
Universidad de Extremadura

Evolucionando Terrenos
Artificiales con Programación
Genética Automatizada
de Terrenos
Evolving Artificial Terrains with Automated
Genetic Terrain Programing

Miguel Monteiro de Sousa Frade

PhilisophæDoctor (PhD) Dissertation

July 2012, Spain

Organization:

Dept. de Tecnoloǵıas de los Computadores y de las Comunicaciones

Universidad de Extremadura

Title:

Evolucionando Terrenos Artificiales con Programación Genética Au-

tomatizada de Terrenos

Evolving Artificial Terrains with Automated Genetic Terrain Program-

ing

Author:

Miguel Monteiro de Sousa Frade

E-mail: miguel.frade@ipleiria.pt

School of Technology and Management, Polytechnic Institute of Leiria,

Portugal

Supervisors:

Dr. Francisco Fernández de Vega

E-mail: fcofdez@unex.es

Centro Universitario de Mérida, Universidad de Extremadura, Spain

Dr. Carlos Cotta Porras

E-mail: ccottap@lcc.uma.es

ETSI Informática, Campus de Teatinos, Universidad de Málaga, Spain

Dr. D. Francisco Fernández de Vega, professor titular de la Universi-

dad de Extremadura y Dr. D. Carlos Cotta Porras, professor titular de la

Universidad de Málaga,

CERTIFICAN:

que la presente memoria, titulada “Evolucionando Terrenos Artificiales

con Programación Genética Automatizada de Terrenos” ha sido realizada

por D. Miguel Monteiro de Sousa Frade, bajo la dirección del Dr. Francisco

Fernández de Vega y el Dr. Carlos Cotta Porras, en el Departamento de

Tecnoloǵıa de los Computadores y de las Comunicaciones de la Universidad

de Extremadura.

Y para que conste, y en cumplimiento d ela legislación vigente, firma la

presente,

Dr. Francisco Fernández de Vega. Dr. Carlos Cotta Porras

Resumen

La industria del videojuego afronta en la actualidad un gran reto: mantener

el coste del desarrollo de los proyectos bajo control a medida que estos crecen

y se hacen más complejos. La creación de los contenidos de los juegos, que

incluye el modelado de personajes, mapas y niveles, texturas, efectos sonoros,

etc, representa una parte fundamental del costo final de producción. Por eso,

la industria está cada vez más interesada en la utilización de métodos proce-

durales de generación automática de contenidos, para amplificar la efectivi-

dad de las inversiones en los procesos de diseño de videojuegos. Sin embargo,

crear y afinar los métodos automáticos de generación de contenidos no es una

tarea trivial.

En esta memoria, se describe un método procedural basado en Progra-

mación Genética, que permite la generación automática de terrenos para

videojuegos. Los terrenos presentan caracteŕısticas estéticas, y no requieren

ningún tipo de parametrización para definir su aspecto. Aśı, el ahorro de

tiempo y la reducción de costes en el proceso de producción es notable. Para

conseguir los objetivos, se utiliza Programación Genética de Terrenos (Ge-

netic Terrain Programming, GTP, en inglés).

La primera implementación utilizada de GTP utilizó un método basado

en Evolución Interactiva, en la que la presencia del usuario que gúıa el proceso

evolutivo es imprescindible. A pesar de los buenos resultados, el método está

limitado por la fatiga del usuario (algo común en los métodos interactivos).

Para resolver esta cuestión se desarrolla un nuevo modelo de GTP en el que

i

el proceso de búsqueda es completamente automático, y dirigido por una

función de aptitudo. La función considera accesibilidad de los terrenos y

peŕımetros de los obstáculos. Los resultados obtenidos se incluyeron como

parte de un videojuego real.

ii

Abstract

Nowadays video game industry is facing a big challenge: keep costs under

control as games become bigger and more complex. Creation of game con-

tent, such as character models, maps, levels, textures, sound effects and so

on, represent a big slice of total game production cost. Hence, video game

industry is increasingly turning to procedural content generation to amplify

the cost-effectiveness of the efforts of video game designers. However, creat-

ing and fine tunning procedural methods for automated content generation

is a time consuming task.

In this thesis we detail a Genetic Programming based procedural content

technique to generate procedural terrains. Those terrains present aesthetic

appeal and do not require any parametrization to control its look. Thus, al-

lowing to save time and help reducing production costs. To accomplish these

features we devised the Genetic Terrain Programming (GTP) technique.

The first implementation of GTP used an Interactive Evolutionary Com-

putation (IEC) approach, were a user guides the evolutionary process. In

spite of the good results achieved this way, this approach was limited by user

fatigue (a common trait of IEC systems). To address this issue a second

version of GTP was developed where the search is automated, being guided

by a direct fitness function. That function is composed by the weighted sum

of two morphological metrics: terrain accessibility and obstacle edge length.

The combination of the two metrics allowed us remove the human factor

form the evolutionary process and to find a wide range of aesthetic and fit

iii

terrains. Procedural terrains produced by this technique are already in use

in a real video game.

iv

Acknowledgements

I wish to express my sincere thanks and appreciation to my supervisors,

Dr. Francisco Fernandez de Vega and Dr. Carlos Cotta, for their attention,

guidance, insight, support, constructive comments, suggestions and encour-

agement during the research period.

I would like to express also my gratitude to the following projects, that

directly or indirectly funded this research: TIN2007-68083-C02-01, TIN2008-

05941, and TIN2011-28627-C04 from Spanish Ministry of Science and Edu-

cation; GRU-09105, GR10029 from Gobierno de Extremadura; TIC-6083

from Junta de Andalucia; and the Chapas Video Game project, a partner-

ship between Centro Universitario de Mérida (Universidad de Extremadura),

GLOW (an animation studio) and Junta de Extremadura, who made possi-

ble the development of Chapas to test our technique in a real video game.

Finally a word of appreciation to the Polytechnic Institute of Leiria, Portu-

gal who welcomed me in their laboratories with support from the PROTEC

grant SFRH/BD/49610/2009 of Portuguese National Foundation for Science

and Technology (FCT).

I am also deeply grateful to the Informatics and Communications Services

of Computer Science department from University of Coimbra, Portugal, for

giving us a time slot on 18 nodes of their MILIPEIA cluster. Also, a special

word of appreciation to Patŕıcio Domingues that made the required arrange-

ments that made possible the use of the cluster. Without their generosity

most of our tests would not have been possible.

v

A big thank to my brother, Nuno Frade, for his helpful assistance to

generate some of the 3 dimensional renders of the terrains.

I cannot end without thanking my son Manuel and my daughter Caro-

lina for their patience and understanding. Lastly, and most importantly, I

wish to deeply thank my wife Céu for her constant encouragement and love

throughout this journey. To them I dedicate this thesis.

vi

Contents

Resumen i

Abstract iii

Acknowledgements v

Abbreviations xvii

1 Introduction 1

1.1 Aims and Contributions . 4

1.2 Thesis Structure . 6

2 Evolutionary Algorithms 7

2.1 Evolutionary Algorithms in Video Games 8

2.2 Evolutionary Design . 11

2.3 Genetic Programming . 12

2.3.1 Representation . 14

2.3.2 Initializing the Population 14

vii

2.3.3 Selection . 17

2.3.4 Genetic Operators . 18

2.3.5 Terminal Set . 21

2.3.6 Function Set . 22

2.3.7 Fitness Function . 25

2.3.8 GP Parameters . 26

2.3.9 Termination . 27

3 Artificial Terrains 29

3.1 Representation . 29

3.2 Generation Techniques . 34

4 Interactive GTP 43

4.1 Method . 45

4.2 GenTP Tool . 47

4.3 Tests and Results . 52

5 Automated GTP 57

5.1 Adding Zoom Feature to Terrain Programs 58

5.2 Terminal and Function Sets 61

5.3 Terrain Programs Evaluation 67

5.4 Used Tools . 73

5.5 Tests and Results . 73

viii

5.5.1 GP System . 78

5.5.2 Occurrence Analysis 85

5.5.3 Overlap . 88

5.6 Sample Terrains . 93

5.6.1 Terrains with a single metric 93

5.6.2 Terrains with both metrics 93

5.7 Creativity . 105

6 Chapas Video Games 111

7 Conclusions 115

8 Future Work 119

A Terrain Programmes 135

A.1 Interactive GTP . 135

A.2 Automated GTP . 136

B Additional Graphics 143

C List of Publications 157

ix

x

List of Figures

1.1 Gears Of War video game costs 2

2.1 Evolutionary design categories 11

2.2 GP tree representation of max(x+ x, x+ 3 ∗ y) 14

2.3 Example of a tree created with the full method 15

2.4 Example of a tree created with the grow method 16

2.5 Example of subtree crossover 19

2.6 Example of subtree mutation 20

2.7 Interpretation example of a GP tree 26

3.1 A discrete height map example 30

4.1 Terminals fftGen, gauss, step and sphere 49

4.2 GenTP ’s functional modules (Frade, 2008) 50

4.3 GenTP main user’s interface (Frade, 2008) 51

4.4 GenTP analyse user’s interface (Frade, 2008) 52

4.5 Exotic terrains generated with GTPi 53

4.6 TPs evolved by GTPi with specific features in mind 54

xi

5.1 Example of a continuous function sampling 59

5.2 Sampling grid of a continuous functions before and after zoom 60

5.3 Terrain view area . 61

5.4 Zoom problem in GTPi implementation 62

5.5 Terrain generated by myNoise(x, y) 67

5.6 Neighbor positions . 68

5.7 Example of two accessibility maps 70

5.8 Edge maps built from the accessibility maps on Fig. 5.7 71

5.9 Visualization of the different slopes 74

5.10 Mean percentage of pe values 75

5.11 Mean number of generations versus wa 80

5.12 Mean of GP tree sizes versus wa 81

5.13 Mean of tree depths versus wa 82

5.14 Mean of TP execution times versus wa 84

5.15 Mean fitness values versus wa 86

5.16 Percentage of TPs that reached fitness 0 versus wa. 87

5.17 Mean occurrence of functions and terminals versus wa 89

5.18 Occurrence of functions and terminals for each wa 90

5.19 Overlap of inaccessible areas between two maps. 91

5.20 Overlap of inaccessible areas versus wa 92

5.21 Terrain T1, s1, pa1, pe3, w0, r4, and T1, s1, pa3, pe2, w0, r1 94

5.22 Terrain T2, s1, pa1, pe2, w0, r3, and T2, s3, pa2, pe3, w0, r2 94

xii

5.23 Terrain T3, s2, pa1, pe1, w0, r2, and T3, s3, pa2, pe1, w0, r10 95

5.24 Terrain T1, s3, pa1, pe2, w10, r10, and T1, s3, pa3, pe2, w10, r8 . . . 95

5.25 Terrain T2, s2, pa2, pe1, w10, r19, and T2, s2, pa3, pe1, w10, r11 . . . 96

5.26 Terrain T3, s1, pa1, pe2, w10, r15, and T3, s3, pa3, pe3, w10, r1 . . . 96

5.27 Terrain T1, s1, pa1, pe1, w2, r5, and T1, s1, pa2, pe3, w4, r16 98

5.28 Terrain T1, s2, pa1, pe2, w9, r9, and T1, s2, pa2, pe3, w8, r1 99

5.29 Terrain T1, s2, pa3, pe1, w1, r14, and T1, s2, pa3, pe1, w5, r2 99

5.30 Terrain T1, s3, pa1, pe2, w4, r18, and T1, s3, pa3, pe2, w5, r10 100

5.31 Terrain T2, s1, pa1, pe2, w7, r2, and T2, s1, pa2, pe1, w6, r4 100

5.32 Terrain T2, s2, pa1, pe2, w9, r9, and T2, s2, pa2, pe2, w1, r18 101

5.33 Terrain T2, s2, pa3, pe1, w8, r3, and T2, s2, pa3, pe2, w9, r8 101

5.34 Terrain T2, s3, pa1, pe2, w2, r13, and T2, s3, pa3, pe3, w1, r2 102

5.35 Terrain T3, s1, pa3, pe1, w2, r6, and T3, s1, pa3, pe2, w4, r11 102

5.36 Terrain T3, s2, pa1, pe3, w8, r17, and T3, s2, pa2, pe3, w4, r16 103

5.37 Terrain T3, s2, pa3, pe1, w8, r16, and T3, s2, pa3, pe2, w7, r8 103

5.38 Terrain T3, s3, pa2, pe2, w8, r10, and T3, s3, pa3, pe2, w2, r8 104

5.39 Terrain with 4 zoom levels . 106

5.40 Percentage of repeated TPs versus wa. 108

6.1 Screenshots of Chapas video game 112

6.2 Screenshots of Chapas video game 113

xiii

xiv

List of Tables

4.1 Parameters for a GTP run (Frade, 2008) 46

4.2 GP Function Set (Frade, 2008) 48

4.3 GP Terminal Set (Frade, 2008) 49

5.1 GP function set . 66

5.2 Test parameters and their values 74

5.3 Mann-Whitney U-test for edge values 76

5.4 GP Parameters . 77

5.5 Height map parameters . 77

5.6 Runs where a TP was the best solution 109

xv

xvi

Abbreviations

AI Artificial Intelligence

DEM Digital Elevation Models

EA Evolutionary Algorithms

EC Evolutionary Computation

ERC Ephemeral Random Constant

GIS Geographic Information Systems

GP Genetic Programming

GTP Genetic Terrain Programming

GTPa Automated Genetic Terrain Programming

GTPi Interactive Genetic Terrain Programming

GUI Graphical User Interface

H Hurst index

IEC Interactive Evolutionary Computation

NPC Non-Player Character

PCG Procedural Content Generation

RPG Role-Playing Game

SBPCG Search Based Procedural Content Generation

TIN Triangular Irregular Network

TP Terrain Program

xvii

xviii

Chapter 1

Introduction

Video games constitute a crucial area of the entertainment industry, with

impressive financial investments. For the top publishers, gaming businesses

is becoming increasingly more similar to Hollywood: each new game is a

costly bet that can generate big profits, or big losses. M2 Research esti-

mates the production cost of high quality video games for the 7th generation

consoles at $10 million for one platform and $18-$28 million for multiple

platforms (Meloni, 2010). Conversely, prior console generations had develop-

ment costs ranging between $3-5 million per platform. This cost increase is

driven mainly by the higher complexity of new and more powerful hardware

and the effort required to fully exploit its capacity to present players with

richer content (Loftus, 2011). With costs increasing at this pace, video game

industry is facing a big challenge: keep costs under control as games become

bigger and more complex.

Creation of game content, such as character models, maps, levels, tex-

tures, sound effects, animations and so on, represent a big slice of total pro-

duction costs (Edwards, 2006). On Gears Of War 1 these costs represented

the largest share with 25%, see Fig. 1.1 (Rosmarin, 2006). Traditionally,

the main techniques used in content development for video games have been

1video game published by Microsoft Game Studios in 2006

1

2 CHAPTER 1. INTRODUCTION

��������	

���	�
���
	

���
�����

��
��������

�
�����
	

�
����

���������
�

�

��
�����
	

�������
���

���������

�����������

�����������

� !�"�#

������
��

������

��	��

����

��

��

��

�����

��

��

��

��

Figure 1.1: Gears Of War video game costs

artistry. Generally, all game content has been handcrafted by artists and

designers working specifically to that end. This approach ensures game de-

signers full control over their creations. Nevertheless, by delegating most or

all of the details up to the designer, manual content production impose high

requirements on designer in terms of time and effort, which has a huge impact

on production costs. Therefore, game industry is increasingly turning to pro-

cedural generation techniques that allow the automation of content creation

(Nelson and Mateas, 2007) and this way can save significant expenses.

Procedural content generation allows the automation of game content cre-

ation through algorithmic means and parametric control (Ebert et al, 2003).

For instance, it is possible to generate a forest where each plant specie is

represented by a set of parameters and each tree is slightly different just

by changing the seed for the pseudo-random numbers generator (Lane and

Prusinkiewicz, 2002; Prusinkiewicz and Lindenmayer, 2004). This allows the

amplification of designers inputs: a few parameters yield large amounts of

details (Ebert et al, 2003). Therefore, it will require less effort and time than

modeling techniques to create complex content. Procedural techniques also

allow more dynamic processes during the game development cycle. Design-

ers can change the location of some level elements without having to redraw

everything else. The procedural content can have rules built in to automat-

3

ically adapt to those changes, thus allowing to save precious development

resources.

Financial benefits are not the only advantage of procedural content gener-

ation techniques. The representation of procedural content is also extremely

compact and can be measured in Kilobytes, while others require Megabytes of

storage. One good example of compactness is the classic game Elite 2, which

succeed to keep 8 galaxies of 256 planets each in a few tens of kilobytes by

representing each planet with just a few numbers. When procedural algo-

rithms produce the same content given the same parameters they can also

be considered as a form of data compression. Another advantage that some

procedural content has is the ability to be computed at any desired resolu-

tion. Fractals are a good example of this characteristic (Mandelbrot, 1983).

A third advantage is that the quality of procedural generated content is in-

dependent of user skills, therefore they can be used by people without the

designing skills that are required for handcrafted content. Furthermore, pro-

cedural content generation techniques can also allow the emergence of new

types of games, where their contents can be created according to some cri-

teria like player satisfaction, challenge, novelty, etc. This might lead to the

creation of games that never end, that whatever the player does or whenever

he goes, there always will be something new to explore. Although this kind

of games is not yet a reality, they would have infinite replay value. Finally,

procedural generation algorithms have the potential to generate entirely new

content designs, that challenge human imagination. These new designs can

serve as inspiration and serve as a base for designers to create their own

creations (Togelius et al, 2011).

However, procedural content generation has also its own drawbacks. One

disadvantage is its evaluation. This operation requires intense computations

which can be very expensive. Another disadvantage is the modeling prob-

lem: how to achieve the desired features? Typically, procedural methods

offer a set of parametric controls that enable a procedure to generate many

2video game published by Acornsoft in 1984

4 CHAPTER 1. INTRODUCTION

different outputs. To make a procedure more flexible, more controls can be

added. While the power of a procedure may be enhanced in this way, the

resulting interface can become overly complex. In the case of a human us-

ing the interface, coming up with good results from a powerful procedure

often degenerates into an authoring processing of trial and error. Besides,

procedural algorithms present a certain degree of unpredictability: a small

change in one parameter can result in big changes on the outcome, or big

changes might not result in any significant modification. Whatever is the

case, designers end up performing a lot of tests and simulations until they

learn how the procedural system behaves to tune it. The search for the right

input parameters and algorithm tune to achieve the desired output is time

consuming. For example, the development of “Far Cry 2” 3 video game took

as much as 15 times more time to refine and tune procedural tools than the

amount of time developing the underlying game engine (Remo, 2008).

1.1 Aims and Contributions

Among the many video game contents that can be generated procedurally,

we find artificial terrains, the main focus of our research. Artificial terrains

have an important role in video games dynamics (Forbus et al, 2002) and

contribute greatly to re-playability (Sampath, 2004). Nowadays there are a

wide range of techniques for terrain generation, which are detailed in Sec-

tion 3, but all of them present some constraints. More elaborated methods

depend highly upon designer’s skills, time and effort to obtain acceptable

results or are not entirely procedural, which prevents them from being used

in an automated fashion. The simpler methods allow only a narrow variety

of terrains types and are difficult to model. Therefore, the aim of this re-

search was to develop a new technique, employing Evolutionary Algorithms,

to overcome the main constraints of current procedural methods, namely:

• the modeling problem, to avoid the time consuming process of proce-

3video game published by Ubisoft in 2008

1.1. AIMS AND CONTRIBUTIONS 5

dure tune to achieve the desired terrain features;

• and allow a broad range of terrain types with emphasis on aesthetic. All

current procedural techniques are focused on the generation of realistic

terrains. Although this is important, it might prevent designers from

achieving their goals when they attempt to represent an alien or exotic

looking terrain. Terrain novelty might have also a positive impact on

video game’s target audience and increase players interest.

This thesis presents and discusses a new procedural generation technique

of terrains for video games, which was coined as Genetic Terrain Program-

ing (GTP) (Frade et al, 2008c, 2009b). GTP is a search-based procedural

content technique that employs Genetic Programing (GP) as an evolution-

ary search tool for procedural terrains, designated Terrain Programs (TPs).

This technique combines the advantages of procedural content generation

with the ability to create novel and innovative solutions of Evolutionary Al-

gorithms. This approach allows the generation of new terrain types with

novel looks and aesthetic appeal. The evolutionary search of terrains with

the desired characteristics will produce TPs that do not require any parame-

ter input to control its looks. Therefore, once evolved, TPs can be integrated

in video games without the need for a human performing parameter tuning,

thus allowing to save time and money. Another purpose of GTP could be

its integration in authoring tools to inspire designer imagination and serve

as base of their work.

Two versions of the GTP technique were developed during the research

period. The first version, designated GTPi, is interactive where a human

guides the evolution process of TPs. This approach allowed the generation

of many aesthetic procedural terrains, but also required expensive human

resources for the evaluation process (more details in Chapter 4). Therefore,

a second version was devised to eliminate the human intervention during

the evolutionary phase. This new version, designated GTPa, performs an

automated search based on geomorphological metrics.

6 CHAPTER 1. INTRODUCTION

1.2 Thesis Structure

In this thesis we tried to organize the chapters from broader scope to more

specific topics. Chapter 2 presents an introduction to Evolutionary Algo-

rithms (EAs) in general, followed by a description of evolutionary design.

Then, some examples of EAs applied to video games are shown and at the

end of this chapter we present the inner working of genetic programming.

Chapter 3 shows the different data structures available to represent terrains

followed by a literature survey with existing terrain generation techniques.

The work developed during the research period is presented in chapters 4 and

5. The first approach, GTPi, to the research question is address in Chapter

4. Chapter 5 focus on the limitations of GTPi, explains GTPa solution to

address them and finally presents a series of tests and discusses its results. To

show the viability of our technique some TPs were incorporated in Chapas

video game, detailed in Chapter 6. Conclusions and future work are laid out

in Chapters 7 and 8 respectively.

Some additional information was added as appendices. Terrain Programs

from all presented terrains throughout this thesis are displayed at Appendix

A. Appendix B shows more detailed graphics from the tests presented in

Chapter 5, which helped to interpret some results. A list of publications

achieved during the research period is presented in Appendix C.

Chapter 2

Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a kind of bioinspired algorithms that ap-

ply Darwin’s theory (Darwin, 1859) of natural evolution of the species, where

living organisms are rewarded through their continued survival and the prop-

agation of its own genes to successors. There are four main classes of EAs:

genetic algorithms (GA) (Holland, 1975), evolutionary strategies (Rechen-

berg, 1971; Schwefel, 1977), genetic programming (GP) (Koza, 1992) and

evolutionary programming (Fogel et al, 1966). They can be seen as search

techniques (Langdon and Qureshi, 1995) and are able to achieve good approx-

imate solutions to a large number of problems, thanks to their flexibility and

adaptability to different search scenarios. Evolutionary algorithms do not

make any assumption about the underlying search landscape and this char-

acteristic is the key factor of success in such diverse fields as: engineering,

art, biology, economics, marketing, genetics, operations research, robotics,

social sciences and physics just to name a few.

More recently EAs have also been used to generate video game content -

a field where our research fits in. Section 2.1 presents a summary of what has

been done in this specific area. Another area where EAs have been employed

is to design artifacts, Section 2.2 presents an overview of this topic. Finally,

Section 2.3 presents an explanation of GP algorithm.

7

8 CHAPTER 2. EVOLUTIONARY ALGORITHMS

2.1 Evolutionary Algorithms in Video Games

Much of the early work on computational intelligence and games was directed

toward applying Evolutionary Computation (EC) methods to evolve tactical

and strategic content common to Non-Player Characters (NPCs) Artificial

Intelligence (AI). The work on this area is well documented (Bourg and See-

mann, 2004; Lucas and Kendall, 2006; Miikkulainen et al, 2006; Rabin, 2002).

Therefore, the following paragraphs will focus instead on techniques to gener-

ate procedural content for video games, such as: tracks and levels; weapons;

buildings and vegetation. There are also some research in this field regarding

terrains, the main topic of this thesis, but they will be described in Chapter

3. The techniques that fit this category were designated Search-Based Proce-

dural Content Generation (SBPCG) by Togelius et al (2011). They propose

to search the right input parameters or to generate the procedure itself that

will produce content with the desired characteristics.

SBPCG techniques incorporate a generate and test approach. After a

candidate content instance is generated, it is tested according to some cri-

teria. A test function (also called fitness function) grades the procedural

content instead of simply accepting or rejecting it. Then, new content is pro-

duced, that is dependent on the score of previous content, and this way tries

to find better scoring content. The process is repeated until the content is

considered good enough (Togelius et al, 2011). Evolutionary algorithms are a

perfect match for this approach, although not the only search mechanism of

SBPCG. An overview of the SBPCG techniques employed to generate video

game content is presented below.

Tracks and levels, represent an important aspect of video games as they

impose restrictions or difficulties to players progress. Togelius et al (2006,

2007) designed a system for generation of tracks for a simple racing game.

A racing track is created from a parameter vector by interpreting it as the

parameters for b-spline (a sequence of Bezier curves). The resulting shape

forms the mid-line of the racing track. Each candidate track is evaluated by

2.1. EVOLUTIONARY ALGORITHMS IN VIDEO GAMES 9

letting a neural network-based car controller drive on the track. The fitness

of the track is dependent on the driving performance of the car: amount of

progress, variation in progress and difference between maximum and average

speed. Pedersen et al (2009) designed a user study focused on a version of

the Super Mario Bros platform game to allow the creation of personalized

levels. The fitness functions uses a neural network that converts level param-

eters and information about player’s playing behavior to one emotional state

predictors, such as: fun, challenge, frustration, predictability, anxiety and

boredom. The neural networks were trained by collecting game play metrics

and data from player reported emotions through a questionnaire. Sorenson

and Pasquier (2010) presented a framework to generate levels for different

but related game genres. They employ a Feasible-Infeasible Two-Population

(FI-2Pop) genetic algorithm (Kimbrough et al, 2002) that was designed for

constraints satisfaction problems. Level designers specify a set of constraints,

which determine the basic requirements for a level to be considered playable.

The infeasible population consists solely of levels which do not yet satisfy

all these constraints, and these individuals are evolved towards minimizing

the number of constraints violated. When individuals are found to satisfy

all the constraints, they are moved to the feasible population where they

are subjected to a fitness function that rewards levels based on any criteria

specified by the level designers. Jennings-Teats et al (2010) also describes a

framework, for 2 dimensional platform game, to generate levels at runtime

that adapt their difficulty to player skills. Short level segments are used to

collect data of player’s behavior, level features and inquired ranking. The

collected data was used to train a neural network to order segment levels by

its difficulty. Then, while playing, the level is generated ahead of the player

with a rhythm-based generation mechanism, that is ranked either higher or

lower according to player’s gaming skills.

Landscapes are another important facet of modern video games, in par-

ticular the ones that aim at representing realistic scenarios. They help to

increase the immersion feeling on players. Some of the most critical features

of a good landscape are: terrains (see Chapter 3), cities and vegetation. Mar-

10 CHAPTER 2. EVOLUTIONARY ALGORITHMS

tin et al (2010) designed an interactive system to generate 3D buildings for

the commercial video game Subversion, which is being developed by Intro-

version, to allow users to procedurally build cities. Buildings are composed

by a stack of three-dimensional objects, each described as a two-dimensional

shape that is vertically extruded. They applied an IEC approach (Takagi,

2001), which we also applied in our first implementation, GTPi (more details

on Chapter 4). In each generation the user chooses two parent buildings and

from them a screen of 16 new offspring are presented to the user. Each object

or group of objects can be subject to various transform operations such as

translation, rotation and union.

Lindenmayer (1968) devised L-systems with the aim to modulate plants

and all kinds of vegetation. Parametric L-systems (Lindenmayer, 1974) are

a powerful and flexible technique for plant modeling. However, it is a hard

task to specify a PL-system, that generates a plant of a desired species.

To address this issue Traxler and Gervautz (1996) used GAs to interactively

find the appropriate production rules that produced the desired plant. Jacob

(1996a,b) took another approach, using GP to evolve context sensitive PL-

systems using plant characteristics, such as the number of blooms blossoming

and the number of leaves, in the fitness function. Although none of these

works were specifically developed with video games in mind, the content

generated by them can be easily incorporated into a video game during its

development phase.

The evolutionary approach to generate video game content also allows

the appearance of new games types. Hastings et al (2009) propose a new

algorithm to automatically generate game content while the game is played,

based on the past preferences of the players. They developed Galactic Arms

Race (GAR), a online multiplayer gaming platform, that is able to generate

and evolve particle system weapons. The fitness of each weapon depends on

how often the several users logged onto the same server choose to fire the

weapon relative to how long it stays unused. This way players implicitly in-

dicate their preferences and guide evolution without knowing the underlying

system.

2.2. EVOLUTIONARY DESIGN 11

���������	
�
�
����

�������	����

���������	
�
�
�

�

	���
�
���������	
�

�
����

���������	
��
�
������	�
���
���
��

�
���
���
���������	
�

�
����

�
������	�����
��	�
��
���������	
���
����

�
���
����
���������	
��
�
������	�
���

���
�
	��
���������	
��

�
����

Figure 2.1: Evolutionary design categories

2.2 Evolutionary Design

Evolutionary design might be seen as a particular case of SBPCG techniques,

where EAs are the search mechanism. Evolutionary design is a branch of

evolutionary computation which has its roots in three different disciplines:

computer science, evolutionary biology and design. Evolutionary design has

taken place in many different areas over the last decade. Designers have

optimized selected parts of their designs using evolution, artists have used

evolution to generate aesthetically pleasing forms (Machado et al, 2005),

architects have evolved new building plans from scratch (Soddu, 2003), com-

puter scientists have evolved morphologies and control systems of artificial

life. Evolutionary design can be divided into four main categories (Bentley,

1998): evolutionary design optimization, creative evolutionary design, evo-

lutionary art and evolutionary artificial life forms. However, some author’s

work may be included in two or more categories creating four overlapping

sub-categories shown in Figure 2.1. Our first implementation of GTP, GTPi,

fits in Aesthetic Evolutionary Design, a branch of the evolutionary art cate-

gory. On the other hand, GTPa fits in the evolutionary design optimization.

12 CHAPTER 2. EVOLUTIONARY ALGORITHMS

2.3 Genetic Programming

Genetic programming is the evolutionary algorithm used in the work pre-

sented in this thesis. Therefore, some details about its inner working are

presented in this section. However, for the readers who wish to deepen their

knowledge, the book A Field Guide to Genetic Programming from Poli et al

(2008) offers a very good introduction and overview to GP. A thoroughly

analysis on this topic is provided by the book Genetic Programming - On the

Programming of Computers by Means of Natural Selection by Koza (1992),

the main proponent of GP who has pioneered the application of genetic pro-

gramming in various complex optimization and search problems.

Genetic programming (GP) is an evolutionary computation (EC) tech-

nique that automatically solves problems without requiring the user to know

or specify the form or structure of the solution in advance. At the most

abstract level GP is a systematic, domain-independent method for getting

computers to solve problems automatically starting from a high-level state-

ment of what needs to be done. In GP a population of computer programs is

evolved, after several generations a population of programs is stochastically

transformed into new, hopefully better, populations of programs (Poli et al,

2008). Due to its random nature GP can never guarantee results, however

it has been used successfully in many areas. A brief list of GP applications

follows (Langdon and Qureshi, 1995):

• Artificial life;

• Robots and autonomous agents;

• Financial trading;

• Neural networks;

• Art;

• Image and signal processing;

• Prediction and classification;

• Optimization;

There are now 36 instances where GP has automatically produced a result

2.3. GENETIC PROGRAMMING 13

Algorithm 2.1 Genetic programming basic algorithm

1: Randomly create an initial population of programs from the available
primitives

2: repeat
3: Execute each program and ascertain its fitness
4: Select one or two program(s) from the population with a probability

based on fitness to participate in genetic operations
5: Create new individual program(s) by applying genetic operations with

specified probabilities
6: until an acceptable solution is found or some other stopping condition

is met (e.g., a maximum number of generations is reached)
7: return the best-so-far individual

that is competitive with human performance: 15 instances where GP has

created an entity that either infringes or duplicates the functionality of a

previously patented 20th century invention; 6 instances where GP has done

the same with respect to a 21st century invention and 2 instances where GP

has created a patentable new invention (Koza, 2004).

Algorithm 2.1 shows the basic steps of GP. The generated programs are

run for evaluation (line 3) and compared with some ideal. This comparison

is quantified to give a numeric value called fitness. The best programs are

chosen to breed (line 4) and produce new programs for the next generation

(line 5). The primary genetic operators used to create new programs from

existing ones are:

• Crossover - The creation of a child program by combining randomly

chosen parts from two selected parent programs;

• Mutation - The creation of a new child program by randomly altering

a randomly chosen part of a selected parent program;

14 CHAPTER 2. EVOLUTIONARY ALGORITHMS

max

+ +

x x x *

y3

Figure 2.2: GP tree representation of max(x+ x, x+ 3 ∗ y). Adapted from (Poli
et al, 2008).

2.3.1 Representation

In GP, programs are usually expressed as syntax trees rather than as lines of

code. For example Figure 2.2 shows the tree representation of the program

max(x+ x, x+ 3 ∗ y). The variables and constants in the program (x, y and

3) are leaves of the tree, or terminals in GP terminology. The arithmetic

operations (+, * and max) are internal nodes called functions. The sets

of allowed functions and terminals together form the primitive set of a GP

system. It is common in the GP literature to represent expressions in a prefix

notation similar to that used in Lisp. For example, max(x + x, x + 3 ∗ y)

becomes (max(+xx)(+x(∗3y))). This notation often makes it easier to see

the relationship between (sub)expressions and their corresponding (sub)trees.

From now on it will be used trees and their corresponding prefix-notation

expressions interchangeably to represent GP programs.

2.3.2 Initializing the Population

Like in other evolutionary algorithms, the individuals in the initial GP pop-

ulation are typically randomly generated. There are a number of different

approaches to generating this random initial population. In the following

paragraphs we present a description of the two simplest methods, the full

2.3. GENETIC PROGRAMMING 15

*

+

x y

/

31

Figure 2.3: Example of a tree having maximum depth 2 created with the full
initialisation method. Adapted from (Poli et al, 2008).

and grow methods, and a widely used combination of the two known as

ramped half-and-half.

In both the full and grow methods, the initial individuals are generated

so that they do not exceed a user specified maximum depth. The depth of

a node is the number of edges that need to be traversed to reach the node

starting from the trees’ root node (which is assumed to be at depth 0). The

depth of a tree is the depth of its deepest leaf (e.g., the tree in Figure 2.2 has

a depth of 3). In the full method, where all leaves are at the same depth,

nodes are taken at random from the function set until the maximum tree

depth is reached. Beyond that depth, only terminals can be chosen. Figure

2.3 shows an example of a tree having maximum depth 2 created with the

full initialization method, where all leaves are at the same depth. However,

this does not necessarily mean that all initial trees will have an identical

number of nodes (often referred to as the size of a tree) or the same shape.

In fact, this only happens when all the functions in the primitive set have the

same number of input values, also known as arity. Nonetheless, even when

mixed-arity primitive sets are used, the range of program sizes and shapes

produced by the full method may be rather limited.

On the contrary the grow method allows the creation of trees of more

varied sizes and shapes. Nodes are selected from both the primitive function

and terminals set until the depth limit is reached. Once the depth limit is

reached only terminals may be chosen (like the full method). Figure 2.4

illustrates an example of a tree created with the grow initialization method

16 CHAPTER 2. EVOLUTIONARY ALGORITHMS

+

x -

y2

Figure 2.4: Example of a tree having maximum depth 2 created with the grow
initialization method. Adapted from (Poli et al, 2008).

with depth limit 2. Here the first argument of the + root node happens to

be a terminal. This closes off that branch preventing it from growing any

more before it reached the depth limit. The other argument is the function

−, but its arguments are forced to be terminals to ensure that the resulting

tree does not exceed the depth limit.

Because neither the grow or full method provide a very wide array of sizes

or shapes on their own, Koza (1992) proposed a combination called ramped

half-and-half. Half the initial population is constructed using full and half

is constructed using grow. This is done using a range of depth limits (hence

the term “ramped”) to help ensure that it generates trees having a variety

of sizes and shapes.

These methods are easy to implement and use, but are difficult to control

regarding the statistical distributions of important properties such as the

sizes and shapes of the generated trees. For example, the sizes and shapes

of the trees generated via the grow method are highly sensitive to the sizes

of the function and terminal sets. If, for example, one has significantly more

terminals than functions, the grow method will almost always generate very

short trees regardless of the depth limit. Similarly, if the number of functions

is considerably greater than the number of terminals, then the grow method

will behave quite similarly to the full method. The arities of the functions

in the primitive set also influence the size and shape of the trees produced

by grow. While these are particular problems for the grow method, they

2.3. GENETIC PROGRAMMING 17

illustrate a general issue where small (and often apparently inconsequential)

changes such as the addition or removal of a few functions from the function

set can in fact have significant implications for the GP system, and potentially

introduce important but unintended biases. For more information about this

and other initialization mechanisms check (Poli et al, 2008).

2.3.3 Selection

In GP the genetic operators are applied to individuals that are probabilisti-

cally selected based on their fitness. Which means that better individuals are

more likely to have more child programs than inferior individuals. The most

commonly employed method for selecting individuals in GP is tournament

selection.

In tournament selection a number of individuals are chosen at random

from the population. These are compared with each other and the best of

them is chosen to be the parent. For crossover two parents are needed, so,

two selection tournaments are made. Tournament selection only looks at

which program is better than another, it does not need to know how much

better. This automatically rescales fitness, so that the selection pressure

on the population remains constant. Hence, a single extraordinarily good

program cannot immediately flood the next generation with its children. If

that happened, it would lead to a rapid loss of diversity with potentially

undesirable consequences. In reverse, tournament selection amplifies small

differences in fitness to prefer the better program even if it is only marginally

superior to the other individuals in a tournament. An element of noise is in-

herent in tournament selection due to the random selection of candidates for

tournaments. So, while preferring the best, tournament selection does ensure

that even average quality programs have some chance of having children.

On interactive systems the selection is performed by a human, usually

based on a visual representation of the individuals. Many other selection

methods are possible, such as the ones proposed by Goldberg (1989); Luke

18 CHAPTER 2. EVOLUTIONARY ALGORITHMS

and Panait (2002):

• Fitness Proportional Selection;

• Lexicographic Parsimony Pressure Tournament;

• Doubletour;

2.3.4 Genetic Operators

The GP implementation of the genetic operators crossover and mutation

are significantly different from other evolutionary algorithms. The choice of

which operator, mutation or crossover, should be used to create an offspring

is probabilistic. Operators in GP are normally mutually exclusive (unlike

other evolutionary algorithms where offspring are sometimes obtained via a

composition of operators). Their probability of application are called oper-

ator rates. Typically, crossover is applied with the highest probability often

being 90% or higher. On the contrary, the mutation rate is much smaller,

typically being near 1%. When the sum of crossover and mutation rates are

equal to p which is less than 100%, an operator called reproduction is also

used. Reproduction is the selection of an individual based on fitness and the

insertion of a copy of it in the next generation, with a rate of 1 − p (Poli

et al, 2008).

The next two sections provide a brief description of the most common

GP operators.

Crossover

The most commonly used form of crossover is subtree crossover. Given two

parents, subtree crossover randomly (and independently) selects a crossover

point (a node) in each parent tree. Then, it creates the offspring by replacing

the subtree rooted at the crossover point in a copy of the first parent with

a copy of the subtree rooted at the crossover point in the second parent, as

2.3. GENETIC PROGRAMMING 19

+

+ 3

yx

*

+ /

2xyx

+

3/

2x

Garbage

Parents Offspring

Figure 2.5: Example of subtree crossover (the trees on the left are copies of the
parents). Adapted from (Poli et al, 2008).

illustrated in Figure 2.5. Copies are used to avoid disrupting the original

individuals. This way, if selected multiple times, they can take part in the

creation of multiple offspring programs. It is also possible to define a version

of crossover that returns two offspring, but this is not commonly used.

Often crossover points are not selected with uniform probability. Typical

GP primitive sets lead to trees with an average branching factor (the number

of children of each node) of at least two, so the majority of the nodes will

be leaves. Consequently the uniform selection of crossover points leads to

crossover operations frequently exchanging only very small amounts of ge-

netic material. Some times the operation is reduced to simply swapping two

leaves. To counter this, Koza (1992) suggested the widely used approach of

choosing functions 90% of the time and leaves 10% of the time. Many other

types of crossover are possible, such as (Poli et al, 2008):

• One-point crossover;

• Uniform crossover;

• Context-preserving crossover;

20 CHAPTER 2. EVOLUTIONARY ALGORITHMS

+

+ 3

yx

/

2x

+

3/

2x

Parent Offspring

Randomly generated
sub-tree

Garbage

Figure 2.6: Example of subtree mutation. Adapted from (Poli et al, 2008).

• Size-fair crossover;

Mutation

The most common type of mutation in GP is called subtree mutation and

randomly selects a mutation point in a tree and substitutes the subtree rooted

there with a randomly generated subtree. This is illustrated in Figure 2.6.

Another kind of mutation implementation is the point mutation, which

is the GP’s equivalent of the bit-flip mutation used in genetic algorithms.

Point mutation, on the other hand, is typically applied on a per-node basis.

A random node is selected and the primitive stored there is replaced with a

different random primitive of the same arity taken from the primitive set. If

no other primitives with that arity exist, nothing happens to that node, but

other nodes may still be mutated. Each node is considered in turn and, with

a certain probability, it is altered as explained above. This allows multiple

nodes to be mutated independently in one application of point mutation.

Many other types of mutation are possible, such as (Poli et al, 2008):

2.3. GENETIC PROGRAMMING 21

• Size-fair subtree mutation;

• Hoist mutation;

• Shrink mutation;

• Permutation mutation;

• Mutating constants at random;

• Mutating constants systematically;

2.3.5 Terminal Set

GP is commonly described as evolving programs, but is not typically used to

evolve programs the same way humans do for software development. Instead,

it is more common to evolve programs (or expressions, or formulae) in a more

domain-specific language. The definition of the terminal and function sets

specify such a language. That is, together they define the ingredients that

are available to GP to compose computer programs.

The terminal set may consist of:

• the program’s external inputs - these typically take the form of named

variables (e.g., x, y);

• functions with no arguments - these may be included because they

return different values each time they are used, such as the function

rand() which returns random numbers, or a function distance to wall()

that returns the distance to an obstacle from a robot that GP is con-

trolling. Another possible reason is because the function produces side

effects. Functions with side effects do more than just return a value:

they may change some global data structures, print or draw something

on the screen, control the motors of a robot, etc;

• constants - these can be pre-specified, randomly generated as part of

the tree creation process, or created by mutation;

Using rand() as terminal can cause the behavior of an individual program

22 CHAPTER 2. EVOLUTIONARY ALGORITHMS

to vary every time it is called, even if it is given the same inputs. This is

desirable in some applications. However, it is more common to want a set of

fixed random constants that are generated as part of the process of initializing

the population. This is typically accomplished by introducing a terminal that

represents an ephemeral random constant. Every time this terminal is chosen

in the construction of an initial tree (or a new subtree to use in an operation

like mutation), a different random value is generated which is then used for

that particular terminal, and which will remain fixed for the rest of the run.

The use of ephemeral random constants is typically denoted by including the

symbol < in the terminal set, see example in Eq. (2.1).

T = {x, y,<} . (2.1)

2.3.6 Function Set

The function set used in GP is based on the nature of the problem domain.

For example, in a simple numeric problem the function set can be only the

arithmetic functions (+,−, ∗, /). However, all sorts of other functions typi-

cally encountered in computer programs can be used, such as:

• Arithmetic;

• Mathematical;

• Boolean;

• Conditional;

• Looping;

• Signal processing functions;

• etc;

Closure

For GP to work effectively, function sets are required to have an important

property known as closure (Koza, 1992). The closure property can be divided

2.3. GENETIC PROGRAMMING 23

into consistency and evaluation safety properties.

Subtree crossover, as described in Section 2.3.4, can mix and join nodes

arbitrarily, thus the need for type consistency. As a result, it is necessary

that any subtree can be used in any of the argument positions for every func-

tion in the function set, because it is always possible that subtree crossover

will generate that combination. So, all the functions must return values of

the same type, and that each of their arguments also have this type. For

example +, −, ∗, and / can be defined so that they each take two integer

arguments and return an integer. Sometimes type consistency can be weak-

ened somewhat by providing an automatic conversion mechanism between

types. It is possible, for example, convert numbers to Booleans by treating

all negative values as false, and non-negative values as true. However, con-

version mechanisms can introduce unexpected biases into the search process,

so they should be used with care (Poli et al, 2008).

The other component of closure is evaluation safety, this property is re-

quired because many used functions can fail at run time. An evolved ex-

pression might, for example, divide by 0. This is typically dealt with by

modifying the normal behavior of primitives. It is common to use protected

versions of numeric functions that can otherwise throw exceptions, such as

division, logarithm, exponential and sqrt. The protected version of a func-

tion first tests for potential problems with its input(s) before executing the

corresponding instruction. If a problem is spotted then some default value is

returned. It is common to use the prefix my to denote protected functions,

for example mySqrt.

An alternative way to protect functions is to trap run-time exceptions and

strongly reduce the fitness of programs that generate such errors. However, if

the likelihood of generating invalid expressions is very high, this can lead to

too many individuals in the population having nearly the same (very poor)

fitness. This makes it hard for selection to choose which individuals might

make good parents.

24 CHAPTER 2. EVOLUTIONARY ALGORITHMS

Sufficiency

Sufficiency is another property that primitives sets should have. Sufficiency

means it is possible to express a solution to the problem being solved using the

elements of the primitive set. Unfortunately, sufficiency can be guaranteed

only for those problems where theory, or experience with other methods, tells

that a solution can be obtained by combining the elements of the primitive

set.

An example of an insufficient set is +,−, ∗, /, x, 0, 1, 2, which is unable to

represent the function exp(x). This function cannot be expressed as a ratio

of polynomials, so, it cannot be represented exactly by any combination of

+,−, ∗, /, x, 0, 1, 2. When a primitive set is insufficient, GP can only generate

programs that approximate the desired one. However, in many cases such an

approximation can be very close and good enough for users purpose. Adding

a few unnecessary primitives in an attempt to ensure sufficiency does not

tend to slow down GP overmuch, although there are cases where it can bias

the system in unexpected ways (Poli et al, 2008).

Evolving Structures

There are many problems where solutions cannot be directly generated as

computer programs. This is common in many design problems were the so-

lution is an artifact of some type: a bridge, a circuit, an antenna, a lens,

a terrain, etc. To address this issue the primitive set is set up so that the

evolved programs construct solutions to the problem. For example, if the

goal is the automatic creation of an electronic controller for a plant, the

function set might include common components such as integrator, differ-

entiator, lead, lag, and gain, and the terminal set might contain reference,

signal, and plant output. Each of these primitives, when executed, inserts

the corresponding device into the controller being built. If, on the other

hand, the goal is to synthesize analogue electrical circuits, the function set

might include components such as transistors, capacitors, resistors, etc.

2.3. GENETIC PROGRAMMING 25

2.3.7 Fitness Function

The fitness function has the task to measure how good programs are and

rank them. It is through the fitness function that a high-level statement of

the problem’s requirements is given to the GP system. For example, suppose

the goal is to get GP to synthesize an amplifier automatically. Then the

fitness function is the mechanism which tells GP to synthesize a circuit that

amplifies an incoming signal.

Fitness can be measured in many ways. For example, in terms of: the

amount of error between its output and the desired output; the amount of

time (fuel, money, etc.) required to bring a system to a desired target state;

the accuracy of the program in recognizing patterns or classifying objects; the

payoff that a game-playing program produces; the compliance of a structure

with user-specified design criteria.

Fitness functions used in GP are different from those used in other evo-

lutionary algorithms. This happens because the structures being evolved in

GP are computer programs, were fitness evaluation normally requires execut-

ing all the programs in the population and typically multiple times. While

one can compile the GP programs, the overhead of building a compiler is

substantial, so it is much more common to use an interpreter to evaluate the

GP programs.

Interpreting a program tree means executing the nodes in the tree in

an order that guarantees that nodes are not executed before the value of

their arguments is known. This is done by traversing the tree recursively

starting from the root node, and postponing the evaluation of each node until

the values of its children (arguments) are known. This depth-first recursive

process is illustrated in Figure 2.7.

In some problems the solution that is being looked for is the output pro-

duced by a program, such as the returned value of the evaluated tree. On

other problems the solution that is being looked for is the actions performed

by a program composed of functions with side effects. In either case the

26 CHAPTER 2. EVOLUTIONARY ALGORITHMS

-

+ /

3

-

1x 3 0 2x0

x = -1

3
-2

1

3
-3

-1

2

Figure 2.7: Interpretation example of a GP tree (the terminal x is a variable
and has a value of -1). The number to the right of each internal node represents
the result of evaluating the subtree root at that node. Adapted from (Poli et al,
2008).

fitness of a program typically depends on the results produced by its execu-

tion on many different inputs or under a variety of different conditions. For

example the program might be tested on all possible combinations of inputs

x1, x2, . . ., xN . Alternatively, a robot control program might be tested with

the robot in a number of starting locations. These different test cases typi-

cally contribute to the fitness value of a program incrementally, and for this

reason are called fitness cases (Poli et al, 2008).

There are also interactive GP systems were individuals evaluation is per-

formed by a human. The main reason for this approach is the impossibility,

or impracticably, to define a fitness function to represents the desired solu-

tion. This type of evaluation is commonly used to evolve aesthetic designs

or other forms of art work.

2.3.8 GP Parameters

There are several parameters that need to be specified before running the

GP system. The most important control parameter is the population size.

Other control parameters include the probabilities of performing the genetic

operations and the maximum size for programs. There are no general recom-

2.3. GENETIC PROGRAMMING 27

mendations for setting optimal parameter values, as these depend too much

on the details of the application. However, genetic programming is in prac-

tice robust, and it is likely that many different parameter values will work.

As a consequence, one need not typically spend a long time tuning GP for it

to work adequately. It is common to create the initial population randomly

using ramped half-and-half with a depth range from 2 to 6. The initial tree

sizes will depend upon the number of the functions, the number of terminals

and the arities of the functions. However, evolution will quickly move the

population away from its initial distribution (Poli et al, 2008).

The main limitation on the population size is the time taken to evaluate

the fitnesses. So, it is preferable to have the largest population size that the

system can handle gracefully. Normally, the population size should be at least

500, but larger populations are often used. GP runtime can be estimated by

the product of: the number of runs R, the number of generations G, the size

of the population P , the average size of the programs s and the number of

fitness cases F (Poli et al, 2008).

Typically, the number of generations is limited to between 10 and 15. The

most productive search is usually performed in those early generations, and if

a solution has not been found then, it is unlikely to be found in a reasonable

amount of time. A common wisdom on population size is to make it as large

as possible. It is also common to impose either a size or a depth limit or

both on tree’s sizes to prevent bloat - the uncontrolled growth of program

sizes during GP runs (Poli et al, 2008).

2.3.9 Termination

The last step of GP algorithm is the specification of the termination crite-

rion and the method of designating the result. The termination criterion may

include a maximum number of generations to be run as well as a problem-

specific success predicate. Typically, the single best-so-far individual is des-

ignated as the result of the run, although additional data might be returned.

28 CHAPTER 2. EVOLUTIONARY ALGORITHMS

In case of interactive systems the user decides when to stop the run.

Chapter 3

Artificial Terrains

Artificial terrain generation has been addressed by several researchers for a

long time. They are used for a broad range of applications in many fields,

from computer generated art and animation, architecture to virtual reality

and video games. A thorough list of application examples can be found

in Virtual Terrain website (Virtual Terrain Project, 2009). This chapter

summarizes what have been done on this field and starts by analyzing in

Section 3.1 the different data structures that exist to represent terrains, their

benefits and shortcomings (Frade, 2008). Then Section 3.2 addresses the

existing terrain generation techniques.

3.1 Representation

Before we can generate terrains, it is necessary to define how to represent

them. The chosen data structure will influence the way the terrain is built,

the available tools to manipulate it and might affect also the terrains features

that can be represented. Regarding these topics there are several consider-

ations, namely: render scale (arbitrary or limited); ability to represent all

real terrain features (like caves) or only simpler ones; need to account for

planetary curvature, or only a flat approximation; and finally, is it required

29

30 CHAPTER 3. ARTIFICIAL TERRAINS

Figure 3.1: A discrete height map example

to perform collision detection in an efficient way. Having this considera-

tions in mind, several alternative data structures to represent terrains will

be analyzed:

• height maps;

• voxel grids;

• non-uniform meshes;

• analytical and fractal functions (procedural functions);

Height Maps - Height maps are probably the most common method

used to represent terrains. Formally, a height map is a scalar function of two

variables, such that for every coordinate pair (x, y) corresponds an elevation

value h, as shown in Eq. (3.1). In practice a height map is a two-dimensional,

rectangular grid of height values, where the axis values are spaced with reg-

ular intervals valid over a finite domain (see Figure 3.1). The most common

data structure to represent them are 2D arrays filled with the elevations

values.

h = f (x, y) . (3.1)

The height maps’ regular structure is their main advantage: it allows

the optimization of operations such as rendering, collision detection and

3.1. REPRESENTATION 31

path finding. The render of huge height maps in real-time is now possible

due to the creation of several continuous level of detail (CLOD) algorithms

(Duchaineau et al, 1997; Li et al, 2003; Losasso and Hoppe, 2004), which

render highly visible areas of the terrain with detailed geometry, using pro-

gressively simpler geometry for more distant parts of the terrain. Collision

detection is greatly simplified if one of the objects is a height map, because

only a few surrounding triangles need to be checked for collision. If the values

of a height map are normalized it becomes the same thing as gray scale image.

This means that image processing and computer vision techniques may be

used to construct, modify and analyze terrain models represented as height

maps. For example, a height map can be stored, imported or exported using

an image file format, or a filter can be applied to smooth a rough terrain.

Finally, Geographic Information Systems (GIS) use height maps to represent

real world terrain, which are commonly built using remote sensing techniques

such as satellite imagery and land surveys. This is another advantage due to

the significant amount of real world terrain models available to work with.

The main limitation of height maps is the inability to represent structures

where multiple heights exist for the same pair of coordinates. So height maps

are inherently unable to represent caves, overhangs, vertical surfaces, and

other terrain structures in which multiple surfaces have the same horizontal

coordinates. Fortunately, only a small percentage of natural terrain fall into

this category and this limitation can be overcome by using separate objects

placed on top of the terrain model. A second disadvantage of height maps is

that it has a finite uniform resolution, which means there is no simple way

to handle a terrain with different local levels of details. If the resolution is

chosen to match the average scale of the features in the terrain, then any

finer-scale features will be simplified or eliminated. Conversely, if the reso-

lution is chosen to be high enough to capture the fine-scale features, areas

containing only coarse features will also be captured at this same high reso-

lution, an undesirable waste of space and processing time. Ideally, a terrain

representation for terrain generation would either be infinite in resolution, or

else would adaptively increase its resolution to accommodate the addition of

32 CHAPTER 3. ARTIFICIAL TERRAINS

fine scale details, rather than requiring an a priori decision about resolution.

A third disadvantage of height maps is its inadequacy to represent terrain on

a planetary scale. Rectangular height maps do not map directly to spheroid

objects, usually a two-pole spherical projection is used. In those cases the

density of height field points will be substantially greater in areas near the

poles than at those near the equator.

Voxel Grids - A voxel grid is a discrete three-dimensional grid of volu-

metric pixels (voxels) where each voxel is filled or not. This structure allow

the representation of arbitrary 3D shapes. The voxel grids’ advantage over

height maps is their ability to represent any terrain structures like caves,

overhangs and vertical surfaces. Hoever, voxel grids share the same disad-

vantages of height maps, such as finite resolution and inability to gracefully

handle planetary curvature. Additionally, operations like rendering and col-

lision detection consumes more processor power and memory than height

maps.

Non-Uniform Meshes - The terrain surface can be represented as an

arbitrary mesh of 2D primitives, usually polygons, in the 3D space. This

is a more general representation of 3D objects and there are several tools

to work with this representation. A special case of a non-uniform mesh is

TIN (triangular irregular network) (Pajarola et al, 2002). A TIN is a vector

based representation of a physical surface made up of irregularly distributed

nodes and lines with three dimensional coordinates (x, y, z) that are arranged

in a network of non-overlapping triangles. TINs are often derived from the

elevation data of a rasterized digital elevation model (DEM).

The main benefit of using non-uniform meshes to model the terrain sur-

face is that they are extremely general. The surface may have arbitrary

geometry (overhangs, caves, etc.). This is the most common paradigm used

in 3D tools and allows an artist to freely model any arbitrary 3D object us-

ing a single modeling paradigm. Furthermore, there are a significant amount

of available tools to work with. A second advantage of using a TIN over

a height map is that the points of a TIN are distributed variably based on

3.1. REPRESENTATION 33

an algorithm that determines which points are most necessary to an accu-

rate representation of the terrain. So, they naturally support variable level

of detail, allowing more vertices in areas of sharp change and relatively few

vertices in flat areas. As a result, a mesh structure can store some terrain

models much more efficiently than regular grid methods, since it does not

require a globally high resolution in order to achieve fine-scale features in

a few places. The main problem when using meshes for terrain generation

is that it is not clear how to generate them automatically. Although a ter-

rain is always tessellated into polygons before rendering, to the best of our

knowledge, there are no methods (other than manual sculpting) to directly

generate a non-uniform mesh.

Analytical and Fractal Functions - Another way to represent terrains

is through the use of fractal functions or analytic expressions (procedural

content). This approach is not used often, being MojoWorld 1 and GTP, our

technique (see Chapter 5) two examples.

The main advantage of analytical and fractal functions is the ability of

being displayed at any scale without losing resolution. Due to the contin-

uous nature analytical functions it is possible to recalculate the terrain so

it does not look faceted when viewed close-up, like height maps tend to do.

Some analytical functions are render friendly and/or amenable for collision

detection. Others, such as polynomial surfaces of low degree (quadratic and

below), allows ray/surface intersections to be calculated in a straightforward

way. However, terrains produced by analytic functions tend to become more

and more linear when enlarged. On the other hand, fractals functions con-

tinue to produce new details as they are evaluated progressively at finer

scales. One problem with this approach is the complexity to render the ter-

rain directly from the functions, because ray tracing systems and hardware

were built to work with polygon-based rendering. One way to address this

issue is the introduction of an additional stage were the function is converted

to another form of terrain representation, like height maps, before rendering,

1http://www.pandromeda.com/products/

http://www.pandromeda.com/products/

34 CHAPTER 3. ARTIFICIAL TERRAINS

but with performance costs. But the main challenge of analytical functions

is to model them. If a single, global function is used, it is difficult to know

how to modify it to achieve a certain local effect. A more common approach

is the use of several functions to compose a full landscape, were B-spline

patches are an example. Fractals present the same disadvantage due to the

few input variables to control the output.

3.2 Generation Techniques

Terrain generation techniques can be divided in three main categories: mea-

suring, modeling, and procedural. Although our interest is on procedural

techniques, we briefly review the two other categories, because some tech-

niques present characteristics from more than one category.

Measuring - In the measuring techniques elevation data is derived from

real-world measurements to produce Digital Elevation Models (DEM), com-

monly built using remote sensing techniques such as satellite imagery and

land surveys 2. This is the most common basis for digitally-produced relief

maps. Measuring has the advantage of producing highly realistic terrains

with very little human effort, but at the expense of control. If the designer

has specific goals for the the terrain’s design and features (e.g. mountains,

valleys, lakes) this approach may be very time-consuming, as the designer

might have to search extensively to find real-world data that meets his spe-

cific criteria.

Modeling - Modeling is by far the most flexible technique for terrain

generation and all kins of handcrafted content. A human artist models or

sculpts the terrain morphology manually using a 3D modeling program (e.g.

Maya 3, 3D Studio 3, or Blender 4), or a specialized terrain editor program

2http://rockyweb.cr.usgs.gov/nmpstds/demstds.html
3http://www.autodesk.com/fo-products
4http://www.blender.org

http://rockyweb.cr.usgs.gov/nmpstds/demstds.html
http://www.autodesk.com/fo-products
http://www.blender.org

3.2. GENERATION TECHNIQUES 35

(e.g. the editors that ship with video games like Unreal Tournament 2004 5,

SimCity 4 6 or SimEarth 7). The way the terrain is built is different depending

on the features provided by the chosen editor, but the general principle is the

same. With this approach the designer has unlimited control over the terrain

design and features, but this might be also a disadvantage. By delegating

most or all of the detail up to the designer, these technique imposes high

requirements on the designer in terms of time and effort. Also the realism of

the resulting terrain is fully dependent on the designer’s skills.

Procedural - The desire for providing the player with novel and en-

gaging content without a large investment on designers resources drives the

goal of automatic content generation. Terrains are one of the many assets

whose generation can be automated. Fractals are the most common pro-

cedural method to generate artificial terrains. They offer unlimited extent

landscapes and can cover an arbitrarily large area without seams or unwanted

pattern repetition. Some provide also mathematical advantages that make

them friendly for rendering and allow ray intersections to be calculated in

a straightforward way (Ebert et al, 2003). Self-similarity is the key concept

behind any fractal technique. This means that when an object is magnified,

subsets of the object look like (or identical to) the whole and to each other

(Peitgen et al, 2004). This allows the use of fractals to generate surfaces,

regardless of the scale in which it is displayed. However, real terrains present

this characteristic only on a limited scale (Goodchild, 1980). These algo-

rithms are the favorite ones by game designers, mainly due to their speed

and simplicity of implementation.

Mandelbrot (1983) was the first to realize the similarity between the trace

of one dimensional fractional Brownian motion and the contours of moun-

tains peaks. This view was later generalized to fractal Brownian motion

(fBm) surfaces with a power spectrum of f−β. Over the years other fractal

algorithms were invented that approximate this power spectrum and nowa-

5http://www.mobygames.com/game/unreal-tournament-2004
6http://simcity.ea.com/about/simcity4/overview.php
7http://www.mobygames.com/game/simearth-the-living-planet

http://www.mobygames.com/game/unreal-tournament-2004
http://simcity.ea.com/about/simcity4/overview.php
http://www.mobygames.com/game/simearth-the-living-planet

36 CHAPTER 3. ARTIFICIAL TERRAINS

days there are five different approaches: Poisson faulting (Mandelbrot, 1983;

Voss, 1987); Fourier filtering (Mandelbrot, 1983; Mastin et al, 1987; Sakas,

1993; Voss, 1987); midpoint displacement (Miller, 1986); successive random

additions (Voss, 1987); and finally summing band-limited noises (also known

as noise synthesis) (Miller, 1986; Musgrave et al, 1989; Perlin, 1985).

The statistical behavior of fractals results in maps that present homoge-

neous features that are noticeable on large scales, which makes them easily

recognizable. To address this issue Musgrave et al (1989) introduced a noise

synthesis variant that enables some control over fractal dimension to create

eroded fractal terrain, referred as multifractal. This approach is able to gen-

erate terrains with different fractal dimension on its features, such as moun-

tains, with a rougher surface (higher fractal dimension) and smoother valleys

(lower fractal dimension). To increase the realism Musgrave et al (1989) also

resort to physical simulation of two erosion algorithms: hydraulic and ther-

mal weathering. However, erosion simulation is slow and introduces more

parameters for the user to control. To alleviate this problem Olsen (2004)

proposed several optimizations that sacrifice physical correctness over perfor-

mance with little visual impact. His approach applies erosion algorithms to

a base terrain generated by fractal Brownian motion and perturbed Voronoi

diagrams instead of multifractals. Olsen (2004) also provides some metrics

for evaluating terrain (such as low average height and a high standard devia-

tion for slope) to compute a game suitability score used to evaluate generated

terrains.

Other fractal based terrain generation approaches have been proposed.

Pabst and Jense (1995) implemented a multifractal terrain analysis algorithm

that captures terrain characteristics of real-world data, into five parameters.

These parameters were then put into a multifractal terrain generation algo-

rithm that produced synthetic terrain with similar features to those in the

terrain that was analyzed. Pi et al (2006) create fractal landscapes using

Perlin noise to generate landscapes with focus on obtaining the desired level

of detail.

3.2. GENERATION TECHNIQUES 37

All terrain synthesis based purely on fractals, control the output by means

of parameters, such as the Holder exponent, fractal dimension, octaves and

lacunarity, just to name a few. These parameters impact the generated ter-

rain as a whole and do not allow the specification of features location or their

dimensions. Besides, to grasp the effect of each parameter requires a deep

understanding of fractal mathematics and/or trial and error experiments un-

til the desired effect is found. This process is time consuming and there is

no guarantee the desired features are discovered. To overcome the modula-

tion issue of fractal algorithms a new set of methodologies have been devised

over the years that can be categorized into: (1) synthesis by example of real

world data; (2) constrained generation; (3) interactive modification of a base

terrain; (4) use of software agents; and finally (5) search based algorithms.

These will be successively described below.

(1) Synthesis of terrain by example of real world data - Techniques in

this category consists on: extracting features from Digital Elevation Models

(DEM); classify them; compose a new terrain with the desired characteristics;

and finally smooth the transitions between the different terrain features. This

concept is applied by Chiang et al (2005) where an interactive environment

was created to synthesize terrains based on microscopic terrain features of

real world data. Their non-fractal approach uses geometric primitives, such

as triangles and trapezoids to build the terrain profile. Then, a matching

procedure is applied to replace the geometric primitives by real world data.

Later Tu et al (2008) proposed several improvements to this method. An-

other similar approach is presented by Brosz et al (2006), were they extract

the small scale characteristics from one real terrain to apply them to a base

terrain and increase its detail and resolution. A distinct method is described

by Zhou et al (2007) where a terrain is generated based on example input

height-map and a user line drawing that defines the occurrence of large-scale

features, such as a mountain ridge. Then a technique, from the geomor-

phology field, is used to extract features from the example height-map and

matched to the sketched curves and seamed together in the resulting height-

map. Yet another different approach is presented by Li et al (2006). Their

38 CHAPTER 3. ARTIFICIAL TERRAINS

proposal has four stages: terrain silhouette generation; terrain feature re-

trieval; region selection and filling; and texture generation. The last phase

uses a machine learning algorithm to model the texture for the final height

map. The main advantage of all techniques in this category is the realism

of produced terrains. However, they require a suitable set of examples to

be able to create all desired terrain features. Although nowadays there are

many free sources of real world DEM, building the appropriate data set can

be tedious and time consuming.

(2) Constrained generation - Control of terrain features can also be at-

tained by imposing constraints, where the process takes into account some

restrictions during or after the initial generation phase. There are several

methods in this area that can be further sub-categorized into: surface ap-

proximations and deformation. Surface approximation methods are com-

monly used to reconstruct sparse DEM data, or to procedurally amplify DEM

resolution. Vemuri et al (1997) constraint fractals to pass through a set of

pre-defined points. However, there is no guarantee as to the shape of the ter-

rain between points. With the same goal Pouderoux et al (2004) managed to

obtain good approximations using radial basis functions. A constrained frac-

tal model based on midpoint displacement algorithm is presented by Belhadj

(2007). His main goal is to reconstruct DEM’s where the control is provided

by specifying the exact locations and height of the DEM points. Creation

of ridge and river networks to be used as constraints of fractals to generate

a complete heightmap is the proposal of Belhadj and Audibert (2005). The

ridge and river networks are created by randomly depositing particles and

allowing them to interact with each other and the terrain. As with most

fractal-based approaches, their algorithm does not appear to be controllable.

A different method is introduced by Szeliski and Terzopoulos (1989). They

apply a surface fitting algorithm using splines, then the resulting smooth

surface is perturbed by adding fractal detail to the resulting heightmap. Due

to the use of a coarse spline mesh, only large scale modifications are possible.

The proposal of Kamal and Uddin (2007) resembles the Poisson faulting frac-

tals, but allows some level of control over terrain features. On each iteration

3.2. GENERATION TECHNIQUES 39

this technique draws straight lines across the base map to create a series of

randomly placed polygons. Then it performs random walks that raise the

points in these polygons, starting from the polygons inside the pre-specified

location of the desired terrain feature. Besides the locations of the terrain

feature, three parameters are used, whose impact on the resulting height map

is not intuitive.

(3) Interactive modification of a base terrain - On the demand for easily

and intuitively control of terrain features from the user perspective, several

methods have emerged based on interactive modification of a base terrain.

These methods have one interactive phase were the user can specify major

features of maps, but rely on procedural techniques to add the small details.

Schneider et al (2006) introduced a real time editor where the user edits the

terrain by interactively modifying the base functions of the noise generator

by replacing the Perlin noise grid with a set of user-drawn gray-scale images.

This approach has the advantages to break the too homogeneous look of large

scale fractal terrains. Carpentier and Bidarra (2009) created an application

that allows users to paint height-maps directly in 3D view by applying pro-

cedural brushes. These are simple terrain raising brushes or brushes that

generate several types of noise in real time. However, this approach shares

some disadvantages of other manual editing methods, such as: requires large

amount of memory to store the resulting terrain and still requires from the

user time and skill to obtain the desired terrain. Smelik et al (2010) pro-

poses another sketch based approach were users compose a digital sketch of

the rough terrain layout. They declare the location of important terrain fea-

tures, such as forests, mountains, cities, and villages. Once they are satisfied

with the layout, the framework generates a high-resolution terrain map that

complies to the specified features at large, but has, on a small scale, a high

level of detail and variations in elevation. Although interactivity can be seen

as the main strength of these techniques, it is also its main disadvantage

because it prevents terrain generation from being fully automated.

(4) Software agents - A new approach, based on software agents, has been

proposed by Doran and Parberry (2010). Their generator applies agents in

40 CHAPTER 3. ARTIFICIAL TERRAINS

three phases: coast line, landform and erosion. They execute five different

kinds of agents, each one with a set of parameters that describe a terrain

feature, such as mountains or rivers. The authors claim their approach to

be more intuitive and controllable than fractals. However, the quantity of

parameters that need to be defined is huge (12 only for the mountains) and

will require a certain amount of trial and error experiments until the desired

result is achieved.

(5) Search based algorithms - The main challenge of parametric approaches

is to find the right values of parameters that produce the desired terrain fea-

tures. However, these approaches often degenerate into an authoring process-

ing of trial and error, which is time consuming and offers no guarantee that

such values are found. To address this problem several proposals have been

made that relay on search based algorithms to find the right way to achieve

the desired terrain features. For instance, Stachniak and Stuerzlinger (2005)

employ a stochastic local search algorithm that finds an acceptable set of

deformation operations to apply to a base terrain in order to obtain a map

that approximately adheres to the specified constraints. An evolutionary ap-

proach to generate terrains was proposed by Ong et al (2005). They use an

Evolutionary Design Optimization technique to generate terrains by apply-

ing genetic algorithms to transform height maps in order to conform them

to the required features. Their approach breaks down the terrain genera-

tion process into two stages: the terrain silhouette generation phase, and

the terrain height map generation phase. The input to the first phase is

a rough, 2D map laying out the geography of the desired terrain that can

be randomly generated or specified by the designer. This map is processed

by the first phase to remove any unnaturally straight edges and then fed to

the second phase, along with a database of pre-selected height map samples

representative of the different terrain types. The second phase searches for

an optimal arrangement of elevation data from the database that approxi-

mates the map generated in the first phase. The 2D terrain silhouette and

a database of representative height map samples are the only form of con-

trol for their algorithm. Another evolutionary approach was proposed by

3.2. GENERATION TECHNIQUES 41

Ashlock et al (2008), co-evolving L-systems parameters and grammar to fit

a specific terrain shape, which has some resemblance to symbolic regression.

A different perspective is proposed by Togelius et al (2010b). They apply

multi-objective EAs to evolve height maps that fit some user predicted en-

tertainment metrics to hopefully increase players interest on the game. This

concept is further developed and applied to StarCraft video game (Togelius

et al, 2010a). None of these approaches addresses aesthetic appeal or cre-

ativity of the generated terrains.

The proposal presented in this thesis fits the search-based category, where

the evolutionary search mechanism in use is genetic programing. GTP uses

analytic expressions, designated Terrain Programs (TPs), to represent ter-

rains. However the molding problem of analytical functions is addressed by

letting the evolutionary systems find the right expression that fits our goals.

In GTPi the evolution is interactive, where a human guides TP evolution ac-

cordingly to its desired features and aesthetic appeal. Conversely, in GTPa

TPs are evolved automatically, without human intervention in the evolution-

ary process, to fit two morphological criteria. Once found, TPs can be easily

integrated in video games and will not require any input parameter to con-

trol its look. To the best of our knowledge, this area has not been address in

previous procedural content generation research.

42 CHAPTER 3. ARTIFICIAL TERRAINS

Chapter 4

Interactive Genetic Terrain

Programming

This Chapter presents the first implementation of GTP, which was interactive

(Frade et al, 2008c, 2009b) and whose technique was developed during the

research for the Master Thesis (Diploma de Estudios Avanzados) (Frade,

2008). The GTPi overview is included here because it is part of the whole

research line and to allow the reader to understand all the path that our

research followed.

The GTPi technique uses an Aesthetic Evolutionary Design approach and

was the first attempt to address the weaknesses of existing terrain generation

methods, allowing also the generation of aesthetic terrains. This technique

lies in the combination of interactive evolutionary art systems with GP to

evolve mathematical expressions, designated TPs, to generate artificial ter-

rains as height maps.

Interactive evolutionary art systems are similar in many ways: they all

generate new forms or images from the ground up (random initial popu-

lations); they rely upon a human evaluator to set the fitness value of an

individual based on subjective evaluation, such as aesthetic appeal; the pop-

ulation sizes are very small to minimize user’s fatigue and allow a quick

43

44 CHAPTER 4. INTERACTIVE GTP

evaluation; and user interfaces usually present a grid on the screen with the

current population individuals, allowing the user to rank them. However,

they differ on their phenotype representations (Bentley, 1999). If we use a

terrain surface as phenotype, instead of an image, it is possible to apply the

same principle of evolutionary art to terrain generation. The following para-

graphs present an overview of the most prominent works on evolutionary art

systems with GP. Bentley (1999) and Takagi (2001) present a good literature

survey on this topic.

GP has been the most fruitful evolutionary algorithm applied to evolve

images interactively. Karl Sims used GP to create and evolve computer

graphics by mathematical equations. The equations are used to calculate

each pixel (Sims, 1991), or create graphic movies by adding a time variable

to the dynamic differential equations (Sims, 1992). He created several graphic

art pieces including Panspermia and Primordial Dance and also allowed vis-

itors interact with his interactive art system at art shows and exhibitions.

His Galapagos1 is an L-system based Interactive Evolutionary Computation

(IEC) system that allows visitors to create their own graphic art through

their interaction.

Unemi (1998, 1999) developed SBART (Simulated Breeding ART), an

IEC graphics system open to public. SBART uses GP to create mathematical

equations for calculating each pixel value and its (x, y) coordinates. As GP

nodes SBART assigns the four arithmetic fundamental operators (+, −, ×
and ÷), power, sqrt, sin, cos, log, exp, min and max. The terminal nodes

are constants and variables. Three values at each pixel are calculated using

one generated mathematical equation by assuming that the constants are

3D vectors consisting of three real numbers and the variables are 3D tuples

consisting of (x, y, 0). The three calculated values are regarded as members of

a vector (hue, lightness and saturation) and are transformed to RGB values

for each pixel. These three values are normalized to values in [−1, 1] using a

saw-like function. It allows the creation of movies by replacing (x, y, 0) with

1http://www.genarts.com/galapagos

http://www.genarts.com/galapagos

4.1. METHOD 45

(x, y, t), where t is a time variable. The SBART ’s functions were expanded

to create a collage (Unemi, 2000). A human user selects preferred 2D images

from 20 displayed images at each generation and the system creates the

next 20 offspring. Sometimes exporting/importing parents among multiple

SBART instances is allowed. This operation is iterated until the user obtains

a satisfactory image.

In NEvAr (Neuro Evolutionary Art) of Machado and Cardoso (2000),

the function set is composed mainly of simple functions such as arithmetic,

trigonometric and logic operations. The terminal set is composed of a set of

variables x, y and random constants. The phenotype (image) is generated

by evaluating the genotype for each (x, y) pair belonging to the image. In

order to produce color images, NEvAr resorts to a special kind of terminal

that returns a different value depending on the color channel – Red, Green

or Blue – that is being processed. This tool focus on the reuse of useful

individuals, which are stored in an image database and led to the development

of automatic seeding procedures (Machado et al, 2005).

4.1 Method

GTPi relies on GP as evolutionary algorithm where the initial population

is created randomly, with trees depth size limited initially to 6 and a fixed

population size of 12 (see Table 4.1). The number of generations is decided by

the designer, who can stop the algorithm at any time. The designer can select

one or two individuals to create the next population and the genetic operators

used depend upon the number of selected individuals. If one individual is

selected only the mutation operator will be used. In case the designer chooses

to select two individuals both the standard crossover and mutation operators

(Koza, 1992) will be applied. Like in others IEC systems, the fitness function

relies exclusively on designers’ decision, either based on his aesthetic appeal

or on desired features. The use of crossover operator should be avoided,

because the Evolutionary Algorithm is used as continuous novelty generators.

46 CHAPTER 4. INTERACTIVE GTP

Table 4.1: Parameters for a GTP run (Frade, 2008)

Objective: Generate realistic or aesthetic terrains
Function set: Functions from Table 4.2, all operating on matrices

with float numbers
Terminal set: Terminals from Table 4.3 chosen randomly
Selection and
Fitness:

Decided by the designer accordingly to desired terrain
features or aesthetic appeal

Population: Fixed size with 12 individuals; initial depth limit 6,
after there are no tree size or depth limits; random
initialisation

Parameters: If 2 individuals are selected: 90% subtree crossover
and 10% mutation; if just one individual is selected:
50% mutation (without crossover)

Operators: Three mutation operators are used with equal prob-
ability: (1) Replace mutation where a random node
is replaced with a new random tree generated by the
grow method; (2) Shrink mutation where a random
subtree (S) is chosen from the parent tree and replaced
by a random subtree of S; (3) Swap mutation where
two random subtrees are chosen from the parent tree
and swapped, whenever possible the two subtrees do
not intersect. One crossover operator is used: subtree
crossover where random nodes are chosen from both
parent trees, and the respective branches are swapped
creating two offspring.

Termination: Can be stopped at any time by the designer, the
“best” individual is chosen by the designer

4.2. GENTP TOOL 47

Consequently, non-convergence of the EA is a requirement. The extensive

use of the crossover operator will make the population converge to a few

solutions, thus leading to the loss of diversity of individuals and limiting the

designer to explore further terrains. This is also the reason for the high rate

of the mutation operator when compared with usual rates of optimizations

problems with EAs.

Each GP individual is a tree composed by functions, listed in Table 4.2,

and height maps as terminals, see Table 4.3. Ephemeral Random Constant

(ERC) is a special terminal that creates values randomly which remain con-

stant until it disappears from the GP tree due to the use of a genetic oper-

ators. Except for rand all the terminals depend upon a ERC to define some

characteristics, such as the spectrum value of fftGen. All terminals have also

some form of randomness, which means that consecutive calls of the same

terminal will always generate a slightly different height map. This character-

istic allows us to create different terrains, but with the same morphological

features, for each time a TP is executed. All terminals generate surfaces that

are proportional to the side size of the height map. This ensures that the

terrain features of a TP are scale invariant. Figure 4.1 shows height maps of

size 30× 30 generated by terminals fftGen, gauss, step and sphere.

While in Unemi (1999, 2000) the mathematical equations are used to

calculate both the pixel value and its coordinates, in GTPi only the height

will be calculated. The (x, y) coordinates will be dictated by the matrix

position occupied by the height value.

4.2 GenTP Tool

To implement this new technique we developed GenTP (Generator of Terrain

Programs) (Frade et al, 2008b), an application developed with GPLAB 2, an

open source GP toolbox for Matlab 3. GenTP has three functional modules

2http://gplab.sourceforge.net/
3http://www.mathworks.com/

http://gplab.sourceforge.net/
http://www.mathworks.com/

48 CHAPTER 4. INTERACTIVE GTP

Table 4.2: GP Function Set (Frade, 2008)

Name Description

plus(h1, h2)
arithmetical functionsminus(h1, h2)

multiply(h1, h2)
sin(h)

trigonometric functions
cos(h)
tan(h)
atan(h)

myLog(h)
returns 0 if h = 0 and
log(abs(h)) otherwise

myPower(h1, h2)
returns 0 if hh21 is NaN
or Inf , or has imaginary

part, otherwise returns hh21

myDivide(h1, h2)
returns h1 if h2 = 0 and
h1 ÷ h2 otherwise

myMod(h1, h2)
returns 0 if h2 = 0 and
mod(h1, h2) otherwise

mySqrt(h) returns sqrt(abs(h))
negative(h) returns −h

FFT (h)
2-D discrete Fast Fourier
Transform

smooth(h)
circular averaging filter
with r = 5

gradientX(h)
returns the gradient (dh/dx

gradientY (h)
or dh/dy) of a height map h.
Spacing between points is
assumed to be 1

4.2. GENTP TOOL 49

Table 4.3: GP Terminal Set (Frade, 2008)

Name Description

rand
map with random heights
between 0 and 1

fftGen
spectral synthesis based height map,
whose spectrum depends on a ERC:
1/(fERC)

gauss
gaussian bell shape height map, whose
wideness depends on a ERC

plane
flat inclined plane height map whose
orientation depends on a ERC
within 8 values

step
step shape height map whose orientation
depends on a ERC within 4 values

sphere
semi-sphere height map whose centre
location is random and the radius
depends on a ERC

Figure 4.1: Example of height maps terminals fftGen, gauss, step and sphere
(Frade, 2008)

50 CHAPTER 4. INTERACTIVE GTP

Generation n

...TP1

TP12......

...

1
2

...

8

Multiple
executions
of the
same TP

Interactive Evolution

Final TP
1

2
...

m

Generates
terrains with
coherent
morphological
characteristics

Generation n-1

Main Interface Analyse Interface
Resolution,

rotation,
zoom

Generation Module

Output as VRML 2.0

Figure 4.2: GenTP ’s functional modules (Frade, 2008)

(depicted in Figure 4.2):

• Interactive evolution;

• Analyze;

• Generation;

The interactive evolution module is where the GP is implemented and the

designer chooses the desired terrains for the next generation, for the analyze

or generation modules. Figure 4.3 shows the GUI (Graphical User Interface)

of GenTP ’s main interface, which is the visible part of the interactive evo-

lution module. The 12 individuals of current population are represented as

3D surfaces and displayed in a 3× 4 grid. Each TP is evaluated to produce

a height map of size 100 × 100 to be displayed to the designer. The height

map size can be changed, but should be kept small otherwise it might have

a negative impact in the tool responsiveness.

The GenTP main GUI allows a designer to select one or two individuals

to create the next population generation. The number of selected TPs will

influence their evolution. If just one TP is selected - only the mutation

operator will be applied - the next generation will present more diversity and

4.2. GENTP TOOL 51

Figure 4.3: GenTP main user’s interface (Frade, 2008)

the evolved TPs can change their look more dramatically. On the other hand,

if the designer opts to select two individuals, the next generation will present

few variations from the selected individuals and the TP will evolve slowly.

On the bottom of the main GUI the designer can see the TP mathematical

expression that generated the selected terrain and save it on a text file or

database. This option will allow the integration of TPs, as a procedural

technique, to produce terrains for example on a video game.

Although the main interface serves its purpose, some times it is difficult

to see all TP features due the display angle used to show the generated

terrain. It is also difficult to inspect small details of a generated terrain

and it is not possible to test the TP’s features perseverance across multiple

executions. For these reasons it might be difficult for the designer to chose

the TPs for the next generation. To solve these limitations the analyze

module was added to our application. This new functionality opens a new

windows, see Figure 4.4, and performs 8 consecutive executions of the TP

selected from the main interface. To allow a more detailed analysis of the TP

characteristics this interface allows the designer to rotate, zoom and change

the terrains resolution. This way the designer has more information about a

52 CHAPTER 4. INTERACTIVE GTP

Figure 4.4: GenTP analyse user’s interface (Frade, 2008)

TP to decide if it will be selected, or not, for the next generation.

When the designer achieves the desired TP can save it in a file, or can pass

it to the generator module. This module is responsible for the generation of

height maps, as many as desired, from the selected TP. Those height maps

can be saved as VRML 2.0 permitting its import from other applications,

such as 3D modeling and render tools.

4.3 Tests and Results

Two kind of experiments were conducted with GTPi, the first one consisted

on obtaining aesthetic appealing terrains (regardless of their realism) and the

second one to achieve a realistic terrain with a specific feature in mind. On

the first kind of experiments we were able to get aesthetic appealing terrains

after about 30 to 70 generations. On those experiments we were able to

obtain very different kinds of terrains types. Must of them are difficult to

4.3. TESTS AND RESULTS 53

Figure 4.5: Exotic terrains generated by three different TPs (rendered with 3DS
Max). The pictures of the third column were generated by Eq. (4.1) (Frade, 2008).

describe due to their exotic look (see Fig. 4.5).

H = myLog(Incline(mySin(mySqrt(Smooth(fftGen(1.25)))))) . (4.1)

For example, the TP represented in Eq. (4.1) creates terrains with a

bank of knolls with two ridges that give them an alien look (see Fig. 4.5).

Fig. 4.5 has examples of terrains generated from three different TPs. Each

column has pictures of terrains generated by three consecutive executions

of the same TP. In this set of pictures is visible that each TP is capable of

generate different terrains, but with the same features.

On the second kind of experiments we tried to obtain TPs to generate ter-

rains with a specific features, such as mountains, cliffs or corals. In this case

the number of necessary generations varies widely until we are able to get

acceptable results. These number is highly dependent on the initial popula-

tion and could vary between 10 to more than 100 generations. When running

the experiments, if after a number of generations an interesting result is not

obtained, we have preferred to cancel the experiment and begin again, avoid-

54 CHAPTER 4. INTERACTIVE GTP

Figure 4.6: TPs evolved with specific features in mind (rendered with 3DS Max).
From left to right column: cliffs, corals (Eq. (4.2)) and mountains (Frade, 2008).

ing this way a long run. We also verified that, for realistic landscapes, the

range of terrains types were narrower than in the first experiment. Equation

(4.2) has an example of a TP that was evolved having in mind to achieve a

coral looking terrain. In the set of pictures on Fig. 4.6 it is visible that the

terrains generated by each TP are always different, but still present the same

features.

H = myLog(minus(fftGen(2.75),myLog(minus(

Smooth(fftGen(1.50)),fftGen(2.50))))) . (4.2)

The evolution is influenced by the number of selected TPs, if two TPa are

selected - crossover operator applied - the next generation will present few

variations of the selected individual and the TP will evolve slowly. On the

other hand, if the designer opts to select only one individual - only mutation

operator applied -, the next generation will present more diversity and the

evolved TPs can change their look more dramatically. Some robustness tests,

on a few TPs, showed that the functions myLog, myPower, myTan and

4.3. TESTS AND RESULTS 55

myAtan are the ones that have more influence in the terrain look, followed

by the Smooth. Changes on the ERC also influence the terrain look, but

that change is not always noticeable.

In spite of the good results obtained with GTPi, the evolutionary pro-

cess depends on a human to perform the evaluation and classification of

each individual in the GP population, which is known to cause user fatigue

(Bentley, 1999). Consequently, individuals are scored in a highly inconsis-

tent way, which makes the GP runs hardly repeatable. This approach also

requires expensive human resources for the evaluation process. GTPi pre-

sented also another limitation: although TPs were procedural, they were

unable to perform zoom over a certain terrain area. This limitation was

due to the implementation of GP terminals, which depended directly from a

random function instead of x, y coordinates. To address these limitations, a

second version of GTP was developed. This new version, designated GTPa,

fits the SBPCG category and is fully detailed in Chapter 5.

56 CHAPTER 4. INTERACTIVE GTP

Chapter 5

Automated Genetic Terrain

Programming

GTPa was implemented to address GTPi limitations: user fatigue, lack of

zoom and to automatically classify each GP individual. This automated

version of GTP removes the human factor from the evolutionary process.

It also allows designers to search terrains offline (during game development

phase) and incorporate them as procedures into video games. With GTPa

the terrain generation for a given TP is deterministic, that is, it will always

generate the same terrain, while in GTPi it was stochastic (different terrains

each time the generation process took place). In spite the differences of GTPa

over GTPi the goal of generating aesthetic terrains remains. However, this

time the evolutionary process is guided by a direct fitness function.

In Section 5.1 we detail GTPi limitations. The proposed solution, its

implementation and impacts on terminal and function sets are explained in

Section 5.2. The reasoning for our fitness function and its formula are laid

out in Section 5.3. Following, used tools are described in Section 5.4 and the

explanation of the devised tests and consequent results in Section 5.5. Section

5.6 presents some sample terrains rendered in three dimensions. Finally, a

preliminary analysis about the creativity of GTPa is presented in Section 5.7.

57

58 CHAPTER 5. AUTOMATED GTP

5.1 Adding Zoom Feature to Terrain Programs

An important characteristic of some procedural techniques is their ability to

generate a scene with the required resolution and zoom level, in fact this is

probably the main advantage of terrain procedural techniques over the other

types of techniques.

Due to computers’ digital nature they cannot truly represent continuous

data. So, all continuous data must be sampled to discrete values. The

amount of samples per unit determines the resolution, which is perceived by

the user as the quality of the digitalized function. Figure 5.1 represent a

continuous function with two different samples rates and the correspondent

result of that sampling. The higher the sampling rate, the better is the

quality of the digitalized function. However, after a certain point there is

no use to increase the amount of sampling because of the display medium

limitation, or ultimately, due to the biological limitations of the human eyes.

For instance, many LCD monitors can only display images up to 72 dpi (dots

per inch). So, increasing the sampling rate beyond this limit will require more

storage space but does not improve user’s perceived quality.

If it is required to view more details than the ones allowed by the dis-

play medium limitations it is possible to resort to zoom. The zoom feature

consists of narrowing the apparent angle of view of a scene, giving the sense

of approximation. This feature can be achieved in procedural techniques by

scaling and increasing the sampling rate. For example, the top image on Fig.

5.2 represents continuous function where the sampling rate is 2 (shown by

the grid lines). To enlarge three times the area bounded by the zoom box,

the sampling rate must be increased three times and the output must be

scaled for the same resolution, as shown on the bottom image of Fig. 5.2.

Notice the distance between each sample before and after the zoom, 0.5 units

and 0.166 units respectively. However, they are represented in the output

medium with the same distance between them due to the scaling process. For

easier illustration the examples used a function with just one input variable.

5.1. ADDING ZOOM FEATURE TO TERRAIN PROGRAMS 59

x

 y

0 1 2 3 4 5 6 7 8

1

2

3

x

 y

1

2

3

0 1 2 3 4 5 6 7 8

Figure 5.1: Example of a continuous function sampling, where the grid lines
represent the sampling points. Both images present the same continuous function,
but the sampling rate of the bottom image is twice from the one on the top.

Nonetheless, the same principles apply to any function independently of how

many input variables it has.

It is thanks to the resolution and zoom properties present in procedural

techniques, that computers can better simulate and represent continuous

data.

In spite of the procedural nature of the TPs, the GTPi implementation

only allows to choose terrain resolution, but not zoom level (Frade et al,

2008a). This is a limitation that runs against procedural terrains advantages

which we wanted to eliminate. To implement the zoom feature the continuous

surface that a TP can generate must be delimited and sampled with fixed

increments of x and y to obtain the corresponding altitude h, where h =

f(x, y), h, x, y ∈ R. The altitude values are stored in matrix H = {hr,c}r6nr
c6nc

,

whose size nr × nc depends on the amount of samples and therefore define

the height map resolution. Equation (5.1) shows the relationship between

60 CHAPTER 5. AUTOMATED GTP

x

 y

0 1 2 3 4 5 6 7 8

1

2

3
Zoom box

x5,33 5,66 6,00 6,33 6,66 7,00 7,33 7,66 8,00
1,33

1,66

2,00

2,33

Figure 5.2: Sampling grid of a continuous functions before zoom (top) and after
a 3 times zoom of the zoom box (bottom)

the height map matrix H and the TPs continuous functions. The value hr,c

represents the elevation value for row r and column c, and Dx, Dy are the

terrain dimensions. Sx, Sy allow the control of the zoom level and Lx, Ly

allow us to localize the origin of the terrain view area (see Fig. 5.3). This

equation alone do not solve the problem of zoom feature, there are also some

requirements to be fulfilled by the terminal and function sets, which are

detailed in the next section.

hr,c =f

(
c× Dx

nc−1

Sx
+ Lx,

r × Dy

nr−1

Sy
+ Ly

)
r ∈ {1, · · · , nr}, c ∈ {1, · · · , nc}, (5.1)

Dx, Dy, Sx, Sy ∈ R+ and Lx, Ly ∈ R

5.2. TERMINAL AND FUNCTION SETS 61

�

�

����������������	

�

���
�����
� �

� �

� �

� �

� �

� �

� � � � �

����	

Figure 5.3: Terrain view area

5.2 Terminal and Function Sets

Terminal set used in GTPi, shown in Table 4.3, presents functions that do

not depend directly on (x, y) input variables. The result of that functions

must depend only on the (x, y) coordinates, without this characteristic it is

not possible to implement the zoom feature. Terminals gauss, plane, step

and sphere can be easily rewritten to be directly dependent on (x, y). But

the same does not hold for the rand and fftGen terminals.

As the name suggests, the rand terminal generates random numbers.

Although we can fixate the random number seed to ensure the same values

can be obtained as many times as desired, that behavior is not enough to

allow the implementations of the zoom feature. This happens for two reasons,

first the random number function is not continuous. Second, the output of

that function depends on the number of times it is called and not on an

input variable. Figure 5.4 shows the consequences of random numbers in TPs

produced by GTPi. When we increase the terrain resolution the resulting

terrain is different, in spite of the similarities in their features.

The fftGen terminal is more complex, it is based on the Fourier trans-

form. The theory of Fourier states that any function can be represented as

a sum of sinusoidal terms. The Fourier transform takes a function from the

62 CHAPTER 5. AUTOMATED GTP

Figure 5.4: Two terrains generated by the same TP with different resolutions
(150×150 on the left and 450×450 on the right) that show the problem of random
numbers with the same seed in GTPi implementation

spatial or time domain into the frequency domain, where it is represented by

the amplitude and phase of a series of sinusoidal waves. Summing together

the series of sinusoidal waves reproduces the original function - this is called

the inverse Fourier transform (Bracewell, 1999). The fftGen terminal starts

by generating random frequency components (amplitude values), then a low

band filter is applied to eliminate high frequency components. Finally the

inverse Fast Fourier Transform (FFT) - an efficient algorithm to compute

the discrete Fourier transform - is computed to convert the frequency com-

ponents into altitudes (Olsen, 2004). The outcome of this terminal is a height

map whose surface roughness can be controlled by the low band filter. The

lower the filter value, the smoothest the surface is. This terminal presents

two problems for the zoom implementation: first it is based on a random

number generator thus suffering from the same problems of the rand termi-

nal. Additionally, even if we solve the random number issue, this terminal

would still be an obstacle to the zoom feature due to the fact of working ini-

tially with components in the frequency domain. The inverse FFT algorithm

requires a large set of points to convert them to the space domain, it does

not allow the computation of a single point which is required to implement

the zoom feature.

The main obstacle to implement the zoom feature are the rand and fftGen

terminals. They must be replaced by terminals that depend directly from

the (x, y) input coordinates, or simply eliminated. For the rand terminal we

5.2. TERMINAL AND FUNCTION SETS 63

believe that it should be replaced, otherwise we would lost one important

characteristic of a single TP to be able to produce a family of terrains - dif-

ferent terrains that share the same morphological characteristics. To replace

the rand terminal we propose the use of noise functions, these kind of func-

tions have been widely used in procedural textures for several years. Noise

functions are stochastic functions whose ideal properties are (Ebert et al,

2003):

• the noise function must have a repeatable pseudorandom output, based

on its inputs variables;

• the output range is known, namely from −1 to 1;

• the output is band-limited, with a maximum frequency of about 1;

• the noise function should not exhibit obvious periodicities or regular

patterns. Pseudorandom functions are always periodic, but the period

can be made very long and therefore the periodicity is not noticeable.

• the noise function is stationary, that is, its statistical character should

be translationally invariant.

• the noise function is isotropic, that is, its statistical character should

be rotationally invariant.

There are several noise functions available, such as: Voronoi, Cell Noise,

Perlin, Blender Noise, among others. Although these functions share the

statistical behavior previously described, they produce different outputs. So,

the question that arises is: which one should replace our rand terminal? Our

preliminary analysis showed that Voronoi noise presents structured random

patterns, for this reason we believe it is not the best candidate to replace the

rand terminal. On the other hand, Cell Noise, Perlin and Blender Noise are

able to produce pseudo-random outputs. Therefore, they seem to be more

adequate to replace our rand terminal. Given that the output from these

noise functions is very similar between each other, we choose the Blender

Noise function designated orgBlenderNoise1 to replace rand. The output

range of orgBlenderNoise is from 0 to 1, so to conform the properties listed

1Source code available under GNU General Public License at http://www.blender.org/

64 CHAPTER 5. AUTOMATED GTP

earlier we created myNoise as listed in Eq. 5.2. Because orgBlenderNoise

function depends on (x, y, z), but our TPs will need only two input coordi-

nates we fixated the z value to zero. The terminal myNoise(x, y) is a lattice

noise function. Lattice noise functions, commonly used as fractals primitives,

use one or more set of uniformly distributed pseudo random numbers at ev-

ery integer coordinate point. The intermediate values are calculated using

spline interpolation. Further implementation and mathematical details are

presented by Perlin (1985, 2002).

myNoise(x, y) = 2× blender noise(x, y, 0)− 1 (5.2)

Regarding the fftGen terminal its simple elimination is not desirable be-

cause most of the interesting TPs produced by GTPi have this terminal

present at least once. The problem is to know which new terminal, or termi-

nals, should replace it. We started our search by comparing the output of the

fftGen terminal (see Fig. 4.1) with possible candidates. The best candidates

we found to replace fftGen were terrain fractals (Ebert et al, 2003). Like the

noise, there are also several procedural fractals:

• distorted noise

• hetero-terrain

• multifractal

• hybrid multifractal

• ridged multifractal

• fBm (fractal Brownian motion)

• turbulence

• voronoi

None of the analyzed fractals produced the same output of our fftGen

terminal, but fBm was one that showed more similar results. However, their

output depends not only from input coordinates, but also from other variables

such as Hurst index (H), lacunarity (lac) and octaves (oct). Equation (5.3)

shows the relation between a generic noise function and the other variables to

5.2. TERMINAL AND FUNCTION SETS 65

calculate the value of fBm. This opens the question if those variables should

be added to the terminal set with implicit default values, or if they should

evolve as well. However, most of those parameters are valid or usable only

on a limited range. The Hurst index is valid only on the range 0 < H < 1,

octaves can take any real positive value, but after the value 8 its visual effect

is not notable but will have a big impact on computation time. Finally,

lacunarity works as displacement factor and like octaves it can take any real

positive value, but Ebert et al (2003) states that best results are achieved if its

value is not an integer and are around the value 2. Other fractal functions

have additional parameters, like gain and offset, which are also valid or

usable on limited ranges. So, if we allow those parameters to evolve the

values must be normalized, which raises the question of what normalization

function should be used. Due to this problem we opted to use a smaller

terminal set than in GTPi. To compensate this simplification we propose a

rich function set that will enable the GP system to generate mathematical

expressions like fBm in Eq. (5.3).

fBm(x, y) = noise(x, y)+

boctc−1∑
i=0

noise
(

(x · lac)−2iH , (y · lac)−2iH
)
· lac−2iH+

(oct− boctc) · noise
(

(x · lac)−2boctcH , (y · lac)−2boctcH
)
· lac−2boctcH (5.3)

In GTPi we opted by having a very rich terminal set, which allowed

us to get many different terrains types with few GP generations. Obtaining

interesting results with relative few generations and small populations is very

important to minimize user fatigue in IEC system. However, with automated

classification of individuals the evaluation is no longer dependent on a user,

so very large populations can be used as well as many generation as desired.

Therefore, it is possible to have a smaller terminal set as long as the function

set is rich enough for the system to evolve freely to build a wide range of

66 CHAPTER 5. AUTOMATED GTP

Table 5.1: GP function set

Name Description

plus(a, b), minus(a, b),
arithmetical functions

multiply(a, b)

sin(a), cos(a),
trigonometric functions

tan(a), atan(a)

exp(a) returns ea

myLog(a)
returns 0 if a = 0 and

log(|a|) otherwise

myPower(a, b)
returns 1 if b = 0, 0 if

a = 0 and |a|b otherwise

myDivide(a, b)
returns a if b = 0

and a÷ b otherwise

mySqrt(a) returns
√
|a|

negative(a) returns −a

terrain types.

The chosen function set for GTPa is listed on Table 5.1 and instead of

one we decided to test three different terminal sets to evaluate its influence

on the resulting terrains: T1 = {myNoise(x, y), ERC}, T2 = {X, Y , ERC}
and T3 = {myNoise(x, y), X, Y , ERC}. ERC stands for ephemeral ran-

dom constant (Koza, 1992) and ERC ∈ [0, 10]. myNoise(x, y) is a stochastic

function that is commonly used in fractals (see Eq. 5.2), but its input param-

eters are implicit, so to differentiate them from the explicit parameters, X

and Y , small case is used. Given the way we implemented terminal myNoise,

it is possible to produce a terrain with only this terminal, Fig. 5.5 shows a

three-dimensional render of such terrain.

We have chosen three different terminal sets because TPs generated with

them will have different properties. Terrain Programs generated with termi-

nal set T1 will have only implicit functions. Therefore, it will be possible for

a single TP to generate many view areas (see Fig. 5.3) that share the same

5.3. TERRAIN PROGRAMS EVALUATION 67

Figure 5.5: Terrain generated by myNoise(x, y) with height map parameters
specified in Table 5.5

morphological look - a trait presented by TPs produced with GTPi. This

property, different view areas with same morphological characteristics, can

be used to simulate randomness, were Lx and Ly would work as seeds, as long

as the different values for Lx and Ly are big enough to avoid overlapping of

viewing areas. This feature opens the possibility to game developers to offer

players with novel, but similar, terrains each time they play and that way

increase game replayability value. However, the small amount of terminals

in T1 will probably confine terrain types diversity. Still, we want to test how

many different terrain types our fitness function will be able to find. Two

more terminal sets were created: T2 and T3. Terminal set T2 presents a ter-

minals with only the basic ingredients to build a two variables (X and Y)

function, in a similar way to Koza (1992) on its symbolic regression tests.

Finally, T3 is the union of the previous terminal sets. Although TPs from

both T2 and T3 lack the possibility of generating different view areas with the

same morphological look, we want to study their behavior regarding terrain

aesthetic appeal, diversity and if they are more fit for our fitness function.

5.3 Terrain Programs Evaluation

The interactive evolutionary process, implemented inGTPi, not only depends

on expensive human resources, but it is also prone to user fatigue (Bentley,

1999). To overcome these limitations a fitness function must be devised to

68 CHAPTER 5. AUTOMATED GTP

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
	
�

Figure 5.6: Neighbor positions

replace the human in the evolutionary process. To this end two morpho-

logical metrics were developed: accessibility score (Frade et al, 2010a) and

obstacles edge length score (Frade et al, 2010b). The accessibility score aims

to generate terrains were a certain percentage of the terrain area is accessi-

ble. A part of a terrain is accessible if its slope is under a defined threshold.

Slope is an important terrain characteristic, because movement and struc-

ture placing is often restricted to low slopes. So, we create the slope map

S = {sr,c}r6nr
c6nc

to store the declination for each cell r, c of the height map H.

The slope values are calculated as the magnitude of the gradient vector (tan-

gent vector of the surface pointing in the direction of steepest slope (Horn,

1981)). With this approach, the slope is computed at a grid point with Eq.

(5.4), which depends on the partial derivatives ∂f
∂x

and ∂f
∂y

of the height map

function z = f(x, y).

Slope(%) = 100×

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

(5.4)

The most common approximation for partial derivatives is a weighted

average of the elevation differences between the given point and all points

within its 3× 3 neighborhood (Horn, 1981). The estimate of partial deriva-

tives for cell z5 (see Fig. 5.6) are given by Eq. (5.5) and Eq. (5.6), were ∆x

and ∆y are the height map distances between each cell.

∂f

∂x
≈ (z3 + 2z6 + z9)− (z1 + 2z4 + z7)

8∆x
(5.5)

5.3. TERRAIN PROGRAMS EVALUATION 69

∂f

∂y
≈ (z7 + 2z8 + z9)− (z1 + 2z2 + z3)

8∆y
(5.6)

Once the slope map S is calculated it is necessary to determine the cells

that are accessible. To that end an accessibility map A = {ar,c}r6nr
c6nc

is created

with the same size of the height map. A is a binary map, with either 0 or

1 value on each cell depending on the slope threshold St as defined in Eq.

(5.7).

ar,c =

{
1 if sr,c < St

0 if sr,c > St
(5.7)

The accessible cells of a terrain (with slope below St) should be con-

nected in an large area to allow player units to move around and for building

placement. Therefore, we search the biggest connected accessible area in A,

recurring to a component labeling algorithm. From this search we identify

the amount of accessible areas and its size. The smaller accessible areas are

not connected with the biggest one and are also considered inaccessible areas.

Therefore, those smaller accessible areas are removed from the accessibility

map. Then the terrain is evaluated by Eq. (5.8), where A+ is the amount of

cells that belong to the main accessible area.

The accessibility criteria alone would make a completely flat terrain the

best fit. However, such terrain does not add realism or interest to the terrain

and does not provide obstacles to units movement, which is undesirable.

To prevent this, the accessibility score υs, is defined in Eq. (5.9). The

biggest accessible area is limited by the threshold υt, where pa ∈ [0, 1] is the

percentage of desired accessible area. The ceil function is used to ensure

that the amount of desired cells for the main accessible area is round up to

the nearest integer value. This way it will be possible for υs to achieve the

exact value of zero and stop the evolutionary process. Otherwise we would

have to stipulate a tolerance value within which υs would be considered close

enough to zero and stop the evolutionary process. However, the tolerance

value would be dependent from the chosen resolution for the height map,

70 CHAPTER 5. AUTOMATED GTP

Figure 5.7: Example of two accessibility maps using only accessibility score with
terminal set T2 (left) and T3 (right). The black areas represent terrain obstacles.

which is undesirable.

υ =
nrnc
A+

, where A+ =
nr∑
r=1

nc∑
c=1

ar,c, A+ 6= 0 (5.8)

υs = |υ − υt| , where υt =
nrnc
dpanrnce

, pa 6= 0 (5.9)

However, this metric alone tends to produce terrains with a single or very

few obstacles with a simple edge on the accessibility map, see Fig. 5.7 (Frade

et al, 2010a). This problem is specially obvious with terminals T2 and T3.

These terrains are less suitable and interesting for video game usage.

To address the problem of simple edges we decided to measure the edge

length of the obstacles on the accessibility maps and use it also to calculate

individuals’ fitness. With this metric we wanted to increase the complexity

of obstacle edges (Frade et al, 2010b). To measure edge length, the edge map

E = {er,c}r6nr
c6nc

is created from the accessibility map A. For images without

noise, as is the case of accessibility maps, the edge line can be determined

through the Laplacian operator (Gonzalez and Woods, 2002). The Laplacian

of f(x, y) is a second order derivative defined by Eq. (5.10).

∇2f =
∂2f

∂x2
+
∂2f

∂y2
(5.10)

The numerical estimation of the Laplacian for cell z5 (see Fig. 5.6) is

5.3. TERRAIN PROGRAMS EVALUATION 71

Figure 5.8: Edge maps built from the accessibility maps on Fig. 5.7

given by Eq. (5.11) and whenever it returns a positive value means that z5

belongs to the edge line. E is a binary map, with either 0 or 1 value on each

cell er,c according to Eq. (5.12). Fig. 5.8 shows two examples of edge maps.

∇2f ≈ 8z5 − (z1 + z2 + z3 + z4 + z6 + z7 + z8 + z9) (5.11)

er,c =

{
1 if ∇2f > 0

0 if ∇2f 6 0
(5.12)

Based on the amount of cells that belong to the edge, we classify the

terrain by the edge value ε defined in Eq. (5.13), where E+ is the sum of all

cells with er,c = 1. The formula in (5.13) was built to be minimized, so the

smaller value of ε the bigger the edge length is.

ε =
nrnc
E+

, where E+ =
nr∑
r=1

nc∑
c=1

er,c, E+ 6= 0 (5.13)

εs = |ε− εt| , where εt =
nrnc
dpenrnce

, pe 6= 0 (5.14)

Without any threshold the edge value ε used as fitness function, would

produce terrains without large accessible areas. To prevent this, we defined

the edge score εs in Eq. (5.14). This way the edge length is limited by

the threshold εt, where pe ∈ [0, 1] is the desired percentage of edge length

in relation to the total terrain area. The ceil function is used for the same

72 CHAPTER 5. AUTOMATED GTP

purposes as in the accessibility metric showed in Eq. (5.9). We have built the

fitness function as a weighted sum of these two metrics, see Equation (5.15),

to analyze the impact of each metric in terrains aesthetic and influence the

GP search performance. Algorithm 5.1 summarizes all the steps required to

evaluate a given TP and reach its fitness value.

fitness = waυs + weεs (5.15)

Algorithm 5.1 GTPa evaluation steps of TPs

Require: TP , wa, we and height map parameters
1: Form TP generate the height map H
2: From H calculate the slope map S
3: From S calculate the accessibility map A
4: Determine the largest accessible area of A
5: Eliminate the smaller accessible areas of A
6: Calculate the accessibility score υs
7: From A calculate the edge map E
8: Calculate the edge length score εs
9: return fitness waυs + weεs

The fitness function was built with a similar reasoning as the one used

by Olsen (2004). However, instead of obstacles edge length he uses slope

map standard deviation. We have also made some tests with this metric to

find out that it was not adequate to our purposes. Olsen (2004) uses a base

terrain and then applies erosion algorithms to help the appearance of both

flat areas and obstacles. Due to its nature, these transformations are limited

by the base terrain. On the other hand, GTP creates terrains from scratch

without constraints regarding their initial form. Therefore, the GP system

was able to easily generate them with the desired standard deviation values

by producing stair forms. This was undesired, because it was limiting the

appearance of more diverse terrain types.

5.4. USED TOOLS 73

5.4 Used Tools

One of the advantages of automated evaluation is the ability to use very large

populations, when compared with IEC systems. On the other hand very large

populations will also require a lot of computation power. Therefore, for GTPa

we choose an evolutionary tool that could provide us the best performance

possible. Given that for automated evolution a graphical user interface is

not required we choose Lil-gp 2 as our evolutionary frame work. Lil-gp is a

C language system for developing genetic programming applications based

on the LISP work of John Koza at Stanford University (Koza, 1992). Lil-

gp evolves trees whose nodes are C function pointers, so tree evaluation is

done entirely with complied code, which allows speed increase and to handle

much large problems with bigger populations and more generations. To help

us run all the envisioned tests, which are detailed in Section 5.5, we created

a template file with all the required input parameters. Then we used scripts

to: generate all input files (one for each test); to run Lil-gp with our code

and input files; and finally to extract and process the results.

5.5 Tests and Results

As detailed in previous section, TPs evaluation depends on several parame-

ters: slope threshold (from now on represented by s), percentage of accessi-

bility area pa, percentage of the edge length pe and weights wa and we. All

parameters and terminal sets will impact both GP performance and resulting

terrains. Therefore, to understand the behavior of GTPa with weighted sum

of accessibility and edge length scores, we devised a series of tests (Frade

et al, 2012b).

We grouped in Table 5.2 a set of parameters, which we designate as Test

Parameters, whose influence we want to study. Ti where i = 1, .., 3 represent

terminal sets whose propose was detailed on Section 5.2. Slope is another

2http://www.genetic-programming.com/c2003lilgpwebpagedarren.html

74 CHAPTER 5. AUTOMATED GTP

Table 5.2: Test parameters and their values

Par. Value Par. Value

T1 {ERC,myNoise} s1 18%

T2 {ERC,X, Y } s2 27%

T3 {ERC,X, Y,myNoise} s3 36%

pa1 70% pe1 20%

pa2 80% pe2 25%

pa3 90% pe3 30%

wa 0.0, 0.1, ..., 1.0 seed 1, 2, ..., 20

18% 27% 36%

Figure 5.9: Visualization of the different slope values chosen for our tests.

important parameter, it will affect the construction of the accessibility map

A, see Eq. (5.7), and that way will also influence the fitness value of a given

TP. Three different slopes sj, j = 1, .., 3, were tested, whose values are in

Table 5.2 and also represented in Fig 5.9. These slope values were chosen

because they are big enough to affect the movement of common motorized

vehicles and to see how flexible our system is to generate terrains with dif-

ferent slopes and its impact on GTPa performance. We also want to verify

if this test parameter can indirectly influence terrain smoothness.

pe(%) = 100× E+

nrnc
(5.16)

The percentage of accessible terrain and edge length are controlled by

pa and pe respectively. We performed tests with three different values for

both parameters. We analyzed the accessibility maps produced with only

5.5. TESTS AND RESULTS 75

 0

 2

 4

 6

 8

 10

 12

 14

pa1 pa2 pa3

pe
 (%

)

T1 T2 T3

Figure 5.10: Mean percentage of pe values calculated from the results obtained
with Accessibility Score function (Frade et al, 2010a). Error bars show the stan-
dard error of the mean for 20 runs.

the accessibility constraint (see Fig. 5.7) and measured the edge length from

all maps, and calculated the correspondent pe values with Eq. (5.16), where

nr, nc = 128 (Frade et al, 2010a). Figure 5.10 shows the results from that

analysis, where it is noticeable that terminals T2 and T3 produce terrains

with significantly smaller pe values than T1. This observation was reinforced

by a Mann-Whitney U-test of each parameter combination for Ti, i > 1 with

respect to the corresponding parameter combination in T1. All tests returned

p-values lower to 0.05 (see Table 5.3), which means that T1 edge values are

different from the ones obtained with T2 and T3 with statistical significance.

In face of these values and considering that the maximum pe obtained was

22.25% we decided to perform tests with the following values: pe1 = 20%,

pe2 = 25% and pe3 = 30%.

Finally, for these series of tests we established a linear relation between

wa and we as shown in Eq. (5.17). Due to this relation, from now on, we

76 CHAPTER 5. AUTOMATED GTP

Table 5.3: Mann-Whitney U-test for edge values calculated when only accessi-
bility was in use.

Test T1

parameters pa1 pa2 pa3

T2

pa1 6.302e−08 6.302e−08 6.302e−08

pa2 6.302e−08 6.302e−08 4.871e−07

pa3 1.122e−06 1.122e−06 1.122e−06

T3

pa1 6.302e−08 6.302e−08 3.929e−05

pa2 7.415e−07 1.122e−06 1.175e−05

pa3 6.302e−08 6.302e−08 7.415e−07

will refer only to wa on results’ discussion.

wa + we = 1 (5.17)

Our tests included all the combinations between all the test parameters

Ti, sj, pak, pel and wm. For each combination 20 runs (r = 1, 2, .., 20) were

performed with different seeds, which sums to 17 820 different executions.

The experiments were performed on a cluster with 18 virtual machines on

heterogeneous computers, 8 of them on 32 bits OS and the remaining on 64

bits OS, all running GNU Linux.

Besides the Test Parameters, there are two more sets whose values where

fixed for all runs. GP Parameters is one of them, whose maximum and initial

values, as well as operators, are defined in Table 5.4. The search stops when-

ever the fitness reaches the value of zero or the amount of generations reaches

the value of 50, whichever comes first. Both crossover and mutation operators

are the same as the ones used by Koza (1992). The crossover operator uses

tournament selection to chose two individuals and swap between them two

randomly selected subtrees. Our tests were performed with a tournament

size of 7, however preliminary tests were made with different sizes, but they

all presented similar results. The mutation operator is subtree mutation and

5.5. TESTS AND RESULTS 77

Table 5.4: GP Parameters

GP Value

maximum generations 50

population size 500

initialization method half and half

ramped from 2 to 6

max. depth 17

selection operator tournament, size 7

crossover operator rate 70%

mutation operator rate 30%

Table 5.5: Height map parameters

Height map Value

nr and nc 128

Lx and Ly 0

Sx and Sy 1

Dx and Dy 10

is applied to randomly chosen individuals, where a randomly selected subtree

is replaced by another randomly created subtree. The mutation rate might

be considered too high for most GP applications, specially if one considers

optimization problems. However, our goal is not optimization, but to use the

GP system as a tool to explore many different solutions. Therefore, a high

mutation rate will help to avoid equal solutions for different runs.

The other parameter set is the Height Map Parameters, whose values are

presented in Table 5.5. They are necessary because the evaluation of the GP

individuals is made after converting them to high maps. These parameters

were also fixed across all the runs we made.

Sub-section 5.5.1 presents the results of the test parameters over fitness,

number of generations, tree size and tree depth. Terminals and functions

78 CHAPTER 5. AUTOMATED GTP

frequency analysis is presented on sub-section 5.5.2 followed by a terrain

overlap study on section 5.5.3. Finally, the render of some TPs are shown on

section 5.6.

5.5.1 GP System

The amount of time the search phase will take is influenced by the complexity

of the fitness function and test parameters values. So, in order to analyze

how our GP system performed we plotted the average number of generations

(Fig. 5.11), tree sizes (Fig. 5.12), tree depths (Fig. 5.13) and fitness values

(Fig. 5.15).

Figure 5.11 shows the average number of generations that our system had

to perform until a solution was found. The smaller the number of generations

the better (less computations to find a solution). A fitness value of zero means

that the TP fulfills the accessibility and edge length restrictions imposed by

our fitness function in Eq. (5.15).

Figure 5.11 presents five graphics. On top is plotted the mean num-

ber of generations regarding all performed experiments (global mean mg)

for each wa. Bellow, four additional plots are presented regarding the dif-

ference between the mean number of generations for a given test parameter

m<parameter> and the global mean. Those graphics, with difference values,

are sorted by test parameters: terminals (mTi − mg), slopes (msj − mg),

accessibility (mpak−mg) and edge length (mpel−mg). This approach, of one

global plot followed by four plots of differences, is also applied to Fig. 5.12,

5.13, 5.14, 5.15, 5.16, 5.17, 5.20 and 5.40.

The first thing to stand out from Fig. 5.11 (and also on Fig. 5.12 and Fig.

5.13) is that wa = 0 and wa = 1 are special cases. The amount of required

generations on both situations is considerably lower than for 0.1 6 wa 6 0.9.

Nevertheless, the average amount of generations is slightly lower for wa = 1

than for wa = 0. For 0.1 6 wa 6 0.9 the number of generations present a

small tendency to decrease as wa increases. Regarding the influence of each

5.5. TESTS AND RESULTS 79

terminal, it is clear that on average T2 requires more generations than T1 and

T3. The accessibility parameter pa3 also requires more generations than pa1

and pa2 before achieving a solution. On the other hand, both slope and edge

length parameters present a small influence on the number of generations.

Average tree sizes and their relation to the test parameters are represented

on Fig. 5.12. Again wa = 0 and wa = 1 are special cases, but average tree

sizes for wa = 1 are a bit smaller than for wa = 0. For the remaining

values of wa, tree sizes present a small trend to increase with the increase

of wa. Terminal T2 generate trees whose size is consistently higher than T1

and T3. T3 presents the smaller tree sizes, but with a very small difference

to T1. Parameter pe1 displays smaller tree sizes than the others edge length

parameters, but that advantage decreases as wa increases and vanish after

wa = 0.7. The test parameters for slope and accessibility have a very small

influence on tree sizes.

Tree depth is limited to 17 (which is a relative low value), so we were

expecting completely flat plots at the maximum allowed depth for 0.1 6

wa 6 0.9. Figure 5.13 shows the average tree depths, where it is possible to

see a very small increase in depth as wa increases (for 0.1 6 wa 6 0.9). Tree

size and tree depth are related, so the effect of the test parameters over tree

depths is very similar to the effect on tree sizes. T2 generates deeper trees

than T1 and T3. Terminal T1 has trees with smaller depth, but T3 follows

closely. Slope and accessibility parameters have no significant influence on

tree depths, except for s1 and pa3 at wa = [0.1, 0.2]. Parameter pe1 displays

smaller tree depths, but that advantage decreases as wa increases and vanish

after wa = 0.7.

Although we collected the time each GP run took, we do not present

them. As stated previously, our experiments were performed on a cluster

with heterogeneous computers, therefore those values would be misleading.

However, since TPs can be used to generate terrains dynamically, their ex-

ecution time is of most importance. Therefore, we opted to present on Fig.

5.14 the average execution time of the best TPs. For this task we measured

80 CHAPTER 5. AUTOMATED GTP

5

15

25

35

45

55

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
G

en
er

at
io

ns

Global mean (mg)

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
G

en
er

at
io

ns

mT1
- mg mT2

- mg mT3
- mg

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
G

en
er

at
io

ns

ms1
- mg ms2

- mg ms3
- mg

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
G

en
er

at
io

ns

mpa1
- mg mpa2

- mg mpa3
- mg

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
G

en
er

at
io

ns

mpe1
- mg mpe2

- mg mpe3
- mg

Figure 5.11: Mean number of generations versus wa. Error bars represent the
standard error of the mean.

5.5. TESTS AND RESULTS 81

30

40

50

60

70

80

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 S

iz
e

Global mean (mg)

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 S

iz
e

mT1
- mg mT2

- mg mT3
- mg

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 S

iz
e

ms1
- mg ms2

- mg ms3
- mg

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 S

iz
e

mpa1
- mg mpa2

- mg mpa3
- mg

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 S

iz
e

mpe1
- mg mpe2

- mg mpe3
- mg

Figure 5.12: Mean of GP tree sizes versus wa. Error bars represent the standard
error of the mean.

82 CHAPTER 5. AUTOMATED GTP

10
11
12
13
14
15
16
17

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 D

ep
th

Global mean (mg)

-2.0

-1.0

0.0

1.0

2.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 D

ep
th

mT1
- mg mT2

- mg mT3
- mg

-2.0

-1.0

0.0

1.0

2.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 D

ep
th

ms1
- mg ms2

- mg ms3
- mg

-2.0

-1.0

0.0

1.0

2.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 D

ep
th

mpa1
- mg mpa2

- mg mpa3
- mg

-2.0

-1.0

0.0

1.0

2.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Tr

ee
 D

ep
th

mpe1
- mg mpe2

- mg mpe3
- mg

Figure 5.13: Mean of tree depths versus wa. Error bars represent the standard
error of the mean.

5.5. TESTS AND RESULTS 83

only the time each TP took to generate a height map of size 1024 × 1024

with double precision. The time required to render those height maps was

not taken into account as it would depend on many variables, such as tex-

tures, lights, render engine and so on. Presented times were measured on a

single computer with a Core 2 Duo CPU running at 2.4GHz with 1GB of

RAM, running 64 bits GNU Linux natively.

The lower execution times of TPs were found for wa = 1.0, followed

by wa = 0.0 and in the range 0.1 6 wa 6 0.9 they slightly increase as

wa increases. Execution time depends on tree sizes: the bigger the tree is,

the more time it will take to execute. So we expected a global behavior

similar to tree sizes shown in Fig. 5.12. Therefore, slope, pa and pe impact

mimics the one found for average tree sizes. Although it presents bigger tree

sizes, terminal T2 presents execution times much lower than T1 and T3. This

is explained by the fact that terminal myNoise is very complex and time

consuming function, which penalizes execution times of T1 and T3.

The time required to generate a map is an important aspect for video

games, specially if the maps must be rendered in real time. Our results show

that TPs can generate big maps with times in the same order of magnitude

of the ones obtained by Belhadj (2007). However, TPs execution times can

be greatly improved, since each cell value of the height map is independent of

the others cells and therefore do not require any interprocess communication.

On the other hand the technique presented by Belhadj (2007) the value of

a cell depends on several cells. For these reasons, TPs present very good

scalability and can take advantage of modern multi core CPUs or GPUs to

speed up its generation.

Fitness is the most relevant value regarding GP systems. As stated pre-

viously, our fitness function was built to be minimized, therefore the closer

the fitness values are to zero, the better, see Fig. 5.15. Globally, the higher

wa is (except for wa = 0) the better the fitness values are (closer to zero). It

is clear that as pa increases the fitness values get worse, which was expected.

However, we did not anticipated such a huge difference between pa3 and the

84 CHAPTER 5. AUTOMATED GTP

0.7

0.9

1.1

1.3

1.5

1.7

1.9

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

Global mean (mg)

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

mT1
- mg mT2

- mg mT3
- mg

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

ms1
- mg ms2

- mg ms3
- mg

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

mpa1
- mg mpa2

- mg mpa3
- mg

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (s

ec
on

ds
)

Ti
m

e
(s

ec
on

ds
)

mpe1
- mg mpe2

- mg mpe3
- mg

Figure 5.14: Mean of TP execution times versus wa. Error bars represent the
standard error of the mean.

5.5. TESTS AND RESULTS 85

others pa values. The slope impact on fitness shows that s1 has worse per-

formance than s2 and s3. We were expecting that smaller slope values would

have better fitness. A more detailed analysis was conducted and we noticed

that runs with the combination of s1 with pa3 was the main cause for the

globally bad performance of s1. Slopes s2 and s3 have a similar behavior.

Considering the average edge length values on Fig. 5.10 (obtained using

only the accessibility score function) we expected that the higher the pe value

was, the worse the fitness would be. However, pe1 presents worse values

than the others, pe2 has the better fitness values, followed closely by pe3.

This might mean that our system does not behave linearly with the edge

length parameter, further tests with lower pe values are required to better

understand this parameter.

On Fig 5.15 we expected the fitness of T3 to be similar or better than

the other two terminals sets, given that T3 is the union of T1 and T2. To

find out why this was happening we decided to plot also the percentage of

solutions (TPs) that reached fitness zero, see Fig. 5.16. Slope has a very

small impact on the percentage of TPs with fitness zero and both pa and

pe present a behavior consistent with the one shown for the fitness on Fig.

5.15. Concerning terminal sets, T1 is the one that presented more TPs with

fitness zero, followed by T3 and T2 is the terminal with lower percentage of

TPs with fitness zero. Terminal set T3 is the biggest one with 4 elements, so

the search space is also bigger than the others. We believe this is the reason

why T3 had worse fitness values, but they can be improved with a higher

limit of generations.

5.5.2 Occurrence Analysis

To see which functions and terminals contributed the most to achieve the best

solutions, we decided to calculate how often each of them occurred (Frade

et al, 2012b). Therefore, we calculated the percentage of occurrence for each

terminal and function according to Eq. (5.18). The terminal or function

86 CHAPTER 5. AUTOMATED GTP

0

0.001

0.002

0.003

0.004

0.005

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Fi

tn
es

s

Global mean (mg)

-0.004

-0.002

0

0.002

0.004

0.006

0.008

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Fi

tn
es

s

mT1
- mg mT2

- mg mT3
- mg

-0.004

-0.002

0

0.002

0.004

0.006

0.008

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Fi

tn
es

s

ms1
- mg ms2

- mg ms3
- mg

-0.004

-0.002

0

0.002

0.004

0.006

0.008

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Fi

tn
es

s

mpa1
- mg mpa2

- mg mpa3
- mg

-0.004

-0.002

0

0.002

0.004

0.006

0.008

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
Fi

tn
es

s

mpe1
- mg mpe2

- mg mpe3
- mg

Figure 5.15: Mean fitness values versus wa. Error bars represent the standard
error of the mean.

5.5. TESTS AND RESULTS 87

10
20
30
40
50
60
70
80
90

100
D

iff
er

en
ce

 b
et

w
ee

n
pe

rc
en

ta
ge

s
(%

)
TP

s
fit

ne
ss

=0
 (%

)
Global (Pg)

-25.0
-20.0
-15.0
-10.0

-5.0
0.0
5.0

10.0
15.0
20.0
25.0

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

TP
s

fit
ne

ss
=0

 (%
)

PT1
- Pg PT2

- Pg PT3
- Pg

-25.0
-20.0
-15.0
-10.0

-5.0
0.0
5.0

10.0
15.0
20.0
25.0

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

TP
s

fit
ne

ss
=0

 (%
)

Ps1
- Pg Ps2

- Pg Ps3
- Pg

-25.0
-20.0
-15.0
-10.0

-5.0
0.0
5.0

10.0
15.0
20.0
25.0

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

TP
s

fit
ne

ss
=0

 (%
)

Ppa1
- Pg Ppa2

- Pg Ppa3
- Pg

-25.0
-20.0
-15.0
-10.0

-5.0
0.0
5.0

10.0
15.0
20.0
25.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

TP
s

fit
ne

ss
=0

 (%
)

Ppe1
- Pg Ppe2

- Pg Ppe3
- Pg

Figure 5.16: Percentage of TPs that reached fitness 0 versus wa.

88 CHAPTER 5. AUTOMATED GTP

which we want to calculate is represented by funh, TPr is the solution for

the seed r and N is the sum of tree sizes for all seeds r and is calculated by

Eq. (5.19).

Oc(funh) =
1

N

rn∑
r=1

count(funh, TPr) (5.18)

N =

funn∑
h=1

rn∑
r=1

count(funh, TPr) (5.19)

Figure 5.17 shows the occurrence of each terminal and function and their

variation imposed by test parameters. As expected, terminals have a great

impact. For T1 and T3 the terminal myNoise is quite predominant when

compared with the remaining functions. Terminal myNoise seems to be

main responsible for the good results of T1 and T3 depicted in Fig. 5.16,

although X and Y seem to be better at finding solutions for the edge length

score function for 0 < wa < 0.3. Terminal ERC occurrence is impacted by

terminals and, with less significance by slope, accessibility and edge length

parameters. The third most common function is cos which is affected by

chosen terminal, slope or edge length parameters. It is also noticeable that

pa has almost no influence on functions occurrence, pe only influences cos

and mySqrt significantly. Finally, slope influences mainly cos, multiply,

myDivide and mySqrt.

Figure 5.18 shows the influence of wa over the average occurrence of each

function. However, only wa = 1 has a considerable impact on functions

occurrence.

5.5.3 Overlap

As shown on Fig. 5.16, there was a relative large number of TPs to reach

the perfect fitness value of zero for different test parameters combinations.

We want to investigate if this happens due to the existence of several differ-

ent solutions, or due to convergence of the solutions. We already know that

5.5. TESTS AND RESULTS 89

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

cc
ur

re
nc

e
(%

)

Global mean (mg)

-12.5
-10.0

-7.5
-5.0
-2.5
0.0
2.5
5.0
7.5

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

cc
ur

re
nc

e
(%

)

mT1
- mg mT2

- mg mT3
- mg

-1.0

-0.5

0.0

0.5

1.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

cc
ur

re
nc

e
(%

)

ms1
- mg ms2

- mg ms3
- mg

-1.0

-0.5

0.0

0.5

1.0

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

cc
ur

re
nc

e
(%

)

mpa1
- mg

mpa2
- mg

mpa3
- mg

-1.0

-0.5

0.0

0.5

1.0

exp
myLog

tan negative

Y mySqrt

minus
X plus

myDivide

atan
multiply

sin myPower

cos
ERC

myNoise

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

cc
ur

re
nc

e
(%

)

mpe1
- mg

mpe2
- mg

mpe3
- mg

Figure 5.17: Mean occurrence of functions and terminals versus wa. Error bars
represent the standard error of the mean.

90 CHAPTER 5. AUTOMATED GTP

 2

 4

 6

 8

 10

 12

exp
myLog

tan negative

Y mySqrt

minus
X plus

myDivide

atan
multiply

sin myPower

cos
ERC

myNoise

O
cc

ur
re

nc
e

(%
)

wa weights

0.0
0.1
0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

Figure 5.18: Mean occurrence of functions and terminals for a given wa weight.

there are some repeated TPs, but these solutions have not reached a fitness

value of zero, besides there might exist different TPs that are mathemati-

cally equivalent and render the same terrain. Therefore, we compared each

accessibility map with the other 19 from the 20 runs of each test (changing

only the seed). The comparison consists in counting how much inaccessible

(black, ar,c = 0) area overlaps between two accessibility maps, see example

on Fig 5.19. To compute the overlap value op,q between two maps Ap and

Aq we used Eq. (5.20), were an overlap value of 100% means that maps Ap

and Aq are equal. Accessibility maps are binary, as shown by Eq. (5.7),

therefore Boolean operations can be performed with them. In Eq. (5.20) we

negate the accessibility maps to count the inaccessible areas and to find the

intersection between them. Then we defined the overlap value of each map

op as the average of all op,q, as shown in (5.21).

op,q(%) = 100×

nr∑
r=1

nc∑
c=1

(¬Ap ∧ ¬Aq)

max

(
nr∑
r=1

nc∑
c=1

¬Ap,
nr∑
r=1

nc∑
c=1

¬Aq
) (5.20)

5.5. TESTS AND RESULTS 91

Figure 5.19: Overlap of inaccessible areas between two maps. These maps are
from T2, s2, pa1, pe3, r8 on the left (1) and r16 at center (2). On the right is the
resulting overlap with o1,2 = 21.67%

op =
1

rn − 1

rn∑
q=1

op,q, q 6= p (5.21)

Figure 5.20 shows the average of overlap values op and the correspondent

influence of the test parameters. Overall, the overlap value for wa = 0

and wa = 1 are higher than for the remaining range of wa. This is in part

explained by the amount of terrains that presented an overlap of 100%, which

was 1.30% and 1.11% respectively. For wa = 0.1 and wa = 0.2 the amount of

maps with an overlap of 100% was 0.19% and 0.06%, while for the remaining

wa values was 0.00%. Overall, the weighted combination of the accessibility

score and edge length score is beneficial to reduce the average overlap values.

Which is good, because we want to be able to generate as much diverse

terrains as possible, as opposed to regular optimization problems where the

goal is to have convergent solutions.

Terminal T2 is the one that provides lower overlap values, followed by

T3 and then T1. Slope has no significant impact on overlap and pe only

makes difference for pe1 and wa = 0, for the remaining values it also has no

influence. Finally, the accessibility parameter presents an expected behavior,

the higher pa is the lower the overlap values are.

92 CHAPTER 5. AUTOMATED GTP

30

35

40

45

50

55

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

ve
rla

p
(%

)

Global mean (mg)

-15
-10

-5
0
5

10
15
20

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

ve
rla

p
(%

)

mT1
- mg mT2

- mg mT3
- mg

-15
-10

-5
0
5

10
15
20

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

ve
rla

p
(%

)

ms1
- mg ms2

- mg ms3
- mg

-15
-10

-5
0
5

10
15
20

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

ve
rla

p
(%

)

mpa1
- mg mpa2

- mg mpa3
- mg

-15
-10

-5
0
5

10
15
20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
iff

er
en

ce
 b

et
w

ee
n

m
ea

ns
 (%

)
O

ve
rla

p
(%

)

mpe1
- mg mpe2

- mg mpe3
- mg

Figure 5.20: Overlap of inaccessible areas versus wa. Error bars represent the
standard error of the mean.

5.6. SAMPLE TERRAINS 93

5.6 Sample Terrains

Given the huge amount of results, we only performed a visual inspection of

100 terrains for each terminal set. To illustrate them we present 8 different

TPs for each terminal set, which are displayed in Fig 5.27 to 5.38. Both

the visual inspected and presented terrains were randomly selected. TPs

expressions from all presented images are listed in Appendix A.

For all depicted terrains in subsections 5.6.1 and 5.6.2, we present on top

the H map displayed as gray scale image and its correspondent accessibility

map A. On the bottom, we show a rendered image of a three dimension view

point from the terrain. Those renders were performed on Blender 3D3 with

a single point of light and without textures to emphasize terrains surface

shape. Each figure has the identification of the TP that generated it with

the following syntax: terminal, slope, pa, pe, wa and seed. For abbreviation

proposes we replaced wa by wm and seed by ru, where m can take values in

the range m = 0, .., 10 and u = 1, .., 20.

5.6.1 Terrains with a single metric

Terrains obtained with wa = 0 (only edge length metric) and wa = 1 (only

accessibility metric) are special cases. As our results showed in this two cases

GP system performance was globally better than when both metrics were in

use. Therefore, we present sample terrains from these two cases separately

from the other ones.

5.6.2 Terrains with both metrics

This subsection presents some sample terrains obtained when both the ac-

cessibility and edge length metric are in use. From our visual inspection,

it is clear that terminal sets have a great impact on both terrains look and

3Available at http://www.blender.org/

94 CHAPTER 5. AUTOMATED GTP

Figure 5.21: Terrains generated by TP T1, s1, pa1, pe3, w0, r4 with fitness=
0.000000 on the left, and T1, s1, pa3, pe2, w0, r1 with fitness= 0.000000 on the right

Figure 5.22: Terrains generated by TP T2, s1, pa1, pe2, w0, r3 with fitness=
0.000000 on the left, and T2, s3, pa2, pe3, w0, r2 with fitness= 0.000000 on the right

5.6. SAMPLE TERRAINS 95

Figure 5.23: Terrains generated by TP T3, s2, pa1, pe1, w0, r2 with fitness=
0.001523 on the left, and T3, s3, pa2, pe1, w0, r10 with fitness= 0.000000 on the
right

Figure 5.24: Terrains generated by TP T1, s3, pa1, pe2, w10, r10 with fitness=
0.000000 on the left, and T1, s3, pa3, pe2, w10, r8 with fitness= 0.000000 on the
right

96 CHAPTER 5. AUTOMATED GTP

Figure 5.25: Terrains generated by TP T2, s2, pa2, pe1, w10, r19 with fitness=
0.000000 on the left, and T2, s2, pa3, pe1, w10, r11 with fitness= 0.000000 on the
right

Figure 5.26: Terrains generated by TP T3, s1, pa1, pe2, w10, r15 with fitness=
0.000000 on the left, and T3, s3, pa3, pe3, w10, r1 with fitness= 0.000000 on the
right

5.6. SAMPLE TERRAINS 97

diversity. Terminal set T1 is the one that has the lowest diversity. We found

several terrains that were quite similar, one example is the right terrain from

Fig. 5.27 and the left one from Fig 5.29. This similarity is due the small

number of terminals in T1 and the high frequency value of myNoise. T3

presents more diversity than T1, but the influence of terminal myNoise is

quite noticeable, which was expected given its high rate of occurrence shown

on Fig. 5.17. The impact of terminals X and Y is also perceptible, but much

more subtle. For instance, on left terrain of Fig. 5.35 it is possible to see

the wave shape of the terrain (this feature is easier to perceive on the gray

scale image), although with a very small amplitude. On the right terrain

of the same figure the height values steadily increase along the Y axis (see

also correspondent gray scale image). Another good example of X and Y

terminals influence on T3 are both terrains shown on Fig. 5.38, where the

terrains change their look at a given point, abruptly on the left terrain and

smoothly on the right one. Terminal set T2 is the one that presents more

diverse terrains. From the analyzed samples we have not found terrains with

a high degree of similarity as the example mentioned previously. However,

terrains from T2 tend to present geometric patterns and symmetry, which

give them a very strange look.

Results regarding diversity were somehow expected, given our experience

on previous work. Still, we had hope that the combination of the accessibility

and edge length metrics would have a positive impact on diversity. Our hopes

increased when the overlap values (presented on Fig. 5.20), showed smaller

overlap values when both metrics were used. However, after performing our

visual inspection we can not state that the diversity of terrains has increased.

We believe that the increase of diversity can be better addressed by fine-

tuning the terminal set.

In spite of the overall differences between terrains, some of them present

the same feature contours, see for example terrains from Fig. 5.35 (left), 5.36

(right) and 5.37 (left). The terminal myNoise(x,y) is the responsible for these

contour similarities because it depends only on x and y implicitly. To min-

imize or even eliminate these similarities myNoise(x,y) could be transfered

98 CHAPTER 5. AUTOMATED GTP

Figure 5.27: Terrains generated by TP T1, s1, pa1, pe1, w2, r5 with fitness=
0.000000 on the left, and T1, s1, pa2, pe3, w4, r16 with fitness= 0.000445 on the
right

to the function set. This way expressions could be evolved as input parame-

ters which would have impact in the frequency, amplitude and phase of the

underlying noise function and consequently the terrain shape and contours.

We also noticed an unexpected side effect of using both metrics to gen-

erate terrains. Generally, the amplitude of terrains (the difference between

the lowest and highest height values) was very small. The left terrain from

Fig. 5.30 is one of the few exceptions, but even that one does not present

high amplitudes as some terrains obtained for wa = 1. This was strange,

because we do not impose any restriction to height values. Our function set

(see Table 5.1) is composed by continuous functions, with only three excep-

tions: myLog(a) when a = 0, myDivide(a, b) when b = 0 and myPower(a, b)

when a = 0 and b < 0. We thought those exceptions were enough to create

sudden changes in terrain and create height obstacles this way. However, to

accomplish the required edge length terrain height values must change often.

Therefore, we believe the edge length metric is the main responsible for small

amplitude terrains, specially with the chosen pe values. Frequency results in

5.6. SAMPLE TERRAINS 99

Figure 5.28: Terrains generated by TP T1, s2, pa1, pe2, w9, r9 with fitness=
0.000098 on the left, and T1, s2, pa2, pe3, w8, r1 with fitness= 0.000000 on the right

Figure 5.29: Terrains generated by TP T1, s2, pa3, pe1, w1, r14 with fitness=
0.000053 on the left, and T1, s2, pa3, pe1, w5, r2 with fitness= 0.000000 on the right

100 CHAPTER 5. AUTOMATED GTP

Figure 5.30: Terrains generated by TP T1, s3, pa1, pe2, w4, r18 with fitness=
0.000000 on the left, and T1, s3, pa3, pe2, w5, r10 with fitness= 0.000151 on the
right

Figure 5.31: Terrains generated by TP T2, s1, pa1, pe2, w7, r2 with fitness=
0.000000 on the left, and T2, s1, pa2, pe1, w6, r4 with fitness= 0.000400 on the right

5.6. SAMPLE TERRAINS 101

Figure 5.32: Terrains generated by TP T2, s2, pa1, pe2, w9, r9 with fitness=
0.000000 on the left, and T2, s2, pa2, pe2, w1, r18 with fitness= 0.001144 on the
right

Figure 5.33: Terrains generated by TP T2, s2, pa3, pe1, w8, r3 with fitness=
0.000181 on the left, and T2, s2, pa3, pe2, w9, r8 with fitness= 0.000068 on the right

102 CHAPTER 5. AUTOMATED GTP

Figure 5.34: Terrains generated by TP T2, s3, pa1, pe2, w2, r13 with fitness=
0.000199 on the left, and T2, s3, pa3, pe3, w1, r2 with fitness= 0.000015 on the right

Figure 5.35: Terrains generated by TP T3, s1, pa3, pe1, w2, r6 with fitness=
0.008510 on the left, and T3, s1, pa3, pe2, w4, r11 with fitness= 0.042003 on the
right

5.6. SAMPLE TERRAINS 103

Figure 5.36: Terrains generated by TP T3, s2, pa1, pe3, w8, r17 with fitness=
0.000470 on the left, and T3, s2, pa2, pe3, w4, r16 with fitness= 0.000000 on the
right

Figure 5.37: Terrains generated by TP T3, s2, pa3, pe1, w8, r16 with fitness=
0.000060 on the left, and T3, s2, pa3, pe2, w7, r8 with fitness= 0.002825 on the right

104 CHAPTER 5. AUTOMATED GTP

Figure 5.38: Terrains generated by TP T3, s3, pa2, pe2, w8, r10 with fitness=
0.000000 on the left, and T3, s3, pa3, pe2, w2, r8 with fitness= 0.020270 on the right

Fig. 5.18 corroborate this reasoning, because only for wa = 1 the frequency

values change significantly, besides the presence of periodic functions, like cos

and sin, decrease. Still, we think further tests with smaller pe values should

be performed to confirm whether they allow terrains with bigger amplitudes.

Another option to address the amplitude issue would be to include one or

more functions with discontinuous behavior on the function set, for example

mod (remainder for the modulo operation) or the if statement. However, in

this case we think that some additional measures should be taken to prevent

those discontinuous functions to dominate the solutions, which would prevent

the appearance of smooth terrains. One of these measures could be different

probability values for a given function to be chosen from the function set.

Although the picked slope values would have a severe impact on the mo-

bility of vehicles, their differences were not big enough to impact terrains

on a visible way. In fact, considering the results regarding the GP system,

overall slope has a very limited influence, being only significant on fitness val-

ues. Therefore, we think further tests must be performed with slope values

5.7. CREATIVITY 105

covering a bigger range to access if they can influence terrains smoothness.

As stated previously, TPs generate a continuous surface that needs to be

sampled and limited to generate the height map. This is achieved by Eq.

(5.1). which also allow us to control the zoom level (through Sx and Sy) and

resolution (through nr and nc). Both zoom level and resolution control are

important features. The zoom level allows video games to compute only a

small portion of the terrain that needs to be displayed. This can be used

to simulate a player approaching or getting away from a particular point in

the terrain, see Fig. 5.39. On the other hand, resolution will allow video

game developers to control the amount of processing required to generate

the terrain at the expense of terrain details.

5.7 Creativity

Although we have successfully tested our technique, the question about how

creative GTPa remains open. One of the most influential research on how

to assess software creativity comes from Ritchie (2007). He proposes a set

of criteria to assess programs’ creativity based on the artifacts they produce.

Pereira et al (2005) apply Ritchie’s criteria to a set of systems and suggest

also that if a program repeats itself later on it is a sign of less creativity.

On the other hand, Colton (2008) argues that creativity assessment based

only on produced artifacts is not enough. He suggests that creativity assess-

ment should account also for the process the software performs and assess

its functionality. While software creativity assessment is still contentious, we

decided to release a TPs database to establish a comparison base for future

research regarding creativity of GTPa as well as aesthetic terrains diversity

(Frade et al, 2012a).

The database, formated as comma separated values (CSV) file, contains

the results from our 17 820 different executions, with the following fields:

terminal; slope(%); pa(%); pe(%); wa; run; fitness ; TP ;. The fitness value

is standardized, so lower values are better. Although the fitness value does

106 CHAPTER 5. AUTOMATED GTP

Figure 5.39: Top view of TP T2, s1, pa3, pe3, w5, r1 with 4 different zoom levels:
Sx = Sy = 1, 2, 4 and 8 (see Eq. 5.1)

5.7. CREATIVITY 107

not give any information regarding the creativity of our system, it is included

to indicate how feasible/unfeasible a given TP is regarding our metric. The

amount of TPs that reached the perfect fitness value (zero) was 45.22%.

Bellow is an example line of the CSV file:

T3; 18; 70; 20; 0.0; 09; 0.00000000; myPower(cos(myNoise(X,Y)),exp(myNoise(X,Y)));

Due to the large amount of results, we decided to split our database by

terminal set: TPs_T1.csv, TPs_T2.csv and TPs_T3.csv. The database is

available to the public in the Sourceforge repository http://sourceforge.

net/p/tps-db/ under the Creative Commons Attribution-ShareAlike 3.0

Unported License4. We have also added to the repository some C code to

show how to calculate the height values from TPs.

One of our goals is to find diverse solutions, which can also be considered

a way to assess the creativity of GTPa (on a limited sense) (Pereira et al,

2005). So, in our preliminary assessment of creativity we looked for any

repeated TPs in our database. We found 98.61% of unique genotypes and a

total of 106 TPs that appeared more than once, relative to 248 runs (1.39%).

Figure 5.40 shows how the repeated TPs are distributed in relation to wa.

The higher concentration of repeated TPs is where wa values have worse

fitness values (see Fig. 5.15), specially for wa = 0.1. For wa = 0.7 there are

no repeated TPs. On average, the repeated TPs appear as solution of 2.34

runs. Equation (5.22) shows the worse case, it appeared 8 times, Table 5.6

identifies the runs where this particular TP appeared and the correspondent

fitness values. We believe that a larger limit of maximum allowed generations

can drastically reduce, or even eliminate, the amount of repeated TPs, but

more tests are needed to confirm it.

TP = cos(cos(atan(atan(atan(atan(myNoise(x, y))))))) (5.22)

4License available at http://creativecommons.org/licenses/by-sa/3.0/

http://sourceforge.net/p/tps-db/
http://sourceforge.net/p/tps-db/
http://creativecommons.org/licenses/by-sa/3.0/

108 CHAPTER 5. AUTOMATED GTP

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

R
ep

ea
te

d
TP

s
(%

)

Global (Pg)

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

R
ep

ea
te

d
TP

s
(%

)

PT1
- Pg PT2

- Pg PT3
- Pg

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

R
ep

ea
te

d
TP

s
(%

)

Ps1
- Pg Ps2

- Pg Ps3
- Pg

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

R
ep

ea
te

d
TP

s
(%

)

Ppa1
- Pg Ppa2

- Pg Ppa3
- Pg

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
iff

er
en

ce
 b

et
w

ee
n

pe
rc

en
ta

ge
s

(%
)

R
ep

ea
te

d
TP

s
(%

)

Ppe1
- Pg Ppe2

- Pg Ppe3
- Pg

Figure 5.40: Percentage of repeated TPs versus wa.

5.7. CREATIVITY 109

Table 5.6: Runs where TP shown in Eq. (5.22) was the best solution and their
correspondent fitness values.

terminal slope pa pe wa run fitness

T1 s18 a80 e20 0.1 18 0.03484

T1 s18 a90 e20 0.1 18 0.04143

T3 s18 a80 e20 0.1 6 0.03484

T3 s18 a80 e20 0.1 7 0.03484

T3 s18 a80 e20 0.3 7 0.03438

T3 s18 a90 e20 0.1 6 0.04143

T3 s18 a90 e20 0.1 7 0.04143

T3 s18 a90 e20 0.3 7 0.05390

Our repetition analysis only accounts for different terrains genotypes.

There might exist also different TPs that are mathematically equivalent and

render the same terrain, which was partially addressed by the overlap analysis

(see Fig. 5.20). However, there are other sources of similarity that cannot

be accounted for using the overlap, e.g., terrains that are rotated, shifted,

and/or scaled, or that just differ in fine details, but share the same global

structure. From the creativity point of view, it is important to inspect also

how similar (or diverse) are the phenotypes. To answer the question of how

many diverse terrains types GTPa is able to generate further analysis must

be conducted.

110 CHAPTER 5. AUTOMATED GTP

Chapter 6

Chapas Video Games

Many educators have taken an interest in the effects that video games have on

players, and how some of the motivating aspects of video games might be har-

nessed to facilitate learning (Squire, 2003). Initial studies comparing video

game teaching effectiveness to the classic lecture show positive improvements,

typically 30% or more (Mayo, 2007). These results point out the important

role video games can play on education. Games are also ideal test beds for

computational intelligence theories, architectures and algorithms (Lucas and

Kendall, 2006). For these reasons we wanted to test the suitability of GTPa

technique to generate terrains on a real game. This was the genesis of the

Chapas video game project, a partnership between Centro Universitario de

Mérida (Universidad de Extremadura), GLOW1 and Junta de Extremadura,

Spain.

Chapas2 is an open source turn-based bottle-cap racing game, with 3D

graphics, where the players strategically control the racers with cards. A

typical round of Chapas starts by dealing 9 random cards to each player (see

Fig. 6.1). Each of these cards represents movement points for the different

bottle-caps. Afterwards, an auction takes place, where the players use their

money (an initially set amount, that accumulates over different rounds), to

1An animation studio http://www.theglow.es
2Available for download at https://sourceforge.net/projects/chapas/

111

http://www.theglow.es
https://sourceforge.net/projects/chapas/

112 CHAPTER 6. CHAPAS VIDEO GAMES

Figure 6.1: Screenshots of Chapas video game were the terrain was generated
online by a TP.

buy the bottle-caps better suited to each player’s cards. Finally the race

phase starts, where the players use their cards, on their respective turn, to

move the bottle-caps across the field, passing through each checkpoint (where

they can restock their cards for money). The round ends when every player

has reached the finish line, or ran out of cards.

To show the usability of TPs as a procedural technique to generate ter-

rains dynamically on a real video game, a few selected TPs were embedded in

Chapas video game. The height maps are computed from the TP expression

using the equation define in (5.1). Details regarding Chapas video game and

physics engines can be found in Rodrigues et al (2010). Figure 6.2 presents

a couple of screenshots of Chapas video game in the running phase.

113

Figure 6.2: Screenshots of Chapas video game in the running phase, were the
terrain was generated online by a TP.

114 CHAPTER 6. CHAPAS VIDEO GAMES

Chapter 7

Conclusions

A new approach, designated GTP , was developed to address some limita-

tions of existing procedural techniques, namely: the modeling problem of

analytical functions; and the lack of procedures able to generate a wide range

of terrains types with focus on aesthetic. Genetic programing was used as

evolutionary tool with these two goals in mind. The first implementation,

GTPi, applied an interactive approach similar to evolutionary art systems.

Although the results showed aesthetic appealing terrains and a broad range

of terrain types, TPs generated this way presented two limitations. First,

some terminals prevented the implementation of a scaling (zoom) function.

The lack of this feature makes TPs less viable for video games. Second,

the interactive evolutionary process not only depends on expensive human

resources, but is also prone to user fatigue.

To overcome these limitations an automated version was developed. GTPa

searches procedures that are able to generate terrains according to the weighted

sum of two metrics: accessibility score and edge length score. The parame-

ters allow us to control the slope threshold (that differentiate the accessible

from the inaccessible terrain areas), how much area should be made acces-

sible, and the edge length of the inaccessible areas. Throughout a series of

experiments we have shown that our system is able to find many different so-

115

116 CHAPTER 7. CONCLUSIONS

lutions that fit our fitness function. Both accessibility score and edge length

metrics perform the desired function, but our results show that GTPa can

achieve better fitness values for accessibility score than for the edge length

metric. The combination of the two metrics also helps to decrease terrain

similarities, as shown by the overlap metric, this characteristic is desirable as

it means more diverse solutions. However, it will not increase terrain types

diversity when compared with the use of a single metric. This combina-

tion also presents the side effect of generating terrains with small amplitudes

(the difference between the lowest and highest height values), whose main

responsible is the edge length score function. We believe this problem can

be addressed using lower pe values and by introducing more discontinuous

functions in the function set.

Repeated TPs represent 1.39% of the solutions and appear when the fit-

ness values are worse, but overall 45.22% of the solutions reached the perfect

score of zero. Both situations, increasing the amount of solutions reaching

fitness value of zero and reducing the amount of repeated TPS, can be ad-

dressed by increasing the maximum allowed generations. This will also help

terminal set T3 to have better fitness values, because the more elements the

terminal set has, the bigger the search space is, and more generations will be

required to find a good solution. Chosen slope threshold values also influence

fitness values, were s1 = 20% presented the worse results, however its impact

is negligible for the remaining GP system performance.

The search for the right TP can be long, depending mainly on how many

generations are allowed, population size and used metrics, but this is a com-

mon characteristic of search-based techniques. However, once found TPs

execution times are short and in the same order of magnitude of other proce-

dural techniques. TPs have also the advantages of offering room for execution

time improvements as they are easily parallelized, a feature that many pro-

cedural techniques do not present. To create a terrain from a TP only height

map parameters are needed, but these only concern terrain resolution, zoom

level and origin, not its look. Therefore, TPs do not require any input pa-

rameter to model terrain shape and there is no need for a time consuming

117

and expensive phase of parameter tunning. To prove the viability of our

technique some TPs are already in use on a real video game, were the terrain

generation occurs online.

As expected, terminal sets have a big impact on terrain diversity, look

and aesthetic appeal. Terminal set T1 has few diversity, but showed us the

potentiality of implicit functions as terminal by providing appealing surfaces

without pattern repetition. On the other hand, T2 has many diverse terrain

types, but exhibits many geometric patterns. Finally, T3, which is the union

of the other two terminal sets, reinforces the importance of myNoise terminal

to achieve fit solutions. Therefore, most terrains produced with T3 present

a heavy influence of myNoise terminal on its looks. In regard to slope

parameter, it did not present a significant change in terrains looks, which we

believe to be a direct consequence of a narrow range of the used values.

118 CHAPTER 7. CONCLUSIONS

Chapter 8

Future Work

In spite of the interesting results, this work opens many challenges for fu-

ture research. Logically the next step would be to test our system under a

multi-objective approach, given that we used two different metrics and more

could be added this way. Nevertheless, there are many topics that can also

be addressed in future work. For instance, the prevalence of myNoise on T3

showed us that fractal based function are important to find fitter solutions

with an interesting aesthetic appeal. However, the diversity of terrain types

is not big enough, so it could be augmented by adding more discontinuous

functions to the function set and by adding new fractal based functions.

Given the current used metrics discontinuous functions can overtake the pre-

dominant role and that way avoiding the appearance of smooth terrains. So,

a new line of work can be the study of different probabilities for the func-

tions to be selected from their set. With new fractal based functions we

could obtain changes in frequency and amplitude on terrain features, but

this approach introduces new questions. An open question is whether the

new fractal functions should be introduced as terminals with implicit param-

eters, or whether those parameters should evolve as well. Some fractal based

functions present parameters like octaves and lacunarity whose values are

valid or interesting only on a limited range. So, if we let those parameters

to evolve the values must be normalized, which raises the question of what

119

120 CHAPTER 8. FUTURE WORK

normalization function to use.

Another possible research line could be to try new metrics from the ge-

omorphology field to see if this way it would be possible to obtain more

realistic terrains. Some researchers claim it is possible to classify all real ter-

rains with only 3 parameters designated as geometric signatures (Iwahashi

and Pike, 2007), using them as a search criteria can be of interest. Other

types of search criteria can also be studied, for instance level curves to define

desired terrain shape, instead of parameters.

So far our creativity analysis on GTPa is on a preliminary stage and

further studies must be conducted, like applying Ritchie’s criteria Ritchie

(2007). Another interesting research would be the use of classification system

to aggregate terrains by their morphological similarity and this way assess

phenotype diversity. This approach poses some challenges on which metric

should be used to classify morphological similarity. A different possibility

would be to perform a user study to classify terrains creativity character-

istics, like novelty or quality, and its impact on video games replayability.

GTPa evaluates TPs after converting them to height maps, however with

this approach if we change the resolution nr and nc, their fitness value will

likely change. This dependence on the chosen resolution is not desirable, so

other approach could be devised to evaluate TPs based on their equations

rather than on their phenotype.

Bibliography

Ashlock D, Gent S, Bryden K (2008) Embryogenesis of artificial landscapes.

In: Hingston PF, Barone LC, Michalewicz Z (eds) Design by Evolution,

Natural Computing Series, Springer Berlin Heidelberg, pp 203–221, URL

http://dx.doi.org/10.1007/978-3-540-74111-4_12

Belhadj F (2007) Terrain modeling: a constrained fractal model. In: 5th

International conference on CG, virtual reality, visualisation and inter-

action in Africa, ACM, Grahamstown, South Africa, pp 197–204, DOI

10.1145/1294685.1294717

Belhadj F, Audibert P (2005) Modeling landscapes with ridges and rivers:

bottom up approach. In: GRAPHITE ’05: Proceedings of the 3rd in-

ternational conference on Computer graphics and interactive techniques in

Australasia and South East Asia, ACM, New York, NY, USA, pp 447–450,

DOI http://doi.acm.org/10.1145/1101389.1101479

Bentley P (1998) Aspects of evolutionary design by computers. In Advances

in Soft Computing - Engineering Design and Manufacturing, Springer-

Verlag

Bentley P (1999) Evolutionary Design by Computers. Morgan Kaufmann

Publishers, Inc., CA, USA

Bourg D, Seemann G (2004) AI for game developers. O’Reilly Media

Bracewell RN (1999) The Fourier Transform & Its Applications, 3rd edn.

McGraw-Hill Science/Engineering/Math

121

http://dx.doi.org/10.1007/978-3-540-74111-4_12

122 BIBLIOGRAPHY

Brosz J, Samavati FF, Sousa MC (2006) Terrain Synthesis By-Example. In:

First International Conference on Computer Graphics Theory and Appli-

cations

Carpentier G, Bidarra R (2009) Interactive GPU-based procedural heightfield

brushes. In: Proceedings of the 4th International Conference on Founda-

tions of Digital Games, ACM New York, NY, USA, pp 55–62

Chiang M, Huang J, Tai W, Liu C, Chang C (2005) Terrain synthesis: An

interactive approach. In: International Workshop on Advanced Image Tech

Colton S (2008) Creativity versus the perception of creativity in computa-

tional systems. In: Creative Intelligent Systems: Papers from the AAAI

Spring Symposium, pp 14–20

Darwin C (1859) On the Origin of Species by Means of Natural Selection.

John Murray

Doran J, Parberry I (2010) Controlled Procedural Terrain Generation Using

Software Agents. IEEE Transactions on Computational Intelligence and

AI in Games 2(2)

Duchaineau M, Wolinsky M, Sigeti D, Millery M, Aldrich C, Mineev-

Weinstein M (1997) ROAMing terrain: Real-time optimally adapting

meshes. In: VIS ’97: Proceedings of the 8th conference on Visualization

’97, IEEE Computer Society Press, Los Alamitos, CA, USA, pp 81–88

Ebert D, Musgrave K, Peachey D, Perlin K, Worley S (2003) Texturing and

Modeling: A Procedural Approach, 3rd edn. Morgan Kaufmann

Edwards R (2006) The Economics of Game Publishing. Website (accessed on

Sep. 2011), http://uk.games.ign.com/articles/708/708972p1.html

Fogel L, Owens A, Walsh M (1966) Artificial intelligence through simulated

evolution. Wiley

http://uk.games.ign.com/articles/708/708972p1.html

BIBLIOGRAPHY 123

Forbus KD, Mahoney JV, Dill K (2002) How Qualitative Spatial Reasoning

Can Improve Strategy Game AIs. IEEE Intelligent Systems 17(4):25–30,

DOI http://dx.doi.org/10.1109/MIS.2002.1024748

Frade M (2008) Genetic terrain programming. Master’s thesis, University of

Extremadura, Cáceres, Spain

Frade M, Fernández de Vega F, Cotta C (2008a) Genetic terrain program-

ming - an aesthetic approach to terrain generation. In: Computer Games

and Allied Technology 08, Singapore, pp 1–8

Frade M, Fernández de Vega F, Cotta C (2008b) Gentp – uma ferramenta

interactiva para a geração artificial de terrenos. In: Cota MP (ed) Third

Iberian Conference in Systems and Information Technologies (CISTI 2008),

LibroTeX, Ourense, Spain, vol 2, pp 655–666, iSBN 978-84-612-4840-7

Frade M, Fernández de Vega F, Cotta C (2008c) Modelling Video Games’

Landscapes by Means of Genetic Terrain Programming - A New Approach

for Improving Users’ Experience. In: Giacobini M, et al (eds) Applica-

tions of Evolutionary Computing, Springer, Napoli, Italy, Lecture Notes

in Computer Science, vol 4974, pp 485–490

Frade M, Fernández de Vega F, Cotta C (2009a) Adding Zoom Feature to

Terrain Programmes. In: VI Congreso Español sobre Metaheuŕısticas, Al-

goritmos Evolutivos y Bioinspirados (MAEB’09), Málaga, Spain, pp 293–

300

Frade M, Fernández de Vega F, Cotta C (2009b) Breeding Terrains with

Genetic Terrain Programming - The Evolution of Terrain Generators.

International Journal for Computer Games Technology 2009(Article ID

125714):13, DOI 10.1155/2009/125714

Frade M, Fernández de Vega F, Cotta C (2010a) Evolution of Artificial

Terrains for Video Games Based on Accessibility . In: Chio CD, et al

(eds) Applications of Evolutionary Computation, Springer, Lecture Notes

in Computer Science, vol 6024, pp 90–99

124 BIBLIOGRAPHY

Frade M, Fernández de Vega F, Cotta C (2010b) Evolution of Artificial

Terrains for Video Games Based on Obstacles Edge Length. In: IEEE

Congress on Evolutionary Computation 2010, pp 1–8, DOI 10.1109/CEC.

2010.5586032

Frade M, Fernández de Vega F, Cotta C (2012a) Aesthetic terrain programs

database for creativity assessment. In: IEEE Conference on Computational

Intelligence and Games, p 5

Frade M, Fernández de Vega F, Cotta C (2012b) Automatic evolution of

programs for procedural generation of terrains for video games. Soft Com-

puting - A Fusion of Foundations, Methodologies and Applications pp

1–22, 10.1007/s00500-012-0863-z

Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA

Gonzalez RC, Woods RE (2002) Digital Image Processing, 2nd edn. Prentice

Hall

Goodchild M (1980) Fractals and the accuracy of geographical measures.

Mathematical Geology 12:85—-98

Hastings E, Guha R, Stanley K (2009) Automatic content generation in

the galactic arms race video game. Computational Intelligence and AI in

Games, IEEE Transactions on 1(4):245 –263, DOI 10.1109/TCIAIG.2009.

2038365

Holland J (1975) Adaptation in natural and artificial systems. University of

Michigan Press, Ann Arbor

Horn B (1981) Hill shading and the reflectance map. Proceedings of the IEEE

69(1):14–47

Iwahashi J, Pike RJ (2007) Automated classifications of topography from

DEMs by an unsupervised nested-means algorithm and a three-part geo-

metric signature. Geomorphology 86(3-4):409 – 440, DOI DOI:10.1016/j.

BIBLIOGRAPHY 125

geomorph.2006.09.012, URL http://www.sciencedirect.com/science/

article/B6V93-4M6SB5Y-3/2/510ca957d542d84fba3e3af50968fdf8

Jacob C (1996a) Evolution programs evolved. PPSN-IV, Parallel Problem

Solving from Nature IV Berlin, Springer-Verlag pp 42–51

Jacob C (1996b) Evolving evolution programs: Genetic programming and L-

systems. In: Genetic Programming 1996: Proceedings of the First Annual

Conference, MIT Press

Jennings-Teats M, Smith G, Wardrip-Fruin N (2010) Polymorph: A model

for dynamic level generation. In: Sixth Artificial Intelligence and Interac-

tive Digital Entertainment Conference

Kamal KR, Uddin YS (2007) Parametrically controlled terrain generation.

In: GRAPHITE ’07: Proceedings of the 5th international conference on

Computer graphics and interactive techniques in Australia and Southeast

Asia, ACM, New York, NY, USA, pp 17–23, DOI http://doi.acm.org/10.

1145/1321261.1321264

Kimbrough SO, Lu M, Wood DH, Wu DJ (2002) Exploring a two-market

genetic algorithm. In: Proceedings of the Genetic and Evolutionary Com-

putation Conference, Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, GECCO ’02, pp 415–422, URL http://dl.acm.org/citation.

cfm?id=646205.682628

Koza JR (1992) Genetic Programming. On the programming of computers

by means of natural selection. Cambridge MA: The MIT Press

Koza JR (2004) Human-competitive results produced by genetic

programming. Website, http://www.genetic-programming.com/

humancompetitive.html

Lane B, Prusinkiewicz P (2002) Generating Spatial Distributions for Multi-

level Models of Plant Communities. In: Proceedings of Graphics Interface

2002

http://www.sciencedirect.com/science/article/B6V93-4M6SB5Y-3/2/510ca957d542d84fba3e3af50968fdf8
http://www.sciencedirect.com/science/article/B6V93-4M6SB5Y-3/2/510ca957d542d84fba3e3af50968fdf8
http://dl.acm.org/citation.cfm?id=646205.682628
http://dl.acm.org/citation.cfm?id=646205.682628
http://www.genetic-programming.com/humancompetitive.html
http://www.genetic-programming.com/humancompetitive.html

126 BIBLIOGRAPHY

Langdon WB, Qureshi A (1995) Genetic programming – computers using

“natural selection” to generate programs. Tech. Rep. RN/95/76, University

College London, Gower Street, London WC1E 6BT, UK, URL citeseer.

ist.psu.edu/langdon95genetic.html

Li Q, Wang G, Zhou F, Tang X, Yang K (2006) Example-Based Realistic

Terrain Generation. In: Pan Z, Cheok A, Haller M, Lau R, Saito H, Liang

R (eds) Advances in Artificial Reality and Tele-Existence, Lecture Notes

in Computer Science, vol 4282, Springer Berlin / Heidelberg, pp 811–818,

URL http://dx.doi.org/10.1007/11941354_84, 10.1007/11941354 84

Li S, Liu X, Wu E (2003) Feature-based visibility-driven CLOD for terrain.

In: Pacific Graphics, IEEE Computer Society Press, Los Alamitos, CA, p

313–322

Lindenmayer A (1968) Mathematical models for cellular interaction in de-

velopment. Journal of Theoretical Biology

Lindenmayer A (1974) Adding continous components to L-systems. L-

systems Lecture Notes in Computer Science, Springer-Verlag

Loftus T (2011) Top video games may soon cost more. Website (accessed on

Oct. 2011), http://www.msnbc.msn.com/id/3078404/ns/technology_

and_science-games/t/top-video-games-may-soon-cost-more/

Losasso F, Hoppe H (2004) Geometry clipmaps: terrain rendering us-

ing nested regular grids. ACM Trans Graph 23(3):769–776, DOI http:

//doi.acm.org/10.1145/1015706.1015799

Lucas SM, Kendall G (2006) Evolutionary computation and games. IEEE

Computational Intelligence Magazine

Luke S, Panait L (2002) Lexicographic parsimony pressure. In: et al WBL

(ed) GECCO-2002: Proceedings of the Genetic and Evolutionary Compu-

tation Conference, Morgan Kauffman, pp 829–836

citeseer.ist.psu.edu/langdon95genetic.html
citeseer.ist.psu.edu/langdon95genetic.html
http://dx.doi.org/10.1007/11941354_84
http://www.msnbc.msn.com/id/3078404/ns/technology_and_science-games/t/top-video-games-may-soon-cost-more/
http://www.msnbc.msn.com/id/3078404/ns/technology_and_science-games/t/top-video-games-may-soon-cost-more/

BIBLIOGRAPHY 127

Machado P, Cardoso A (2000) NEvAr - the assessment of an evolutionary

art tool. In: Wiggins G (ed) Proceedings of the AISB’00 Symposium on

Creative & Cultural Aspects and Applications of AI & Cognitive Science

2000, Birmingham, UK, URL citeseer.ist.psu.edu/machado00nevar.

html

Machado P, Romero J, Cardoso A, Santos A (2005) Partially interactive

evolutionary artists. New Gen Comput 23

Mandelbrot BB (1983) The Fractal Geometry of Nature. W. H. Freeman

Martin A, Lim A, Colton S, Browne C (2010) Evolving 3D Buildings for the

Prototype Video Game Subversion. In: EvoGames Workshop, pp 111–120,

URL http://pubs.doc.ic.ac.uk/evo-3d-buildings/

Mastin G, Watterberg P, Mareda J (1987) Fourier synthesis of ocean

scenes. IEEE Computer Graphics and Applications 7:16–23, DOI http:

//doi.ieeecomputersociety.org/10.1109/MCG.1987.276961

Mayo MJ (2007) Games for science and engineering education. Commun

ACM 50(7):30–35, DOI http://doi.acm.org/10.1145/1272516.1272536

Meloni W (2010) THE BRIEF - 2009 Ups and Downs. M2 Re-

search website (accessed Oct. 2011), http://www.m2research.com/

the-brief-2009-ups-and-downs.htm

Miikkulainen R, Bryant B, Cornelius R, Karpov I, Stanley K, Yong C

(2006) Computational intelligence in games. In: Computational intelli-

gence: Principles and practice, Piscataway, NJ: IEEE Computational In-

telligence Society, pp 155–191

Miller GSP (1986) The definition and rendering of terrain maps. In: SIG-

GRAPH ’86: Proceedings of the 13th annual conference on Computer

graphics and interactive techniques, ACM, New York, NY, USA, pp 39–

48, DOI \url{http://doi.acm.org/10.1145/15922.15890}

citeseer.ist.psu.edu/machado00nevar.html
citeseer.ist.psu.edu/machado00nevar.html
http://pubs.doc.ic.ac.uk/evo-3d-buildings/
http://www.m2research.com/the-brief-2009-ups-and-downs.htm
http://www.m2research.com/the-brief-2009-ups-and-downs.htm

128 BIBLIOGRAPHY

Musgrave FK, Kolb CE, Mace RS (1989) The synthesis and rendering of

eroded fractal terrains. In: SIGGRAPH ’89: Proceedings of the 16th an-

nual conference on Computer graphics and interactive techniques, ACM,

NY, USA, pp 41–50, DOI http://doi.acm.org/10.1145/74333.74337

Nelson MJ, Mateas M (2007) Towards automated game design. In: AI*IA ’07:

Proceedings of the 10th Congress of the Italian Association for Artificial

Intelligence on AI*IA 2007, Springer-Verlag, Berlin, Heidelberg, pp 626–

637, DOI http://dx.doi.org/10.1007/978-3-540-74782-6\ 54

Olsen J (2004) Realtime procedural terrain generation - realtime synthesis of

eroded fractal terrain for use in computer games. Department of Mathe-

matics And Computer Science (IMADA), University of Southern Denmark

Ong TJ, Saunders R, Keyser J, Leggett JJ (2005) Terrain generation using

genetic algorithms. In: GECCO ’05: Proceedings of the 2005 conference

on Genetic and evolutionary computation, ACM, NY, USA, pp 1463–1470,

DOI http://doi.acm.org/10.1145/1068009.1068241

Pabst J, Jense H (1995) Dynamic terrain generation based on multifractal

techniques. In: Proceedings of the International Workshop on High Per-

formance Computing for Computer Graphics and Visualisation, Swansea

Pajarola R, Antonijuan M, Lario R (2002) Quadtin: Quadtree based

triangulated irregular networks. In: Proceedings IEEE Visualization,

IEEE Computer Society Press, p 395–402, URL citeseer.ist.psu.edu/

pajarola02quadtin.html

Pedersen C, Togelius J, Yannakakis G (2009) Modeling player experience in

super mario bros. In: Computational Intelligence and Games, 2009. CIG

2009. IEEE Symposium on, IEEE, pp 132–139

Peitgen HO, Jürgens H, Saupe D (2004) Chaos and Fractals - New Frontiers

of Science, 2nd edn. Springer

citeseer.ist.psu.edu/pajarola02quadtin.html
citeseer.ist.psu.edu/pajarola02quadtin.html

BIBLIOGRAPHY 129

Pereira F, Mendes M, Gervás P, Cardoso A (2005) Experiments with as-

sessment of creative systems: an application of ritchie’s criteria. In: Pro-

ceedings of the Workshop on Computational Creativity, 19th International

Joint Conference on Artificial Intelligence, vol 5, p 05

Perlin K (1985) An image synthesizer. SIGGRAPH Comput Graph

19(3):287–296, DOI http://doi.acm.org/10.1145/325165.325247

Perlin K (2002) Improving noise. In: SIGGRAPH ’02: Proceedings of the

29th annual conference on Computer graphics and interactive techniques,

ACM, New York, NY, USA, pp 681–682, DOI http://doi.acm.org/10.1145/

566570.566636

Pi X, Song J, Zeng L, Li S (2006) Procedural terrain detail based on

patch-LOD algorithm. In: Pan Z, Aylett R, Diener H, Jin X, Göbel

S, Li L (eds) Technologies for E-Learning and Digital Entertainment,

Lecture Notes in Computer Science, vol 3942, Springer Berlin / Hei-

delberg, pp 913–920, URL http://dx.doi.org/10.1007/11736639_111,

10.1007/11736639 111

Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic program-

ming. Lulu.com, URL http://www.gp-field-guide.org.uk, (With con-

tributions by J. R. Koza)

Pouderoux J, Gonzato JC, Tobor I, Guitton P (2004) Adaptive hierarchical

RBF interpolation for creating smooth digital elevation models. In: GIS

’04 - 12th annual ACM international workshop on Geographic information

systems, ACM, New York, NY, USA, pp 232–240, DOI http://doi.acm.

org/10.1145/1032222.1032256

Prusinkiewicz P, Lindenmayer A (2004) The Algorithmic Beauty of Plants.

Springer-Verlag

Rabin S (2002) AI game programming wisdom. Charles River Media

http://dx.doi.org/10.1007/11736639_111
http://www.gp-field-guide.org.uk

130 BIBLIOGRAPHY

Rechenberg I (1971) Evolutionsstrategie: Optimierung technischer systeme

nach prinzipien der biologischen evolution. PhD thesis, Technical Univer-

sity of Berlin, Department of Process Engineering

Remo C (2008) MIGS: Far Cry 2’s Guay On The Importance Of Procedural

Content. Website (accessed on Sep. 2011), http://www.gamasutra.com/

php-bin/news_index.php?story=21165

Ritchie G (2007) Some empirical criteria for attributing creativity to a com-

puter program. Minds Mach 17(1):67–99, DOI 10.1007/s11023-007-9066-2,

URL http://dx.doi.org/10.1007/s11023-007-9066-2

Rodrigues N, Frade M, Fernández de Vega F (2010) Development of cha-

pas an open source video game with genetic terrain programming. In: VII

Congreso Español sobre Metaheuŕısticas, Algoritmos Evolutivos y Bioin-

spirados (MAEB), Valencia, Spain,, pp 1–8

Rosmarin R (2006) Why gears of war costs $60. Website (ac-

cessed on Oct. 2011), http://www.forbes.com/2006/12/19/

ps3-xbox360-costs-tech-cx_rr_game06%_1219expensivegames.html

Sakas G (1993) Modeling and animating turbulent gaseous phenomena us-

ing spectral synthesis. The Visual Computer: International Journal of

Computer Graphics 9(4):200–212, DOI \url{http://dx.doi.org/10.1007/

BF01901724}

Sampath D (2004) ABRCon, Adaptive oBject Re-CONfiguration: an ap-

proach to enhance, repeat playability of games and repeat watchability

of movies. In: ACE ’04: Proceedings of the 2004 ACM SIGCHI Inter-

national Conference on Advances in computer entertainment technology,

ACM, New York, NY, USA, pp 313–316, DOI http://doi.acm.org/10.1145/

1067343.1067388

Schneider J, Boldte T, Westermann R (2006) Real-time editing, synthesis,

and rendering of infinite landscapes on GPUs. In: Vision, modeling, and

http://www.gamasutra.com/php-bin/news_index.php?story=21165
http://www.gamasutra.com/php-bin/news_index.php?story=21165
http://dx.doi.org/10.1007/s11023-007-9066-2
http://www.forbes.com/2006/12/19/ps3-xbox360-costs-tech-cx_rr_game06% _1219expensivegames.html
http://www.forbes.com/2006/12/19/ps3-xbox360-costs-tech-cx_rr_game06% _1219expensivegames.html

BIBLIOGRAPHY 131

visualization 2006: proceedings, November 22-24, 2006, Aachen, Germany,

IOS Press, p 145

Schwefel HP (1977) Numerische Optimierung von Computer-Modellen.

Birkhäuser Basel

Sims K (1991) Artificial evolution for computer graphics. In: SIGGRAPH

’91: Proceedings of the 18th annual conference on Computer graphics and

interactive techniques, ACM, NY, USA, pp 319–328, DOI http://doi.acm.

org/10.1145/122718.122752

Sims K (1992) Interactive evolution of dynamical systems. In: Varela F,

Bourgine P (eds) Toward a Practice of Autonomous Systems: Proceedings

of the First European Conference on Artificial Life, MIT Press, Paris, FR,

pp 171–178

Smelik RM, Tutenel T, de Kraker KJ, Bidarra R (2010) Declarative terrain

modeling for military training games. International Journal of Computer

Games Technology 2010:11, DOI 10.1155/2010/360458, article ID 360458

Soddu C (2003) Visionary aesthetics and architecture variations. In: Gener-

ative Art

Sorenson N, Pasquier P (2010) Towards a generic framework for auto-

mated video game level creation. Applications of Evolutionary Compu-

tation 6024:131–140

Squire K (2003) Video games in education. Int J Intell Games & Simulation

2(1):49–62

Stachniak S, Stuerzlinger W (2005) An algorithm for automated fractal ter-

rain deformation. Computer Graphics and Artificial Intelligence 1:64–76

Szeliski R, Terzopoulos D (1989) From splines to fractals. SIGGRAPH Com-

put Graph 23(3):51–60, DOI http://doi.acm.org/10.1145/74334.74338

132 BIBLIOGRAPHY

Takagi H (2001) Interactive evolutionary computation: Fusion of the capa-

bilities of ec optimization and human evaluation. in Proceedings of the

IEEE 89(9):1275–1296

Togelius J, De Nardi R, Lucas S (2006) Making racing fun through player

modeling and track evolution. In: in Proceedings of the SAB06 Workshop

on Adaptive Approaches for Optimizing Player Satisfaction in Computer

and Physical Games, Citeseer

Togelius J, Nardi RD, Lucas SM (2007) Towards automatic personalised

content creation in racing games. In: Proceedings of the IEEE Symposium

on Computational Intelligence and Games

Togelius J, Preuss M, Beume N, Wessing S, Hagelback J, Yannakakis G

(2010a) Multiobjective exploration of the starcraft map space. In: Compu-

tational Intelligence and Games (CIG), 2010 IEEE Symposium on, IEEE,

pp 265–272

Togelius J, Preuss M, Yannakakis GN (2010b) Towards multiobjective pro-

cedural map generation. In: PCGames ’10: Proceedings of the 2010 Work-

shop on Procedural Content Generation in Games, ACM, New York, NY,

USA, pp 1–8, DOI http://doi.acm.org/10.1145/1814256.1814259

Togelius J, Yannakakis GN, Stanley KO, Browne C (2011) Search-based

procedural content generation: A taxonomy and survey. Computational

Intelligence and AI in Games, IEEE Transactions on 3(3):172 –186, DOI

10.1109/TCIAIG.2011.2148116

Traxler C, Gervautz M (1996) Using genetic algorithms to improve the visual

quality of fractal plants generated with csg-pl-systems. In: Proceedings

of the Fourth International Conference in Central Europe on Computer

Graphics and Virtual Worlds, vol 2, pp 367–376

Tu SC, Huang CY, Tai WK (2008) Terrain synthesis based on microscopic

terrain feature. In: Pan Z, Zhang X, El Rhalibi A, Woo W, Li Y (eds)

Technologies for E-Learning and Digital Entertainment, Lecture Notes in

Computer Science, vol 5093, Springer Berlin / Heidelberg, pp 644–655,

URL http://dx.doi.org/10.1007/978-3-540-69736-7_69

Unemi T (1998) A design of multi-field user interface for simulated breeding.

In: Proceedings of the Third Asian Fuzzy and Intelligent System Sympo-

sium, Masan, Korea, pp 489–494

Unemi T (1999) SBART 2.4: breeding 2D CG images and movies and

creating a type of collage. In: The Third International Conference

on Knowledge-based Intelligent Information Engineering Systems, IEEE,

Adelaide, Australia, pp 288–291, URL ftp://ftp.t.soka.ac.jp/users/

unemi/papers/KES99.pdf

Unemi T (2000) SBART 2.4: an IEC tool for creating 2D images, movies,

and collage. In: Proceedings of 2000 Genetic and Evolutionary Compu-

tational Conference, NV, USA, p 153, URL http://citeseer.ist.psu.

edu/369752.html

Vemuri B, Mandal C, Lai SH (1997) A fast gibbs sampler for synthesizing

constrained fractals. Visualization and Computer Graphics, IEEE Trans-

actions on 3(4):337–351, DOI 10.1109/2945.646237

Virtual Terrain Project (2009) Why virtual terrain? Website (accessed on

Oct. 2011), http://www.vterrain.org/Misc/Why.html

Voss R (1987) Fractals in nature: characterization, measurement, and simu-

lation. SIGGRAPH

Zhou H, Sun J, Turk G, Rehg JM (2007) Terrain synthesis from dig-

ital elevation models. IEEE Transactions on Visualization and Com-

puter Graphics 13(4):834–848, DOI http://dx.doi.org/10.1109/TVCG.

2007.1027, member-Turk, Greg and Member-Rehg, James M.

133

http://dx.doi.org/10.1007/978-3-540-69736-7_69
ftp://ftp.t.soka.ac.jp/users/unemi/papers/KES99.pdf
ftp://ftp.t.soka.ac.jp/users/unemi/papers/KES99.pdf
http://citeseer.ist.psu.edu/369752.html
http://citeseer.ist.psu.edu/369752.html
http://www.vterrain.org/Misc/Why.html

134

Appendix A

Terrain Programmes

List of all Terrain Programmes (TPs) from the images presented in this thesis.

A.1 Interactive GTP

Figure 4.5 (left)

TP = myPower(cos(myDivide(myLog(smooth(fftGen(2.75))) , myMod(sin(fftGen(0.50)) ,

myDivide(myLog(smooth(fftGen(2.75))) , myMod((sin(fftGen(0.50))) , fftGen(2.25))))))

Figure 4.5 (center)

TP = myLog(myLog(myLog(myLog(myLog(myLog(fftGen(3.00)))))))

Figure 4.5 (right)

TP = myLog(sin(mySqrt(smooth(fftGen(1.25)))))

Figure 4.6 (left)

TP = myMod(smooth(smooth(fftGen(0.50))) , smooth(plane(5)))

Figure 4.6 (center)

TP = myLog(minus(fftGen(2.75) , myLog(minus(smooth(fftGen(1.50)) , fftGen(2.50)))))

Figure 4.6 (right)

TP = times(sin(fftGen(3.00)) , smooth(times(sin(cos(sin(cos(times(fftGen(1.75) , fftGen(

0.75)))))) , fftGen(0.50))))

135

A.2 Automated GTP

Terrains with a single metric

Figure 5.21 (left)

TP = sin(plus(myDivide(tan(myNoise(X, Y)) , plus(8.52490, myNoise(X, Y))) , myDivide(

mySqrt(mySqrt(mySqrt(myDivide(myNoise(X, Y) , plus(exp(sin(myPower(negative(tan(exp(

mySqrt(minus(myNoise(X, Y) , 8.70770))))) , myLog(0.94715)))) , minus(myNoise(X, Y) ,

9.69240)))))) , minus(8.37586, sin(sin(sin(myDivide(2.81278, myNoise(X, Y)))))))))

Figure 5.21 (right)

TP = plus(cos(multiply(myDivide(cos(tan(7.30094)) , myPower(exp(sin(myNoise(X, Y))) ,

cos(myNoise(X, Y)))) , minus(mySqrt(myNoise(X, Y)) , minus(mySqrt(myNoise(X, Y)) ,

cos(multiply(cos(myNoise(X, Y)) , myDivide(myNoise(X, Y) , cos(myLog(minus(myNoise(X,

Y) , 9.59242)))))))))) , negative(sin(myPower(myLog(tan(myNoise(X, Y))) , multiply(

atan(0.42628) , negative(myNoise(X, Y)))))))

Figure 5.22 (left)

TP = myPower(myDivide(minus(atan(myDivide(exp(myPower(0.51531, Y)) , minus(tan(minus(

X, Y)) , myDivide(plus(myDivide(mySqrt(X) , myLog(X)) , multiply(exp(myPower(0.51531, Y)

) , X)) , cos(Y))))) , negative(3.83396)) , minus(atan(sin(Y)) , sin(myDivide(plus(negative(

Y) , plus(minus(myLog(X) , minus(5.09638, Y)) , sin(minus(6.12560, X)))) , myDivide(sin(

myPower(sin(mySqrt(Y)) , minus(6.23737, sin(myPower(negative(sin(exp(X))) , X))))) ,

myPower(Y, Y)))))) , plus(negative(Y) , plus(minus(myLog(X) , minus(5.09638, Y)) , sin(

cos(plus(multiply(X, X) , negative(3.83396)))))))

Figure 5.22 (right)

TP = myPower(myDivide(cos(multiply(Y, X)) , cos(minus(multiply(atan(myPower(tan(

mySqrt(myPower(Y, sin(cos(minus(X, Y)))))) , mySqrt(Y))) , exp(myPower(atan(Y) ,

atan(5.90479)))) , multiply(myPower(X, mySqrt(Y)) , exp(minus(myLog(sin(cos(exp(X))

)) , multiply(8.29732, X))))))) , sin(multiply(atan(X) , myDivide(0.09512, 5.29683))))

Figure 5.23 (left)

TP = myPower(myDivide(exp(cos(cos(cos(myNoise(X, Y))))) , exp(cos(cos(X)))) , cos(

sin(myPower(Y, myNoise(X, Y)))))

Figure 5.23 (right)

TP = mySqrt(myPower(atan(tan(exp(multiply(myNoise(X, Y) , myNoise(X, Y))))) , cos(

minus(myDivide(atan(myNoise(X, Y)) , plus(X, Y)) , multiply(multiply(minus(tan(cos(X)

) , exp(multiply(minus(negative(4.97263) , myPower(atan(tan(exp(multiply(myNoise(X, Y) ,

myNoise(X, Y))))) , cos(myDivide(myPower(myNoise(X, Y) , Y) , sin(multiply(myNoise(X,

Y) , myNoise(X, Y))))))) , atan(sin(multiply(myNoise(X, Y) , myNoise(X, Y))))))) ,

multiply(myNoise(X, Y) , myNoise(X, Y))) , exp(X))))))

Figure 5.24 (left)

TP = mySqrt(myDivide(myDivide(negative(myPower(myNoise(X, Y) , 6.31165)) , sin(sin(

1.22076))) , myDivide(myLog(atan(tan(myNoise(X, Y)))) , myPower(mySqrt(exp(myNoise(

X, Y))) , multiply(negative(negative(myPower(myNoise(X, Y) , 6.31165))) , cos(myNoise(X,

Y)))))))

136

Figure 5.24 (right)

TP = plus(myDivide(myPower(cos(myNoise(X, Y)) , cos(4.40613)) , minus(atan(myNoise(

X, Y)) , multiply(5.92375, 7.96716))) , myPower(multiply(myLog(myPower(cos(tan(multiply(

myDivide(cos(myLog(minus(0.87295, cos(multiply(cos(myNoise(X, Y)) , myNoise(X, Y)))))

) , cos(cos(myPower(myNoise(X, Y) , 8.64329)))) , exp(atan(myNoise(X, Y)))))) , multiply(

exp(atan(myNoise(X, Y))) , cos(multiply(myPower(myNoise(X, Y) , 8.64329) , exp(2.72279))

)))) , myNoise(X, Y)) , myPower(myNoise(X, Y) , 8.64329)))

Figure 5.25 (left)

TP = atan(plus(sin(atan(plus(cos(myLog(atan(tan(minus(mySqrt(myLog(myDivide(my-

Power(cos(minus(atan(5.23822) , mySqrt(X))) , mySqrt(cos(myDivide(X, Y)))) , plus(sin(

myDivide(X, Y)) , atan(X))))) , atan(myLog(X))))))) , negative(5.75913)))) , myDivide(

cos(myDivide(tan(Y) , minus(5.42187, 1.27538))) , plus(atan(sin(Y)) , multiply(myLog(X) ,

plus(Y, X))))))

Figure 5.25 (right)

TP = atan(atan(myDivide(mySqrt(Y) , multiply(Y, atan(multiply(myPower(atan(tan(cos(

myLog(myDivide(plus(6.76558, X) , multiply(7.67766, myDivide(1.41844, myDivide(X, Y)))

))))) , minus(myDivide(4.92778, 5.87255) , multiply(cos(sin(myLog(sin(myLog(myDivide(

8.23575, X)))))) , 0.71917))) , negative(exp(multiply(Y, X)))))))))

Figure 5.26 (left)

TP = cos(myPower(myPower(exp(myPower(myNoise(X, Y) , Y)) , sin(cos(cos(myPower(

myPower(exp(myPower(myNoise(X, Y) , Y)) , atan(cos(myNoise(X, Y)))) , cos(myDivide(

atan(exp(cos(4.23642))) , atan(exp(atan(cos(myNoise(X, Y)))))))))))) , cos(myDivide(

mySqrt(cos(myNoise(X, Y))) , plus(Y, myPower(plus(plus(Y, myNoise(X, Y)) , exp(myPower(

myNoise(X, Y) , Y))) , minus(minus(myNoise(X, Y) , Y) , plus(Y, myNoise(X, Y)))))))))

Figure 5.26 (right)

TP = exp(tan(multiply(sin(sin(myPower(myPower(mySqrt(exp(myLog(mySqrt(3.20202)))

) , atan(sin(multiply(myLog(myPower(X, X)) , Y)))) , myPower(mySqrt(plus(plus(7.60085,

9.00599) , minus(Y, atan(sin(multiply(myLog(myPower(X, X)) , Y)))))) , atan(negative(

myPower(X, X))))))) , atan(myDivide(myPower(myNoise(X, Y) , X) , multiply(myNoise(X,

Y) , mySqrt(exp(Y))))))))

Terrains with both metrics

Figure 5.27 (left)

TP = myDivide(myNoise(X, Y) , plus(cos(plus(myDivide(myNoise(X, Y) , plus(cos(plus(plus(

minus(sin(myPower(cos(tan(myNoise(X, Y))) , myDivide(myPower(myNoise(X, Y) , 6.02195)

, 0.50166))) , plus(myDivide(myNoise(X, Y) , myNoise(X, Y)) , plus(cos(myNoise(X, Y)) ,

cos(myNoise(X, Y))))) , tan(sin(tan(myNoise(X, Y))))) , 6.02195)) , plus(cos(plus(minus(

sin(myNoise(X, Y)) , plus(myDivide(myNoise(X, Y) , myNoise(X, Y)) , cos(cos(myNoise(X,

Y))))) , tan(sin(tan(myNoise(X, Y)))))) , 6.02195))) , cos(myPower(cos(myNoise(X, Y)

) , cos(myNoise(X, Y)))))) , 6.02195))

Figure 5.27 (right)

TP = atan(myDivide(sin(multiply(mySqrt(myNoise(X, Y)) , plus(myDivide(sin(myNoise(X,

137

Y)) , 6.16952) , plus(myDivide(sin(myNoise(X, Y)) , 6.16952) , plus(mySqrt(1.69693) , cos(

2.12672)))))) , 6.16952))

Figure 5.28 (left)

TP = myPower(myPower(cos(myNoise(X, Y)) , cos(myNoise(X, Y))) , cos(myDivide(cos(

myDivide(negative(myDivide(mySqrt(5.00842) , myPower(cos(sin(myNoise(X, Y))) , cos(

myDivide(myDivide(cos(myDivide(negative(exp(myNoise(X, Y))) , sin(myPower(cos(sin(

myNoise(X, Y))) , 2.86638)))) , 4.41543) , plus(cos(myNoise(X, Y)) , exp(cos(myDivide(

tan(cos(sin(myNoise(X, Y)))) , multiply(myNoise(X, Y) , myNoise(X, Y))))))))))) ,

myDivide(myDivide(myNoise(X, Y) , 4.41543) , mySqrt(5.00842)))) , sin(myNoise(X, Y)))))

Figure 5.28 (right)

TP = cos(multiply(sin(plus(myPower(myDivide(myNoise(X, Y) , atan(cos(cos(cos(7.68913))

))) , atan(atan(myPower(sin(tan(sin(1.15769))) , myDivide(multiply(negative(cos(multiply(

myNoise(X, Y) , 0.98480))) , cos(myDivide(myNoise(X, Y) , atan(cos(cos(cos(7.68913))))))

) , myDivide(cos(myNoise(X, Y)) , cos(atan(cos(sin(myNoise(X, Y))))))))))) , myDivide(

exp(exp(myNoise(X, Y))) , negative(cos(multiply(myNoise(X, Y) , 0.98480)))))) , mySqrt(

cos(7.68913))))

Figure 5.29 (left)

TP = minus(atan(exp(atan(multiply(0.28298, mySqrt(myNoise(X, Y)))))) , multiply(

myPower(myNoise(X, Y) , 5.21597) , atan(sin(minus(atan(sin(atan(cos(mySqrt(myNoise(X,

Y)))))) , multiply(myPower(atan(sin(cos(atan(cos(myPower(myNoise(X, Y) , 5.21597))))

)) , 5.21597) , atan(myNoise(X, Y))))))))

Figure 5.29 (right)

TP = myPower(cos(cos(sin(myLog(cos(plus(negative(myLog(sin(sin(atan(plus(negative(

myLog(atan(5.23015))) , 5.56839)))))) , multiply(5.56839, myDivide(myLog(sin(7.92654)

) , mySqrt(plus(sin(myLog(cos(cos(myNoise(X, Y))))) , myNoise(X, Y))))))))))

) , myPower(cos(cos(sin(myLog(cos(plus(negative(myLog(atan(5.23015))) , multiply(tan(

myDivide(3.74998, myLog(cos(cos(myNoise(X, Y)))))) , myDivide(myLog(plus(negative(

myLog(atan(5.23015))) , 5.56839)) , tan(myLog(5.56839)))))))))) , cos(plus(negative(

myLog(atan(cos(plus(negative(myLog(atan(5.23015))) , multiply(cos(plus(negative(myLog(

atan(cos(sin(myNoise(X, Y)))))) , multiply(sin(atan(minus(myNoise(X, Y) , 6.60566))) ,

atan(myLog(atan(5.23015)))))) , myLog(mySqrt(cos(cos(myNoise(X, Y))))))))))) ,

multiply(sin(cos(mySqrt(plus(sin(myLog(cos(cos(negative(myLog(atan(5.23015))))))) ,

4.07902)))) , negative(myLog(atan(cos(myNoise(X, Y))))))))))

Figure 5.30 (left)

TP = myDivide(atan(plus(minus(5.48054, tan(myLog(myDivide(myNoise(X, Y) , plus(multiply(

3.27641, 0.82816) , myNoise(X, Y)))))) , cos(myNoise(X, Y)))) , plus(cos(plus(minus(

myPower(myLog(myPower(myNoise(X, Y) , myDivide(minus(myPower(myLog(plus(2.86537,

multiply(myNoise(X, Y) , myNoise(X, Y)))) , minus(myPower(myLog(exp(1.57031)) , mySqrt(

negative(mySqrt(8.53152)))) , cos(multiply(myLog(6.21534) , exp(1.57031))))) , mySqrt(

negative(sin(mySqrt(8.53152))))) , plus(cos(plus(negative(myDivide(9.71608, 5.10391)) , exp(

1.57031))) , minus(myLog(myNoise(X, Y)) , 7.61175))))) , cos(multiply(myPower(2.25783,

tan(mySqrt(myNoise(X, Y)))) , myNoise(X, Y)))) , cos(multiply(myPower(2.25783, myNoise(

X, Y)) , exp(1.57031)))) , mySqrt(myNoise(X, Y)))) , minus(multiply(myLog(5.91455) , cos(

plus(myLog(6.21534) , mySqrt(myNoise(X, Y))))) , 7.61175)))

Figure 5.30 (right)

138

TP = myDivide(mySqrt(minus(sin(mySqrt(1.01158)) , tan(negative(multiply(myPower(minus(

minus(atan(5.70012) , atan(sin(myLog(mySqrt(9.83085))))) , myPower(myDivide(multiply(

atan(myNoise(X, Y)) , cos(7.63158)) , myPower(minus(atan(myPower(plus(myLog(3.30988)

, 8.27336) , tan(7.85065))) , sin(exp(myDivide(myLog(3.30988) , minus(7.43497, 5.63637)))

)) , myLog(mySqrt(9.83085)))) , myPower(negative(mySqrt(2.59476)) , myNoise(X, Y)))

) , negative(negative(multiply(myNoise(X, Y) , myNoise(X, Y))))) , myLog(sin(exp(cos(

myNoise(X, Y)))))))))) , minus(myDivide(mySqrt(plus(5.70012, myNoise(X, Y))) ,

multiply(myPower(myNoise(X, Y) , myNoise(X, Y)) , cos(7.53382))) , plus(cos(atan(negative(

tan(negative(mySqrt(myNoise(X, Y))))))) , tan(sin(9.97728)))))

Figure 5.31 (left)

TP = myPower(sin(minus(myDivide(plus(Y, minus(minus(Y, X) , plus(Y, minus(minus(Y, X)

, multiply(Y, X))))) , myDivide(plus(8.00660, cos(cos(Y))) , multiply(minus(plus(negative(

Y) , cos(X)) , myPower(myDivide(myDivide(tan(X) , Y) , X) , mySqrt(atan(8.00660)))) , cos(

cos(myLog(cos(X))))))) , mySqrt(myDivide(cos(X) , myPower(sin(minus(myDivide(plus(

Y, minus(minus(Y, X) , myDivide(Y, X))) , myDivide(plus(myDivide(myPower(atan(cos(X)

) , myDivide(0.09512, 5.29683)) , multiply(minus(plus(negative(Y) , cos(X)) , myPower(minus(

minus(Y, X) , multiply(Y, X)) , mySqrt(atan(8.00660)))) , cos(cos(myLog(atan(8.00660))))

)) , cos(atan(X))) , minus(myLog(Y) , cos(2.65267)))) , mySqrt(minus(Y, X)))) , multiply(

atan(X) , myDivide(0.09512, 5.29683))))))) , multiply(atan(X) , myDivide(0.09512, 5.29683)

))

Figure 5.31 (right)

TP = minus(negative(myDivide(sin(myDivide(Y, negative(exp(atan(negative(myDivide(mul-

tiply(myPower(mySqrt(negative(myPower(minus(Y, X) , cos(X)))) , myDivide(cos(tan(Y))

, tan(Y))) , Y) , X))))))) , plus(exp(3.61854) , cos(tan(Y))))) , exp(atan(negative(plus(

cos(Y) , Y)))))

Figure 5.32 (left)

TP = plus(atan(atan(sin(myPower(plus(minus(plus(mySqrt(Y) , cos(cos(mySqrt(mySqrt(

myPower(negative(X) , negative(Y))))))) , cos(minus(minus(myLog(cos(mySqrt(myPower(

negative(myPower(plus(2.93753, X) , sin(3.70603))) , negative(Y))))) , mySqrt(myPower(

negative(X) , negative(Y)))) , myPower(sin(plus(negative(exp(X)) , myPower(negative(X)

, negative(Y)))) , negative(cos(tan(Y))))))) , myLog(myPower(3.70603, 0.54553))) ,

multiply(sin(X) , atan(myLog(1.12916))))))) , sin(myPower(plus(minus(tan(Y) , myLog(

sin(cos(minus(myLog(cos(mySqrt(myPower(negative(myPower(plus(2.93753, X) , sin(3.70603)

)) , negative(Y))))) , mySqrt(myPower(negative(X) , negative(Y)))))))) , myLog(sin(X)

)) , multiply(sin(X) , atan(myLog(1.12916))))))

Figure 5.32 (right)

TP = sin(myPower(cos(sin(minus(negative(multiply(1.73798, X)) , minus(X, Y)))) , cos(

plus(cos(sin(minus(sin(myDivide(cos(atan(sin(cos(atan(sin(minus(X, Y))))))) , sin(cos(

negative(plus(minus(Y, minus(minus(X, Y) , plus(Y, X))) , atan(Y))))))) , sin(negative(

X))))) , myPower(atan(Y) , myDivide(sin(tan(7.80716)) , X))))))

Figure 5.33 (left)

TP = mySqrt(multiply(sin(minus(myPower(myPower(cos(myPower(tan(X) , myLog(negative(

Y)))) , sin(myPower(myDivide(minus(plus(X, negative(X)) , negative(myLog(negative(Y)))

) , minus(atan(sin(Y)) , cos(mySqrt(X)))) , plus(negative(Y) , sin(myPower(X, atan(minus(

X, 7.03932)))))))) , minus(cos(minus(sin(myPower(myPower(minus(1.79686, Y) , sin(tan(

exp(minus(7.09360, X))))) , sin(tan(exp(Y))))) , myDivide(Y, X))) , X)) , minus(1.79686,

139

Y))) , myLog(cos(sin(9.61643)))))

Figure 5.33 (right)

TP = cos(minus(sin(multiply(mySqrt(atan(cos(mySqrt(mySqrt(sin(atan(sin(sin(myDivide(

mySqrt(Y) , cos(Y))))))))))) , multiply(mySqrt(sin(atan(sin(sin(myDivide(mySqrt(

multiply(tan(multiply(X, 8.22930)) , myDivide(minus(X, 6.88531) , exp(8.46101)))) , exp(

8.46101))))))) , atan(myPower(negative(mySqrt(sin(atan(sin(sin(myDivide(mySqrt(Y) ,

cos(myPower(Y, sin(X)))))))))) , X))))) , sin(atan(cos(mySqrt(mySqrt(sin(atan(sin(

sin(myDivide(mySqrt(Y) , cos(myPower(Y, sin(X)))))))))))))))

Figure 5.34 (left)

TP = cos(minus(plus(myPower(cos(cos(cos(multiply(multiply(Y, Y) , sin(X))))) , mySqrt(

cos(myPower(mySqrt(cos(myPower(mySqrt(negative(multiply(Y, Y))) , mySqrt(atan(multiply(

cos(myDivide(minus(myDivide(Y, X) , 6.71752) , atan(Y))) , sin(Y))))))) , mySqrt(myPower(

cos(myPower(negative(tan(tan(sin(myDivide(X, Y))))) , multiply(cos(myDivide(minus(

exp(Y) , 6.71752) , atan(Y))) , myDivide(Y, 4.05453)))) , mySqrt(Y))))))) , tan(tan(sin(

6.63816)))) , cos(negative(cos(multiply(Y, atan(exp(1.56833))))))))

Figure 5.34 (right)

TP = myPower(myDivide(cos(multiply(Y, X)) , cos(myLog(minus(minus(negative(myDivide(

0.09512, multiply(Y, X))) , atan(sin(myDivide(multiply(sin(minus(mySqrt(Y) , multiply(

5.21306, X))) , minus(plus(5.86645, 8.48695) , multiply(minus(plus(negative(Y) , cos(X)) ,

myPower(atan(sin(9.17727)) , sin(tan(exp(2.83181))))) , cos(cos(exp(X)))))) , myDivide(

minus(9.10819, 2.63591) , cos(9.67310)))))) , multiply(minus(plus(sin(X) , cos(myDivide(Y,

X))) , myPower(cos(X) , myLog(4.59794))) , cos(myPower(X, cos(multiply(mySqrt(minus(

tan(cos(myDivide(0.09512, multiply(Y, X)))) , myPower(myDivide(Y, X) , myDivide(sin(

negative(Y)) , myDivide(minus(9.10819, 2.63591) , myLog(Y)))))) , sin(cos(minus(X, Y)))

))))))))) , sin(multiply(atan(X) , myDivide(0.09512, 5.29683))))

Figure 5.35 (left)

TP = cos(atan(myPower(minus(multiply(atan(negative(negative(atan(atan(myNoise(X, Y))

)))) , sin(atan(atan(negative(atan(atan(atan(myNoise(X, Y))))))))) , mySqrt(atan(

atan(atan(negative(atan(myNoise(X, Y)))))))) , multiply(atan(mySqrt(atan(atan(atan(

negative(negative(atan(atan(myNoise(X, Y)))))))))) , sin(X)))))

Figure 5.35 (right)

TP = mySqrt(plus(myDivide(multiply(atan(myNoise(X, Y)) , plus(7.27156, Y)) , sin(myNoise(

X, Y))) , cos(atan(myLog(myPower(sin(myPower(sin(atan(myLog(mySqrt(myDivide(myDi-

vide(myNoise(X, Y) , myNoise(X, Y)) , cos(sin(myNoise(X, Y)))))))) , cos(atan(myNoise(

X, Y))))) , cos(myNoise(X, Y))))))))

Figure 5.36 (left)

TP = multiply(multiply(multiply(0.21532, cos(cos(multiply(Y, myDivide(X, myDivide(multiply(

multiply(multiply(0.21532, myNoise(X, Y)) , multiply(multiply(multiply(0.21532, myNoise(X, Y)

) , sin(myDivide(X, myDivide(multiply(0.39632, myNoise(X, Y)) , 5.81002)))) , sin(myDivide(

X, myDivide(myDivide(0.21532, 5.81002) , cos(myNoise(X, Y))))))) , myDivide(X, myDivide(

myDivide(multiply(0.21532, plus(sin(X) , multiply(0.39632, multiply(0.21532, myNoise(X, Y))

))) , 5.81002) , sin(X)))) , 5.81002)))))) , myNoise(X, Y)) , sin(myDivide(myDivide(X,

myDivide(myDivide(multiply(0.21532, plus(sin(X) , multiply(0.39632, multiply(0.21532, myNoise(

X, Y))))) , 5.81002) , cos(myNoise(X, Y)))) , myNoise(X, Y))))

140

Figure 5.36 (right)

TP = myDivide(sin(multiply(mySqrt(myNoise(X, Y)) , atan(myPower(multiply(sin(myDivide(

multiply(negative(cos(plus(multiply(mySqrt(mySqrt(myNoise(X, Y))) , mySqrt(myNoise(X,

Y))) , 6.31979))) , cos(cos(sin(multiply(mySqrt(myNoise(X, Y)) , mySqrt(myNoise(X, Y))

))))) , 3.77733)) , cos(myDivide(mySqrt(exp(myNoise(X, Y))) , negative(exp(myNoise(X,

Y)))))) , myPower(myNoise(X, Y) , X))))) , 3.77733)

Figure 5.37 (left)

TP = mySqrt(cos(atan(multiply(sin(mySqrt(mySqrt(multiply(mySqrt(myNoise(X, Y)) , atan(

myPower(myPower(myNoise(X, Y) , plus(Y, 6.31979)) , myPower(myNoise(X, Y) , exp(myPower(

cos(myNoise(X, Y)) , myNoise(X, Y)))))))))) , minus(myNoise(X, Y) , atan(myDivide(

myDivide(7.17759, Y) , atan(minus(atan(minus(negative(exp(myPower(cos(myDivide(myNoise(

X, Y) , 3.77733)) , mySqrt(myNoise(X, Y))))) , myPower(myPower(myNoise(X, Y) , plus(Y,

cos(myNoise(X, Y)))) , myPower(myNoise(X, Y) , exp(myPower(myPower(myNoise(X, Y) ,

myNoise(X, Y)) , myNoise(X, Y))))))) , myPower(myNoise(X, Y) , myNoise(X, Y)))))))

))))

Figure 5.37 (right)

TP = myDivide(sin(mySqrt(mySqrt(sin(exp(minus(plus(myPower(multiply(cos(tan(myNoise(

X, Y))) , mySqrt(X)) , sin(myPower(multiply(multiply(mySqrt(multiply(cos(myNoise(X, Y)

) , X)) , X) , multiply(cos(5.94226) , cos(5.94226))) , multiply(cos(myNoise(X, Y)) , mySqrt(

multiply(cos(myNoise(X, Y)) , X)))))) , multiply(cos(exp(myNoise(X, Y))) , X)) , exp(

myNoise(X, Y)))))))) , exp(plus(myPower(multiply(multiply(mySqrt(sin(exp(minus(plus(

myPower(multiply(multiply(X, mySqrt(X)) , mySqrt(X)) , sin(plus(myPower(myNoise(X, Y)

, sin(multiply(myNoise(X, Y) , X))) , mySqrt(X)))) , multiply(cos(tan(myNoise(X, Y))) ,

mySqrt(multiply(cos(myNoise(X, Y)) , X)))) , exp(myNoise(X, Y)))))) , X) , mySqrt(X))

, sin(multiply(myNoise(X, Y) , X))) , multiply(cos(5.94226) , mySqrt(multiply(cos(myNoise(

X, Y)) , X))))))

Figure 5.38 (left)

TP = mySqrt(myPower(atan(tan(exp(multiply(myLog(cos(myDivide(6.93162, 8.67883))) ,

myNoise(X, Y))))) , cos(minus(myDivide(atan(myNoise(X, Y)) , minus(minus(atan(multiply(

Y, multiply(Y, myNoise(X, Y)))) , mySqrt(cos(minus(myDivide(atan(negative(myNoise(X,

Y))) , plus(minus(multiply(minus(2.56689, tan(7.02797)) , minus(myDivide(X, X) , mySqrt(

X))) , exp(mySqrt(myNoise(X, Y)))) , Y)) , multiply(myLog(cos(cos(tan(exp(multiply(

myNoise(X, Y) , myNoise(X, Y))))))) , exp(X)))))) , myDivide(myPower(myLog(tan(

myPower(sin(myNoise(X, Y)) , mySqrt(Y)))) , exp(negative(9.64544))) , myLog(atan(

myLog(6.35588)))))) , multiply(multiply(minus(tan(X) , exp(mySqrt(myNoise(X, Y))))

, multiply(atan(multiply(myLog(cos(myDivide(6.93162, 8.67883))) , myNoise(X, Y))) , exp(

cos(mySqrt(myNoise(X, Y)))))) , exp(X))))))

Figure 5.38 (right)

TP = myDivide(myPower(mySqrt(mySqrt(myPower(cos(multiply(myNoise(X, Y) , myNoise(X,

Y))) , exp(2.88776)))) , cos(multiply(tan(myPower(cos(multiply(myNoise(X, Y) , myNoise(

X, Y))) , exp(2.88776))) , sin(minus(minus(multiply(cos(tan(myNoise(X, Y))) , mySqrt(

multiply(mySqrt(myPower(cos(multiply(myNoise(X, Y) , myNoise(X, Y))) , exp(2.88776))) ,

X))) , exp(plus(multiply(myNoise(X, Y) , X) , multiply(cos(tan(myNoise(X, Y))) , mySqrt(

myPower(cos(multiply(myNoise(X, Y) , myNoise(X, Y))) , exp(2.88776))))))) , mySqrt(

mySqrt(mySqrt(atan(exp(plus(myPower(multiply(multiply(X, X) , cos(tan(myNoise(X, Y))

)) , multiply(cos(tan(myNoise(X, Y))) , cos(X))) , multiply(cos(myNoise(X, Y)) , cos(X)

141

)))))))))))) , exp(plus(myPower(multiply(multiply(X, X) , mySqrt(X)) , sin(multiply(

myNoise(X, Y) , X))) , multiply(cos(tan(myNoise(X, Y))) , mySqrt(X)))))

Terrain with Zoom

Figure 5.39

TP = plus(myDivide(tan(cos(multiply(sin(plus(myPower(myDivide(X, 0.78181) , atan(plus(Y,

4.45522))) , myPower(tan(X) , multiply(Y, cos(myPower(myLog(9.50991) , myLog(cos(myLog(

myLog(cos(mySqrt(Y)))))))))))) , cos(myPower(mySqrt(myLog(2.96447)) , myLog(cos(

cos(multiply(sin(plus(myDivide(X, 0.78181) , cos(myPower(mySqrt(myLog(2.96447)) , myLog(

9.50991))))) , myLog(myLog(9.50991))))))))))) , negative(8.66469)) , mySqrt(myLog(

mySqrt(myLog(2.96447)))))

142

Appendix B

Additional Graphics

143

144

 0
 10
 20
 30
 40
 50

p e
=2

0%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

Terminals
T1 T2 T3

 0
 10
 20
 30
 40
 50

p e
=2

5%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 10
 20
 30
 40
 50

p e
=3

0%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 10
 20
 30
 40
 50

p e
=2

0%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 10
 20
 30
 40
 50

p e
=2

5%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 10
 20
 30
 40
 50

p e
=3

0%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 10
 20
 30
 40
 50

p e
=2

0%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 10
 20
 30
 40
 50

p e
=2

5%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 10
 20
 30
 40
 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p e
=3

0%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

generations

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

ge
ne

ra
tio

ns

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0

 40

 80

 120

p e
=2

0%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

Terminals
T1 T2 T3

 0

 40

 80

 120

p e
=2

5%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0

 40

 80

 120

p e
=3

0%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0

 40

 80

 120

p e
=2

0%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0

 40

 80

 120

p e
=2

5%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0

 40

 80

 120

p e
=3

0%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0

 40

 80

 120

p e
=2

0%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0

 40

 80

 120

p e
=2

5%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0

 40

 80

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p e
=3

0%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sizes

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

si
ze

s

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 6

 9

 12

 15

 18

p e
=2

0%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

Terminals
T1 T2 T3

 6

 9

 12

 15

 18

p e
=2

5%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 6

 9

 12

 15

 18

p e
=3

0%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 6

 9

 12

 15

 18

p e
=2

0%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 6

 9

 12

 15

 18

p e
=2

5%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 6

 9

 12

 15

 18

p e
=3

0%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 6

 9

 12

 15

 18

p e
=2

0%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 6

 9

 12

 15

 18

p e
=2

5%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 6

 9

 12

 15

 18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p e
=3

0%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

depths

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

de
pt

hs

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 1000
 2000
 3000
 4000
 5000
 6000

p e
=2

0%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

Terminals
T1 T2 T3

 0
 1000
 2000
 3000
 4000
 5000
 6000

p e
=2

5%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 1000
 2000
 3000
 4000
 5000
 6000

p e
=3

0%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 1000
 2000
 3000
 4000
 5000
 6000

p e
=2

0%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 1000
 2000
 3000
 4000
 5000
 6000

p e
=2

5%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 1000
 2000
 3000
 4000
 5000
 6000

p e
=3

0%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 1000
 2000
 3000
 4000
 5000
 6000

p e
=2

0%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 1000
 2000
 3000
 4000
 5000
 6000

p e
=2

5%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 1000
 2000
 3000
 4000
 5000
 6000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p e
=3

0%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

times

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

tim
es

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0.98

 1

p e
=2

0%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

Terminals
T1 T2 T3

 0.98

 1

p e
=2

5%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0.98

 1

p e
=3

0%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0.98

 1

p e
=2

0%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0.98

 1

p e
=2

5%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0.98

 1

p e
=3

0%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0.98

 1

p e
=2

0%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0.98

 1

p e
=2

5%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0.98

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p e
=3

0%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fitness

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

fit
ne

ss

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

wa (we=1-wa)
0.0
0.1
0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=3

0%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=3

0%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

p e
=3

0%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

With Terminal T1

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

wa (we=1-wa)
0.0
0.1
0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=3

0%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=3

0%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

p e
=3

0%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

With Terminal T2

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

wa (we=1-wa)
0.0
0.1
0.2

0.3
0.4
0.5

0.6
0.7
0.8

0.9
1.0

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=3

0%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=3

0%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

0%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

p e
=2

5%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 5

 10
 15
 20
 25

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

p e
=3

0%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

ERC
X Y atan

cos
exp

minus
multiply

myDivide

myLog

myNoise

myPower

mySqrt

negative

plus
sin tan

With Terminal T3

Slope=18% Slope=27% Slope=36%

T e r m i n a l s a n d F u n c t i o n s

O
 c

 c
 u

 r
r e

 n
 c

 e
 s

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

boxplot
1st and 3th quartils
1.5 IQR
3.0 IQR

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=3

0%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=3

0%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p e
=3

0%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Terminal T1 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

boxplot
1st and 3th quartils
1.5 IQR
3.0 IQR

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=3

0%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=3

0%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p e
=3

0%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Terminal T2 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

boxplot
1st and 3th quartils
1.5 IQR
3.0 IQR

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=3

0%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=3

0%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

0%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

p e
=2

5%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

 0
 20
 40
 60
 80

 100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p e
=3

0%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

With Terminal T3 oi

Slope=18% Slope=27% Slope=36%

wa (we = 1- wa)

O
 v

 e
 r

l a
 p

 (

%
)

w
ith

 p
a=

70
%

w
ith

 p
a=

80
%

w
ith

 p
a=

90
%

156

Appendix C

List of Publications

List of publications achieved during the research period.

Peer-reviewed journals:

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta, Auto-

matic Evolution of Programs for Procedural Generation of Terrains for

Video Games, in Soft Computing Journal (2011 impact factor 1.880),

22 pages, 2012, doi:10.1007/s00500-012-0863-z, (Frade et al, 2012b)

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta, Breed-

ing Terrains with Genetic Terrain Programming - The Evolution of Ter-

rain Generators, in International Journal of Computer Games Technol-

ogy, vol. 2009, Article ID 125714, 13 pages, doi:10.1155/2009/125714

(Frade et al, 2009b)

Peer-reviewed conferences:

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta, Aes-

thetic Terrain Programs Database for Creativity Assessment, in IEEE

Conference on Computational Intelligence and Games, 5 pages, 2012

(in press) (Frade et al, 2012a)

157

• Nelson Rodrigues, Miguel Frade, and Francisco Fernandez de Vega, De-

velopment of Chapas an Open Source Video Game with Genetic Terrain

Programming, in VII Congreso Español sobre Metaheuŕısticas, Algorit-

mos Evolutivos y Bioinspirados (MAEB), 8 pages, Valencia, Spain, Set.

2010 (Rodrigues et al, 2010)

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta, Evolu-

tion of Artificial Terrains for Video Games Based on Obstacles Edge

Length, in IEEE Congress on Evolutionary Computation 2010, pages

1-8, IEEE, Jul. 2010 (Frade et al, 2010b)

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta, Evolu-

tion of Artificial Terrains for Video Games Based on Accessibility, in

Chio CD, et al (eds) Applications of Evolutionary Computing, pages

90-99, Springer, Lecture Notes in Computer Science, vol 6024, Apr.

2010 (Frade et al, 2010a)

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta, Adding

Zoom Feature to Terrain Programmes, in VI Congreso Español so-

bre Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados (MAEB),

pages 293-300, Málaga, Spain Feb. 2009 (Frade et al, 2009a)

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta. Genetic

Terrain Programming - An Aesthetic Approach to Terrain Generation.

In Computer Games and Allied Technology 08, pages 1-8, Singapore,

2008. (Frade et al, 2008a)

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta. GenTP

– Uma Ferramenta Interactiva para a Geração Artificial de Terrenos.

In 3rd Iberian Conference in Systems and Information Technologies

(CISTI 2008), pages 1-12, Ourense, Spain, 2008 (Frade et al, 2008b)

• Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta. Mod-

elling video games’ landscapes by means of genetic terrain programming

- a new approach for improving users’ experience. In M. Giacobini, et al

158

(eds) EvoWorkshops 2008, volume 4974, pages 485-490, Napoli, Italy,

2008. Springer, Lecture Notes in Computer Science, vol 4974 (Frade

et al, 2008c)

Exhibitions:

• Miguel Frade, Francisco Fernández de Vega, Carlos Cotta, Genetic

Terrain Programming, exhibition in UMA - Universidade Mostra Arte

2009, Universidade Positivo of Curitiba, Brazil, 6/Oct - 4/Nov 2009

159

	Resumen
	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Aims and Contributions
	Thesis Structure

	Evolutionary Algorithms
	Evolutionary Algorithms in Video Games
	Evolutionary Design
	Genetic Programming
	Representation
	Initializing the Population
	Selection
	Genetic Operators
	Terminal Set
	Function Set
	Fitness Function
	GP Parameters
	Termination

	Artificial Terrains
	Representation
	Generation Techniques

	Interactive GTP
	Method
	GenTP Tool
	Tests and Results

	Automated GTP
	Adding Zoom Feature to Terrain Programs
	Terminal and Function Sets
	Terrain Programs Evaluation
	Used Tools
	Tests and Results
	GP System
	Occurrence Analysis
	Overlap

	Sample Terrains
	Terrains with a single metric
	Terrains with both metrics

	Creativity

	Chapas Video Games
	Conclusions
	Future Work
	Terrain Programmes
	Interactive GTP
	Automated GTP

	Additional Graphics
	List of Publications

