Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/12301
Title: Hurwitz components of groups with socle PSL (3; q)
Authors: Salih, H.M. Mohammed
Keywords: Genus zero systems;Braid orbits;Connected components;Sistemas de género cero;Órbitas trenzadas;Componentes conectados
Issue Date: 2021
Publisher: Universidad de Extremadura
Abstract: For a finite group G, the Hurwitz space Hinr,g(G) is the space of genus g covers of the Riemann sphere ℙ1 with r branch points and the monodromy group G. In this paper, we give a complete list of some almost simple groups of Lie rank two. That is, we assume that G is a primitive almost simple groups of Lie rank two. Under this assumption we determine the braid orbits on the suitable Nielsen classes, which is equivalent to finding connected components in Hinr,g(G).
URI: http://hdl.handle.net/10662/12301
DOI: 10.17398/2605-5686.36.1.51
Appears in Collections:Extracta Mathematicae Vol. 36, nº 1 (2021)

Files in This Item:
File Description SizeFormat 
2605-5686_36_1_51.pdf375,08 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons