XP Jornadas Hispano-Lusas de Matemáticas, vol 1, 226-230 Universidad de Extremadura, 1986

ON STRONG DUALS OF UNIFORMLY \(\lambda(P)\)-NUCLEAR SPACES

J. M. García Lafuente

Departamento de Matemáticas. Universidad de Extremadura. 06071-BADAJOZ. España

Til Donald St. o Schudatt 11

1. Introduction

Smooth sequence spaces $\lambda(P)$ of infinite type or G_{∞} -spaces were introduced in [7] by Terzioglu as a generalization of power series spaces $\Lambda(\alpha)$ of infinite type. The corresponding study of $\lambda(P)$ -nuclearity is carried out in [6], extending the notion of $\Lambda(\alpha)$ -nuclearity of Ramanujan ([5]).

In the present paper we give a condition on P and P' for a Köthe space uniformly $\lambda(P)$ -nuclear has a strong dual $\lambda(P')$ -nuclear, where $\lambda(P)$ and $\lambda(P')$ are nuclear G_{∞} -spaces. From this result one can deduce a condition, already known by Ramanujan ([5]), about $\Lambda(\alpha)$ -nuclearity of strong duals.

2. Definitions

In the sequel $\lambda(P)$ will be a nuclear G_{∞} -space and we refer to [6] for the not explained properties of $\lambda(P)$ -nuclear spaces. We shall only recall the following characterization of $\lambda(P)$ -nuclearity of a

Köthe space $\lambda(Q)$, wich comes from a corrected version due to Köthe, of a result of Brudovskii about s-nuclearity of $\lambda(Q)$ ([1])

Theorem 1 (Köthe-Pietsch-Grothendieck Criterion) A Köthe space $\lambda(Q)$ is $\lambda(P)$ -nuclear if and only if for each a ϵQ there exists b ϵQ with $b \geq a$ for all $n \in N$, and an injection $\sigma \colon N \longrightarrow N$ with $\sigma(N) = \{n \in N, a \neq 0\}$ such that the following condition is satisfied

$$(a_{\sigma(n)}/b_{\sigma(n)})_{n} \in \lambda(P)$$

In some applications (see [2]) and specially in the study of dual spaces of Köthe sequence spaces, it is of great interest the existence of a "universal" permutation σ valid for every element $a\in Q$ in the previous theorem. This leads Köthe [8] to define a sequence space $\lambda(Q)$ to be uniformly $\lambda(P)$ -nuclear if there exists a bijection $\Pi\colon N\longrightarrow N$ such that for each $a\in Q$ there exists $b\in Q$ and $c\in \lambda(P)$ such that $a_{\Pi(n)} \leq b_{\Pi(n)} c_n \quad \text{for every } n\in N \text{ . Obviously each uniformly } \lambda(P)\text{-nuclear}$ Köthe space is $\lambda(P)\text{-nuclear, and the converse is true under certain assumptions on } P$ (see for example [6]).

3. Strong Duals

It is known that if $\lambda(P)$ is a nuclear barreled G_{∞} -space, then the strong topological dual $\lambda(P)$ is uniformly $\lambda(P)$ -nuclear ([6], corollary 4.1.). For general Köthe spaces $\lambda(Q)$ we have furthermore

24

Theorem 2 Let $\lambda(P)$ and $\lambda(P')$ be nuclear Grespaces such that there exists a sequence $\sigma \in \lambda(P')$ with $\sigma \neq 0$ for all $n \in \mathbb{N}$ and $\sigma^{-1} = (\sigma_n^{-1}) \in P$. Then the strong topological dual of each barreled Köthe space $\lambda(Q)$ uniformly $\lambda(P)$ -nuclear is $\lambda(P')$ -nuclear.

Proof. By barreledness the strong topological dual $\lambda(Q)_b^*$ is isomorphic to the Köthe space $\lambda(L)$, where $L=\left\{\xi\in\lambda(Q)\;,\;\xi\geq0\right\}$ (see [3]). Let $\Pi:\mathbb{N}\longrightarrow\mathbb{N}$ be the universal permutation given by uniform $\lambda(P)$ -nuclearity of $\lambda(Q)$ and for each $\xi\in L$ let τ be the sequence given by $\tau_n=\xi_n(\sigma_{\pi^{-1}(n)})^{-1}\;.$ For each $a\in Q$ there exists $b\in Q$ and $c\in\lambda(P)$ such that $a_{\Pi(n)}\leq b_{\Pi(n)}c_n$ for all $n\in\mathbb{N}$. Consequently we have

$$\sum_{n} \tau_{n} a_{n} = \sum_{n} \xi_{n} (\sigma_{\pi^{-1}(n)})^{-1} a_{n} = \sum_{n} \xi_{\pi(n)} \sigma_{n}^{-1} a_{\pi(n)} \leq \sum_{n} \xi_{\pi(n)} \sigma_{n}^{-1} b_{\pi(n)} c_{n}$$

But the sequences $(\sigma_n^{-1}c_n)$ and $(\xi_{\Pi(n)}b_{\Pi(n)})$ are both summable because $\sigma^{-1} \in P$ and $b \in Q$. Thus $\sum \tau_n a < +\infty$ and, since obviously $\tau_n \geq 0$ for all $n \in \mathbb{N}$, we conclude that $\tau \in L$. On the other hand, let us choose a strictly increasing map $\beta : \mathbb{N} \longrightarrow \mathbb{N}$ such that $\xi_n \neq 0$ for all $n \in \beta(\mathbb{N})$. Then, the non-zero entries of the sequence (ξ_n/τ_n) can be rearranged by means of the injection $\beta \cdot \Pi$ into the sequence $(\sigma_{\beta(n)})$ wich belongs to $\lambda(P')$ because for each $a \in P'$

$$\sum \sigma_{\beta(n)}^{a} a_{n} \leq \sum \sigma_{\beta(n)}^{a} a_{\beta(n)} \leq \sum \sigma_{n}^{a} a_{n} < +\infty$$

(for the first inequality remember that each sequence in P' is increasing and for the last one we apply the hypothesis). Finally, from Theorem 1 it follows that $\lambda(L)$, and hence the strong dual $\lambda(Q)$, is $\lambda(P')$ -nuclear.

Corollary 1 (Ramanujan) If α and β are exponent sequences such that $(\alpha_{\bigcap}/\beta_{\bigcap})$ converges to ∞ , then the strong topological dual of each Köthe space uniformly $\lambda(\alpha)$ -nuclear is $\lambda(\beta)$ -nuclear.

Proof. If $P = \{(k^n)_n, k \in \mathbb{N}\}$ and $P' = \{(k^n)_n, k \in \mathbb{N}\}$, then $\lambda(P) = \lambda(\alpha)$ and $\lambda(P') = \lambda(\beta)$ are the corresponding nuclear G_∞ -spaces associated to the sequences α and β (in fact they are power series spaces of infinite type). By hypothesis $(2^{-\alpha}n^{/\beta}n)$ converges to 0 and thus $-\alpha \choose 2$ $\epsilon \lambda(P')$ (see [5] Lemma 2.). Since $(2^n) \epsilon P$, we can apply the previous theorem to prove straightforward the corollary.

Proof. It is known that $s=\lambda(P')$ where $P'=\left\{\left(\left(n+1\right)^k\right)_n$, $k\in\mathbb{N}\right\}$. The corollary easily follows from the Theorem 2 noting that $(e^n)_{\epsilon}P \quad \text{and} \quad (e^{-n})_{\epsilon}\lambda(P') \quad \text{because for all} \quad k_{\epsilon}\mathbb{N} \text{ , } \sum e^{-n}(n+1)^k < +\infty \text{ .}$

Since $\lambda(P)$ in the previous corollary is not a power series space ([2] Theorem 2.25.), Theorem 2 supplies a stronger tool than [5] Proposition 8 to investigate s-nuclearity of strong duals.

REFERENCES

HERE!

[1] Brudovskii, V. S. Associated nuclear topology, mappings of type s and strongly nuclear spaces. Soviet Math. Dokl. (1968), 61-63

EA

- [2] Dubinsky, E., Ramanujan, M. S. On λ-nucleority Mem. of Amer. Math. Soc. No. 128 (1972)
- [3] Köthe G. Stork nukleore Folgenröume J. Fac. Sci. Univ. Tokyo, I, 17, (1970) 291-296
- [4] Martineau, A. Sur une proprieté universelle de l'espoce des distributions de L. Schwortz. C. R. Acad. Sci. Paris 259 (1964) 3162-3164
- [5] Ramanujan, M. S., Power Series Spoces $\lambda(\alpha)$ and associated $\lambda(\alpha)$ -nucleority. Math. Ann. 189, (1970) 161-168
- [6] Terzioglu, T., Smooth sequence spaces and associated nuclearity. Proc. of the Amer. Math. Soc. 37, 2 (1973) 497-504
- [7] Terzioglu, T., Die diometrole Dimension von Lokolkonvexen Röumen. Collect. Math., 20, (1969) 49-99
- [8] Terzioglu, T., Nuclear and strongly nuclear sequence spaces. Revue Fac. Sci. Univ. Istanbul. Serie A34, (1969) 1-5