$\mathbf{Exposed}$ Polynomials of $\mathcal{P}(^2\mathbb{R}^2_h)$ $h(\frac{1}{2})$)

Sung Guen Kim *∗*

Department of Mathematics, Kyungpook National University Daegu 702 *−* 701*, South Korea sgk317@knu.ac.kr*

Presented by Ricardo García **Received February 2, 2018**

Abstract: We show that every extreme polynomials of $\mathcal{P}(\binom{2\mathbb{R}^2_{h(\frac{1}{2})}}{k})$ is exposed.

Key words: The Krein-Milman Theorem, extreme polynomials, exposed polynomials, the plane with a hexagonal norm.

AMS *Subject Class.* (2000): 46A22.

1. INTRODUCTION

According to the Krein-Milman Theorem, every nonempty convex set in a Banach space is fully described by the set of its extreme points. Let $n \in \mathbb{N}$. We write *B^E* for the closed unit ball of a real Banach space *E* and the dual space of *E* is denoted by E^* . We recall that if $x \in B_E$ is said to be an *extreme point* of B_E if $y, z \in B_E$ and $x = \lambda y + (1 - \lambda)z$ for some $0 < \lambda < 1$ implies that $x = y = z$. $x \in B_E$ is called an exposed point of B_E if there is an $f \in E^*$ so that $f(x) = 1 = ||f||$ and $f(y) < 1$ for every $y \in B_E \setminus \{x\}$. It is easy to see that every exposed point of B_E is an extreme point. We denote by $ext{B_E}$ and $\exp B_E$ the sets of extreme and exposed points of B_E , respectively. We denote by $\mathcal{L}(nE)$ the Banach space of all continuous *n*-linear forms on E endowed with the norm $||T|| = \sup_{||x_k||=1} |T(x_1, \ldots, x_n)|$. A *n*-linear form *T* is symmetric if $T(x_1, \ldots, x_n) = T(x_{\sigma(1)}^{\sigma(n)}, \ldots, x_{\sigma(n)})$ for every permutation σ on $\{1, 2, \ldots, n\}$. We denote by $\mathcal{L}_s({}^nE)$ the Banach space of all continuous symmetric *n*-linear forms on *E*. A mapping $P: E \to \mathbb{R}$ is a continuous *n*-homogeneous polynomial if there exists a unique $T \in \mathcal{L}_s({}^nE)$ such that $P(x) = T(x, \ldots, x)$ for every $x \in E$. In this case it is convenient to write $T = \check{P}$. We denote by $P(^nE)$ the Banach space of all continuous *n*-homogeneous polynomials from *E* into R endowed with the norm $||P|| = \sup_{||x||=1} |P(x)|$. Note that the spaces $\mathcal{L}(^n E)$,

127

[∗] This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2057788).

 $\mathcal{L}_s({}^nE)$, $\mathcal{P}({}^nE)$ are very different from a geometric point of view. In particular, for integral multilinear forms and integral polynomials one has ([2], [9], [42])

$$
\operatorname{ext}B_{\mathcal{L}_I(n_E)} = \{ \phi_1 \phi_2 \cdots \phi_n : \phi_i \in \operatorname{ext}B_{E^*} \},
$$

$$
\operatorname{ext}B_{\mathcal{P}_I(n_E)} = \{ \pm \phi^n : \phi \in E^*, \ \|\phi\| = 1 \},
$$

where $\mathcal{L}_I(^nE)$ and $\mathcal{P}_I(^nE)$ are the spaces of integral *n*-linear forms and integral *n*-homogeneous polynomials on *E*, respectively. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [10].

Let us say about the stories of the classification problems of $ext{B_X}$ and $\exp B_X$ if $X = \mathcal{P}(^n E)$. Choi *et al.* ([4], [5]) initiated the classification problems and classified $ext{B}_X$ if $X = \mathcal{P}(\frac{2i^2}{p})$ for $p = 1, 2$, where $l_p^2 = \mathbb{R}^2$ with the l_p -norm. B. Grecu [14] classified \exp_X if $X = \mathcal{P}(\frac{2l_p^2}{r})$ for $1 < p < 2$ or $2 < p < \infty$. Kim [18] classified $\exp B_X$ if $X = \mathcal{P}(\frac{2l_p^2}{p})$ for $1 \leq p \leq \infty$. Kim *et al.* [34] showed that every extreme 2-homogeneous polynomials on a real separable Hilbert space is also exposed. Kim $([20], [26])$ characterized $ext{B_X}$ and $\exp B_X$ for $X = \mathcal{P}(\ell^2 d_*(1, w)^2)$, where $d_*(1, w)^2 = \mathbb{R}^2$ with the octagonal norm

$$
\|(x,y)\|_{d_*}=\max\Big\{|x|,\,|y|,\,\tfrac{|x|+|y|}{1+w}\,:\,0
$$

He showed [26] that $\exp P_{(2d_*(1,w)^2)} \neq \exp B_{\mathcal{P}(2d_*(1,w)^2)}$. In [31], Kim classified $extB_X$ and using the classification of $extB_X$, Kim computed the polarization and unconditional constants of the space *X* if $X = \mathcal{P}(\mathbb{Z}_{h}^2)$ $\binom{2}{h(\frac{1}{2})}$, where $\mathbb{R}^2_{h(w)}$ denotes the space \mathbb{R}^2 endowed with the hexagonal norm

$$
||(x,y)||_{h(w)} := \max{ |y|, |x| + (1-w)|y| }.
$$

We refer to $([1]-[9], [11]-[43])$ and references therein for some recent work about extremal properties of multilinear mappings and homogeneous polynomials on some classical Banach spaces.

We will denote by $T((x_1, y_1), (x_2, y_2)) = ax_1x_2 + by_1y_2 + c(x_1y_2 + x_2y_1)$ and $P(x, y) = ax^2 + by^2 + cxy$ a symmetric bilinear form and a 2-homogeneous polynomial on a real Banach space of dimension 2, respectively. Recently, Kim [31] classified the extreme points of the unit ball of $\mathcal{P}(\mathbb{Z}_{h}^2)$ $\binom{2}{h(\frac{1}{2})}$ as follows:

$$
\begin{split} \text{ext}B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)} &= \left\{ \pm y^2, \ \pm \left(x^2 + \frac{1}{4}y^2 \pm xy\right), \ \pm \left(x^2 + \frac{3}{4}y^2\right), \right. \\ &\quad \left. \pm \left[x^2 + \left(\frac{c^2}{4} - 1\right)y^2 \pm cxy\right], \right. \\ &\quad \left. \pm \left[cx^2 + \left(\frac{c+4\sqrt{1-c}}{4} - 1\right)y^2 \pm \left(c+2\sqrt{1-c}\right)xy\right] \left(0 \le c \le 1\right) \right\}. \end{split}
$$

In this paper, we show that that every extreme polynomials of $\mathcal{P}(\mathbb{Z}_{h}^2)$ $\binom{2}{h(\frac{1}{2})}$ is exposed.

2. Results

THEOREM 2.1. ([31]) Let $P(x, y) = ax^2 + by^2 + cxy \in \mathcal{P}({}^{2}\mathbb{R}^{2}_{h})$ $\binom{2}{h(\frac{1}{2})}$ with $a \geq 0, c \geq 0$ *and* $a^2 + b^2 + c^2 \neq 0$. Then:

Case 1 : *c < a. If* $a \leq 4b$ *, then*

$$
||P|| = \max\left\{a, b, \left|\frac{1}{4}a + b\right| + \frac{1}{2}c, \frac{4ab - c^2}{4a}, \frac{4ab - c^2}{2c + a + 4b}, \frac{4ab - c^2}{2c - a - 4b}\right\}
$$

$$
= \max\left\{a, b, \left|\frac{1}{4}a + b\right| + \frac{1}{2}c\right\}.
$$

If $a > 4b$, then $||P|| = \max\left\{a, |b|, \left|\frac{1}{4}\right\}$ $\frac{1}{4}a + b$ + $\frac{1}{2}$ $\frac{1}{2}c, \frac{|c^2-4ab|}{4a}$ } *.*

Case 2 : $c \geq a$ *.*

If
$$
a \le 4b
$$
, then $||P|| = \max \left\{ a, b, \left| \frac{1}{4}a + b \right| + \frac{1}{2}c, \frac{|c^2 - 4ab|}{2c + a + 4b} \right\}$.
If $a > 4b$, then $||P|| = \max \left\{ a, |b|, \left| \frac{1}{4}a + b \right| + \frac{1}{2}c, \frac{c^2 - 4ab}{2c - a - 4b} \right\}$.

Theorem 2.2. ([31])

$$
\begin{split} \text{ext}B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)} &= \left\{ \pm y^2, \ \pm \left(x^2 + \frac{1}{4}y^2 \pm xy\right), \ \pm \left(x^2 + \frac{3}{4}y^2\right), \right. \\ &\quad \left. \pm \left[x^2 + \left(\frac{c^2}{4} - 1\right)y^2 \pm cxy\right], \right. \\ &\quad \left. \pm \left[cx^2 + \left(\frac{c+4\sqrt{1-c}}{4} - 1\right)y^2 \pm \left(c+2\sqrt{1-c}\right)xy\right] \left(0 \le c \le 1\right) \right\}. \end{split}
$$

THEOREM 2.3. Let $f \in \mathcal{P}(\mathbb{R}^2_h)$ $\int_{h(\frac{1}{2})}^{2}$ ^{*w*} *with* $\alpha = f(x^2)$ *,* $\beta = f(y^2)$ *,* $\gamma =$ $f(xy)$ *.* Then

$$
||f|| = \sup \{ |\beta|, |\alpha + \frac{1}{4}\beta| + |\gamma|, |\alpha + \frac{3}{4}\beta|, |\alpha + (\frac{c^2}{4} - 1)\beta| + c|\gamma|, |\alpha + (\frac{c+4\sqrt{1-c}}{4} - 1)\beta| + (c+2\sqrt{1-c})|\gamma| (0 \le c \le 1) \}.
$$

Proof. It follows from Theorem 2.2 and the fact that

$$
||f|| = \sup \bigg\{ |f(P)| \, : \, P \in \text{ext}B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)} \bigg\}.
$$

Note that if $||f|| = 1$, then $|\alpha| \leq 1$, $|\beta| \leq 1$, $|\gamma| \leq \frac{1}{2}$.

We are in a position to show the main result of this paper.

THEOREM 2.4.

$$
\exp\!B_{\mathcal{P}\left(2\mathbb{R}^2_{h(\frac{1}{2})}\right)}=\exp\{2\mathbb{R}^2_{h(\frac{1}{2})}\}}.
$$

Proof. Let $(0 \leq c \leq 1)$

$$
P_1(x, y) = y^2,
$$

\n
$$
P_2^+(x, y) = x^2 + \frac{1}{4}y^2 + xy,
$$

\n
$$
P_2^-(x, y) = x^2 + \frac{1}{4}y^2 - xy,
$$

\n
$$
P_3(x, y) = x^2 + \frac{3}{4}y^2,
$$

\n
$$
P_{4,c}^+(x, y) = x^2 + (\frac{c^2}{4} - 1)y^2 + cxy,
$$

\n
$$
P_{4,c}^-(x, y) = x^2 + (\frac{c^2}{4} - 1)y^2 - cxy,
$$

\n
$$
P_{5,c}^+(x, y) = cx^2 + (\frac{c+4\sqrt{1-c}}{4} - 1)y^2 + (c+2\sqrt{1-c})xy,
$$

\n
$$
P_{5,c}^-(x, y) = cx^2 + (\frac{c+4\sqrt{1-c}}{4} - 1)y^2 - (c+2\sqrt{1-c})xy.
$$

Claim 1: $P_1 = y^2 \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}$. Let $f \in \mathcal{P}({}^2\mathbb{R}^2_{\scriptscriptstyle{b}})$ $\binom{2}{h(\frac{1}{2})}^*$ be such that

$$
\alpha = \frac{1}{5}, \qquad \beta = 1, \qquad \gamma = 0 \, .
$$

Indeed,

$$
f(P_1) = 1
$$
, $|f(P_2^{\pm})| = \frac{9}{20}$, $|f(P_3)| = \frac{19}{20}$. (*)

Note that for all $0 \leq c \leq 1$,

$$
|f(P_{4,c}^{\pm})| = \frac{4}{5} - \frac{c^2}{4} \le \frac{4}{5},
$$
\n^(**)

$$
|f(P_{5,c}^{\pm})| = |\sqrt{1-c} + \frac{9c}{20} - 1| \le \frac{11}{20}.
$$

$$
(***)
$$

Hence, by Theorem 2.3, $1 = ||f||$. We will show that *f* exposes P_1 . Let $Q(x, y) = ax^2 + by^2 + cxy \in \mathcal{P}(\overset{2}{\mathbb{R}}_h^2)$ $\binom{2}{h(\frac{1}{2})}$ such that $1 = ||Q|| = f(Q)$. We will show that $Q = P_1$. Since $\mathcal{P}(\mathbb{R}^2_{h(\frac{1}{2})})$ is $\binom{2}{h(\frac{1}{2})}$ is a finite dimensional Banach space with dimension 3, by the Krein-Milman Theorem, $B_{\mathcal{P}(\mathbb{Z}_{h(\frac{1}{2})}^2)}$ is the closed convex hull of $\exp_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}$. Then,

$$
Q(x,y) = uP_1(x,y) + v^+ P_2^+(x,y) + v^- P_2^-(x,y) + tP_3(x,y)
$$

+
$$
\sum_{n=1}^{\infty} \lambda_n^+ P_{4,c_n^+}^+(x,y) + \sum_{n=1}^{\infty} \lambda_n^- P_{4,c_n^-}^-(x,y)
$$

+
$$
\sum_{m=1}^{\infty} \delta_m^+ P_{5,a_m^+}^+(x,y) + \sum_{m=1}^{\infty} \delta_m^- P_{5,a_m^-}^-(x,y),
$$

for some $u, v^{\pm}, t, \lambda^{\pm}_n, \delta^{\pm}_m, \in \mathbb{R}$ $(n, m \in \mathbb{N})$ with $0 \leq c^{\pm}_n, a^{\pm}_m \leq 1$ and

$$
|u| + |v^+| + |v^-| + |t| + \sum_{n=1}^{\infty} |\lambda_n^+| + \sum_{n=1}^{\infty} |\lambda_n^-| + \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| = 1.
$$

We will show that $v^{\pm} = t = \lambda_n^{\pm} = \delta_m^{\pm} = 0$ for every $n, m \in \mathbb{N}$. Subclaim: $v^{\pm} = t = 0$.

Assume that $v^+ \neq 0$. It follows that

$$
1 = f(Q) = uf(P_1) + v^+ f(P_2^+) + v^- f(P_2^-) + tf(P_3) + \sum_{n=1}^{\infty} \lambda_n^+ f(P_{4,c_n}^+)
$$

+
$$
\sum_{n=1}^{\infty} \lambda_n^- f(P_{4,c_n}^-) + \sum_{m=1}^{\infty} \delta_m^+ f(P_{5,a_m}^+) + \sum_{m=1}^{\infty} \delta_m^- f(P_{5,a_m}^-)
$$

$$
\leq |u| + |v^+||f(P_2^+)| + |v^-||f(P_2^-)| + |t||f(P_3)| + \sum_{n=1}^{\infty} |\lambda_n^+||f(P_{4,c_n}^+)|
$$

+
$$
\sum_{n=1}^{\infty} |\lambda_n^-||f(P_{4,c_n}^-)| + \sum_{m=1}^{\infty} |\delta_m^+||f(P_{5,a_m}^+)| + \sum_{m=1}^{\infty} |\delta_m^-||f(P_{5,a_m}^-)|
$$

$$
\leq |u| + \frac{9}{20}|v^+| + \frac{9}{20}|v^-| + \frac{19}{20}|t| + \frac{4}{5} \sum_{n=1}^{\infty} |\lambda_n^+|
$$

+
$$
\frac{4}{5} \sum_{n=1}^{\infty} |\lambda_n^-| + \frac{11}{20} \sum_{m=1}^{\infty} |\delta_m^+| + \frac{11}{20} \sum_{m=1}^{\infty} |\delta_m^-| \quad \text{(by (*), (**), (**)})
$$

$$
\langle |u| + |v^+| + \frac{9}{20}|v^-| + \frac{19}{20}|t| + \frac{4}{5} \sum_{n=1}^{\infty} |\lambda_n^+| + \frac{4}{5} \sum_{n=1}^{\infty} |\lambda_n^-| + \frac{11}{20} \sum_{m=1}^{\infty} |\delta_m^+| + \frac{11}{20} \sum_{m=1}^{\infty} |\delta_m^-| \le |u| + |v^+| + |v^-| + |t| + \sum_{n=1}^{\infty} |\lambda_n^+| + \sum_{n=1}^{\infty} |\lambda_n^-| + \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| = 1,
$$

which is impossible. Therefore, $v^+ = 0$. Using a similar argument as above, $\text{we have } v^- = t = 0.$

Subclaim: $\lambda_n^{\pm} = \delta_m^{\pm} = 0$ for every $n, m \in \mathbb{N}$.

Assume that $\lambda_{n_0}^+ \neq 0$ for some $n_0 \in \mathbb{N}$. It follows that

$$
1 = f(Q) = uf(P_1) + \lambda_{n_0}^+ f(P_{4,c_{n_0}}^+) + \sum_{n \in \mathbb{N}, n \neq n_0} \lambda_n^+ f(P_{4,c_n^+}^+) + \sum_{n=1}^{\infty} \lambda_n^- f(P_{4,c_n^-}^-) + \sum_{m=1}^{\infty} \delta_m^+ f(P_{5,a_m^+}^+) + \sum_{m=1}^{\infty} \delta_m^- f(P_{5,a_m^-}^-) \n\leq |u| + |\lambda_{n_0}^+|f(P_{4,c_{n_0}^+}^+)| + \sum_{n \in \mathbb{N}, n \neq n_0} |\lambda_n^+| |f(P_{4,c_n^+}^+)| + \sum_{n=1}^{\infty} |\lambda_n^-| |f(P_{4,c_n^-}^-)| + \sum_{m=1}^{\infty} |\delta_m^+| |f(P_{5,a_m^+}^+)| + \sum_{m=1}^{\infty} |\delta_m^-| |f(P_{5,a_m^-}^-)| < |u| + |\lambda_{n_0}^+| + \frac{4}{5} \sum_{n \in \mathbb{N}, n \neq n_0} |\lambda_n^+| + \frac{4}{5} \sum_{n=1}^{\infty} |\lambda_n^-| + \frac{11}{20} \sum_{m=1}^{\infty} |\delta_m^+| + \frac{11}{20} \sum_{m=1}^{\infty} |\delta_m^-| \n\leq |u| + \sum_{n=1}^{\infty} |\lambda_n^+| + \sum_{n=1}^{\infty} |\lambda_n^-| + \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| = 1,
$$

which is impossible. Therefore, $\lambda_n^+ = 0$ for every $n \in \mathbb{N}$. Using a similar argument as above, we have $\lambda_n^- = \delta_m^{\pm} = 0$ for every $n, m \in \mathbb{N}$. Therefore, $Q(x, y) = uP_1(x, y)$. Hence $u = 1$, so $Q = P_1$. Therefore, f exposes P_1 .

Claim 2: $P_{5,0} = 2xy \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}$.

Let $f \in \mathcal{P}(\mathbb{Z}_{h}^2)$ $\binom{2}{h(\frac{1}{2})}^*$ be such that

$$
\alpha = \beta = 0 \,, \qquad \gamma = \frac{1}{2} \,.
$$

We will show that *f* exposes $P_{5,0}$. Indeed, $f(P_{5,0}) = 1$, $f(P_1) = 0$, $f(P_2^{\pm}) =$ $\pm\frac{1}{2}$ $\frac{1}{2}$, $f(P_3) = 0$,

$$
-\frac{1}{2} \le f(P_{4,c}^{\pm}) = \pm \frac{c}{2} \le \frac{1}{2} \qquad (0 \le c \le 1).
$$

Note that, for $0 < c \leq 1$,

$$
-1 < f(P_{5,c}^{\pm}) = \pm \frac{c + 2\sqrt{1 - c}}{2} < 1. \tag{\dagger}
$$

Hence, by Theorem 2.3, $1 = ||f||$. Let

$$
Q(x,y) = uP_1(x,y) + v^+ P_2^+(x,y) + v^- P_2^-(x,y) + tP_3(x,y)
$$

+
$$
\sum_{n=1}^{\infty} \lambda_n^+ P_{4,c_n^+}^+(x,y) + \sum_{n=1}^{\infty} \lambda_n^- P_{4,c_n^-}^-(x,y)
$$

+
$$
\sum_{m=1}^{\infty} \delta_m^+ P_{5,a_m^+}^+(x,y) + \sum_{m=1}^{\infty} \delta_m^- P_{5,a_m^-}^-(x,y),
$$

for some $u, v^{\pm}, t, \lambda^{\pm}_n, \delta^{\pm}_m, \in \mathbb{R}$ $(n, m \in \mathbb{N})$ with $0 \leq c^{\pm}_n, a^{\pm}_m \leq 1$ and

$$
|u| + |v^+| + |v^-| + |t| + \sum_{n=1}^{\infty} |\lambda_n^+| + \sum_{n=1}^{\infty} |\lambda_n^-| + \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| = 1.
$$

We will show that $v^{\pm} = t = \lambda_n^{\pm} = \delta_m^{\pm} = 0$ for every $n, m \in \mathbb{N}$. Subclaim: $v^+ = 0$.

Assume that $v^+ \neq 0$. It follows that

$$
1 = f(Q) = v^{+} f(P_{2}^{+}) + v^{-} f(P_{2}^{-}) + \sum_{n=1}^{\infty} \lambda_{n}^{+} f(P_{4,c_{n}^{+}}^{+})
$$

+
$$
\sum_{n=1}^{\infty} \lambda_{n}^{-} f(P_{4,c_{n}^{-}}^{-}) + \sum_{m=1}^{\infty} \delta_{m}^{+} f(P_{5,a_{m}^{+}}^{+}) + \sum_{m=1}^{\infty} \delta_{m}^{-} f(P_{5,a_{m}^{-}}^{-})
$$

$$
\langle |v^{+}| + \frac{1}{2} |v^{-}| + \sum_{n=1}^{\infty} |\lambda_{n}^{+} || f(P_{4,c_{n}^{+}}^{+})| + \sum_{n=1}^{\infty} |\lambda_{n}^{-} || f(P_{4,c_{n}^{-}}^{-})|
$$

+
$$
\sum_{m=1}^{\infty} |\delta_{m}^{+} || f(P_{5,a_{m}^{+}}^{+})| + \sum_{m=1}^{\infty} |\delta_{m}^{-} || f(P_{5,a_{m}^{-}}^{-})|
$$

$$
\leq |v^{+}| + |v^{-}| + \sum_{n=1}^{\infty} |\lambda_{n}^{+}| + \sum_{n=1}^{\infty} |\lambda_{n}^{-} + \sum_{m=1}^{\infty} |\delta_{m}^{+}| + \sum_{m=1}^{\infty} |\delta_{m}^{-} | \leq 1,
$$

which is impossible. Therefore, $v^+ = 0$. Using a similar argument as Claim 1, we have $v^- = \lambda_n^{\pm} = 0$ for every $n \in \mathbb{N}$. Hence,

$$
Q(x,y) = uP_1(x,y) + tP_3(x,y) + \sum_{m=1}^{\infty} \delta_m^+ P_{5,a_m^+}^+(x,y) + \sum_{m=1}^{\infty} \delta_m^- P_{5,a_m^-}^-(x,y).
$$

It follows that

$$
1 = f(Q) = \sum_{m=1}^{\infty} \delta_m^+ f(P_{5,a_m^+}^+) + \sum_{m=1}^{\infty} \delta_m^- f(P_{5,a_m^-}^-)
$$

$$
\leq \sum_{m=1}^{\infty} |\delta_m^+| |f(P_{5,a_m^+}^+)| + \sum_{m=1}^{\infty} |\delta_m^-| |f(P_{5,a_m^-}^-)|
$$

$$
\leq \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| \leq 1,
$$

which shows that

$$
f(P_{5,a_m^+}^+) = f(P_{5,a_m^-}^-) = \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| = 1, \quad u = t = 0 \quad \text{for all } m \in \mathbb{N}.
$$

By (†), $P_{5,a_m^{\pm}}^{\pm} = P_{5,0}$ for every $m \in \mathbb{N}$ and $\sum_{m=1}^{\infty} \delta_m^+ + \sum_{m=1}^{\infty} \delta_m^- = 1$. Therefore, $Q = P_{5,0}$. Hence, f exposes $P_{5,0}$.

Claim 3:
$$
P_2^+ = x^2 + \frac{1}{4}y^2 + xy \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}.
$$

Let $f \in \mathcal{P}(\mathbb{Z}_{h}^2)$ $\binom{2}{h(\frac{1}{2})}^*$ be such that

$$
\alpha = \frac{1}{2} = \beta \,, \qquad \gamma = \frac{3}{8} \,.
$$

We will show that *f* exposes *P*₂. Indeed, $f(P_2^+) = 1$, $f(P_2^-) = \frac{1}{4}$, $f(P_1) = \frac{1}{2}$, $f(P_3^{\pm}) = \frac{7}{8}$. By some calculation, we have

$$
|f(P_{4,c}^\pm)| \leq \frac{1}{2}\,, \qquad |f(P_{5,c}^\pm)| \leq \frac{57}{64} \qquad \text{for } 0 \leq c \leq 1\,.
$$

Hence, by Theorem 2.3, $1 = ||f||$. By similar arguments as Claims 1 and 2, *f* exposes P_2^+ . Obviously, $P_2^- \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h(\frac{1}{2})}\right)}$.

 $h(\frac{1}{2})$ Claim 4: $P_{4,0}^+ = x^2 - y^2 \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}$. Let $f \in \mathcal{P}(\mathbb{Z}_{h}^2)$ $\binom{2}{h(\frac{1}{2})}^*$ be such that

$$
\alpha = \frac{1}{2} = -\beta \,, \qquad \gamma = 0 \,.
$$

We will show that f exposes $P_{4,0}$. Indeed,

$$
f(P_{4,0}^+) = 1
$$
, $|f(P_1)| = \frac{1}{2}$, $|f(P_2^{\pm})| = \frac{3}{8}$, $|f(P_3)| = \frac{1}{8}$.

Note that

$$
|f(P_{4,c}^{\pm})| = 1 - \frac{c^2}{8} < 1 \qquad \text{for } 0 < c \le 1.
$$

Note that, for $0 \leq c \leq 1$,

$$
|f(P_{5,c}^{\pm})| = \frac{3c + 4 - 4\sqrt{1 - c}}{8} \le \frac{7}{8}.
$$

Hence, by Theorem 2.3, $1 = ||f||$. By similar arguments as Claims 1 and 2, *f* \exp oses $P_{4,0}^+$.

Claim 5: $P_3 = x^2 + \frac{3}{4}$ $\frac{3}{4}y^2 \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}$.

Let $f \in \mathcal{P}({}^2\mathbb{R}^2_{\scriptscriptstyle{b}})$ $\binom{2}{h(\frac{1}{2})}^*$ be such that

$$
\alpha = \frac{5}{8}, \qquad \beta = \frac{1}{2}, \qquad \gamma = 0.
$$

We will show that f exposes P_3 . Indeed,

$$
f(P_3) = 1
$$
, $|f(P_1)| = \frac{1}{2}$, $|f(P_2^{\pm})| = \frac{3}{4}$.

Note that

$$
|f(P_{4,c}^{\pm})| \le \frac{1}{4}
$$
, $|f(P_{5,c}^{\pm})| \le \frac{1}{3}$ for $0 \le c \le 1$.

Hence, by Theorem 2.3, $1 = ||f||$. By similar arguments as Claims 1 and 2, *f* exposes *P*3.

Claim 6: $P_{5,1}^+ = x^2 - \frac{3}{4}$ $\frac{3}{4}y^2 + xy \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}$.

Let $f \in \mathcal{P}({}^2\mathbb{R}^2_{\scriptscriptstyle{b}})$ $\binom{2}{h(\frac{1}{2})}^*$ be such that

$$
\alpha = \frac{11}{16}, \qquad \beta = -\frac{1}{4}, \qquad \gamma = \frac{1}{8}.
$$

136 s. g. kim

We will show that f exposes $P_{5,1}^+$. Indeed,

$$
f(P_{5,1}^+) = 1
$$
, $|f(P_1)| = \frac{1}{4}$, $|f(P_2^{\pm})| \le \frac{3}{4}$, $|f(P_3)| = \frac{1}{2}$.

Note that

$$
\frac{3}{4} \le f(P_{4,c}^{\pm}) < 1 \,, \quad -\frac{1}{4} \le f(P_{5,c}^{\pm}) < 1 \qquad \text{for } 0 \le c < 1 \,.
$$

Hence, by Theorem 2.3, $1 = ||f||$. By similar arguments as Claims 1 and 2, f exposes $P_{5,1}^+$. Obviously, $P_{5,1}^- \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}$.

Claim 7:
$$
P_{4,c}^+ = x^2 + (\frac{c^2}{4} - 1)y^2 + cxy \in \exp B_{\mathcal{P}(\supseteq \mathbb{R}^2_{h(\frac{1}{2})})}
$$
 for $0 < c < 1$.
Let $f \in \mathcal{P}(\supseteq \mathbb{R}^2_{h(\frac{1}{2})})^*$ be such that

$$
\alpha = \frac{3}{4} - \frac{c^2}{16}, \qquad \beta = -\frac{1}{4}, \qquad \gamma = \frac{c}{8}.
$$

Indeed,

$$
f(P_{4,c}^{+}) = 1, \qquad \frac{3}{4} \le f(P_{4,c}^{-}) = 1 - \frac{c^{2}}{4} < 1, \qquad |f(P_{1})| = \frac{1}{4},
$$

$$
\frac{1}{2} \le f(P_{2}^{\pm}) \le \frac{3}{4}, \qquad \frac{1}{2} \le f(P_{3}) < \frac{9}{16}.
$$
 (*)

Note that for every $t \in [0, 1]$ with $t \neq c$,

$$
f(P_{4,t}^{+}) = -\frac{1}{16}t^{2} + \frac{c}{8}t + \left(1 - \frac{c^{2}}{16}\right)
$$

and

$$
f(P_{4,t}^{-}) = -\frac{1}{16}t^{2} - \frac{c}{8}t + \left(1 - \frac{c^{2}}{16}\right).
$$

Hence, we have, for every $t \in [0, 1]$ with $t \neq c$,

$$
1 < \min\left\{1 - \frac{c^2}{16}, 1 - \frac{(1 - c)^2}{16}\right\} \le f(P_{4,t}^+) < 1
$$
 (**)

and

$$
-1 < 1 - \frac{(1+c)^2}{16} \le f(P_{4,t}^-) \le 1 - \frac{c^2}{16} < 1.
$$

137

Note that, for every $t \in [0, 1]$,

$$
f(P_{5,t}^{+}) = \left(\frac{-c^2 + 2c + 11}{16}\right)t + \left(\frac{c - 1}{4}\right)\sqrt{1 - t} + \frac{1}{4}
$$

and

$$
f(P_{5,t}^-) = \left(\frac{-c^2 - 2c + 11}{16}\right)t + \left(\frac{c+1}{4}\right)\sqrt{1-t} + \frac{1}{4}.
$$

Hence, we have that, for every $t \in [0, 1]$,

$$
-1 < \frac{c}{4} \le f(P_{5,t}^+) \le \frac{-c^2 + 2c + 15}{16} < 1 \tag{***}
$$

and

$$
-1 < \frac{c+2}{4} \le f(P_{5,t}^-) \le \frac{-c^2 - 2c + 15}{16} < 1\,.
$$

Hence, by Theorem 2.3, $1 = ||f||$. We will show that *f* exposes $P_{4,c}^+$. Let $Q(x, y) = ax^2 + by^2 + cxy \in \mathcal{P}({}^{2} \mathbb{R}^2)$ $\binom{2}{h(\frac{1}{2})}$ such that $1 = ||Q|| = f(Q)$. We will show that $Q = P_{4,c}^+$. By the Krein-Milman Theorem,

$$
Q(x,y) = uP_1(x,y) + v^+ P_2^+(x,y) + v^- P_2^-(x,y) + tP_3(x,y)
$$

+
$$
\sum_{n=1}^{\infty} \lambda_n^+ P_{4,c_n^+}^+(x,y) + \sum_{n=1}^{\infty} \lambda_n^- P_{4,c_n^-}^-(x,y)
$$

+
$$
\sum_{m=1}^{\infty} \delta_m^+ P_{5,a_m^+}^+(x,y) + \sum_{m=1}^{\infty} \delta_m^- P_{5,a_m^-}^-(x,y),
$$

for some $u, v^{\pm}, t, \lambda^{\pm}_n, \delta^{\pm}_m, \in \mathbb{R}$ $(n, m \in \mathbb{N})$ with $0 \leq c^{\pm}_n, a^{\pm}_m \leq 1$ and

$$
|u| + |v^+| + |v^-| + |t| + \sum_{n=1}^{\infty} |\lambda_n^+| + \sum_{n=1}^{\infty} |\lambda_n^-| + \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| = 1.
$$

We will show that $u = v^{\pm} = t = \lambda_n^{-} = \delta_m^{\pm} = 0$ for every $n, m \in \mathbb{N}$. Assume

that $\delta_{m_0}^+ \neq 0$ for some $m_0 \in \mathbb{N}$. It follows that

$$
1 = f(Q) = uf(P_1) + v^+ f(P_2^+) + v^- f(P_2^-) + tf(P_3) + \sum_{n=1}^{\infty} \lambda_n^+ f(P_{4,c_n^+}^+) + \sum_{n=1}^{\infty} \lambda_n^- f(P_{4,c_n^-}^-) + \sum_{m=1}^{\infty} \delta_m^+ f(P_{5,a_m^+}^+) + \sum_{m=1}^{\infty} \delta_m^- f(P_{5,a_m^-}^-) < \frac{1}{4}|u| + \frac{3}{4}|v^+| + \frac{3}{4}|v^-| + \frac{9}{16}|t| + \sum_{n=1}^{\infty} |\lambda_n^+| + \sum_{n=1}^{\infty} |\lambda_n^-| + |\delta_{m_0}^+| + \sum_{m \neq m_0} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| \quad \text{(by (*), (**), (**)}) \le 1,
$$

which is impossible. Therefore, $\delta_m^+ = 0$ for every $m \in \mathbb{N}$. Using a similar argument as above, we have $u = v^{\pm} = t = \lambda_n^{-} = 0$. Therefore,

$$
Q(x, y) = \sum_{n=1}^{\infty} \lambda_n^+ P_{4, c_n^+}^+(x, y) .
$$

We will show that if $c_{n_0}^+ \neq c$ for some $n_0 \in \mathbb{N}$, then $\lambda_{n_0}^+ = 0$. Assume that $\lambda_{n_0}^+ \neq 0$. It follows that

$$
1 = f(Q) = \lambda_{n_0}^+ f(P_{4,c_{n_0}^+}^+) + \sum_{n \neq n_0} \lambda_n^+ f(P_{4,c_n^+}^+) < |\lambda_{n_0}^+| + \sum_{n \neq n_0} |\lambda_n^+| = 1,
$$

which is impossible. Therefore, $\lambda_n^+ = 0$ for every $n \in \mathbb{N}$. Therefore,

$$
Q(x,y) = \left(\sum_{c_n^+ = c} \lambda_n^+\right) P_{4,c}^+(x,y) = P_{4,c}^+(x,y).
$$

Therefore, *f* exposes $P_{4,c}^+$. Obviously, $P_{4,c}^- \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)\right)}}$ for $0 < c \leq 1$.

Claim 8:
$$
P_{5,c}^+ = cx^2 + \left(\frac{c+4\sqrt{1-c}}{4} - 1\right)y^2 + (c+2\sqrt{1-c})xy \in \exp B_{\mathcal{P}\left(2\mathbb{R}^2_{h\left(\frac{1}{2}\right)}\right)}
$$
 for $0 < c < 1$.

Let $f \in \mathcal{P}(\mathbb{Z}_{h}^2)$ $\binom{2}{h(\frac{1}{2})}^*$ be such that

$$
\alpha = \frac{1}{2} \left(1 - \frac{c + 4\sqrt{1 - c}}{4} \right), \qquad \beta = -\frac{c}{2}, \qquad \gamma = \frac{c + 2\sqrt{1 - c}}{4}.
$$

Note that

$$
0 \le \alpha < \frac{3}{8}, \quad -\frac{1}{2} < \beta \le 0, \quad \frac{1}{4} < \gamma \le \frac{1}{2}.
$$

We will show that f exposes $P_{5,c}^+$. Indeed,

$$
f(P_{5,c}^{+}) = 1, \t |f(P_1)| < \frac{1}{2}, \t 0 < f(P_2^{+}) < \frac{1}{2},
$$

-1 < f(P_2^{-}) < -\frac{1}{8}, \t -\frac{1}{8} \le f(P_3) < 0. \t (*)

Note that for every $t \in [0, 1]$,

$$
f(P_{4,t}^{+}) = -\frac{c}{8}t^{2} + \left(\frac{c+2\sqrt{1-c}}{4}\right)t + \frac{1}{2} + \frac{3c}{8} - \frac{\sqrt{1-c}}{2}
$$

and

$$
f(P_{4,t}^{-}) = -\frac{c}{8}t^{2} - \left(\frac{c+2\sqrt{1-c}}{4}\right)t + \frac{1}{2} + \frac{3c}{8} - \frac{\sqrt{1-c}}{2}.
$$

Hence, we have for every $t \in [0, 1]$,

$$
-1 < \frac{1}{2} + \frac{3c}{8} - \frac{\sqrt{1-c}}{2} \le f(P_{4,t}^+) \le \frac{c+1}{2} < 1,
$$

$$
-1 < \frac{1}{2} - \sqrt{1-c} \le f(P_{4,t}^-) \le \frac{1}{2} + \frac{3c}{8} - \frac{\sqrt{1-c}}{2} < 1.
$$
^(*)

Note that for every $t \in [0, 1]$ with $t \neq c$,

$$
f(P_{5,t}^{+}) = \frac{1}{2}t + \sqrt{1-c}\sqrt{1-t} + \frac{c}{2}
$$

and

$$
f(P_{5,t}^{-}) = \left(\frac{1 - c - \sqrt{1 - c}}{2}\right)t - (c + \sqrt{1 - c})\sqrt{1 - t} + \frac{c}{2}.
$$

Hence, we have for every $t \in [0, 1]$ with $t \neq c$,

$$
-1 < \min\left\{\frac{c}{2} + \sqrt{1-c}, \frac{c+1}{2}\right\} \le f(P_{5,t}^+) < 1,
$$

$$
-1 < -\left(\frac{c}{2} + \sqrt{1-c}\right) \le f(P_{5,t}^-) \le \frac{1}{2} - \sqrt{1-c} < 1.
$$
^(***)

Hence, by Theorem 2.3, $1 = ||f||$. Let $Q(x, y) = ax^2 + by^2 + cxy$ in $\mathcal{P}\left(^{2}\mathbb{R}^{2}_{h}\right)$ $\binom{2}{h(\frac{1}{2})}$ such that 1 = $||Q|| = f(Q)$. By the Krein-Milman Theorem,

$$
Q(x,y) = uP_1(x,y) + v^+ P_2^+(x,y) + v^- P_2^-(x,y) + tP_3(x,y)
$$

+
$$
\sum_{n=1}^{\infty} \lambda_n^+ P_{4,c_n^+}^+(x,y) + \sum_{n=1}^{\infty} \lambda_n^- P_{4,c_n^-}^-(x,y)
$$

+
$$
\sum_{m=1}^{\infty} \delta_m^+ P_{5,a_m^+}^+(x,y) + \sum_{m=1}^{\infty} \delta_m^- P_{5,a_m^-}^-(x,y),
$$

for some $u, v^{\pm}, t, \lambda^{\pm}_n, \delta^{\pm}_m, \in \mathbb{R}$ $(n, m \in \mathbb{N})$ with $0 \leq c^{\pm}_n, a^{\pm}_m \leq 1$ and

$$
|u| + |v^+| + |v^-| + |t| + \sum_{n=1}^{\infty} |\lambda_n^+| + \sum_{n=1}^{\infty} |\lambda_n^-| + \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| = 1.
$$

We will show that $u = v^{\pm} = t = \lambda_n^{\pm} = \delta_m^- = 0$ for every $n, m \in \mathbb{N}$. Assume that $\lambda_{n_0} \neq 0$ for some $n_0 \in \mathbb{N}$. It follows that

$$
1 = f(Q) = uf(P_1) + v^+ f(P_2^+) + v^- f(P_2^-) + tf(P_3) + \sum_{n=1}^{\infty} \lambda_n^+ f(P_{4,c_n^+}^+) + \sum_{n=1}^{\infty} \lambda_n^- f(P_{4,c_n^-}^-) + \sum_{m=1}^{\infty} \delta_m^+ f(P_{5,a_m^+}^+) + \sum_{m=1}^{\infty} \delta_m^- f(P_{5,a_m^-}^-) < \frac{1}{2}|u| + \frac{1}{2}|v^+| + \frac{1}{2}|v^-| + \frac{1}{2}|t| + |\lambda_{n_0}^+| + \sum_{n \neq n_0} |\lambda_n^+| + \sum_{m=1}^{\infty} |\delta_m^+| + \sum_{m=1}^{\infty} |\delta_m^-| \le 1 \quad \text{(by (*), (**), (**)}),
$$

which is impossible. Therefore, $\lambda_n^+ = 0$ for every $n \in \mathbb{N}$. Using a similar argument as above, we have $u = v^{\pm} = t = \lambda_n^- = \delta_m^- = 0$ for every $n, m \in \mathbb{N}$. Therefore,

$$
Q(x,y) = \sum_{m=1}^{\infty} \delta_m^+ P_{5,a_m^+}^+(x,y).
$$

We will show that if $a_{m_0}^+ \neq c$ for some $m_0 \in \mathbb{N}$, then $\delta_{m_0}^+ = 0$. Assume that

 $\delta_{m_0}^+ \neq 0$. It follows that

$$
1 = f(Q) = \delta_{m_0}^+ f(P_{5,a_{m_0}}^+) + \sum_{m \neq m_0} \delta_m^+ f(P_{5,a_m}^+) < |\delta_{m_0}^+| + \sum_{m \neq m_0} |\delta_m^+| = 1
$$

which is impossible. Therefore, $\delta_{m_0}^+ = 0$. Therefore,

$$
Q(x,y) = \left(\sum_{a_m=a} \delta_m^+\right) P_{5,c}^+(x,y) = P_{5,c}^+(x,y).
$$

Therefore, *f* exposes $P_{5,c}^+$. Obviously, $P_{5,c}^- \in \exp B_{\mathcal{P}\left(2\mathbb{R}_{h\left(\frac{1}{2}\right)}^2\right)}$ for $0 < c < 1$. Therefore, we complete the proof.

REFERENCES

- [1] R.M. Aron, M. Klimek, Supremum norms for quadratic polynomials, *Arch. Math. (Basel)* **76** (2001), 73 – 80.
- [2] C. Boyd, R. Ryan, Geometric theory of spaces of integral polynomials and symmetric tensor products, *J. Funct. Anal.* **179** (2001), 18 – 42.
- [3] W. CAVALCANTE, D. PELLEGRINO, Geometry of the closed unit ball of the space of bilinear forms on l_{∞}^2 ; arXiv:1603.01535v2.
- [4] Y.S. CHOI, H. KI, S.G. KIM, Extreme polynomials and multilinear forms on *l*1, *J. Math. Anal. Appl.* **228** (1998), 467 – 482.
- [5] Y.S. CHOI, S.G. KIM, The unit ball of $\mathcal{P}(2l_2^2)$, Arch. Math. (Basel) 71 $(1998), 472 - 480.$
- [6] Y.S. Choi, S.G. Kim, Extreme polynomials on *c*0, *Indian J. Pure Appl. Math.* **29** (1998), 983 – 989.
- [7] Y.S. CHOI, S.G. KIM, Smooth points of the unit ball of the space $\mathcal{P}(2l_1)$, *Results Math.* **36** (1999), 26 – 33.
- [8] Y.S. CHOI, S.G. KIM, Exposed points of the unit balls of the spaces $\mathcal{P}(^{2}l_p^2)$ $(p = 1, 2, \infty)$, *Indian J. Pure Appl. Math.* **35** (2004), 37–41.
- [9] V. DIMANT, D. GALICER, R. GARCÍA, Geometry of integral polynomials, *M*-ideals and unique norm preserving extensions, *J. Funct. Anal.* **262** (2012), 1987 – 2012.
- [10] S. DINEEN, "Complex Analysis on Infinite-Dimensional Spaces", Springer-Verlag, London, 1999.
- [11] J.L. GÁMEZ-MERINO, G.A. MUÑOZ-FERNÁNDEZ, V.M. SÁNCHEZ, J.B. SEOANE-SEPÚLVEDA, Inequalities for polynomials on the unit square via the Krein-Milman Theorem, \bar{J} . Convex Anal. **20** (1) (2013), 125 – 142.
- [12] B.C. Grecu, Geometry of three-homogeneous polynomials on real Hilbert spaces, *J. Math. Anal. Appl.* **246** (2000), 217 – 229.
- [13] B.C. Grecu, Smooth 2-homogeneous polynomials on Hilbert spaces, *Arch. Math. (Basel)* **76** (6) (2001), 445 – 454.
- [14] B.C. GRECU, Geometry of 2-homogeneous polynomials on l_p spaces, $1 < p <$ *∞*, *J. Math. Anal. Appl.* **273** (2002), 262 – 282.
- [15] B.C. Grecu, Extreme 2-homogeneous polynomials on Hilbert spaces, *Quaest. Math.* **25** (4) (2002), 421 – 435.
- [16] B.C. Grecu, Geometry of homogeneous polynomials on two- dimensional real Hilbert spaces *J. Math. Anal. Appl.* **293** (2004), 578 – 588.
- [17] B.C. GRECU, G.A. MUÑÓZ-FERNÁNDEZ, J.B. SEOANE-SEPÚLVEDA, The unit ball of the complex $P(^{3}H)$, *Math. Z.* **263** (2009), 775 – 785.
- [18] S.G. KIM, Exposed 2-homogeneous polynomials on $\mathcal{P}(^{2l_p^2})$ ($1 \leq p \leq \infty$), Math. *Proc. R. Ir. Acad.* **107** (2007), 123 – 129.
- [19] S.G. KIM, The unit ball of $\mathcal{L}_s(^{2}l_{\infty}^2)$, *Extracta Math.* **24** (2009), 17–29.
- [20] S.G. KIM, The unit ball of $\mathcal{P}({}^{2}D_{*}(1, W)^{2})$, *Math. Proc. R. Ir. Acad.* **111A** (2) $(2011), 79 - 94.$
- [21] S.G. KIM, The unit ball of $\mathcal{L}_s(^2d_*(1,w)^2)$, *Kyungpook Math. J.* **53** (2013), $295 - 306$.
- [22] S.G. KIM, Smooth polynomials of $\mathcal{P}(2d_*(1,w)^2)$, Math. Proc. R. Ir. Acad. **113A** (1) (2013), 45 – 58.
- [23] S.G. KIM, Extreme bilinear forms of $\mathcal{L}(^2d_*(1,w)^2)$, *Kyungpook Math. J.* 53 $(2013), 625 - 638.$
- [24] S.G. KIM, Exposed symmetric bilinear forms of $\mathcal{L}_s(^2d_*(1,w)^2)$, *Kyungpook Math. J.* **54** (2014), 341 – 347.
- [25] S.G. KIM, Polarization and unconditional constants of $\mathcal{P}(2d_*(1,w)^2)$, *Commun. Korean Math. Soc.* **29** (2014), 421 – 428.
- [26] S.G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, *Mediterr. J. Math.* **13** (2016), 2827 – 2839.
- [27] S.G. KIM, The unit ball of $\mathcal{L}_s(^{2}l_{\infty}^3)$, *Comment. Math.* 57 (2017), 1-7.
- [28] S.G. KIM, The unit ball of $\mathcal{L}(^{2} \mathbb{R}^{2}_{h(w)})$, *Bull. Korean Math. Soc.* **54** (2017), $417 - 428.$
- [29] S.G. KIM, Extremal problems for $\mathcal{L}_s(^2\mathbb{R}^2_{h(w)})$, *Kyungpook Math. J.* 57 (2017), 223 – 232.
- [30] S.G. KIM, The geometry of $\mathcal{L}_s({}^3 l^2_{\infty})$, *Commun. Korean Math. Soc.* **32** (2017), $991 - 997.$
- [31] S.G. Kim, Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, *Studia Sci. Math. Hungar.* **54** (2017), 362 – 393.
- [32] S.G. KIM, Extreme bilinear form on \mathbb{R}^n with the supremum norm, to appear in *Period. Math. Hungar.*
- [33] S.G. KIM, The geometry of $\mathcal{L}({}^{3}l_{\infty}^{2})$ and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials, *Extracta Math.* **33** (1) $(2018), 51 - 66.$
- [34] S.G. KIM, S.H. LEE, Exposed 2-homogeneous polynomials on Hilbert spaces, *Proc. Amer. Math. Soc.* **131** (2003), 449 – 453.
- [35] A.G. KONHEIM, T.J. RIVLIN, Extreme points of the unit ball in a space of real polynomials, *Amer. Math. Monthly* **73** (1966), 505 – 507.
- [36] L. MILEV, N. NAIDENOV, Strictly definite extreme points of the unit ball in a polynomial space, *C. R. Acad. Bulgare Sci.* **61** (2008), 1393 – 1400.
- [37] L. MILEV, N. NAIDENOV, Semidefinite extreme points of the unit ball in a polynomial space, *J. Math. Anal. Appl.* **405** (2013), 631 – 641.
- [38] G.A. MUÑÓZ-FERNÁNDEZ, D. PELLEGRINO, J.B. SEOANE-SEPÚLVEDA, A. WEBER, Supremum norms for 2-homogeneous polynomials on circle sectors, *J. Convex Anal.* **21** (3) (2014), 745 – 764.
- [39] G.A. MUÑOZ-FERNÁNDEZ, S. REVESZ, J.B. SEOANE-SEPÚLVEDA, Geometry of homogeneous polynomials on non symmetric convex bodies, *Math. Scand.* **105** (2009), 147 – 160.
- [40] G.A. MUÑÓZ-FERNÁNDEZ, J.B. SEOANE-SEPÚLVEDA, Geometry of Banach spaces of trinomials, *J. Math. Anal. Appl.* **340** (2008), 1069 – 1087.
- [41] S. NEUWIRTH, The maximum modulus of a trigonometric trinomial, *J. Anal. Math.* **104** (2008), 371 – 396.
- [42] W.M. RUESS, C.P. STEGALL, Extreme points in duals of operator spaces, *Math. Ann.* **261** (1982), 535 – 546.
- [43] R.A. RYAN, B. TURETT, Geometry of spaces of polynomials, *J. Math. Anal. Appl.* **221** (1998), 698 – 711.