Supplemental Information for "Numerical construction of the Aizenman-Wehr metastate"

A. Billoire,¹ L.A. Fernandez,^{2, 3} A. Maiorano,^{4, 3} E. Marinari,^{4, 5, 6} V. Martin-Mayor,^{2, 3}

J. Moreno-Gordo,^{2, 3} G. Parisi,^{4, 5, 6} F. Ricci-Tersenghi,^{4, 5, 6} and J.J. Ruiz-Lorenzo^{7, 3}

 $¹ Institute de Physique Théorique, CEA Saclay and CNRS, 91191 Gif-sur-Yvette, France$ </sup>

 2 Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain

³Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain

 4 Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Rome, Italy ⁵Nanotec, Consiglio Nazionale delle Ricerche, I-00185 Rome, Italy

6 Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, I-00185 Rome, Italy

 7 Departamento de Física and Instituto de Computación Científica

Avanzada (ICCAEx), Universidad de Extremadura, 06071 Badajoz, Spain

(Dated: May 12, 2017)

This note illustrates the lack of measurable size-corrections on the computation of the ζ exponent reported on the main text.

As explained in the main text, once the system size L is effectivily taken to infinity, the MAS susceptibility $\chi_{\rho}(W, R)$ still depends on the window sizes R and W. The scaling relation

$$
\chi_{\rho}(W, R \to \infty) \propto W^{\zeta} \tag{1}
$$

defines the ζ exponent, but it is inconvenient for numerical work (where both W and R are finite). Fortunately, finite-size scaling solves this problem [1].

Indeed, we expect for finite R and W (see main text), a scaling behaviour

$$
\chi_{\rho}(W, R) = R^{\zeta} f(W/R). \tag{2}
$$

Consistency with Eq. (1) is obtained if the scaling function $f(x = W/R)$ scales in the limit $x \to 0$ as a power law $f(x) \sim x^{\zeta}$.

Eq. (2) is expected to be exact only in the limit of large W and R [1], hence one needs to check for size corrections. We do so with the quotients method [2–4], which produces *effective* ζ estimates at a well defined lengthscale. The size dependence can be assessed later on. Specifically, take two sizes-pairs (W_1, R_1) , (W_2, R_2) with the same value of W/R , which ensures the cancellation of scaling functions in the quotient

$$
\frac{\chi_{\rho}(W_2 = xR_2, R_2)}{\chi_{\rho}(W_1 = xR_1, R_1)} = \left(\frac{W_2 f(x)}{W_1 f(x)}\right)^{\zeta} = \left(\frac{W_2}{W_1}\right)^{\zeta}.
$$
 (3)

W/R	L/R	(W_1, W_2)	∕eff
1/2	2	(4,6)	2.18(40)
2/3	2	(4,8)	2.59(22)
	2	(8,12)	2.37(26)
		(6,8)	2.14(37)
		(6,12)	2.28(18)

TABLE I. The effective ζ exponent, Eq. (3), depends on the two lengths W_1 and W_2 and on the ratio $W_1/R_1 = W_2/R_2$.

FIG. 1. Ilustration of the scaling in Eq. (2) (data from main text). At small values of the scaling variable $x = W/R$ the scaling function behaves as a power law $f(x) \propto x^{\zeta}$.

The resulting determination of ζ , see Table I, is fully compatible with the main-text result $\zeta = 2.3(3)$. Furthermore, no significant size-dependence emerges from Table I. Besides, a power law with the main-text ζ estimation interpolates the data nicely in the region of $x < 0.75$, see Fig. 1.

- [1] J. L. Cardy (Editor), Finite-Size Scaling (Elsevier, 1988).
- [2] M.P. Nightingale, Physica (Amsterdam) 83A, 561 (1976).
- [3] H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, and A. Muñoz-Sudupe, Phys. Lett. B **378**, 207 (1996).
- [4] D. Amit and V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, (World-Scientific Singapore, third edition, 2005).