Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10662/16372
Títulos: Extensions, crossed modules and pseudo quadratic Lie type superalgebras
Autores/as: Pouye, M.
Kpamegan, B.
Palabras clave: Superálgebras de tipo Lie;Superálgebras de Jacobi-Jordan;Extensión;Módulo cruzado;Homología;Cohomología;Doble extensión;Superálgebras pseudocuadráticas de tipo Lie;Lie type superalgebras;Jacobi-Jordan superalgebras;Extension;Crossed module;Homology;Cohomology;Double extension;Pseudo quadratic Lie type superalgebras
Fecha de publicación: 2022
Editor/a: Universidad de Extremadura, Servicio de Publicaciones
Resumen: Extensions and crossed modules of Lie type superalgebras are introduced and studied. We construct homology and cohomology theories of Lie-type superalgebras. The notion of left super-invariance for a bilinear form is de ned and we consider Lie type superalgebras endowed with nondegenerate, supersymmetric and left super-invariant bilinear form. Such Lie type superalgebras are called pseudo quadratic Lie type superalgebras. We show that any pseudo quadratic Lie type superalgebra induces a Jacobi-Jordan superalgebra. By using the method of double extension, we study pseudo quadratic Lie type superalgebras and theirs associated Jacobi-Jordan superalgebras.
URI: http://hdl.handle.net/10662/16372
ISSN: 0213-8743
DOI: 10.17398/2605-5686.37.2.153
Colección:Extracta Mathematicae Vol. 37, nº 2 (2022)

Archivos
Archivo Descripción TamañoFormato 
2605-5686_37_2_153.pdf435,35 kBAdobe PDFDescargar


Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons