Please use this identifier to cite or link to this item:
Title: On generalized d’Alembert functional equation
Authors: Akkouchi, Mohamed
Bakali, Allal
Bouikhalene, Belaid
Elqorachi, Elhoucien
Keywords: Ecuación funcional;Medida de Gelfand;Función μ-esférica;Denición positiva función finita;Teoría de la representación;Operador diferencial invariante;Functional equation;Gelfand measure;μ-spherical function;Positive deninite function;Representation theory;Lie group
Issue Date: 2006
Publisher: Universidad de Extremadura, Servicio de Publicaciones
Abstract: Let G be a locally compact group. Let 𝜎 be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d’Alembert functional equation D(μ) ∫ G ƒ (𝓍𝓉𝓎)d μ (𝓉) + ∫ G ƒ (𝓍𝓉𝜎 𝜎 (𝓎)) 𝒹 μ (𝓉) = 2 ƒ (𝓍) ƒ (𝓎) 𝓍, 𝓎 ∈ G, where ƒ: G → C to be determined is a measurable and essentially bounded function. We give some conditions under which all solutions are of the form ≺π(x)ξ,ζ¬+≺π(σ(x))ξ,ζ¬ 2 , where (π, H) is a continuous unitary representation of G such that π(μ) is of rank one and ξ, ζ ∈ H. Furthermore, we also consider the case when f is an integrable solution. In the particular case where G is a connected Lie group, we reduce the solution of D(μ) to a certain problem in operator theory. We prove that the solutions of D(μ) are exactly the common eigenfunctions of some operators associated to a left invariant differential operators on G.
ISSN: 0213-8743
Appears in Collections:Extracta Mathematicae Vol. 21, nº 1 (2006)

Files in This Item:
File Description SizeFormat 
2605-5686_21_1_67.pdf173,35 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons