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1. Introduction and preliminaries results

Let B(H) be the C*-algebra of all bounded linear operators acting on a
complex Hilbert space H , and let N (H), and S(H) denote the class of all
normal operators, and the class of all selfadjoint operators in B(H), respec-
tively.

We denote by

• I(H), the group of all invertible elements in B(H),

• S0(H) = S(H) ∩ I(H), the set of all invertible selfadjoint operators in
B(H),

• N0(H) = N (H) ∩ I(H), the set of all invertible normal operators in
B(H),

• R(H), the set of all operators with closed ranges in B(H),

• x ⊗ y (where x, y ∈ H), the one rank operator on H defined by
(x⊗ y) z = ⟨z, y⟩x, for every z ∈ H,

• |S| the positive square root of the positive operator S∗S (where S ∈
B(H)),

• {S}
′
= {X ∈ B(H) : SX = XS} the commutant of S (where S ∈ B(H)).

29



30 a. seddik

For S ∈ B(H), let R(S) and kerS denote the range and the kernel of S,
respectively. It is known that S ∈ R(H) if and only if there exits a unique
operator S+ ∈ R(H) satisfying the following four equations

SS+S = S, S+SS+ = S+, (SS+)∗ = SS+, (S+S)∗ = S+S.

Then, the operator S+ is called the Moore-Penrose inverse of S, and it
satisfies that SS+ and S+S are orthogonal projections onto R(S) and R(S∗),
respectively. It is clear that if S ∈ I(H), then S+ = S−1, and if S ∈ B(H) is
a surjective operator (resp. injective with closed range), then SS+ = I (rep.
S+S = I).

For every S in R(H), we associate the 2 × 2 matrix representation S =[
S1 S2

0 0

]
on R(S)⊕kerS∗. The operator S is called an EP operator if R(S∗) =

R(S), or equivalently S2 = 0 and S1 is invertible; in this case S+ =

[
S−1
1 0
0 0

]
(see [2]). Any normal operator with a closed range in B(H) is an EP operator
(see[4]).

One of the most essential inequalities in operator theory is the arithmetic-
geometric mean inequality given by (see [1, 12])

∀A,B,X ∈ B(H), ∥A∗AX +XBB∗∥ ≥ 2 ∥AXB∥ . (1)

From this inequality, we deduce immediately that for every S ∈ S0(H) the
following inequality holds

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ∥X∥ . (2)

The inequality (2) was proved by Corach-Porta-Recht [6] with another
motivation and independently of inequality (1). In [14], we give some char-
acterization of some distinguished classes of operators in terms of operator
inequalities. We proved that the class of all operators S ∈ I(H) satisfying
(2) is exactly the class C∗S0(H) (that is the class of all rotations of invertible
selfadjoint operators). So, the class C∗S0(H) is characterized by the following
property

∀X ∈ B(H),
∥∥SXS−1 + S−1XS

∥∥ ≥ 2 ∥X∥ , (S ∈ I(H)). (3)

In [15], we have found two other characterizations of this last class given
by
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∀X∈ B(H),
∥∥SXS−1+S−1XS

∥∥ =
∥∥S∗XS−1+S−1XS∗∥∥ , (S ∈ I(H)). (4)

∀X∈ B(H),
∥∥SXS−1+S−1XS

∥∥ ≥
∥∥S∗XS−1+S−1XS∗∥∥ , (S ∈ I(H)). (5)

For the class of all invertible normal operators N0(H), we have showed in
[15] that this class is characterized by each of the following three properties

∀X ∈ B(H),
∥∥SXS−1

∥∥+
∥∥S−1XS

∥∥ ≥ 2 ∥X∥ , (S ∈ I(H)). (6)

∀X ∈B(H),∥∥SXS−1
∥∥+

∥∥S−1XS
∥∥ =

∥∥S∗XS−1
∥∥+

∥∥S−1XS∗∥∥ , (S ∈ I(H)).
(7)

∀X ∈B(H),∥∥SXS−1
∥∥+

∥∥S−1XS
∥∥ ≥

∥∥S∗XS−1
∥∥+

∥∥S−1XS∗∥∥ , (S ∈ I(H)).
(8)

In this note, we consider the following extensions of the above six properties
from the domain I(H) to the domain R(H)

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ , (S ∈ R(H)) . (9)

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ =
∥∥S∗XS+ + S+XS∗∥∥ , (S ∈ R(H)). (10)

∀X ∈ B(H),
∥∥SXS+ + S+XS

∥∥ ≥
∥∥S∗XS+ + S+XS∗∥∥ , (S ∈ R(H)). (11)

∀X ∈ B(H),
∥∥ SXS+

∥∥+
∥∥S+XS

∥∥ ≥ 2
∥∥SS+XS+S

∥∥ , (S ∈ R(H)) . (12)

∀X ∈B(H),∥∥SXS+
∥∥+

∥∥S+XS
∥∥ =

∥∥S∗XS+
∥∥+

∥∥S+XS∗∥∥ , (S ∈ R(H)).
(13)

∀X ∈B(H),∥∥SXS+
∥∥+

∥∥S+XS
∥∥ ≥

∥∥S∗XS+
∥∥+

∥∥S+XS∗∥∥ , (S ∈ R(H)).
(14)

We consider also in this note the following two properties

∀X ∈ B(H),
∥∥S2X +XS2

∥∥ ≥ 2 ∥SXS∥ , (S ∈ R(H)). (15)

∀X ∈ B(H),
∥∥S2X

∥∥+
∥∥XS2

∥∥ ≥ 2 ∥SXS∥ , (S ∈ R(H)). (16)
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In the finite dimensional case, we showed in [13] that each of properties
(9) and (15) characterizes the class CS(H) and each of properties (12) and
(16) characterizes the class N (H) (here R(H) = B(H)). In this note and in
general situation, we shall show that any one of properties (9), (10), (11)
and (15) characterizes the class C (S(H) ∩R(H)) and any one of properties
(12), (13), (14) and (16) characterizes the class N (H) ∩R(H).

2. Characterizations and Moore-Penrose inverse

To achieve our new characterizations, we need the following lemma.

Lemma 1. Let S ∈ B(H). If S is injective with a closed range (or is
surjective) and satisfies property (16), then it is normal.

Proof. Assume that S is injective. It is clear that S2 is also injective with
a closed range. Hence, S+S = I =

(
S2

)+
S2.

Put P = |S| , Q = |S∗| and R =
∣∣S2

∣∣ . Since S is injective with a closed
range, then kerP = kerS = {0}, and R(P ) = R(S∗S) is closed (since R(S∗) is
also closed). Thus kerP = {0} and R(P ) = (kerP )⊥ = H. So, P is invertible.
On the other hand, since S2 is also injective with a closed range, using the
same argument as used before R is invertible.

The proof is given in six steps.

Step 1. {R}
′
= {P}

′
.

From (16), it follows that

∀X ∈ B(H), ∥X∥+
∥∥∥S2X

(
S2

)+∥∥∥ ≥ 2
∥∥∥SX (

S2
)+

S
∥∥∥ .

Since ∥SS+∥ = 1, the last inequality shows that

∀X ∈ B(H), ∥X∥+
∥∥∥S2X

(
S2

)+∥∥∥ ≥ 2
∥∥∥SX (

S2
)+

S2S+
∥∥∥ .

Thus the following inequality holds

∀X ∈ B(H), ∥X∥+
∥∥∥S2X

(
S2

)+∥∥∥ ≥ 2
∥∥SXS+

∥∥ .
By taking the polar decomposition of each of the two operators S and S2

in this last inequality, we obtain

∀X ∈ B(H), ∥X∥+
∥∥RXR−1

∥∥ ≥ 2
∥∥PXP−1

∥∥ .
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Hence from [14, Lemma 3.2], {R}
′
⊂ {P}

′
. So, from this last inequality,

we obtain also the following inequality

∀X ∈ B(H),
∥∥P−1XP

∥∥+
∥∥∥(RP−1

)
X

(
RP−1

)−1
∥∥∥ ≥ 2 ∥X∥ .

where RP−1 is a positive invertible operator. So, from [14, Theorem 3.3],

{P}
′
=

{
RP−1

}′
. Hence {R}

′
= {P}

′
.

Step 2.
(
S2

)+
S = S+.

From the property (16) the following inequality holds

∀X ∈ B(H), ∥XS∥+
∥∥S2XS+

∥∥ ≥ 2 ∥SX∥ . (∗)

It is known that S+ is the unique solution of the following four equations:
SXS = S, XSX = X, (XS)∗ = XS, (SX)∗ = SX. It is easy to see that(
S2

)+
S satisfies the first three equations.

Now we prove that
(
S2

)+
S also satisfies the last equation. Since the

operator S
(
S2

)+
S is a projection, it suffices to prove that its norm is less

than or equal to one. By taking X =
(
S2

)+
S in (∗), we obtain

2 ≥
∥∥∥(S2

)+
S2

∥∥∥+
∥∥∥S2

(
S2

)+
SS+

∥∥∥ ≥ 2
∥∥∥S (

S2
)+

S
∥∥∥ .

Hence
∥∥∥S (

S2
)+

S
∥∥∥ ≤ 1. Therefore

(
S2

)+
S = S+.

Step 3.
(
S2

)+
= (S+)2.

Since S2
(
S2

)+
= SS+S2

(
S2

)+
, then S2

(
S2

)+
= S2

(
S2

)+
SS+. So from

Step 2, we obtain S2
(
S2

)+
= S2(S+)2. Since S2 is injective, we have

(
S2

)+
=

(S+)2.

Step 4. P and R are 2× 2 diagonal matrices with respect to the orthogonal
direct sum H = R(S)⊕ kerS∗.

All matrices given here are given with respect to the orthogonal direct

sum H = R(S) ⊕ kerS∗. Put S =

[
S1 S2

0 0

]
. Then S2 =

[
S2
1 S1S2

0 0

]
. Since(

S2
)+

= (S+)2, then the operators S∗S and SS+ commute (see [3, 10]).

Hence P 2 =

[
S∗
1S1 0
0 S∗

2S2

]
. So that P =

[
P1 0
0 P2

]
, where P1 = |S1| and

P2 = |S2| . From Step 1 and SS+ ∈ {S∗S}
′
, we deduce that

(
S2

)∗
S2 and SS+



34 a. seddik

commute. Therefore R2 =

[(
S2
1

)∗
S2
1 0

0
(
S2
2

)∗
S2
2

]
. Hence R =

[
R1 0
0 R2

]
,

where R1 =
∣∣S2

1

∣∣ and R2 =
∣∣S2

2

∣∣ .
Step 5. kerS∗ = {0}.

Since S is injective, kerS∗ = {0} if and only if S2 = 0.

Assume that kerS∗ ̸= {0} . It is easy to see that SS∗ =

[
S1S

∗
1 + S2S

∗
2 0

0 0

]
.

Then Q =

[
Q1 0
0 0

]
, where Q1 = (S1S

∗
1 + S2S

∗
2) .

Using the polar decomposition of the operators S, S∗ and S2 in (∗) we
obtain the following inequality

∀X ∈ B(H), ∥XQ∥+
∥∥RXP−1

∥∥ ≥ 2 ∥PX∥ . (∗∗)

By putting X = 0 ⊕ Y P2 (where Y ∈ B(kerS∗)) in inequality (∗∗), we
obtain

∀Y ∈ B(kerS∗), ∥R2Y ∥ ≥ 2 ∥P2Y P2∥ .

Hence
∥∥S2

2

∥∥ = ∥R2∥ ≥ 2 ∥P2∥2 = 2 ∥S2∥2 . So that ∥S2∥2 ≥ 2 ∥S2∥2 . Thus
S2 = 0, which is a contradiction with kerS∗ ̸= {0} .

Therefore kerS∗ = {0} .

Step 6. S is normal.

From Step 5, S is surjective. So that S is invertible and satisfies property
(16). Thus S satisfies property (6). Hence S is normal.

With the second assumption “S surjective”, S∗ is injective with a closed
range satisfying also property (16), so that S∗ is normal. Hence S is normal.

Theorem 1. Let S ∈ R(H). Then the following properties are equivalent:

(i) S ∈ N (H),

(ii) ∀X ∈ B(H), ∥SXS+∥+ ∥S+XS∥ = ∥S∗XS+∥+ ∥S+XS∗∥,

(iii) ∀X ∈ B(H), ∥SXS+∥+ ∥S+XS∥ ≥ ∥S∗XS+∥+ ∥S+XS∗∥,

(iv) ∀X ∈ B(H), ∥SXS+∥+ ∥S+XS∥ ≥ 2 ∥SS+XS+S∥,

(v) ∀X ∈ B(H),
∥∥S2X

∥∥+
∥∥XS2

∥∥ ≥ 2 ∥SXS∥.

Proof. The proof is trivial if S = 0. Assume now that S ̸= 0.
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(i)⇒(ii). Assume S ∈ N (H). Then the equality ∥SX∥ = ∥S∗X∥ holds for
every X ∈ B(H). Hence the equalities ∥SXS+∥ = ∥S∗XS+∥ and ∥S+XS∥ =
∥S+XS∗∥ hold for every X ∈ B(H). So, we obtain (ii).

The implication (ii)⇒(iii) is trivial.
(iii)⇒(vi). This implication follows immediately using [11, Theorem 2.4].
(iv)⇒(v). Assume (iv) holds. Then the following inequality holds

∀X ∈ B(H),
∥∥S2XSS+

∥∥+
∥∥S+SXS2

∥∥ ≥ 2
∥∥SS+SXSS+S

∥∥ .
From this inequality and since ∥SS+∥ = ∥S+S∥ = 1, property (v) follows

immediately.

(v)⇒(i). Assume (v) holds. Let S =

[
S1 S2

0 0

] [
R(S)
kerS∗

]
and let S∗ =[

T1 T2

0 0

] [
R(S∗)
kerS

]
. Put X =

[
X1 0
0 0

] [
R(S)
kerS∗

]
. By a simple computation, we

obtain

S2X =

[
S2
1X1 0
0 0

]
, XS2 =

[
X1S

2
1 X1S1S2

0 0

]
, SXS =

[
S1X1S1 S1X1S2

0 0

]
.

Put Y =

[
Y1 Y2
0 0

] [
R(S)
kerS∗

]
, where Y denotes one of the above three opera-

tors. Then ∥Y ∥2 = ∥Y Y ∗∥ =

∥∥∥∥[Y1Y ∗
1 + Y2Y

∗
2 0

0 0

]∥∥∥∥ = ∥Y1Y ∗
1 + Y2Y

∗
2 ∥. Hence

we have
∥∥S2X

∥∥ =
∥∥S2

1X1

∥∥ ,∥∥XS2
∥∥2 = ∥∥(X1S

2
1)(X1S

2
1)

∗ + (X1S1S2)(X1S1S2)
∗∥∥

=
∥∥X1S1K

2(X1S1)
∗∥∥ = ∥X1S1K∥2 ,

and

∥SXS∥ = ∥(S1X1S1)(S1X1S1)
∗ + (S1X1S2)(S1X1S2)

∗∥
=

∥∥(S1X1)K
2(S1X1)

∗∥∥ = ∥S1X1K∥2 ,

(where K is the positive square root of the positive operator S1S
∗
1 + S2S

∗
2).

Then using (v), we obtain the following inequality

∀X1 ∈ B (R(S)) ,
∥∥S2

1X1

∥∥+ ∥X1S1K∥ ≥ 2 ∥S1X1K∥ (*)

On the other hand, if we put X = x⊗ y (for x, y ∈ H) in (v), we obtain

∀x, y ∈ H, ∥y∥
∥∥S2x

∥∥+ ∥x∥
∥∥∥(S∗)2 y

∥∥∥ ≥ 2 ∥Sx∥ ∥S∗y∥ (**)
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We shall prove (i) in three steps.

Step 1. S1 or T1 is bounded below.
Assume that it is not the case. With the condition “S1 is not bounded

below”, we may choose a sequence (un) in H such that

S2un → 0 and ∥Sun∥ = 1, for n ≥ 1.

For every n ≥ 1, there exist xn ∈ R(S∗) and zn ∈ kerS such that un =
xn + zn. Thus, we obtain

S2xn = S2un → 0, ∥Sxn∥=∥Sun∥=1, ∥xn∥=
∥∥S+Sun

∥∥≤∥∥S+
∥∥ , for n ≥ 1

With the second condition “T1 is not bounded below”, by the same argu-
ment, we may choose a bounded sequence (yn) in H satisfying

(S∗)2 yn → 0, ∥S∗yn∥ = 1, for n ≥ 1.

Applying (**) for x = xn and y = yn, we obtain

∀n ≥ 1, ∥yn∥
∥∥S2xn

∥∥+ ∥xn∥
∥∥∥(S∗)2 yn

∥∥∥ ≥ 2.

Letting n → ∞, we have 0 ≥ 2, which is impossible. Therefore S1 or T1 is
bounded below.

Step 2. S1 or T1 is surjective.
Assume that T1 is bounded below. Then there exists a constant k > 0

such that
∀x ∈ H,

∥∥∥(S∗)2 x
∥∥∥ ≥ k ∥S∗x∥ .

So we have S2(S∗)2 ≥ k2SS∗. From [7], we obtain R(S2) ⊃ R(S). Thus
R(S2) = R(S). So S1 is surjective.

Also, if S1 is bounded below, then by the same argument, we deduce that
T1 is surjective.

Step 3. S is normal.
Assume that S1 is surjective (on R(S)). Then S2

1 is also surjective on

R(S). Since R(S) ̸= {0}, thus S1S
+
1 = I1 = S2

1

(
S2
1

)+
(where I1 is the identity

operator on R(S)), S+
1 S1 and

(
S2
1

)+
S2
1 are nonzero orthogonal projections.

By putting X1 =
(
S2
1

)+
in (*), we obtain∥∥∥S2

1

(
S2
1

)+∥∥∥+
∥∥∥(S2

1

)+
S1K

∥∥∥ ≥ 2
∥∥∥S1

(
S2
1

)+
K
∥∥∥
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Hence,
∥∥S2

1(S
2
1)

+
∥∥ = 1,

∥∥(S2
1)

+S1K
∥∥ =

∥∥(S2
1)

+S2
1S

+
1 K

∥∥ ≤
∥∥S+

1K
∥∥, and∥∥S1(S

2
1)

+K
∥∥ ≥

∥∥S+
1 S

2
1(S

2
1)

+K
∥∥ =

∥∥S+
1 K

∥∥. Thus 1 ≥
∥∥S+

1 K
∥∥. Hence

1 ≥
∥∥S+

1 K
∥∥2 = ∥∥S+

1 K
2(S+

1 )
∗∥∥ =

∥∥S+
1 S1 + (S+

1 S2)(S
+
1 S2)

∗∥∥ ≥
∥∥S+

1 S1

∥∥ = 1.

Hence
∥∥S+

1 S1 + (S+
1 S2)(S

+
1 S2)

∗∥∥ = 1. Since S+
1 S1 is an orthogonal pro-

jection, by a simple computation, we obtain that S+
1 S1S

+
1 S2 = 0. Hence

S2 = S1S
+
1 S1S

+
1 S2 = 0. So, we obtain that S1 is a surjective operator (as

element in B (R(S)) and satisfies the following inequality

∀X ∈ B(R(S)),
∥∥S2

1X
∥∥+

∥∥XS2
1

∥∥ ≥ 2 ∥S1XS1∥

Utilizing Lemma 1, we obtain that S1 is normal. Hence S is normal.

With the second assumption “T1 surjective”, and since S∗ satisfies (v), by
using the same argument as used with the first assumption, we obtain also
that S∗ is normal. Thus S is normal.

Corollary 1. Assume dimH < ∞. The class N (H) is characterized by
each of the following properties

∀X ∈ B(H), ∥ SXS+∥+ ∥S+XS∥ ≥ 2 ∥SS+XS+S∥ , (S ∈ B(H)),

∀X ∈ B(H), ∥SXS+∥+ ∥S+XS∥ = ∥S∗XS+∥+ ∥S+XS∗∥ , (S ∈ B(H)),

∀X ∈ B(H), ∥SXS+∥+ ∥S+XS∥ ≥ ∥S∗XS+∥+ ∥S+XS∗∥ , (S ∈ B(H)),

∀X ∈ B(H),
∥∥S2X

∥∥+
∥∥XS2

∥∥ ≥ 2 ∥SXS∥ , (S ∈ B(H)).

Theorem 2. Let S ∈ R(H). Then the following properties are equivalent:

(i) S ∈ CS(H),

(ii) ∀X ∈ B(H), ∥SXS+ + S+XS∥ = ∥S∗XS+ + S+XS∗∥,
(iii) ∀X ∈ B(H), ∥SXS+ + S+XS∥ ≥ ∥S∗XS+ + S+XS∗∥,
(iv) ∀X ∈ B(H), ∥SXS+ + S+XS∥ ≥ 2 ∥SS+XS+S∥,
(v) ∀X ∈ B(H),

∥∥S2X +XS2
∥∥ ≥ 2 ∥SXS∥.

Proof. The implications (i)⇒(ii) and (ii)⇒(iii) are trivial. The implica-
tion (iii)⇒(iv) follows immediately from [11, Theorem 2.4]. The implication
(i)⇒(v) follows immediately from (1).

Assume now that (iv) or (v) holds. Applying the triangular inequality in
(iv) or (v), we obtain from Theorem 1, that S is normal (with a closed range).
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So that S is an EP operator satisfying (iv) or (v). So S =

[
S1 0
0 0

] [
R(S)
kerS∗

]
where S1 is invertible on R(S). Hence we obtain the following inequality

∀X ∈ B(R(S)),
∥∥S1XS−1

1 + S−1
1 XS1

∥∥ ≥ 2 ∥X∥ .

Hence S1 is a selfadjoint operator in B(R(S)) multiplied by a nonzero
scalar. Thus S ∈ CS(H).

Corollary 2. Assume that dimH < ∞. The class CS(H) is character-
ized by each of the four following properties

∀X ∈ B(H), ∥SXS+ + S+XS∥ ≥ 2 ∥SS+XS+S∥ , (S ∈ B(H)) ,

∀X ∈ B(H), ∥SXS+ + S+XS∥ = ∥S∗XS+ + S+XS∗∥ , (S ∈ B(H)),

∀X ∈ B(H), ∥SXS+ + S+XS∥ ≥ ∥S∗XS+ + S+XS∗∥ , (S ∈ B(H)),

∀X ∈ B(H),
∥∥S2X +XS2

∥∥ ≥ 2 ∥SXS∥ , (S ∈ B(H)).

Remarks. 1. Let the following extension of the property (15) to the domain
B(H):

∀X ∈ B(H),
∥∥S2X +XS2

∥∥ ≥ 2 ∥SXS∥ , (S ∈ B(H)) . (17)

The restriction of this property to the domain R(H) characterizes the class
C(S(H) ∩ R(H)) (by using Theorem 2). On the other hand, by using the
inequality (1), the property (17) is satisfied for every S ∈ CS(H). So, does
property (17) characterize the class CS(H)?

2. Let the following extension of the property (16) to the domain B(H):

∀X ∈ B(H),
∥∥S2X

∥∥+
∥∥XS2

∥∥ ≥ 2 ∥SXS∥ , (S ∈ B(H)) . (18)

The restriction of this property to the domain R(H) characterizes the class
N (H)∩R(H) (by using Theorem 1). The property (18) is satisfied for every
S ∈ N (H). Indeed, if S ∈ N (H), then

∥∥S2X
∥∥ +

∥∥XS2
∥∥ = ∥S∗SX∥ +

∥XSS∗∥ ≥ ∥S∗SX +XSS∗∥ ≥ 2 ∥SXS∥, for every X ∈ B(H). So, does
property (18) characterize the class N (H)?
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