous (and Q(1− p) �= Q(p)).
The extreme value of ς2(C, p) = 1 can be attained for (2). For family (2), the

cumulative distribution function ofU + V −1 satisfies FU+V −1(t) = 0 for t < a −1,
FU+V −1(t) = a for a − 1 ≤ t < 2a − 1 and FU+V −1(t) = (t + 1)/2 for 2a − 1 ≤
t ≤ 1. Hence for 0 < p < 1 − a and a ≥ 1/2, the quantiles of U + V − 1 are
Q(p) = Q(1/2) = a − 1 and 2a − 1 ≤ Q(1− p) < 1, and ς2(C(·; a), p) = 1. Also,
−1 can be attained for the corresponding survival copulas.
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For the BB2 copula, the extreme asymmetry, −0.168, is attained for p = 0.102
and the parameter values δ = 1.037 and θ = 0.700. The value of Blomqvist’s β for
the copula with these parameters is 0.49.
Regarding the sample version of this measure, ς̂2, we have several choices when it

comes to estimate quantiles. A comparison between estimators implemented in statis-
tical packages can be found inHyndman and Fan (1996). Another comparison between
quantile estimators is made in Dielman et al. (1994).

3.3 A measure based on the distance between C and CR

In Klement and Mesiar (2006) and Nelsen (2007), a measure of nonexchangeabil-
ity is introduced as sup{|C(u, v) − C(v, u)|}, where the supremum is taken over
(u, v) ∈ [0, 1]2. Following this approach, Dehgani et al. (2011) studied measures of
(reflection) asymmetry based on the L p distances. For the boundary case, p = +∞,
define the function ς3 as

ς3(C) := sup
(u,v)∈[0,1]2

{|C(u, v) − CR(u, v)|}.

It is clear that ς3 ≥ 0 since it is defined as the supremumof non-negative values, and
it is bounded above by 2. It is easy to show that property (ii) is satisfied. Property (iii)
cannot be satisfied by ς3 since it only has non-negative values. Property (iv) is satisfied
as {|C(u, v) − CR(u, v)| : u, v ∈ [0, 1]} = {|C(v, u) − CR(v, u)| : u, v ∈ [0, 1]}.
Also, since ς3 : (C , ‖ · ‖∞) −→ (A ⊂ R, | · |) is a continuous function, we have that
property (v) is satisfied.
It is shown in Dehgani et al. (2011) that ς3 ≤ 1/3. More generally, we have the

following result,

sup
(u,v)∈[0,1]2

{|C(u, v) − CR(u, v)|}

≤ min
(u,v)∈[0,1]2

{
u, v, 1− u, 1− v,

∣∣∣∣12 − u

∣∣∣∣ +
∣∣∣∣12 − v

∣∣∣∣
}

≤ 1

3
,

and the inequality is best-possible since |C(1/3, 1/3; 2/3) − CR(1/3, 1/3; 2/3)| =
1/3. So we have A = [0, 1/3]. The proof of this inequality shall be given later as a
particular case of a more general scenario.
Before we get to that, we emphasize that there are many copulas that attain the

maximum value of ς3. As shown in Dehgani et al. (2011), the maximum value of 1/3
can be attained by some copulas with support on three subsquares, each with total
probability of 1/3:

(a) support on [0, 1/3]2, [1/3, 2/3] × [2/3, 1], [2/3, 1] × [1/3, 2/3];
(b) support on [0, 1/3] × [1/3, 2/3], [1/3, 2/3] × [2/3, 1], [2/3, 1] × [0, 1/3];
(c) support on [0, 1/3] × [2/3, 1], [1/3, 2/3] × [0, 1/3], [2/3, 1] × [1/3, 2/3];
(d) support on [0, 1/3] × [1/3, 2/3], [1/3, 2/3] × [0, 1/3], [2/3, 1]2.
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All four of these could have lower and upper tail orders of infinity. For instance, the
copulas in (b) and (c) have these tail orders for sure. Hence, ς3 is not a strongly dis-
criminating measure of tail asymmetry. For a similar reason the measure proposed in
Klement and Mesiar (2006) and Nelsen (2007) is not strongly discriminating.
We return now to the upper bound for ς3. Let 0 ≤ C(1/2, 1/2) = α ≤ 1/2 be a

fixed value, then we have

sup
(u,v)∈[0,1]2

{|C(u, v) − CR(u, v)|} ≤ min
(u,v)∈[0,1]2

{
u, v, 1− u, 1− v,

∣∣∣∣12 − u

∣∣∣∣
+

∣∣∣∣12 − v

∣∣∣∣ , α∗
(u,v),

∣∣∣∣12 − α∗
(u,v)

∣∣∣∣
+

∣∣∣∣12 − u

∣∣∣∣ ,
∣∣∣∣12 − α∗

(u,v)

∣∣∣∣ +
∣∣∣∣12 − v

∣∣∣∣
}

,

where α∗
(u,v) = 1/4+ (α − 1/4) sign{(u − 1/2)(v − 1/2)}.

Let C ∈ C be a copula and α = C(1/2, 1/2). Then a straightforward calculation
leads to CR(1/2, 1/2) = α and by definition, for (U, V ) ∼ C , C(u, v) = P(U ≤
u, V ≤ v) and CR(u, v) = P(U > 1− u, V > 1− v). We shall use the well-known
inequalities

max{0, P(A) + P(B) − 1} ≤ P(A ∩ B) ≤ min{P(A), P(B)}, (4)

for different A, B; a special case is:

max{0, u + v − 1} ≤ P(U ≤ u, V ≤ v) ≤ min{u, v}. (5)

We divide the proof for the following four cases.

1. u ≤ 1/2, v ≤ 1/2
We have C(u, v) = α − P(U ≤ 1/2, v ≤ V ≤ 1/2) − P(u ≤ U ≤ 1/2, V ≤ v)

(see the left panel of Fig. 4). In order to obtain an upper bound for C(u, v) we
must find lower bounds for the probabilities. Using (4), we obtain

P(U ≤ 1/2, v ≤ V ≤ 1/2) ≥ 0, P(u ≤ U ≤ 1/2, V ≤ v) ≥ 0,
thus, combining with (5), we have C(u, v) ≤ min{u, v, α}.
Next wewant to obtain a lower bound forCR(u, v) = α−P(1/2 ≤ U ≤ 1, 1/2 ≤
V ≤ 1 − v) − P(1/2 ≤ U ≤ 1 − u, 1 − v ≤ V ≤ 1), for which we must find
upper bounds for the two probabilities. Using (4), we have

P(1/2 ≤ U ≤ 1, 1/2 ≤ V ≤ 1− v) ≤ min{1/2, 1/2− v} = 1/2− v,

P(1/2 ≤ U ≤ 1− u, 1− v ≤ V ≤ 1) ≤ min{1/2− u, v},
and, with (5), we have CR(u, v) ≥ max{0, α −1/2, α +u +v −1} = max{0, α +
u + v − 1}. Combining all of this we obtain

C(u, v) − CR(u, v) ≤ min{u, v, 1− u − v, α, 1− u − α, 1− v − α}. (6)
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C(u, v)

CR(u, v)

P(U ∈ [1 2, 1], V ∈ [1 2, 1 − v])

P(U ∈ [u, 1 2], V ∈ [0, v])P(U ∈ [0, 1 2], V ∈ [v, 1 2])

P(U ∈ [1 2, 1 − u], V ∈ [1 − v, 1])

C(u, v)

CR(u, v)

P(U ∈ [1 2, 1], V ∈ [1 2, 1 − v])

P(U ∈ [1 2, u], V ∈ [0, v])P(U ∈ [0, 1 2], V ∈ [v, 1 2])

P(U ∈ [1 − u, 1 2], V ∈ [1 − v, 1])

Fig. 4 Cases 1 and 3 of the proof

2. u > 1/2, v > 1/2
A similar analysis to that above can be used. It turns out that the result is obtained
by replacing u → 1− u and v → 1− v in the preceding case. That is,

C(u, v) − CR(u, v) ≤ min{1− u, 1− v, u + v − 1, α, u − α, v − α}. (7)

3. u > 1/2, v ≤ 1/2
We have C(u, v) = α − P(U ≤ 1/2, v ≤ V ≤ 1/2) + P(1/2 ≤ U ≤ u, V ≤ v)

(see the right panel of Fig. 4). Next we find an upper bound for C(u, v);

P(U ≤ 1/2, v ≤ V ≤ 1/2) ≥ 0, P(1/2 ≤ U ≤ u, V ≤ v) ≤ min{u − 1/2, v}.

So, combining with (5), we have C(u, v) ≤ min{v, α + u − 1/2}.
For the survival copula we have CR(u, v) = α − P(1/2 ≤ U ≤ 1, 1/2 ≤ V ≤
1− v) + P(1− u ≤ U ≤ 1/2, 1− v ≤ V ≤ 1). Bounds for the probabilities are

P(1/2 ≤ U ≤ 1, 1/2 ≤ V ≤ 1− v) ≤ 1/2− v,

P(1− u ≤ U ≤ 1/2, 1− v ≤ V ≤ 1) ≥ 0.

So, with (5), we have CR(u, v) ≥ max{0, u + v − 1, α + v − 1/2}. Finally, we
obtain

C(u, v) − CR(u, v) ≤ min{1− u, v, u − v, 1/2− α, α + u − 1/2, α − v + 1/2}.
(8)

4. u ≤ 1/2, v > 1/2
This case can be resolved by interchanging u ↔ v in the preceding case. Hence,
we obtain
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C(u, v) − CR(u, v) ≤ min{1− v, u, v − u, 1/2− α, α + v − 1/2, α − u + 1/2}.
(9)

We end the proof by noting that

∣∣∣∣12 − u

∣∣∣∣ +
∣∣∣∣12 − v

∣∣∣∣ =

⎧⎪⎪⎨
⎪⎪⎩

1− u − v, u ≤ 1/2, v ≤ 1/2,
u − v, u > 1/2, v ≤ 1/2,
v − u, u ≤ 1/2, v > 1/2,
u + v − 1, u > 1/2, v > 1/2,

and

α∗
(u,v) =

{
α, u ≤ 1/2, v ≤ 1/2 or u > 1/2, v ≥ 1/2,
1/2− α, u ≤ 1/2, v > 1/2 or u > 1/2, v < 1/2.

Using the last upper bound result in Fig. 5 we display the maximum values that ς3
can attain when C(1/2, 1/2) = α is fixed. We see that we can differentiate between
four cases:

i. 0 ≤ α ≤ 1/6; it follows that

a = 1/2− α, u = 1− v = 3/4− α/2, |C(u, v) − CR(u, v)| = α/2+ 1/4;

ii. 1/6 ≤ α ≤ 1/4; it follows that

a = 1/2− α, u = 2v = 1− 2α, |C(u, v) − CR(u, v)| = 1/2− α;

iii. 1/4 ≤ α ≤ 1/3; it follows that

a = α, u = 1− 2v = 1− 2α, |C(u, v) − CR(u, v)| = α;

iv. 1/3 ≤ α ≤ 1/2; it follows that

a = α, u = v = (1− α)/2, |C(u, v) − CR(u, v)| = (1− α)/2.

The importance of this result is that it shows that maximum asymmetry occurs for
intermediate dependence—Blomqvist’s beta is β = 4α − 1, so extremes of ς3 occur
for β = ±1/3.
For the cases that attain the maximum of supu,v |C(u, v) − CR(u, v)| given α =

C(1/2, 1/2), some of the terms in (6–9) are equal. Matching the four cases above to
the four cases of the proof, the following details are obtained.

i. 0 ≤ α ≤ 1/6
We have u ≥ 1/2 and v ≤ 1/2 and hence we obtain v = 1−u = α +u −1/2 =
α − v + 1/2 = α/2+ 1/4 and u − v = 1/2− α ≥ α/2+ 1/4.
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Fig. 5 Maximum value of ς3 as a function of α = C(1/2, 1/2): α/2+ 1/4 for 0 ≤ α ≤ 1/6; 1/2− α for
1/6 ≤ α ≤ 1/4; α for 1/4 ≤ α ≤ 1/3; (1− α)/2 for 1/3 ≤ α ≤ 1/2

ii. 1/6 ≤ α ≤ 1/4
We have u ≥ 1/2 and v ≤ 1/2 andwe obtain v = u−v = α+u−1/2 = 1/2−α

and α − v + 1/2 = 1− u > 1/2− α.

iii. 1/4 ≤ α ≤ 1/3
We have u ≤ 1/2 and v ≤ 1/2 and we obtain v = 1− u − α = 1− u − v = α

and u = 1− u − v ≥ α.

iv. 1/3 ≤ α ≤ 1/2
We have u ≤ 1/2 and v ≤ 1/2 and we obtain u = v = 1− u − α = 1− v − α

and 1− u − v = α ≥ (1− α)/2.

As a comparison of a maximum value of 1/3 for ς3 over all bivariate copulas, for
the continuous bivariate BB2 copula we have that ς3 has a maximum value of 0.092
when δ = 0.226 and θ = 2.049. The value of Blomqvist’s β is 0.67.

4 Examples with real data

In order to illustrate the use of, and possible issues with, the sample versions for the tail
asymmetry measures introduced above, we present two examples with real data; one
considering insurance data and the other considering stock exchange data. For ς̂1(·, k)

we chose k = 3 and as the estimator of the third moment we used n−1∑n
i=1(xi − x̄)3

where n is the sample size and x̄ = n−1∑n
i=1 xi . Regarding ς̂2(·, p), we chose

p = 0.05 and used the type 8 method of the quantile function provided by the
statistical software R for estimating the quantiles. The choice k = 3 is based on the
fact that in the univariate case the thirdmoment is regarded as ameasure of asymmetry.
The choice p = 0.05 was made instead of the more natural p = 0.25 because with
the former value ς2 gives more importance to the tails of the distribution. Regarding
the estimators: the first was chosen because of its simplicity; the second, based upon
the results given in Hyndman and Fan (1996). Regarding ς̂3 as an estimator of ς3, we
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Fig. 6 Scatter plots of uniform scores of a the loss-ALAE (loss values were jittered to avoid ties in the
plot) and b the FTSE-OSEAX data sets, together with the line u + v − 1 = 0

estimate the empirical bivariate copula as an initial step using the function mecdf
from the homonym package available for the statistical software R.
For ς̂1 and ς̂2, the jackknife can be used to obtain the standard errors of the estimates.

The asymptotics for ς̂3 are not straightforward because maxima of a Gaussian process
(the limit of empirical copula processes—see Fermanian et al. 2004) are involved. To
knowwhether ς̂3 is large or not, we compare it with its sampling distribution from rep-
licated data sets of size n from three different reflection symmetric bivariate copulas
(bivariate normal, Plackett and Frank copulas with the same Blomqvist’s β value as
that for the actual data). It turned out that the sampling distributions were very similar
for the different choices of reflection symmetric bivariate copulas for a fixed β; the
upper quantiles have a slow decreasing trend as |β| increases.

4.1 Insurance data on losses and ALAEs

In order to illustrate tail asymmetry, our first set of data comprises 500 general liability
claims which are a random subset of the uncensored cases of a data set which first
appeared in Frees and Valdez (1998). Each claim consists of an indemnity payment
(the loss) and an allocated loss adjustment expense (ALAE). A scatter plot of the data
set is shown in Fig. 6. For these two variables, Spearman’s ρS is 0.46. We can see
that there is more probability mass in the right upper corner, suggesting positive tail
asymmetry. This observation is backed up by the estimation of the measures shown in
Table 2. In terms of magnitude, these skewness measures are in absolute value roughly
half of the maximum absolute value for the BB2 copula family, but nowhere near the
values for copula (2).

4.2 FTSE and OSEAX returns data

The second data set consists of 407 stock returns from the London FTSE index and the
OsloOSEAXindex from2007 to 2008. In order to eliminate possible serial dependence
in the absolute returns, we applied a GARCH filter. For these two GARCH-filtered
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Table 2 Loss-ALAE data: estimates for the different asymmetry measures

ς1 ς2 ς3

Estimate 0.014 0.089 0.058
Standard error 0.004 0.029 NA
Significantly non-zero Yes Yes Yes (p-value� 0.01)

For ς1 and ς2, standard errors were obtained using the jackknife, and the corresponding asymptotic 95 %
confidence intervals do not include 0

Table 3 FTSE-OSEAX data: estimates of the different measures together with standard errors obtained
using the jackknife

ς1 ς2 ς3

Estimate −0.001 −0.019 0.027
Standard error 0.004 0.038 NA
Significantly non-zero No No No (p-value≈ 0.5)

For ς1 and ς2, 0 is inside the asymptotic 95 % confidence intervals (obtained using the jackknife)

indices, Spearman’s ρ is 0.72. There is no obvious tail asymmetry but ς̂1 and ς̂2 are
slightly negative (Table 3). The asymmetry is considerable lower inmagnitude than that
in the loss-ALAE data set and the asymmetry statistics are not significantly different
from 0. There is theory, see for example Longin and Solnik (2001), that suggests more
dependence in the lower tail during economic downturns, but perhaps tail-weighted
dependence/asymmetry measures are needed to better detect the asymmetries.

5 Discussion

All three measures, ς1, ς2 and ς3, have a finite range which is an advantage since a
measurewith arbitrarily large values can be hard to interpret. Related to this advantage,
for each of the measures more than one copula attaining the maximum value exists.
Thus, very different copulas can have the same value for each one of the measures.
A further advantage which is shared by ς1 and ς2 is that they provide not just one

measure but a family ofmeasures parameterized by a real number. Thus,we can choose
between the various measures to suit the application. Moreover ς1 and ς2 measure
not only the degree of asymmetry but also the direction of the asymmetry, whereas ς3
only indicates the degree of asymmetry. A disadvantage of ς3 is that there are copulas
with upper and lower tail order of infinity which attain the maximum value, i.e., some
copulas considered extreme according to ς3 are not extreme according to other tail
asymmetry concepts.
When it comes to estimate the three measures from a sample, ς1 and ς2 can be esti-

mated straightforwardly using sample moments and sample quantiles, respectively,
with the jackknife or bootstrap applied to obtain standard errors. For ς3, the estimate
ς̂3 is available based on the empirical copula. The asymptotic behaviour of ς̂3 is diffi-
cult to study as it would involve the limiting Gaussian process of the empirical copula.
As it is unclear whether it will be more useful than the other two proposed measures,

123



Measures of tail asymmetry

for the data examples we only compared ς̂3 with the sampling distributions for some
reflection symmetric copulas (for which the possible values will be positive and any
fixed upper quantile decreasing to 0 as the sample size increases).
To ensure that ς3(C) = 0 it is not only sufficient but also necessary that C be

reflection symmetric. This is not the case, however, for ς1 and ς2. For instance, in
the univariate distributional case there exist asymmetric distributions with zero third
central moment (see Ord 1968).
These advantages and disadvantages suggest that it is sensible to use more than one

measure of tail asymmetry as each has quite different properties and, as we have seen,
none of the three proposed measures satisfy all of the desirable properties stated in
Sect. 1.
In this paper, we have further studied tail or reflection asymmetry, with the dis-

tance measure similar to Klement and Mesiar (2006) and Nelsen (2007). There are
analogous measures for bivariate nonexchangeability based on univariate skewness
measures applied to U − V with (U, V ) ∼ C . Similar to tail asymmetry, having
several bivariate nonexchangeability measures would be useful during data analysis.
Our experience with real data is that tail asymmetry is more pronounced in bivariate
uniform or normal scores plots than is nonexchangeability.
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Appendix: Outline of arguments supporting the extremeness of the copula
family {C(·, ·; a)} for ς1

We consider the family ς1(C, k) = ς1(U, V ; k) for k > 1 as a special case of
E [�(|U + V − 1|) sign(U + V − 1)] where � has domain [0, 1], is convex, increas-
ing and satisfies �(0) = 0. That is, the function xk on [0, 1] for k > 1 satisfies these
conditions.
We need the definitions of majorization for vectors of size 2 and supperadditivity.

See Marshall et al. (2011) for much more on the theory of majorization. A convex,
increasing function � on [0, 1] satisfying �(0) = 0 is superadditive.

Definition: Majorization for 2-vectors and a characterization. The vector (x1, x2) is
majorized by (y1, y2) if y1 ≤ x1 ≤ x2 ≤ y2 are real numbers satisfying x1 + x2 =
y1 + y2. A characterization is that if (x1, x2) is majorized by (y1, y2), then for every
convex function f in the interval (a, b) we have f (x1) + f (x2) ≤ f (y1) + f (y2).

Definition: Superadditivity. A real function f is superadditive if f (x + y) ≥ f (x) +
f (y) for every x, y, x + y in the domain of f .

Let 0 ≤ u1 < u2 ≤ 1 and 0 ≤ v1 < v2 ≤ 1 be such that (u1, v1), (u1, v2), (u2, v1),
(u2, v2) are the four vertices of a rectangle in [0, 1]2. Let� denote a convex increasing
function on [0, 1] with �(0) = 0, and let g(u, v) = �(|u + v − 1|) sign(u + v − 1).
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We compare the sum g(u1, v1)+ g(u2, v2) over the two vertices on the main diagonal
with the sum g(u1, v2) + g(u2, v1) over the two vertices on the negative diagonal.
According to the position of the points relative to the line u+v−1 = 0, we consider

the following six cases:

1. ui + v j ≥ 1, 1 ≤ i, j ≤ 2 so at least three vertices are strictly above the line
u +v−1 = 0. Hence (u2+v2−1)+(u1+v1−1) = (u1+v2−1)+(u2+v1−1)
and u1+v1−1 ≤ u1+v2−1, u2+v1−1 ≤ u2+v2−1, and frommajorization,

�(u1 + v1 − 1) + �(u2 + v2 − 1) ≥ �(u1 + v2 − 1) + �(u2 + v1 − 1).

This means that with four points on or above the line u + v − 1 = 0 the sum is
larger over the vertices on the main diagonal.

2. Only u1 + v1 < 1 and other three pairs are on or above the line u + v − 1 = 0.
Hence (1− u1 − v1) + (u1 + v2 − 1) + (u2 + v1 − 1) = u2 + v2 − 1, and using
superadditivity,

�(u2 + v2 − 1) − �(1− u1 − v1) ≥ �(u1 + v2 − 1) + �(u2 + v1 − 1).

This means that with only one point below the line u +v−1 = 0 the sum is larger
over the vertices on the main diagonal.

3. u1 + v1 < 1, u2 + v1 ≤ 1, u1 + v2 ≥ 1 and u2 + v2 > 1 The inequality
depends on whether u1 + u2 + v1 + v2 > 2 or not. If the inequality holds, then
u2+v2−1 > 1−u1−v1 and u1+v2−1 > 1−u2−v1, and using majorization,

�(u2 + v2 − 1) − �(1− u1 − v1) ≥ �(u1 + v2 − 1) − �(1− u2 − v1).

If the inequality does not hold, then

�(u2 + v2 − 1) − �(1− u1 − v1) ≤ �(u1 + v2 − 1) − �(1− u2 − v1).

This result means that in order to obtain a greater value of �: the sum is larger
over the vertices on the main diagonal if u1+ u2+ v1+ v2 > 2; the sum is larger
over the vertices on the negative diagonal if u1 + u2 + v1 + v2 < 2; and the two
sums are equal if u1 + u2 + v1 + v2 = 2.

4. u1 + v1 < 1, u2 + v1 ≥ 1, u1 + v2 ≤ 1 and u2 + v2 > 1. In parallel to the
preceding case, if u1 + u2 + v1 + v2 > 2 then

�(u2 + v2 − 1) − �(1− u1 − v1) ≥ �(u2 + v1 − 1) − �(1− u1 − v2)

and otherwise

�(u2 + v2 − 1) − �(1− u1 − v1) ≤ �(u2 + v1 − 1) − �(1− u1 − v2).

5. Only u2+ v2 > 1 and other three vertices are on or below the line u + v − 1 = 0.
Then (1 − u1 − v2) + (1 − u2 − v1) + (u2 + v2 − 1) = 1 − u1 − v1 and using
superadditivity
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�(u2 + v2 − 1) − �(1− u1 − v1) ≤ −�(1− u1 − v2) − �(1− u2 − v1).

This means that with three points on or below the line u + v − 1 = 0 the sum is
larger over the vertices on the negative diagonal.

6. ui + v j ≤ 1, 1 ≤ i, j ≤ 2; so at least three vertices are strictly below the line
u + v − 1 = 0. Then 1− u2 − v2 ≤ 1− u1 − v2, 1− u2 − v1 ≤ 1− u1 − v1 and
(1 − u2 − v2) + (1 − u1 − v1) = (1 − u1 − v2) + (1 − u2 − v1). Hence using
majorization,

−�(1− u2 − v2) − �(1− u1 − v1) ≤ −�(1− u1 − v2) − �(1− u2 − v1).

This means that if the four points are on or below the line u + v − 1 = 0 the sum
is larger over the vertices on the negative diagonal.

The above cases indicate where mass or density can be put for uniform random
variables (U, V ) in order to make E [�(|U + V −1|) sign(U + V −1)] larger. If there
is positive probability in a small rectangle about (u1, v1), (u1, v2), (u2, v1), (u2, v2)
with 0 < u1< u2< 1 and 0< v1< v2< 1 then a (small) constant density ε > 0 can be
added (subtracted) from (u1, v1), (u2, v2) and subtracted (added) to (u1, v2), (u2, v1)
depending on one of the six cases. Note that such a shift of density would not affect
the uniform margins.
For further analysis, consider the discretization of a copula with support on the n2

points (i/(n + 1), j/(n + 1)) where n ≥ 2 is an integer and i, j ∈ {1, . . . , n}. So
below U, V are uniform on the set {1/(n + 1), . . . , n/(n + 1)}. Considering the four
points (i1, j1)/(n + 1), (i1, j2)/(n + 1), (i2, j1)/(n + 1) and (i2, j2)/(n + 1) we can
distinguish between the following cases:

a. There is positive probability on all four points. Then we can shift mass to the two
points on one of the diagonals; the preferred diagonal depending on which of the
six cases.

b. There is positive probability on three of the four points. In this case we have to
be careful with the shifting of mass in order to preserve the uniform margins.
For instance, suppose that there is positive probability on the points (i1, j2)/(n +
1), (i2, j1)/(n + 1) and (i2, j2)/(n + 1). Then we can move a constant mass
from the points (i1, j2)/(n + 1), (i2, j1)/(n + 1) to the points (i1, j1)/(n + 1),
(i2, j2)/(n + 1) if this increases E [�(|U + V − 1|) sign(U + V − 1)]. We cannot
move mass from the point (i2, j2)/(n + 1) to the point (i1, j2)/(n + 1) because
the uniformity of the margins would be lost. The other cases are analogous.

c. There is positive probability on two of the four points. We consider only the case
when the two points are at the same diagonal, otherwise we cannot shift the mass.
Again we can move mass to the other diagonal if this increases E [�(|U + V −
1|) sign(U + V − 1)].
For discretized uniform variables, the above suggests that, for some integer b with

2 < b < n, the support points can be shifted to (i/[n +1], i/[n +1]) for i = b, . . . , n
and ( j/[n + 1], (b − j)/[n + 1]) for j = 1, . . . , b − 1 with mass n−1 at each of
these n points. But we show that for this family of distributions, mass can be shifted
to (i/[n + 1], i/[n + 1]) for i = b + 1, . . . , n and ( j/[n + 1], (b + 1− j)/[n + 1])
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for j = 1, . . . , b unless b > 2[n + 1]/3. This coincides with what is seen in Table 1
for the subset of convex functions �(x) = xk for k > 1.
Suppose the support is as indicated above and let s = b. Consider the points

(u1, v1) = (1/[n +1], (s −1)/[n +1]) and (u2, v2) = (s/[n +1], s/[n +1]) as points
on a main diagonal. Note that u1+v1 = s/[n+1] < 1, u1+v2 = (s +1)/[n+1] < 1,
and u2 + v1 = (2s − 1)/[n + 1] or u2 + v2 = 2s/[n + 1] could be above or below
1. Based on cases 3–6, E [�(|U + V − 1|) sign(U + V − 1)] can be increased by
moving the mass n−1 to (u1, v2) and (u2, v1) if u1 + u2 + v1 + v2 = 3s/[n + 1] ≤ 2
or s = b ≤ 2[n + 1]/3.
If the first move to (1/[n + 1], s/[n + 1]) and (s/[n + 1], (s − 1)/[n + 1]) is

made, then further moves can be made to shift mass to the line (i + j)/[n + 1] =
(s + 1)/[n + 1]. The next shift is from (u′

1, v
′
1) = (2/[n + 1], (s − 2)/[n + 1])

and (u′
2, v

′
2) = (s/[n + 1], (s − 1)/[n + 1]) to (2/[n + 1], (s − 1)/[n + 1]) and

(s/[n + 1], (s − 2)/[n + 1]). Continue like this to locate mass on (i/[n + 1], (s + 1−
i)/[n + 1]) for i = 1, . . . , s − 2, and (s/[n + 1], 2/[n + 1]). Then the final move is
from (u′′

1, v
′′
1 ) = ((s − 1)/[n + 1], 1/[n + 1]) and (u′′

2, v
′′
2 ) = (s/[n + 1], 2/[n + 1])

to ((s − 1)/[n + 1], 2/[n + 1]) and (s/[n + 1], 1/[n + 1]).
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