Local Spectral Theory for Operators R and SSatisfying $RSR=R^2$

PIETRO AIENA, MANUEL GONZÁLEZ

Dipartimento di Metodi e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo (Italia), paiena@unipa.it

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander (Spain), manuel.gonzalez@unican.es

Received February 5, 2016

Abstract: We study some local spectral properties for bounded operators R, S, RS and SR in the case that R and S satisfy the operator equation $RSR = R^2$. Among other results, we prove that S, R, SR and RS share Dunford's property (C) when $RSR = R^2$ and $SRS = S^2$.

Key words: Local spectral subspace, Dunford's property (C), operator equation.

AMS Subject Class. (2010): 47A10, 47A11, 47A53, 47A55.

1. Introduction and preliminaries

The equivalence of Dunford's property (C) for products RS and SR of operators $R \in L(Y,X)$ and $S \in L(X,Y)$, X and Y Banach spaces, has been studied in [2]. As noted in [13] the proof of Theorem 2.5 in [2] contains a gap which was filled up in [13, Theorem 2.7]. In [2] it was also studied property (C) for operators $R, S \in L(X)$ which satisfy the operator equations

$$RSR = R^2$$
 and $SRS = S^2$. (1)

A similar gap exists in the proof of Theorem 3.3 in [2], which states the equivalence of property (C) for R, S, RS and SR, when R, S satisfy (1).

In this paper we give a correct proof of this result and we prove further results concerning the local spectral theory of R, S, RS and SR, in particular we show several results concerning the quasi-nilpotent parts and the analytic cores of these operators. It should be noted that these results are established in a more general framework, assuming that only one of the operator equations in (1) holds.

Supported in part by MICINN (Spain), Grant MTM2013-45643.

We shall denote by X a complex infinite dimensional Banach space. Given a bounded linear operator $T \in L(X)$, the local resolvent set of T at a point $x \in X$ is defined as the union of all open subsets \mathcal{U} of \mathbb{C} such that there exists an analytic function $f: \mathcal{U} \to X$ satisfying

$$(\lambda I - T)f(\lambda) = x \quad \text{for all } \lambda \in \mathcal{U} . \tag{2}$$

The local spectrum $\sigma_T(x)$ of T at x is the set defined by $\sigma_T(x) := \mathbb{C} \setminus \rho_T(x)$. Obviously, $\sigma_T(x) \subseteq \sigma(T)$, where $\sigma(T)$ denotes the spectrum of T.

The following result shows that $\sigma_T(Tx)$ and $\sigma_T(x)$ may differ only at 0. It was proved in [7] for operators satisfying the SVEP.

LEMMA 1.1. For every $T \in L(X)$ and $x \in X$ we have

$$\sigma_T(Tx) \subseteq \sigma_T(x) \subseteq \sigma_T(Tx) \cup \{0\}.$$
 (3)

Moreover, if T is injective then $\sigma_T(Tx) = \sigma_T(x)$ for all $x \in X$.

Proof. Take S = T and R = I in [6, Proposition 3.1].

For every subset \mathcal{F} of \mathbb{C} , the local spectral subspace of T at \mathcal{F} is the set

$$X_T(\mathcal{F}) := \{ x \in X : \sigma_T(x) \subseteq \mathcal{F} \}.$$

It is easily seen from the definition that $X_T(\mathcal{F})$ is a linear subspace T-invariant of X. Furthermore, for every closed $\mathcal{F} \subseteq \mathbb{C}$ we have

$$(\lambda I - T)X_T(\mathcal{F}) = X_T(\mathcal{F}) \quad \text{for all } \lambda \in \mathbb{C} \setminus \mathcal{F}. \tag{4}$$

See [9, Proposition 1.2.16].

An operator $T \in L(X)$ is said to have the single valued extension property at $\lambda_o \in \mathbb{C}$ (abbreviated SVEP at λ_o), if for every open disc \mathbf{D}_{λ_o} centered at λ_o the only analytic function $f : \mathbf{D}_{\lambda_o} \to X$ which satisfies the equation

$$(\lambda I - T)f(\lambda) = 0 \tag{5}$$

is the function $f \equiv 0$. An operator $T \in L(X)$ is said to have the SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$. Clearly, the SVEP is inherited by the restrictions to invariant subspaces.

A variant of $X_T(\mathcal{F})$ which is more useful for operators without SVEP is the glocal spectral subspace $\mathcal{X}_T(\mathcal{F})$. For an operator $T \in L(X)$ and a closed subset \mathcal{F} of \mathbb{C} , we define $\mathcal{X}_T(\mathcal{F})$ as the set of all $x \in X$ for which there exists an analytic function $f : \mathbb{C} \setminus \mathcal{F} \to X$ which satisfies

$$(\lambda I - T)f(\lambda) = x$$
 for all $\lambda \in \mathbb{C} \setminus \mathcal{F}$.

Clearly $\mathcal{X}_T(\mathcal{F}) \subseteq X_T(\mathcal{F})$ for every closed $\mathcal{F} \subseteq \mathbb{C}$. Moreover T has SVEP if and only if

$$\mathcal{X}_T(\mathcal{F}) = X_T(\mathcal{F})$$
 for all closed subsets $\mathcal{F} \subseteq \mathbb{C}$.

See [9, Proposition 3.3.2]. Note that $\mathcal{X}_T(\mathcal{F})$ and $X_T(\mathcal{F})$ are not closed in general.

Given a closed subspace Z of X and $T \in L(X)$, we denote by T|Z the restriction of T to Z.

LEMMA 1.2. [2, Lemmas 2.3 and 2.4] Let \mathcal{F} be a closed subset of \mathbb{C} and $T \in L(X)$.

- (1) If $0 \in \mathcal{F}$ and $Tx \in X_T(\mathcal{F})$ then $x \in X_T(\mathcal{F})$.
- (2) Suppose T has SVEP, $Z := X_T(\mathcal{F})$ is closed, and $A := T|X_T(\mathcal{F})$. Then $X_T(\mathcal{K}) = Z_A(\mathcal{K})$ for all closed $\mathcal{K} \subseteq \mathcal{F}$.

LEMMA 1.3. Suppose that T has SVEP and \mathcal{F} is a closed subset of \mathbb{C} such that $0 \notin \mathcal{F}$. If $X_T(F \cup \{0\})$ is closed then $X_T(\mathcal{F})$ is closed.

Proof. Set $Z := X_T(\mathcal{F} \cup \{0\})$ and S := T|Z. By [9, Proposition 1.2.20] we have $\sigma(S) \subseteq \mathcal{F} \cup \{0\}$. We suppose first that $0 \notin \sigma(S)$. Then $\sigma(S) \subseteq \mathcal{F}$, hence $Z = Z_S(\mathcal{F})$. By Lemma 1.2 we have $Z_S(\mathcal{F}) = X_T(\mathcal{F})$, so $X_T(\mathcal{F})$ is closed. For the case $0 \in \sigma(S)$, we set $\mathcal{F}_0 := \sigma(S) \cap \mathcal{F}$. Then $\sigma(S) = \mathcal{F}_0 \cup \{0\}$. Since $0 \in \sigma(S)$, by Lemma 1.2 we have $Z = Z_S(\mathcal{F}_0) \oplus Z_S(\{0\})$ and

$$Z_S(\mathcal{F}_0) = Z_S(\sigma(S) \cap \mathcal{F}) = Z_S(\mathcal{F}) = X_T(\mathcal{F}),$$

hence $X_T(\mathcal{F})$ is closed.

2. Operator equation $RSR = R^2$

Operators $S, R \in L(X)$ satisfying the operator equations $RSR = R^2$ and $SRS = S^2$ were studied first in [12], and more recently in [10], [11], [8], and other papers. An easy example of operators for which these equations hold is

given in the case that R = PQ and S = QP, where $P, Q \in L(X)$ are idempotents. A remarkable result of Vidav [12, Theorem 2] shows that if R, S are self-ajoint operators on a Hilbert space then the equations (1) hold if and only if there exists an (uniquely determined) idempotent P such that $R = PP^*$ and $S = P^*P$, where P^* is the adjoint of P.

The operators R, S, SR and RS for which the equations (1) hold share many spectral properties ([10], [11]), and local spectral properties as decomposability, property (β) and SVEP ([8]). In this section we consider the permanence of property (C), property (Q) in this context.

It is easily seen that if $0 \notin \sigma(R) \cap \sigma(S)$ then R = S = I, so this case is trivial. Thus we shall assume that $0 \in \sigma(R) \cap \sigma(S)$. Evidently, the operator equation $RSR = R^2$ implies

$$(SR)^2 = SR^2$$
 and $(RS)^2 = R^2S$.

LEMMA 2.1. Suppose that $R, S \in L(X)$ satisfy $RSR = R^2$. Then for every $x \in X$ we have

$$\sigma_R(Rx) \subseteq \sigma_{SR}(x)$$
 and $\sigma_{SR}(SRx) \subseteq \sigma_R(x)$. (6)

Proof. For the first inclusion, suppose that $\lambda_0 \notin \sigma_{SR}(x)$. Then there exists an open neighborhood \mathcal{U}_0 of λ_0 and an analytic function $f: \mathcal{U}_0 \to X$ such that

$$(\lambda I - SR)f(\lambda) = x$$
 for all $\lambda \in \mathcal{U}_0$.

From this it follows that

$$Rx = R(\lambda I - SR)f(\lambda) = (\lambda R - RSR)f(\lambda)$$
$$= (\lambda R - R^2)f(\lambda) = (\lambda I - R)(Rf)(\lambda),$$

for all $\lambda \in \mathcal{U}_0$. Since $Rf : \mathcal{U}_0 \to X$ is analytic we get $\lambda_0 \notin \sigma_R(Rx)$.

For the second inclusion, let $\lambda_0 \notin \sigma_R(x)$. Then there exists an open neighborhood \mathcal{U}_0 of λ_0 and an analytic function $f: \mathcal{U}_0 \to X$ such that

$$(\lambda I - R)f(\lambda) = x$$
 for all $\lambda \in \mathcal{U}_0$.

Consequently,

$$SRx = SR(\lambda I - R)f(\lambda) = (\lambda SR - SR^2)f(\lambda)$$
$$= (\lambda SR - (SR)^2)f(\lambda) = (\lambda I - SR)(SRf)(\lambda),$$

for all $\lambda \in \mathcal{U}_0$, and since (SR)f is analytic we obtain $\lambda_0 \notin \sigma_{SR}(SRx)$.

THEOREM 2.2. Let $S, R \in L(X)$ satisfy $RSR = R^2$, and let \mathcal{F} be a closed subset of \mathbb{C} with $0 \in \mathcal{F}$. Then $X_R(\mathcal{F})$ is closed if and only if so is $X_{SR}(\mathcal{F})$.

Proof. Suppose that $X_R(\mathcal{F})$ is closed and let (x_n) be a sequence of $X_{SR}(\mathcal{F})$ which converges to $x \in X$. We need to show that $x \in X_{SR}(\mathcal{F})$. For every $n \in \mathbb{N}$ we have $\sigma_{SR}(x_n) \subseteq \mathcal{F}$ and hence, by Lemma 2.1, we have $\sigma_R(Rx_n) \subseteq \mathcal{F}$, i.e. $Rx_n \in X_R(\mathcal{F})$. Since $0 \in \mathcal{F}$, by Lemma 1.2 we have $x_n \in X_R(\mathcal{F})$, and since $X_R(\mathcal{F})$ is closed, $x \in X_R(\mathcal{F})$, i.e. $\sigma_R(x) \subseteq \mathcal{F}$. Now from Lemma 2.1 we derive $\sigma_{SR}(SRx) \subseteq \mathcal{F}$, and this implies $SRx \in X_{SR}(\mathcal{F})$. Again by Lemma 1.2, we obtain $x \in X_{SR}(\mathcal{F})$, thus $X_{SR}(\mathcal{F})$ is closed.

Conversely, suppose that $X_{SR}(\mathcal{F})$ is closed and let (x_n) be a sequence of $X_R(\mathcal{F})$ which converges to $x \in X$. Then $\sigma_R(x_n) \subseteq \mathcal{F}$ for every $n \in \mathbb{N}$, hence $\sigma_{SR}(SRx_n) \subseteq \mathcal{F}$, i.e. $SRx_n \in X_{SR}(\mathcal{F})$ by Lemma 2.1. But $0 \in \mathcal{F}$, so, by Lemma 1.2, $x_n \in X_{SR}(\mathcal{F})$. Since $X_{SR}(\mathcal{F})$ is closed, $x \in X_{SR}(\mathcal{F})$, hence $\sigma_{SR}(x) \subseteq \mathcal{F}$. Now from Lemma 2.1 we obtain $\sigma_R(Rx) \subseteq \mathcal{F}$, i.e. $Rx \in X_R(\mathcal{F})$, and the condition $0 \in \mathcal{F}$ implies $x \in X_R(\mathcal{F})$.

The following result is inspired by [8, Theorem 2.1].

LEMMA 2.3. Let $S, R \in L(X)$ be such that $RSR = R^2$ and one of the operators R, SR, RS has SVEP. Then all of them have SVEP. Additionally, if $SRS = S^2$ and one of R, S, SR, RS has SVEP then all of them have SVEP.

Proof. By [6, Proposition 2.1], SR has SVEP if and only if RS has SVEP. So it is enough to prove that R has SVEP at λ_0 if an only if so has RS.

Suppose that R has SVEP at λ_0 and let $f: \mathcal{U}_0 \to X$ be an analytic function on an open neighborhood \mathcal{U}_0 of λ_0 for which $(\lambda I - RS)f(\lambda) \equiv 0$ on U_0 . Then $RSf(\lambda) = \lambda f(\lambda)$ and

$$0 = RS(\lambda I - RS)f(\lambda) = (\lambda RS - (RS)^2)f(\lambda) = (\lambda RS - (R^2S)f(\lambda))$$

= $(\lambda I - R)RSf(\lambda)$.

The SVEP of R at λ_0 implies that

$$RSf(\lambda) = \lambda f(\lambda) = 0$$
 for all $\lambda \in \mathcal{U}_0$.

Hence $f \equiv 0$ on U_0 , and we conclude that RS has SVEP at λ_0 . Conversely, suppose that RS has SVEP at λ_0 and let $f : \mathcal{U}_0 \to X$ be an analytic function on an open neighborhood \mathcal{U}_0 of λ_0 such that $(\lambda I - R)f(\lambda) \equiv 0$ on \mathcal{U}_0 . Then $R^2 f(\lambda) = \lambda R f(\lambda) = \lambda^2 f(\lambda)$ for all $\lambda \in \mathcal{U}_0$. Moreover,

$$0 = RS(\lambda I - R)f(\lambda) = \lambda RSf(\lambda) - R^2 f(\lambda) = \lambda RSf(\lambda) - \lambda^2 f(\lambda)$$

= $(\lambda I - RS)(-\lambda f(\lambda)),$

and since RS has SVEP at λ_0 we have $\lambda f(\lambda) \equiv 0$, hence $f(\lambda) \equiv 0$, so R has SVEP at λ_0 .

The second assertion is clear, if $SRS = S^2$, just interchanging R and S in the argument above, the SVEP fo S holds if and only if SR, or equivalently RS, has SVEP.

We now consider the result of Theorem 2.2 when $0 \notin \mathcal{F}$.

THEOREM 2.4. Let \mathcal{F} be a closed subset of \mathbb{C} such that $0 \notin \mathcal{F}$. Suppose that $R, S \in L(X)$ satisfy $RSR = R^2$ and R has SVEP. Then we have

- (1) If $X_R(\mathcal{F} \cup \{0\})$ is closed then $X_{SR}(\mathcal{F})$ is closed.
- (2) If $X_{SR}(\mathcal{F} \cup \{0\})$ is closed then $X_R(\mathcal{F})$ is closed.
- *Proof.* (1) Let us denote $\mathcal{F}_1 := \mathcal{F} \cup \{0\}$. The set \mathcal{F}_1 is closed, and by assumption $X_R(\mathcal{F}_1)$ is closed. Since $0 \in F_1$ then $X_{SR}(\mathcal{F}_1)$ is closed, by Theorem 2.2. Moreover, the SVEP for R is equivalent to the SVEP for SR by Lemma 2.3. Then $X_{SR}(\mathcal{F})$ is closed by Lemma 1.3.
- (2) The argument is similar: if $X_{SR}(\mathcal{F} \cup \{0\})$ is closed then $X_R(\mathcal{F} \cup \{0\})$ by Theorem 2.2, and since R has SVEP, $X_R(\mathcal{F})$ is closed by Lemma 1.3.

DEFINITION 2.5. An operator $T \in L(X)$ is said to have Dunford's property (C) (abbreviated property (C)) if $\mathcal{X}_T(F)$ is closed for every closed set $F \subseteq \mathbb{C}$.

It should be noted that Dunford property (C) implies SVEP.

THEOREM 2.6. Suppose that $S, R \in L(X)$ satisfy $RSR = R^2$, and any one of the operators R, SR, RS, has property (C). Then all of them have property (C). If, additionally, $SRS = S^2$ and one of R, S, RS, SR has property (C), then all of them have property (C).

Proof. Since property (C) implies SVEP, all the operators have SVEP by Lemma 2.3. Moreover the equivalence of property (C) for SR and RS has

been proved in [2] (see also [13]). So it is enough to prove that R has property (C) if an only if so has RS.

Suppose that R has property (C) and let \mathcal{F} be a closed set. If $0 \in \mathcal{F}$ then $X_{SR}(\mathcal{F})$ is closed, by Theorem 2.2, while in the case where $0 \notin \mathcal{F}$ we have that $X_R(\mathcal{F} \cup \{0\})$ is closed, and hence, by part (1) of Theorem 2.4, the SVEP for R ensures that also in this case $X_{SR}(\mathcal{F})$ is closed. Therefore, SR has property (C).

Conversely, suppose that SR has property (C). For every closed subset \mathcal{F} containing 0, $X_R(\mathcal{F})$ is closed by Theorem 2.2. If $0 \notin \mathcal{F}$ then $X_{SR}(\mathcal{F} \cup \{0\})$ is closed, hence $X_R(\mathcal{F})$ is closed by part (2) of Theorem 2.4 and we conclude that R has property (C).

If additionally, $SRS = S^2$ then, by interchanging S with R, the same argument above proves the second assertion, so the proof is complete.

Next we consider the case when \mathcal{F} is a singleton set, say $\mathcal{F} := \{\lambda\}$. The glocal spectral subspace $\mathcal{X}_T(\{\lambda\})$ coincides with the quasi-nilpotent part $H_0(\lambda I - T)$ of $\lambda I - T$ defined by

$$H_0(\lambda I - T) := \{ x \in X : \limsup_{n \to \infty} \|(\lambda I - T)^n x\|^{1/n} = 0 \}.$$

See [1, Theorem 2.20]. In general $H_0(\lambda I - T)$ is not closed, but it coincides with the kernel of a power of $\lambda I - T$ in some cases [3, Theorem 2.2].

DEFINITION 2.7. An operator $T \in L(X)$ is said to have the property (Q) if $H_0(\lambda I - T)$ is closed for every $\lambda \in \mathbb{C}$.

It is known that if $H_0(\lambda I - T)$ is closed then T has SVEP at λ ([4]), thus,

property
$$(C) \Rightarrow \text{property } (Q) \Rightarrow \text{SVEP}.$$

Therefore, for operators T having property (Q) we have $H_0(\lambda I - T) = X_T(\{\lambda\})$. In [13, Corollary 3.8] it was observed that if $R \in L(Y, X)$ and $S \in L(X, Y)$ are both injective then RS has property (Q) precisely when SR has property (Q).

Recall that $T \in L(X)$ is said to be upper semi-Fredholm, $T \in \Phi_+(X)$, if T(X) is closed and the kernel ker T is finite-dimensional, and T is said to be lower semi-Fredholm, $T \in \Phi_-(X)$, if the range T(X) has finite codimension.

THEOREM 2.8. Let $R, S \in L(X)$ satisfying $RSR = R^2$, and $R, S \in \Phi_+(X)$ or $R, S \in \Phi_-(X)$. Then R has property (Q) if and only if so has SR.

Proof. Suppose that $R, S \in \Phi_+(X)$ and R has property (Q). Then R has SVEP and, by Lemma 2.3, also SR has SVEP. Consequently, the local and glocal spectral subspaces relative to the a closed set coincide for R and SR. By assumption $H_0(\lambda I - R) = X_R(\{\lambda\})$ is closed for every $\lambda \in \mathbb{C}$, and $H_0(SR) = X_{SR}(\{0\})$ is closed by Theorem 2.2. Let $0 \neq \lambda \in \mathbb{C}$. By [9, Proposition 3.3.1, part (f)]

$$X_R(\{\lambda\} \cup \{0\}) = X_R(\{\lambda\}) + X_R(\{0\}) = H_0(\lambda I - R) + H_0(R).$$

Since $R \in \Phi_+(X)$ the SVEP at 0 implies that $H_0(R)$ is finite-dimensional, see [1, Theorem 3.18], so $X_R(\{\lambda\} \cup \{0\})$ is closed. Then part (1) of Theorem 2.4 implies that $H_0(\lambda I - SR) = X_{SR}(\{\lambda\})$ is closed, hence SR has property (Q).

Conversely, suppose that SR has property (Q). If $\lambda = 0$ then $H_0(SR) = X_{RS}(\{0\})$ is closed by assumption, and $H_0(R) = X_R(\{0\})$ is closed by Theorem 2.2. In the case $\lambda \neq 0$ we have

$$X_{SR}(\{\lambda\} \cup \{0\}) = X_{SR}(\{\lambda\}) + X_{SR}(\{0\}) = H_0(\lambda I - SR) + H_0(SR).$$

Since SR has SVEP and $SR \in \Phi_+(X)$, $H_0(SR)$ is finite dimensional by [1, Theorem 3.18]. So $X_{SR}(\{\lambda\} \cup \{0\})$ is closed. By part (2) of Theorem 2.4, $X_R(\{\lambda\}) = H_0(\lambda I - R)$ is closed. Therefore R has property (Q).

The proof in the case where $R, S \in \Phi_{-}(X)$ is analogous.

COROLLARY 2.9. Let $S, R \in L(X)$ satisfy the operator equations (1). If one of the operators R, S, RS and SR is bounded below and has property (Q), then all of them have property (Q).

Proof. Note that all the operators R, S, RS, and SR are injective when one of them is injective [8, Lemma 2.3], and the same is true for being upper semi-Fredholm [8, Theorem 2.5]. Hence, if one of the operators is bounded below, then all of them are bounded below.

By Theorem 2.8 property (Q) for R and for SR are equivalent. So the same is true for S and RS, and also for RS and SR since R and S are injective.

The analytical core K(T) of $T \in L(X)$ is defined [1, Definition 1.20] as the set of all $\lambda \in \mathbb{C}$ for which there exists a constant $\delta > 0$ and a sequence (u_n) in X such that $x = u_0$, and $Tu_{n+1} = u_n$ and $||u_n|| \le \delta^n ||x||$ for each $n \in \mathbb{N}$. The following characterization can be found in [1, Theorem 2.18]:

$$K(T) = X_T(\mathbb{C} \setminus \{0\}) = \{x \in X : 0 \notin \sigma_T(x)\}.$$

The analytical core of T is an invariant subspace and, in general, is not closed.

THEOREM 2.10. Suppose that $R, S \in L(X)$ satisfy $RSR = R^2$.

- (1) If $0 \neq \lambda \in \mathbb{C}$, then $K(\lambda I R)$ is closed if and only $K(\lambda I SR)$ is closed, or equivalently $K(\lambda I RS)$ is closed.
- (2) If R is injective, then K(R) is closed if and only K(SR) is closed, or equivalently K(RS) is closed.

Proof. (1) Suppose $\lambda \neq 0$ and $K(\lambda I - R)$ closed. Let (x_n) be a sequence of $K(\lambda I - SR)$ which converges to $x \in X$. Then $\lambda \notin \sigma_{SR}(x_n)$ and hence, by Lemma 2.1, $\lambda \notin \sigma_R(Rx_n)$, thus $Rx_n \in K(\lambda I - R)$. Since $Rx_n \to Rx$ and $K(\lambda I - R)$ is closed, it then follows that $Rx \in K(\lambda I - R)$, i.e., $\lambda \notin \sigma_R(Rx)$. Since $\lambda \neq 0$, by Lemma 1.1 we have $\lambda \notin \sigma_R(x)$, hence $\lambda \notin \sigma_{SR}(SRx)$ again by Lemma 2.1. By Lemma 1.1 this implies $\lambda \notin \sigma_{SR}(x)$. Therefore $x \in K(\lambda I - SR)$, and consequently, $K(\lambda I - SR)$ is closed.

Conversely, suppose that $\lambda \neq 0$ and $K(\lambda I - SR)$ is closed. Let (x_n) be a sequence of $K(\lambda I - R)$ which converges to $x \in X$. Then $\lambda \notin \sigma_R(x_n)$ and, by Lemma 2.1, we have $\lambda \notin \sigma_{SR}(SRx_n)$. By Lemma 1.1 then we have $\lambda \notin \sigma_{SR}(x_n)$, so $x_n \in K(\lambda I - SR)$, and hence $x \in K(\lambda I - SR)$, since the last set is closed. This implies that $\lambda \notin \sigma_{SR}(x)$, and hence $\lambda \notin \sigma_R(Rx)$, again by Lemma 2.1. By Lemma 1.1 we have $\lambda \notin \sigma_R(x)$, so $x \in K(\lambda I - R)$. Therefore, $K(\lambda I - R)$ is closed. The equivalence $K(\lambda I - SR)$ is closed if and only if $K(\lambda I - RS)$ is closed was proved in [13, Corollary 3.3].

(2) The proof is analogous to that of part (1) applying Lemma 1.1.

COROLLARY 2.11. Suppose $RSR = R^2$, $SRS = S^2$ and $\lambda \neq 0$. Then the following statements are equivalent:

- (1) $K(\lambda I R)$ is closed;
- (2) $K(\lambda I SR)$ is closed;
- (3) $K(\lambda I RS)$ is closed;
- (4) $K(\lambda I S)$ is closed.

When R is injective, the equivalence also holds for $\lambda = 0$.

Proof. The equivalence of (3) and (4) follows from Theorem 2.10, interchanging R and S. Since, as noted in the proof of Corollary 2.9, the injectivity of R is equivalent to the injectivity of S, the equivalence of (1) and (4) also holds for $\lambda = 0$.

References

- [1] P. AIENA, "Fredholm and Local Spectral Theory, with Application to Multipliers", Kluwer Acad. Publishers, Dordrecht, 2004.
- [2] P. AIENA, M. GONZÁLEZ, On the Dunford property (C) for bounded linear operators RS and SR, Integral Equations Operator Theory **70** (4) (2011), 561–568.
- [3] P. AIENA, M. CHŌ, M. GONZÁLEZ, Polaroid type operators under quasi-affinities, J. Math. Anal. Appl. 371 (2) (2010), 485–495.
- [4] P. AIENA, M.L. COLASANTE, M. GONZÁLEZ, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc. 130 (9) (2002), 2701– 2710.
- [5] B. BARNES, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (4) (1998), 1055-1061.
- [6] C. BENHIDA, E.H. ZEROUALI, Local spectral theory of linear operators RS and SR Integral Equations Operator Theory 54 (1) (2006), 1–8.
- [7] T. Bermúdez, M. González, A. Martinón, Stability of the local spectrum Proc. Amer. Math. Soc. 125 (2) (1997), 417–425.
- [8] B.P. DUGGAL, Operator equations $ABA = A^2$ and $BAB = B^2$, Funct. Anal. Approx. Comput. 3 (1) (2011), 9–18.
- [9] K.B. LAURSEN, M.M. NEUMANN, "An Introduction to Local Spectral Theory", London Mathematical Society Monographs, New Series, 20, The Clarendon Press, New York, 2000.
- [10] C. SCHMOEGER, On the operator equations $ABA = A^2$ and $BAB = B^2$, Publ. Inst. Math, (Beograd) (N.S.) **78(92)** (2005), 127–133.
- [11] C. SCHMOEGER, Common spectral properties of linear operators A and B such that $ABA = A^2$ and $BAB = B^2$, Publ. Inst. Math. (Beograd) (N.S.) $\mathbf{79}(\mathbf{93})$ (2006), 109-114.
- [12] I. VIDAV, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Beograd) (N.S.) 4(18), (1964), 157–163.
- [13] Q. Zeng, H. Zhong, Common properties of bounded linear operators AC and BA: Local spectral theory, J. Math. Anal. Appl. 414(2) (2014), 553–560.