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1. Introduction

According to the Krein-Milman Theorem, every nonempty convex set in
a Banach space is fully described by the set of its extreme points. Let n ∈ N.
We write BE for the closed unit ball of a real Banach space E and the dual
space of E is denoted by E∗. We recall that if x ∈ BE is said to be an extreme
point of BE if y, z ∈ BE and x = λy + (1 − λ)z for some 0 < λ < 1 implies
that x = y = z. x ∈ BE is called an exposed point of BE if there is an f ∈ E∗

so that f(x) = 1 = ∥f∥ and f(y) < 1 for every y ∈ BE \ {x}. It is easy to see
that every exposed point of BE is an extreme point. We denote by extBE and
expBE the sets of extreme and exposed points of BE , respectively. We denote
by L(nE) the Banach space of all continuous n-linear forms on E endowed with
the norm ∥T∥ = sup∥xk∥=1 |T (x1, . . . , xn)|. A n-linear form T is symmetric if

T (x1, . . . , xn) = T
(
xσ(1), . . . , xσ(n)

)
for every permutation σ on {1, 2, . . . , n}.

We denote by Ls(
nE) the Banach space of all continuous symmetric n-linear

forms on E. A mapping P : E → R is a continuous n-homogeneous polynomial
if there exists a unique T ∈ Ls(

nE) such that P (x) = T (x, . . . , x) for every
x ∈ E. In this case it is convenient to write T = P̌ . We denote by P(nE)
the Banach space of all continuous n-homogeneous polynomials from E into R
endowed with the norm ∥P∥ = sup∥x∥=1 |P (x)|. Note that the spaces L(nE),
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Ls(
nE), P(nE) are very different from a geometric point of view. In particular,

for integral multilinear forms and integral polynomials one has ([2], [9], [42])

extBLI(nE) = {ϕ1ϕ2 · · ·ϕn : ϕi ∈ extBE∗} ,

extBPI(nE) = {±ϕn : ϕ ∈ E∗, ∥ϕ∥ = 1},

where LI(
nE) and PI(

nE) are the spaces of integral n-linear forms and inte-
gral n-homogeneous polynomials on E, respectively. For more details about
the theory of multilinear mappings and polynomials on a Banach space, we
refer to [10].

Let us say about the stories of the classification problems of extBX and
expBX ifX = P(nE). Choi et al. ([4], [5]) initiated the classification problems
and classified extBX if X = P

(
2l2p

)
for p = 1, 2, where l2p = R2 with the

lp-norm. B. Grecu [14] classified extBX if X = P
(
2l2p

)
for 1 < p < 2 or

2 < p < ∞. Kim [18] classified expBX if X = P
(
2l2p

)
for 1 ≤ p ≤ ∞. Kim

et al. [34] showed that every extreme 2-homogeneous polynomials on a real
separable Hilbert space is also exposed. Kim ([20], [26]) characterized extBX

and expBX for X = P
(
2d∗(1, w)

2
)
, where d∗(1, w)

2 = R2 with the octagonal
norm

∥(x, y)∥d∗ = max
{
|x|, |y|, |x|+|y|

1+w : 0 < w < 1
}
.

He showed [26] that extBP(2d∗(1,w)2) ̸= expBP(2d∗(1,w)2). In [31], Kim classified
extBX and using the classification of extBX , Kim computed the polarization
and unconditional constants of the space X if X = P

(
2R2

h( 1
2
)

)
, where R2

h(w)

denotes the space R2 endowed with the hexagonal norm

∥(x, y)∥h(w) := max{|y|, |x|+ (1− w)|y|}.

We refer to ([1]–[9], [11]–[43]) and references therein for some recent work
about extremal properties of multilinear mappings and homogeneous polyno-
mials on some classical Banach spaces.

We will denote by T ((x1, y1), (x2, y2)) = ax1x2+by1y2+c(x1y2+x2y1) and
P (x, y) = ax2 + by2 + cxy a symmetric bilinear form and a 2-homogeneous
polynomial on a real Banach space of dimension 2, respectively. Recently,
Kim [31] classified the extreme points of the unit ball of P

(
2R2

h( 1
2
)

)
as follows:

extB
P
(
2R2

h( 12 )

) =
{
± y2, ±

(
x2 + 1

4y
2 ± xy

)
, ±

(
x2 + 3

4y
2
)
,

±
[
x2 +

(
c2

4 − 1
)
y2 ± cxy

]
,

±
[
cx2 +

(
c+4

√
1−c

4 − 1
)
y2 ±

(
c+ 2

√
1− c

)
xy

]
(0 ≤ c ≤ 1)

}
.
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In this paper, we show that that every extreme polynomials of P
(
2R2

h( 1
2
)

)
is

exposed.

2. Results

Theorem 2.1. ([31]) Let P (x, y) = ax2 + by2 + cxy ∈ P
(
2R2

h( 1
2
)

)
with

a ≥ 0, c ≥ 0 and a2 + b2 + c2 ̸= 0. Then:

Case 1 : c < a.
If a ≤ 4b, then

∥P∥ = max
{
a, b,

∣∣1
4a+ b

∣∣+ 1
2c,

4ab−c2

4a , 4ab−c2

2c+a+4b ,
4ab−c2

|2c−a−4b|

}
= max

{
a, b,

∣∣1
4a+ b

∣∣+ 1
2c
}
.

If a > 4b, then ∥P∥ = max
{
a, |b|,

∣∣1
4a+ b

∣∣+ 1
2c,

|c2−4ab|
4a

}
.

Case 2 : c ≥ a.

If a ≤ 4b, then ∥P∥ = max
{
a, b,

∣∣1
4a+ b

∣∣+ 1
2c,

|c2−4ab|
2c+a+4b

}
.

If a > 4b, then ∥P∥ = max
{
a, |b|,

∣∣1
4a+ b

∣∣+ 1
2c,

c2−4ab
2c−a−4b

}
.

Theorem 2.2. ([31])

extB
P
(
2R2

h( 12 )

) =
{
± y2, ±

(
x2 + 1

4y
2 ± xy

)
, ±

(
x2 + 3

4y
2
)
,

±
[
x2 +

(
c2

4 − 1
)
y2 ± cxy

]
,

±
[
cx2 +

(
c+4

√
1−c

4 − 1
)
y2 ±

(
c+ 2

√
1− c

)
xy

]
(0 ≤ c ≤ 1)

}
.

Theorem 2.3. Let f ∈ P
(
2R2

h( 1
2
)

)∗
with α = f(x2), β = f(y2), γ =

f(xy). Then

∥f∥ = sup
{
|β|,

∣∣α+ 1
4β

∣∣+ |γ|,
∣∣α+ 3

4β
∣∣, ∣∣α+

(
c2

4 − 1
)
β
∣∣+ c|γ|,∣∣cα+

(
c+4

√
1−c

4 − 1
)
β
∣∣+ (c+ 2

√
1− c)|γ| (0 ≤ c ≤ 1)

}
.

Proof. It follows from Theorem 2.2 and the fact that

∥f∥ = sup

{
|f(P )| : P ∈ extB

P
(
2R2

h( 12 )

)}.
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Note that if ∥f∥ = 1, then |α| ≤ 1, |β| ≤ 1, |γ| ≤ 1
2 .

We are in a position to show the main result of this paper.

Theorem 2.4.

expB
P
(
2R2

h( 12 )

) = extB
P
(
2R2

h( 12 )

).
Proof. Let (0 ≤ c ≤ 1)

P1(x, y) = y2 ,

P+
2 (x, y) = x2 + 1

4y
2 + xy ,

P−
2 (x, y) = x2 + 1

4y
2 − xy ,

P3(x, y) = x2 + 3
4y

2 ,

P+
4,c(x, y) = x2 +

(
c2

4 − 1
)
y2 + cxy ,

P−
4,c(x, y) = x2 +

(
c2

4 − 1
)
y2 − cxy ,

P+
5,c(x, y) = cx2 +

(
c+4

√
1−c

4 − 1
)
y2 + (c+ 2

√
1− c)xy ,

P−
5,c(x, y) = cx2 +

(
c+4

√
1−c

4 − 1
)
y2 − (c+ 2

√
1− c)xy .

Claim 1: P1 = y2 ∈ expB
P
(
2R2

h( 12 )

).
Let f ∈ P

(
2R2

h( 1
2
)

)∗
be such that

α =
1

5
, β = 1 , γ = 0 .

Indeed,

f(P1) = 1 , |f(P±
2 )| = 9

20
, |f(P3)| =

19

20
. (*)

Note that for all 0 ≤ c ≤ 1,

|f(P±
4,c)| =

4

5
− c2

4
≤ 4

5
, (**)

|f(P±
5,c)| = |

√
1− c+

9c

20
− 1| ≤ 11

20
. (***)
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Hence, by Theorem 2.3, 1 = ∥f∥. We will show that f exposes P1. Let
Q(x, y) = ax2 + by2 + cxy ∈ P

(
2R2

h( 1
2
)

)
such that 1 = ∥Q∥ = f(Q). We will

show that Q = P1. Since P
(
2R2

h( 1
2
)

)
is a finite dimensional Banach space with

dimension 3, by the Krein-Milman Theorem, B
P
(
2R2

h( 12 )

) is the closed convex

hull of extB
P
(
2R2

h( 12 )

). Then,
Q(x, y) = uP1(x, y) + v+P+

2 (x, y) + v−P−
2 (x, y) + tP3(x, y)

+
∞∑
n=1

λ+
nP

+

4,c+n
(x, y) +

∞∑
n=1

λ−
nP

−
4,c−n

(x, y)

+

∞∑
m=1

δ+mP+

5,a+m
(x, y) +

∞∑
m=1

δ−mP−
5,a−m

(x, y) ,

for some u, v±, t, λ±
n , δ

±
m,∈ R (n,m ∈ N) with 0 ≤ c±n , a

±
m ≤ 1 and

|u|+ |v+|+ |v−|+ |t|+
∞∑
n=1

|λ+
n |+

∞∑
n=1

|λ−
n |+

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m| = 1 .

We will show that v± = t = λ±
n = δ±m = 0 for every n,m ∈ N.

Subclaim: v± = t = 0.
Assume that v+ ̸= 0. It follows that

1 = f(Q) = uf(P1) + v+f(P+
2 ) + v−f(P−

2 ) + tf(P3) +

∞∑
n=1

λ+
n f(P

+
4,cn

)

+

∞∑
n=1

λ−
n f(P

−
4,cn

) +

∞∑
m=1

δ+mf(P+
5,am

) +

∞∑
m=1

δ−mf(P−
5,am

)

≤ |u|+ |v+||f(P+
2 )|+ |v−||f(P−

2 )|+ |t||f(P3)|+
∞∑
n=1

|λ+
n ||f(P+

4,cn
)|

+
∞∑
n=1

|λ−
n ||f(P−

4,cn
)|+

∞∑
m=1

|δ+m||f(P+
5,am

)|+
∞∑

m=1

|δ−m||f(P−
5,am

)|

≤ |u|+ 9

20
|v+|+ 9

20
|v−|+ 19

20
|t|+ 4

5

∞∑
n=1

|λ+
n |

+
4

5

∞∑
n=1

|λ−
n |+

11

20

∞∑
m=1

|δ+m|+ 11

20

∞∑
m=1

|δ−m| (by (*), (**), (***))
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< |u|+ |v+|+ 9

20
|v−|+ 19

20
|t|+ 4

5

∞∑
n=1

|λ+
n |

+
4

5

∞∑
n=1

|λ−
n |+

11

20

∞∑
m=1

|δ+m|+ 11

20

∞∑
m=1

|δ−m|

≤ |u|+ |v+|+ |v−|+ |t|+
∞∑
n=1

|λ+
n |+

∞∑
n=1

|λ−
n |+

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m| = 1 ,

which is impossible. Therefore, v+ = 0. Using a similar argument as above,
we have v− = t = 0.

Subclaim: λ±
n = δ±m = 0 for every n,m ∈ N.

Assume that λ+
n0

̸= 0 for some n0 ∈ N. It follows that

1 = f(Q) = uf(P1) + λ+
n0
f(P+

4,cn0
) +

∑
n∈N,n ̸=n0

λ+
n f(P

+

4,c+n
)

+
∞∑
n=1

λ−
n f(P

−
4,c−n

) +
∞∑

m=1

δ+mf(P+

5,a+m
) +

∞∑
m=1

δ−mf(P−
5,a−m

)

≤ |u|+ |λ+
n0
||f(P+

4,c+n0

)|+
∑

n∈N,n ̸=n0

|λ+
n ||f(P+

4,c+n
)|+

∞∑
n=1

|λ−
n ||f(P−

4,c−n
)|

+
∞∑

m=1

|δ+m||f(P+

5,a+m
)|+

∞∑
m=1

|δ−m||f(P−
5,a−m

)|

< |u|+ |λ+
n0
|+ 4

5

∑
n∈N,n̸=n0

|λ+
n |+

4

5

∞∑
n=1

|λ−
n |+

11

20

∞∑
m=1

|δ+m|+ 11

20

∞∑
m=1

|δ−m|

≤ |u|+
∞∑
n=1

|λ+
n |+

∞∑
n=1

|λ−
n |+

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m| = 1 ,

which is impossible. Therefore, λ+
n = 0 for every n ∈ N. Using a similar

argument as above, we have λ−
n = δ±m = 0 for every n,m ∈ N. Therefore,

Q(x, y) = uP1(x, y). Hence u = 1, so Q = P1. Therefore, f exposes P1.
Claim 2: P5,0 = 2xy ∈ expB

P
(
2R2

h( 12 )

).
Let f ∈ P

(
2R2

h( 1
2
)

)∗
be such that

α = β = 0 , γ =
1

2
.
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We will show that f exposes P5,0. Indeed, f(P5,0) = 1, f(P1) = 0, f(P±
2 ) =

±1
2 , f(P3) = 0,

−1

2
≤ f(P±

4,c) = ± c

2
≤ 1

2
(0 ≤ c ≤ 1) .

Note that, for 0 < c ≤ 1,

−1 < f(P±
5,c) = ±c+ 2

√
1− c

2
< 1 . (†)

Hence, by Theorem 2.3, 1 = ∥f∥. Let

Q(x, y) = uP1(x, y) + v+P+
2 (x, y) + v−P−

2 (x, y) + tP3(x, y)

+

∞∑
n=1

λ+
nP

+

4,c+n
(x, y) +

∞∑
n=1

λ−
nP

−
4,c−n

(x, y)

+
∞∑

m=1

δ+mP+

5,a+m
(x, y) +

∞∑
m=1

δ−mP−
5,a−m

(x, y) ,

for some u, v±, t, λ±
n , δ

±
m,∈ R (n,m ∈ N) with 0 ≤ c±n , a

±
m ≤ 1 and

|u|+ |v+|+ |v−|+ |t|+
∞∑
n=1

|λ+
n |+

∞∑
n=1

|λ−
n |+

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m| = 1 .

We will show that v± = t = λ±
n = δ±m = 0 for every n,m ∈ N.

Subclaim: v+ = 0.
Assume that v+ ̸= 0. It follows that

1 = f(Q) = v+f(P+
2 ) + v−f(P−

2 ) +
∞∑
n=1

λ+
n f(P

+

4,c+n
)

+

∞∑
n=1

λ−
n f(P

−
4,c−n

) +

∞∑
m=1

δ+mf(P+

5,a+m
) +

∞∑
m=1

δ−mf(P−
5,a−m

)

< |v+|+ 1

2
|v−|+

∞∑
n=1

|λ+
n ||f(P+

4,c+n
)|+

∞∑
n=1

|λ−
n ||f(P−

4,c−n
)|

+
∞∑

m=1

|δ+m||f(P+

5,a+m
)|+

∞∑
m=1

|δ−m||f(P−
5,a−m

)|

≤ |v+|+ |v−|+
∞∑
n=1

|λ+
n |+

∞∑
n=1

|λ−
n |+

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m| ≤ 1 ,
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which is impossible. Therefore, v+ = 0. Using a similar argument as
Claim 1, we have v− = λ±

n = 0 for every n ∈ N. Hence,

Q(x, y) = uP1(x, y) + tP3(x, y) +

∞∑
m=1

δ+mP+

5,a+m
(x, y) +

∞∑
m=1

δ−mP−
5,a−m

(x, y) .

It follows that

1 = f(Q) =
∞∑

m=1

δ+mf(P+

5,a+m
) +

∞∑
m=1

δ−mf(P−
5,a−m

)

≤
∞∑

m=1

|δ+m||f(P+

5,a+m
)|+

∞∑
m=1

|δ−m||f(P−
5,a−m

)|

≤
∞∑

m=1

|δ+m|+
∞∑

m=1

|δ−m| ≤ 1 ,

which shows that

f(P+

5,a+m
) = f(P−

5,a−m
) =

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m| = 1 , u = t = 0 for all m ∈ N .

By (†), P±
5,a±m

= P5,0 for everym ∈ N and
∑∞

m=1 δ
+
m+

∑∞
m=1 δ

−
m = 1. Therefore,

Q = P5,0. Hence, f exposes P5,0.
Claim 3: P+

2 = x2 + 1
4y

2 + xy ∈ expB
P
(
2R2

h( 12 )

).
Let f ∈ P

(
2R2

h( 1
2
)

)∗
be such that

α =
1

2
= β , γ =

3

8
.

We will show that f exposes P2. Indeed, f(P+
2 ) = 1, f(P−

2 ) = 1
4 , f(P1) =

1
2 ,

f(P±
3 ) = 7

8 . By some calculation, we have

|f(P±
4,c)| ≤

1

2
, |f(P±

5,c)| ≤
57

64
for 0 ≤ c ≤ 1 .

Hence, by Theorem 2.3, 1 = ∥f∥. By similar arguments as Claims 1 and 2, f
exposes P+

2 . Obviously, P−
2 ∈ expB

P
(
2R2

h( 12 )

).
Claim 4: P+

4,0 = x2 − y2 ∈ expB
P
(
2R2

h( 12 )

).
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Let f ∈ P
(
2R2

h( 1
2
)

)∗
be such that

α =
1

2
= −β , γ = 0 .

We will show that f exposes P4,0. Indeed,

f(P+
4,0) = 1 , |f(P1)| =

1

2
, |f(P±

2 )| = 3

8
, |f(P3)| =

1

8
.

Note that

|f(P±
4,c)| = 1− c2

8
< 1 for 0 < c ≤ 1 .

Note that, for 0 ≤ c ≤ 1,

|f(P±
5,c)| =

3c+ 4− 4
√
1− c

8
≤ 7

8
.

Hence, by Theorem 2.3, 1 = ∥f∥. By similar arguments as Claims 1 and 2, f
exposes P+

4,0.

Claim 5: P3 = x2 + 3
4y

2 ∈ expB
P
(
2R2

h( 12 )

).
Let f ∈ P

(
2R2

h( 1
2
)

)∗
be such that

α =
5

8
, β =

1

2
, γ = 0 .

We will show that f exposes P3. Indeed,

f(P3) = 1 , |f(P1)| =
1

2
, |f(P±

2 )| = 3

4
.

Note that

|f(P±
4,c)| ≤

1

4
, |f(P±

5,c)| ≤
1

3
for 0 ≤ c ≤ 1 .

Hence, by Theorem 2.3, 1 = ∥f∥. By similar arguments as Claims 1 and 2, f
exposes P3.

Claim 6: P+
5,1 = x2 − 3

4y
2 + xy ∈ expB

P
(
2R2

h( 12 )

).
Let f ∈ P

(
2R2

h( 1
2
)

)∗
be such that

α =
11

16
, β = −1

4
, γ =

1

8
.
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We will show that f exposes P+
5,1. Indeed,

f(P+
5,1) = 1 , |f(P1)| =

1

4
, |f(P±

2 )| ≤ 3

4
, |f(P3)| =

1

2
.

Note that

3

4
≤ f(P±

4,c) < 1 , −1

4
≤ f(P±

5,c) < 1 for 0 ≤ c < 1 .

Hence, by Theorem 2.3, 1 = ∥f∥. By similar arguments as Claims 1 and 2, f
exposes P+

5,1. Obviously, P−
5,1 ∈ expB

P
(
2R2

h( 12 )

).
Claim 7: P+

4,c = x2 + ( c
2

4 − 1)y2 + cxy ∈ expB
P
(
2R2

h( 12 )

) for 0 < c < 1.

Let f ∈ P
(
2R2

h( 1
2
)

)∗
be such that

α =
3

4
− c2

16
, β = −1

4
, γ =

c

8
.

Indeed,

f(P+
4,c) = 1 ,

3

4
≤ f(P−

4,c) = 1− c2

4
< 1 , |f(P1)| =

1

4
,

1

2
≤ f(P±

2 ) ≤ 3

4
,

1

2
≤ f(P3) <

9

16
.

(*)

Note that for every t ∈ [0, 1] with t ̸= c,

f(P+
4,t) = − 1

16
t2 +

c

8
t+

(
1− c2

16

)
and

f(P−
4,t) = − 1

16
t2 − c

8
t+

(
1− c2

16

)
.

Hence, we have, for every t ∈ [0, 1] with t ̸= c,

1 < min

{
1− c2

16
, 1− (1− c)2

16

}
≤ f(P+

4,t) < 1 (**)

and

−1 < 1− (1 + c)2

16
≤ f(P−

4,t) ≤ 1− c2

16
< 1 .
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Note that, for every t ∈ [0, 1],

f(P+
5,t) =

(
−c2 + 2c+ 11

16

)
t+

(
c− 1

4

)√
1− t+

1

4

and

f(P−
5,t) =

(
−c2 − 2c+ 11

16

)
t+

(
c+ 1

4

)√
1− t+

1

4
.

Hence, we have that, for every t ∈ [0, 1],

−1 <
c

4
≤ f(P+

5,t) ≤
−c2 + 2c+ 15

16
< 1 (***)

and

−1 <
c+ 2

4
≤ f(P−

5,t) ≤
−c2 − 2c+ 15

16
< 1 .

Hence, by Theorem 2.3, 1 = ∥f∥. We will show that f exposes P+
4,c. Let

Q(x, y) = ax2 + by2 + cxy ∈ P
(
2R2

h( 1
2
)

)
such that 1 = ∥Q∥ = f(Q). We will

show that Q = P+
4,c. By the Krein-Milman Theorem,

Q(x, y) = uP1(x, y) + v+P+
2 (x, y) + v−P−

2 (x, y) + tP3(x, y)

+

∞∑
n=1

λ+
nP

+

4,c+n
(x, y) +

∞∑
n=1

λ−
nP

−
4,c−n

(x, y)

+
∞∑

m=1

δ+mP+

5,a+m
(x, y) +

∞∑
m=1

δ−mP−
5,a−m

(x, y) ,

for some u, v±, t, λ±
n , δ

±
m,∈ R (n,m ∈ N) with 0 ≤ c±n , a

±
m ≤ 1 and

|u|+ |v+|+ |v−|+ |t|+
∞∑
n=1

|λ+
n |+

∞∑
n=1

|λ−
n |+

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m| = 1 .

We will show that u = v± = t = λ−
n = δ±m = 0 for every n,m ∈ N. Assume
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that δ+m0
̸= 0 for some m0 ∈ N. It follows that

1 = f(Q) = uf(P1) + v+f(P+
2 ) + v−f(P−

2 ) + tf(P3) +

∞∑
n=1

λ+
n f(P

+

4,c+n
)

+

∞∑
n=1

λ−
n f(P

−
4,c−n

) +

∞∑
m=1

δ+mf(P+

5,a+m
) +

∞∑
m=1

δ−mf(P−
5,a−m

)

<
1

4
|u|+ 3

4
|v+|+ 3

4
|v−|+ 9

16
|t|+

∞∑
n=1

|λ+
n |

+

∞∑
n=1

|λ−
n |+ |δ+m0

|+
∑

m̸=m0

|δ+m|+
∞∑

m=1

|δ−m| (by (*), (**), (***)) ≤ 1 ,

which is impossible. Therefore, δ+m = 0 for every m ∈ N. Using a similar
argument as above, we have u = v± = t = λ−

n = 0. Therefore,

Q(x, y) =
∞∑
n=1

λ+
nP

+

4,c+n
(x, y) .

We will show that if c+n0
̸= c for some n0 ∈ N, then λ+

n0
= 0. Assume that

λ+
n0

̸= 0. It follows that

1 = f(Q) = λ+
n0
f(P+

4,c+n0

) +
∑
n̸=n0

λ+
n f(P

+

4,c+n
)

< |λ+
n0
|+

∑
n ̸=n0

|λ+
n | = 1 ,

which is impossible. Therefore, λ+
n = 0 for every n ∈ N. Therefore,

Q(x, y) =

( ∑
c+n=c

λ+
n

)
P+
4,c(x, y) = P+

4,c(x, y) .

Therefore, f exposes P+
4,c. Obviously, P−

4,c ∈ expB
P
(
2R2

h( 12 )

) for 0 < c ≤ 1.

Claim 8: P+
5,c = cx2+

(
c+4

√
1−c

4 −1

)
y2+(c+2

√
1− c)xy ∈ expB

P
(
2R2

h( 12 )

)
for 0 < c < 1.
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Let f ∈ P
(
2R2

h( 1
2
)

)∗
be such that

α =
1

2

(
1− c+ 4

√
1− c

4

)
, β = − c

2
, γ =

c+ 2
√
1− c

4
.

Note that

0 ≤ α <
3

8
, −1

2
< β ≤ 0 ,

1

4
< γ ≤ 1

2
.

We will show that f exposes P+
5,c. Indeed,

f(P+
5,c) = 1 , |f(P1)| <

1

2
, 0 < f(P+

2 ) <
1

2
,

− 1 < f(P−
2 ) < −1

8
, −1

8
≤ f(P3) < 0 .

(*)

Note that for every t ∈ [0, 1],

f(P+
4,t) = − c

8
t2 +

(
c+ 2

√
1− c

4

)
t+

1

2
+

3c

8
−

√
1− c

2

and

f(P−
4,t) = − c

8
t2 −

(
c+ 2

√
1− c

4

)
t+

1

2
+

3c

8
−

√
1− c

2
.

Hence, we have for every t ∈ [0, 1],

− 1 <
1

2
+

3c

8
−

√
1− c

2
≤ f(P+

4,t) ≤
c+ 1

2
< 1 , (**)

− 1 <
1

2
−
√
1− c ≤ f(P−

4,t) ≤
1

2
+

3c

8
−

√
1− c

2
< 1 .

Note that for every t ∈ [0, 1] with t ̸= c,

f(P+
5,t) =

1

2
t+

√
1− c

√
1− t+

c

2

and

f(P−
5,t) =

(
1− c−

√
1− c

2

)
t− (c+

√
1− c)

√
1− t+

c

2
.

Hence, we have for every t ∈ [0, 1] with t ̸= c,

− 1 < min

{
c

2
+
√
1− c,

c+ 1

2

}
≤ f(P+

5,t) < 1 , (***)

− 1 < −
(
c

2
+

√
1− c

)
≤ f(P−

5,t) ≤
1

2
−
√
1− c < 1 .
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Hence, by Theorem 2.3, 1 = ∥f∥. Let Q(x, y) = ax2 + by2 + cxy in
P
(
2R2

h( 1
2
)

)
such that 1 = ∥Q∥ = f(Q). By the Krein-Milman Theorem,

Q(x, y) = uP1(x, y) + v+P+
2 (x, y) + v−P−

2 (x, y) + tP3(x, y)

+

∞∑
n=1

λ+
nP

+

4,c+n
(x, y) +

∞∑
n=1

λ−
nP

−
4,c−n

(x, y)

+
∞∑

m=1

δ+mP+

5,a+m
(x, y) +

∞∑
m=1

δ−mP−
5,a−m

(x, y) ,

for some u, v±, t, λ±
n , δ

±
m,∈ R (n,m ∈ N) with 0 ≤ c±n , a

±
m ≤ 1 and

|u|+ |v+|+ |v−|+ |t|+
∞∑
n=1

|λ+
n |+

∞∑
n=1

|λ−
n |+

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m| = 1 .

We will show that u = v± = t = λ±
n = δ−m = 0 for every n,m ∈ N. Assume

that λn0 ̸= 0 for some n0 ∈ N. It follows that

1 = f(Q) = uf(P1) + v+f(P+
2 ) + v−f(P−

2 ) + tf(P3) +
∞∑
n=1

λ+
n f(P

+

4,c+n
)

+

∞∑
n=1

λ−
n f(P

−
4,c−n

) +

∞∑
m=1

δ+mf(P+

5,a+m
) +

∞∑
m=1

δ−mf(P−
5,a−m

)

<
1

2
|u|+ 1

2
|v+|+ 1

2
|v−|+ 1

2
|t|+ |λ+

n0
|+

∑
n̸=n0

|λ+
n |+

∞∑
m=1

|δ+m|+
∞∑

m=1

|δ−m|

≤ 1 (by (*), (**), (***)) ,

which is impossible. Therefore, λ+
n = 0 for every n ∈ N. Using a similar

argument as above, we have u = v± = t = λ−
n = δ−m = 0 for every n,m ∈ N.

Therefore,

Q(x, y) =

∞∑
m=1

δ+mP+

5,a+m
(x, y) .

We will show that if a+m0
̸= c for some m0 ∈ N, then δ+m0

= 0. Assume that
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δ+m0
̸= 0. It follows that

1 = f(Q) = δ+m0
f(P+

5,a+m0

) +
∑

m ̸=m0

δ+mf(P+
5,am

)

< |δ+m0
|+

∑
m ̸=m0

|δ+m| = 1

which is impossible. Therefore, δ+m0
= 0. Therefore,

Q(x, y) =

( ∑
am=a

δ+m

)
P+
5,c(x, y) = P+

5,c(x, y) .

Therefore, f exposes P+
5,c. Obviously, P−

5,c ∈ expB
P
(
2R2

h( 12 )

) for 0 < c < 1.

Therefore, we complete the proof.
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