Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/15856
T铆tulos: | Substructures of algebras with weakly non-negative tits form |
Autores/as: | Pe帽a, J.A. de la Skowro艅ski, A. |
Palabras clave: | Tipo de representaci贸n d贸cil;M贸dulo esencialmente sincero;Forma Tits;脕lgebra fuertemente conectada;Tame representation type;Essentially sincere module;Tits form;Strongly simply connected algebra |
Fecha de publicaci贸n: | 2007 |
Editor/a: | Universidad de Extremadura, Servicio de Publicaciones |
Resumen: | Let 饾惔 = kQ/I be a finite dimensional basic algebra over an algebraically closed field k presented by its quiver Q with relations I. A fundamental problem in the representation theory of algebras is to decide whether or not 饾惔 is of tame or wild type. In this paper we consider triangular algebras 饾惔 whose quiver Q has no oriented paths. We say that A is essentially sincere if there is an indecomposable (finite dimensional) A-module whose support contains all extreme vertices of Q We prove that if A is an essentially sincere strongly simply connected algebra with weakly non-negative Tits form and not accepting a convex subcategory which is either representation-infinite tilted algebra of type 岷尖倸 or a tubular algebra, then 饾惔 is of polynomial growth (hence of tame type). |
URI: | http://hdl.handle.net/10662/15856 |
ISSN: | 0213-8743 |
Colecci贸n: | Extracta Mathematicae Vol. 22, n潞 1 (2007) |
Archivos
Archivo | Descripci贸n | Tama帽o | Formato | |
---|---|---|---|---|
2605-5686_22_1_67.pdf | 217,06 kB | Adobe PDF | Descargar |
Este elemento est谩 sujeto a una licencia Licencia Creative Commons