Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/13405
Títulos: | On extreme points of the dual ball of a polyhedral space |
Autores/as: | Livni, Roi |
Palabras clave: | Polyhedral Banach space;Boundary;Extreme points;Espacio poliédrico de Banach;Perímetro;Puntos extremos |
Fecha de publicación: | 2009 |
Editor/a: | Universidad de Extremadura, Servicio de Publicaciones |
Resumen: | We prove that every separable polyhedral Banach space X is isomorphic to a polyhedral Banach space Y such that, the set ext Bᵧ ∗cannot be covered by a sequence of balls B (𝓎i; 𝜖i) with 0 < 𝜖i < 1 and 𝜖i ⟶ 0. In particular ext Bᵧ ∗ cannot be covered by a sequence of norm compact sets. This generalizes a result from [7] where an equivalent polyhedral norm ⦀ ⦀ on c0 was constructed such that extB(c0;⦀· ⦀)∗ is uncountable but can be covered by a sequence of norm compact sets. |
URI: | http://hdl.handle.net/10662/13405 |
ISSN: | 0213-8743 |
Colección: | Extracta Mathematicae Vol. 24, nº 3 (2009) |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
0213-8743_24_3_243.pdf | 158,02 kB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons