Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/13405
Títulos: On extreme points of the dual ball of a polyhedral space
Autores/as: Livni, Roi
Palabras clave: Polyhedral Banach space;Boundary;Extreme points;Espacio poliédrico de Banach;Perímetro;Puntos extremos
Fecha de publicación: 2009
Editor/a: Universidad de Extremadura, Servicio de Publicaciones
Resumen: We prove that every separable polyhedral Banach space X is isomorphic to a polyhedral Banach space Y such that, the set ext Bᵧ ∗cannot be covered by a sequence of balls B (𝓎i; 𝜖i) with 0 < 𝜖i < 1 and 𝜖i ⟶ 0. In particular ext Bᵧ ∗ cannot be covered by a sequence of norm compact sets. This generalizes a result from [7] where an equivalent polyhedral norm ⦀ ⦀ on c0 was constructed such that extB(c0;⦀· ⦀)∗ is uncountable but can be covered by a sequence of norm compact sets.
URI: http://hdl.handle.net/10662/13405
ISSN: 0213-8743
Colección:Extracta Mathematicae Vol. 24, nº 3 (2009)

Archivos
Archivo Descripción TamañoFormato 
0213-8743_24_3_243.pdf158,02 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons