Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10662/16372
Títulos: | Extensions, crossed modules and pseudo quadratic Lie type superalgebras |
Autores/as: | Pouye, M. Kpamegan, B. |
Palabras clave: | Superálgebras de tipo Lie;Superálgebras de Jacobi-Jordan;Extensión;Módulo cruzado;Homología;Cohomología;Doble extensión;Superálgebras pseudocuadráticas de tipo Lie;Lie type superalgebras;Jacobi-Jordan superalgebras;Extension;Crossed module;Homology;Cohomology;Double extension;Pseudo quadratic Lie type superalgebras |
Fecha de publicación: | 2022 |
Editor/a: | Universidad de Extremadura, Servicio de Publicaciones |
Resumen: | Extensions and crossed modules of Lie type superalgebras are introduced and studied. We construct homology and cohomology theories of Lie-type superalgebras. The notion of left super-invariance for a bilinear form is de ned and we consider Lie type superalgebras endowed with nondegenerate, supersymmetric and left super-invariant bilinear form. Such Lie type superalgebras are called pseudo quadratic Lie type superalgebras. We show that any pseudo quadratic Lie type superalgebra induces a Jacobi-Jordan superalgebra. By using the method of double extension, we study pseudo quadratic Lie type superalgebras and theirs associated Jacobi-Jordan superalgebras. |
URI: | http://hdl.handle.net/10662/16372 |
ISSN: | 0213-8743 |
DOI: | 10.17398/2605-5686.37.2.153 |
Colección: | Extracta Mathematicae Vol. 37, nº 2 (2022) |
Archivos
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2605-5686_37_2_153.pdf | 435,35 kB | Adobe PDF | Descargar |
Este elemento está sujeto a una licencia Licencia Creative Commons