Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/10322
Title: Hypo-q-norms on cartesian products of algebras of bounded linear operators on Hilbert spaces
Authors: Dragomir, S.S.
Keywords: Hilbert spaces;Bounded linear operators;Operator norm and numerical radius;Operator inequalities;n-tuple of operators;Espacios de Hilbert;Operadores lineales acotados;Norma de operador y radio numérico;n-tupla de operadores;Desigualdades de operador
Issue Date: 2019
Publisher: Universidad de Extremadura
Abstract: In this paper we introduce the hypo-q-norms on a Cartesian product of algebras of bounded linear operators on Hilbert spaces. A representation of these norms in terms of inner products, the equivalence with the q-norms on a Cartesian product and some reverse inequalities obtained via the scalar reverses of Cauchy-Buniakowski-Schwarz inequality are also given. Several bounds for the norms δₚ , Vₚ and the real norms ƞᵣ ,ₚ and ϴᵣ, ₚ are provided as well.
URI: http://hdl.handle.net/10662/10322
DOI: 10.17398/2605-5686.34.2.201
Appears in Collections:Extracta Mathematicae Vol. 34, nº 2 (2019)

Files in This Item:
File Description SizeFormat 
2605-5686_34_2_201.pdf409,02 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons