Please use this identifier to cite or link to this item:
Title: Displaying Polish groups on separable Banach spaces
Authors: Ferenczi, Valentin
Rosendal, Christian
Keywords: Polish groups;Isometries of Banach spaces;Linear representations;Renormings of Banach spaces;Grupos polacos;Isometrías de espacios de Banach;Representaciones lineales;Renormizaciones de espacios Banach
Issue Date: 2011
Publisher: Universidad de Extremadura, Servicio de Publicaciones
Abstract: A display of a topological group G on a Banach space X is a topological isomor- phism of G with the isometry group Isom(X, ⦀·⦀) for some equivalent norm ⦀ ⦀on X, where the latter group is equipped with the strong operator topology. Displays of Polish groups on separable real spaces are studied. It is proved that any closed subgroup of the in_nite symmetric group S∞ containing a non-trivial central involution admits a display on any of the classical spaces c₀, C([0, 1]), ℓp and Lp for 1 ≤ p < ∞. Also, for any Polish group G, there exists a separable space X on which {-1, 1} × G has a display.
ISSN: 0213-8743
Appears in Collections:Extracta Mathematicae Vol. 26, nº 2 (2011)

Files in This Item:
File Description SizeFormat 
2605-5686_26_2_195.pdf218,75 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons