Please use this identifier to cite or link to this item: http://hdl.handle.net/10662/14513
Title: Range, kernel orthogonality and operator equations
Authors: Amouch, Mohamed
Keywords: Operadores elementales;Ortogonalidad;Ecuación de operadores;Elementary operators
Issue Date: 2008
Publisher: Universidad de Extremadura, Servicio de Publicaciones
Abstract: Let A be a Banach algebra and ℒ(A) the algebra of all bounded linear operators acting on A. For a; b ϵ A, the generalized derivation δ ₐ;ь ϵℒ(A) and the Elementary operator Δₐ;ь ϵ ℒ(A) are defined by δₐ;ь(𝓍) = a𝓍 - 𝓍b and Δₐ;b(𝓍) = a𝓍b - 𝓍, 𝓍 ϵ ₐ;ь = δ ₐ;ь or Δ ₐ;ь. In this note we give couples (ₐ;ь) ϵ A² such that the range and the dₐ;ь kernel of ₐ;ь are orthogona in the sense of Birkhoff. As application of this results we give consequences for certain operator equations inspired by earlier studies of the equation 𝛼+α⁻¹=β+ β for automorphism 𝛼; β on Von Neuman algebrasβ for automorphism 𝛼; β on Von Neuman algebras.
URI: http://hdl.handle.net/10662/14513
ISSN: 0213-8743
Appears in Collections:Extracta Mathematicae Vol. 23, nº 3 (2008)

Files in This Item:
File Description SizeFormat 
0213-8743_23_3_235.pdf147,27 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons